高中数学之空间点线面之间位置关系知识点
高考数学(理)总复习讲义:空间点、线、面之间的位置关系
第三节空间点、线、面之间的位置关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面(注意:三点不一定能确定一个平面).推论1:经过一条直线和直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(1)两条异面直线不能确定一个平面.(2)不能把异面直线误解为分别在不同平面内的两条直线.(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补.(1)如果一个角的两边与另一个角的两边分别平行,并且方向相同,那么这两个角相等.(2)如果一个角的两边与另一个角的两边分别平行,并且其中一组方向相同,另一组方向相反,那么这两个角互补.(3)如果一个角的两边与另一个角的两边分别平行,并且方向都相反,那么这两个角相等.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.[熟记常用结论]1.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的2个结论(1)平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)分别在两个平行平面内的直线平行或异面.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.()(2)两个平面ABC与DBC相交于线段BC.()(3)两两相交的三条直线最多可以确定三个平面.()(4)没有公共点的两条直线是异面直线.()答案:(1)√(2)×(3)√(4)×二、选填题1.下列说法正确的是()A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面答案:D2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b 和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析:选D依题意,直线b和c的位置关系可能相交、平行或异面.3.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂α B.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:选D b与α相交或b⊂α或b∥α都可能.4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________(填序号).①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.答案:③④5.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成________部分.解析:通过举例说明,如三棱柱三个侧面所在平面满足两两相交,且三条交线互相平行,这三个平面将空间分成7部分.答案:7考点一平面的基本性质及应用[师生共研过关][典例精析]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.[解题技法]1.证明点或线共面问题的2种方法(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合.2.证明点共线问题的2种方法(1)先由两点确定一条直线,再证其他各点都在这条直线上;(2)直接证明这些点都在同一条特定直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.[过关训练]如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为FA ,FD 的中点. (1)证明:四边形BCHG 为平行四边形;(2)判断C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,所以GH 綊BC . 所以四边形BCHG 为平行四边形.(2)C ,D ,F ,E 四点共面.理由如下:因为BE 綊12AF ,G 为FA 的中点,所以BE 綊FG . 所以四边形BEFG 为平行四边形,所以EF ∥BG .由(1)知BG 綊CH ,所以EF ∥CH ,所以EF 与CH 共面.又D ∈FH ,所以C ,D ,F ,E 四点共面.考点二 空间两直线位置关系的判定 [师生共研过关][典例精析](1)在图中,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形的序号是__________.(2)如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH所在直线在原正方体中互为异面的对数为________对.[解析](1)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.(2)平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面直线的有3对.[答案](1)②④(2)3[解题技法]异面直线的判定方法[过关训练]1.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交解析:选D由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.2.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________(填序号).解析:直线AM 与CC 1是异面直线,直线AM 与BN 也是异面直线,故①②错误. 答案:③④考点三 求异面直线所成的角 [师生共研过关][典例精析]如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.45[解析] 连接BC1,易证BC 1∥AD 1,则∠A 1BC 1或其补角为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45. [答案] D[变式发散]1.(变条件)将本例条件“AA 1=2AB =2”变为“AB =1,若平面ABCD 内有且仅有一点到顶点A 1的距离为1”,其他条件不变,则异面直线A 1B 与AD 1所成角的余弦值为________.解析:由平面ABCD 内有且仅有一点到A1的距离为1,得AA 1=1.此时正四棱柱变为正方体ABCD -A 1B 1C 1D 1.由图知A 1B 与AD 1所成角为∠A 1BC 1或其补角,连接A 1C 1,则△A 1BC 1为等边三角形,∴∠A 1BC 1=60°,∴cos ∠A 1BC 1=12,故异面直线A 1B 与AD 1所成角的余弦值为12. 答案:122.(变条件、变结论)将本例条件“AA 1=2AB =2”变为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,其他条件不变,则AA 1AB 的值为________. 解析:设AA 1AB =t ,则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910. ∴t =3,即AA 1AB=3. 答案:3[解题技法]用平移法求异面直线所成的角的三步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.[过关训练] 1.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22解析:选C 如图,在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体EFBA -E 1F 1B 1A 1.连接B 1F ,由长方体性质可知,B 1F ∥AD 1,所以∠DB 1F 为异面直线AD 1与DB 1所成的角或其补角.连接DF ,由题意,得DF =12+(1+1)2=5,FB 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DFB 1中,由余弦定理,得DF 2=FB 21+DB 21-2FB 1·DB 1·cos ∠DB 1F , 即5=4+5-2×2×5×cos ∠DB 1F ,所以cos ∠DB 1F =55. 2.(2019·西安质检)已知△ABC 与△BCD 均为正三角形,且AB =4.若平面ABC ⊥平面BCD ,且异面直线AB 和CD 所成的角为θ,则cos θ=( )A .-154 B.154C .-14 D.14解析:选D 如图,取BC 的中点O ,取BD 的中点E ,取AC 的中点F ,连接OA ,OE ,OF ,EF ,则OE ∥CD ,OF ∥AB ,则∠EOF 或其补角为异面直线AB 与CD 所成的角.依题意得OE =12CD =2,OF =12AB =2,过点F 作FG ⊥BC 于点G ,易得FG ⊥平面BCD ,且FG =12OA =3,G 为OC 的中点,则OG =1,又OE =2,∠EOG =120°,所以由余弦定理得EG =OG 2+OE 2-2OG ·OE cos ∠EOG =12+22-2×1×2×cos 120°=7,由勾股定理得EF 2=FG 2+EG 2=(3)2+(7)2=10,在△OEF 中,由余弦定理得cos ∠EOF =OE 2+OF 2-EF 22OE ·OF =22+22-102×2×2=-14,所以cos θ=14. [课时跟踪检测]一、题点全面练1.下列四个命题:①存在与两条异面直线都平行的平面;②过空间一点,一定能作一个平面与两条异面直线都平行;③过平面外一点可作无数条直线与该平面平行;④过直线外一点可作无数个平面与该直线平行.其中正确命题的个数是( )A .1B .2C .3D .4解析:选C ①将一个平面内的两条相交直线平移到平面外,且平移后不相交,则这两条直线异面且与该平面平行,故正确;②当点在两条异面直线中的一条上时,这个平面不存在,故不正确;③正确;④正确.故选C.2.已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .必要不充分条件B.充分不必要条件 C .充要条件 D .既不充分也不必要条件解析:选B 直线a ,b 分别在两个不同的平面α,β内,则由“直线a 和直线b 相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选B.3.已知l1,l2,l3是空间中三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析:选B在空间中,垂直于同一直线的两条直线不一定平行,故A错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,故B正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D错.4.(2019·广东茂名联考)一正方体的平面展开图如图所示,在这个正方体中,有下列四个命题:①AF⊥GC;②BD与GC是异面直线且夹角为60°;③BD∥MN;④BG与平面ABCD所成的角为45°.其中正确的个数是()A.1 B.2C.3 D.4解析:选B将平面展开图还原成正方体(如图所示).对于①,由图形知AF与GC异面垂直,故①正确;对于②,BD与GC显然是异面直线.如图,连接EB,ED,则EB∥GC,所以∠EBD即为异面直线BD与GC所成的角(或其补角).在等边△BDE中,∠EBD =60°,所以异面直线BD与GC所成的角为60°,故②正确;对于③,BD与MN为异面垂直,故③错误;对于④,由题意得,GD⊥平面ABCD,所以∠GBD是BG与平面ABCD所成的角.但在Rt△BDG中,∠GBD不等于45°,故④错误.综上可得①②正确.5.如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A .A ,M ,O 三点共线B.A ,M ,O ,A 1不共面 C .A ,M ,C ,O 不共面 D .B ,B 1,O ,M 共面解析:选A 连接A 1C 1,AC ,因为A 1C 1∥AC ,所以A 1,C 1,C ,A 四点共面,所以A 1C ⊂平面ACC 1A 1,因为M ∈A 1C ,所以M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上.同理O 在平面ACC 1A 1与平面AB 1D 1的交线上,所以A ,M ,O 三点共线.6.若平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析:如果这四点在同一平面内,那么确定1个平面;如果这四点不共面,则任意三点可确定1个平面,所以可确定4个.答案:1或47.在直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于________.解析:如图,延长CA 到点D ,使得AD =AC ,连接DA 1,BD ,则四边形ADA 1C 1为平行四边形,所以∠DA 1B 就是异面直线BA 1与AC 1所成的角.又A 1D =A 1B =DB ,所以△A 1DB 为等边三角形,所以∠DA 1B=60°.答案:60°8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论. ①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上;④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG , 所以四边形EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.问:(1)AM 与CN 是否是异面直线?说明理由;(2)D 1B 与CC 1是否是异面直线?说明理由.解:(1)AM 与CN 不是异面直线.理由如下:如图,连接MN ,A 1C 1,AC .因为M ,N 分别是A 1B 1,B 1C 1的中点,所以MN ∥A 1C 1.又因为A 1A 綊C 1C ,所以四边形A 1ACC 1为平行四边形,所以A 1C 1∥AC ,所以MN ∥AC ,所以A ,M ,N ,C 在同一平面内,故AM 和CN 不是异面直线.(2)D 1B 与CC 1是异面直线.理由如下:因为ABCD -A 1B 1C 1D 1是正方体,所以B ,C ,C 1,D 1不共面.假设D 1B 与CC 1不是异面直线,则存在平面α,使D 1B ⊂平面α,CC 1⊂平面α,所以D 1,B ,C ,C 1∈α,这与B ,C ,C 1,D 1不共面矛盾.所以假设不成立,即D 1B 与CC 1是异面直线.10.已知三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,A 1在底面ABC 内的射影O 为底面三角形ABC 的中心,如图所示.(1)连接BC 1,求异面直线AA 1与BC 1所成角的大小;(2)连接A 1C ,A 1B ,求三棱锥C 1-BCA 1的体积.解:(1)因为AA 1∥CC 1,所以异面直线AA 1与BC 1所成的角为∠BC 1C 或其补角.连接AO ,并延长与BC 交于点D ,则D 是BC 边上的中点.因为点O 是正三角形ABC 的中心,且A 1O ⊥平面ABC ,所以BC ⊥AD ,BC ⊥A 1O ,因为AD ∩A 1O =O ,所以BC ⊥平面ADA 1.所以BC ⊥AA 1,又因为AA 1∥CC 1,所以CC 1⊥BC ,BC =CC 1=B 1C 1=BB 1=2,即四边形BCC 1B 1为正方形,所以异面直线AA 1与BC 1所成角的大小为π4. (2)因为三棱柱的所有棱长都为2,所以可求得AD =3,AO =23AD =233, A 1O =AA 21-AO 2=263. 所以VABC -A 1B 1C 1=S △ABC ·A 1O =22,VA 1-BCC 1B 1=VABC -A 1B 1C 1-VA 1-ABC =423, 所以VC 1-BCA 1=VA 1-BCC 1=12VA 1-BCC 1B 1=223. 二、专项培优练(一)易错专练——不丢怨枉分1.已知平面α及直线a ,b ,则下列说法正确的是( )A .若直线a ,b 与平面α所成角都是30°,则这两条直线平行B .若直线a ,b 与平面α所成角都是30°,则这两条直线不可能垂直C .若直线a ,b 平行,则这两条直线中至少有一条与平面α平行D .若直线a ,b 垂直,则这两条直线与平面α不可能都垂直解析:选D 对于A ,若直线a ,b 与平面α所成角都是30°,则这两条直线平行、相交或异面,故A 错误;对于B ,若直线a ,b与平面α所成角都是30°,则这两条直线可能垂直,如图,直角三角形ACB 的直角顶点C在平面α内,边AC ,BC 可以与平面α都成30°角,故B 错误;C 显然错误;对于D ,假设直线a ,b 与平面α都垂直,则直线a ,b 平行,与已知矛盾,则假设不成立,故D 正确.故选D.2.在三棱柱ABC -A 1B 1C 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与直线A 1B 1,EF ,BC 都相交的直线( )A .不存在B.有且只有两条 C .有且只有三条 D .有无数条解析:选D 如图,在EF 上任意取一点M ,直线A1B 1与M 确定一个平面,这个平面与BC 有且仅有1个交点N ,当M 的位置不同时,确定不同的平面,从而与BC 有不同的交点N ,而直线MN 与A 1B 1,EF ,BC 分别有交点P ,M ,N ,故有无数条直线与直线A 1B 1,EF ,BC 都相交.3.如图,三棱锥P -ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB =4,BC ⊥AB ,则异面直线PC ,AD 所成角的余弦值为________.解析:如图,取BC 的中点E ,连接DE ,AE .则在△PBC 中,PD=DB ,BE =EC ,所以DE ∥PC ,且DE =12PC .故∠ADE 为异面直线PC ,AD 所成的角或其补角.因为PA ⊥平面ABC ,所以PA ⊥AC ,PA⊥AB .在Rt △ABC 中,AC =BC 2+AB 2=22+42=2 5.在Rt △PAC中,PC =PA 2+AC 2=22+(25)2=2 6.故DE =12PC = 6.在Rt △PAB 中,PB =AB 2+PA 2=42+22=2 5.又PD =DB ,所以AD =12PB = 5.在Rt △EAB 中,AE =AB 2+BE 2=42+12=17.在△DAE 中,cos ∠ADE =AD 2+DE 2-AE 22AD ·DE=(5)2+(6)2-(17)22×5×6=-3010.故异面直线PC ,AD 所成角的余弦值为3010. 答案:30104.已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题: ①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中所有正确的命题是________(填序号).解析:借助于长方体模型来解决本题,对于①,可以得到平面α,β互相垂直,如图(1)所示,故①正确;对于②,平面α,β可能垂直,如图(2)所示,故②不正确;对于③,平面α,β可能垂直,如图(3)所示,故③不正确;对于④,由m ⊥α,α∥β可得m ⊥β,因为n ∥β,所以过n 作平面γ,且γ∩β=g ,如图(4)所示,所以n 与交线g 平行,因为m ⊥g ,所以m ⊥n ,故④正确.答案:①④(二)素养专练——学会更学通5.[直观想象]如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是( )A .4πB.π C .2π D.π2解析:选D 连接DN ,则△MDN 为直角三角形,在Rt △MDN中,MN =2,P 为MN 的中点,连接DP ,则DP =1,所以点P 在以D 为球心,半径R =1的球面上,又因为点P 只能落在正方体上或其内部,所以点P 的轨迹的面积等于该球面面积的18,故所求面积S =18×4πR 2=π2. 6.[直观想象、逻辑推理](2017·全国卷Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)解析:由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,又AC ⊥a ,AC ⊥b ,AC ⊥圆锥底面,∴在底面内可以过点B ,作BD∥a ,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,∴DE∥b ,连接AD ,设BC =1,在等腰△ABD 中,AB =AD =2,当直线AB 与a 成60°角时,∠ABD =60°,故BD =2,又在Rt △BDE 中,BE =2,∴DE =2,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,EF ,∴BF =DE =2,∴△ABF 为等边三角形,∴∠ABF =60°,即AB 与b 成60°角,故②正确,①错误.由最小角定理可知③正确;很明显,可以满足平面ABC ⊥直线a ,∴直线AB 与a 所成角的最大值为90°,④错误.∴正确的说法为②③.答案:②③7.[直观想象、逻辑推理、数学运算]如图所示,AC 是圆O 的直径,B ,D 是圆O 上两点,AC =2BC =2CD =2,PA ⊥圆O 所在的平面,PA =3,点M 在线段BP 上,且BM =13BP . (1)求证:CM ∥平面PAD ;(2)求异面直线BP 与CD 所成角的余弦值.解:(1)证明:作ME ⊥AB 于点E ,连接CE ,则ME ∥AP .因为AC 是圆O 的直径,AC =2BC =2CD =2,所以AD ⊥DC ,AB ⊥BC ,所以∠BAC =∠CAD =30°,∠BCA =∠DCA =60°,AB =AD =3,因为BM =13BP ,所以BE =13BA =33, tan ∠BCE =BE BC =33, 所以∠BCE =∠ECA =30°=∠CAD ,所以EC ∥AD .又ME ∩CE =E ,PA ∩DA =A ,所以平面MEC ∥平面PAD ,又CM ⊂平面MEC ,CM ⊄平面PAD ,所以CM ∥平面PAD .(2)过点A 作平行于BC 的直线交CD 的延长线于点G ,作BF ∥CG 交AG 于点F ,连接PF ,则∠PBF 或其补角为异面直线BP 与CD 所成的角,设∠PBF =θ.易知AF=1,BP=6,BF=2,PF=2,故cos θ=BP2+BF2-PF22BP·BF=6+4-426×2=64.即异面直线BP与CD所成角的余弦值为6 4.。
(完整word版)空间点线面之间位置关系知识点总结,推荐文档
高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22Srl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积 1)3V S S S S h =++⨯下下上上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
高中数学空间点线面之间的位置关系的知识点总结(供参考)
aβ
bβ
a∩b = Pβ∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3—
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
aβa∥b
高中空间点线面之间位置关系知识点总结
第二章直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
2.1.1
1平面含义:平面是无限延展的
2平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
4注意点:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
α∩β= b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ= a a∥b
β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行
空间点线面之间位置关系知识点总结
高中空间点线面之间位置关系知识点总结第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积2S rl rππ=+④圆台的表面积22S rl r Rl Rππππ=+++⑤球的表面积24S Rπ=⑥扇形的面积公式213602n RS lrπ==扇形(其中l表示弧长,r表示半径)2、空间几何体的体积①柱体的体积V S h=⨯底②锥体的体积13V S h=⨯底③台体的体积1)3V S S h=+⨯下上(④球体的体积343V Rπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
点线面的位置关系知识点
点线面的位置关系知识点在几何学中,点、线和面是三个基本的几何概念,它们之间存在着一系列的位置关系。
这些位置关系的理解对于解决几何问题以及应用几何知识有着重要的意义。
本文将介绍点线面的位置关系的几个重要知识点。
一、点与直线的位置关系1. 在直线上:当一个点恰好位于一条直线上时,我们可以说这个点在直线上。
例如,点A在直线AB上。
2. 在直线的两侧:如果一个点既不在直线上,也不在直线的延长线上,我们可以说这个点在直线的两侧。
例如,点C在直线AB的两侧。
3. 在直线的延长线上:如果一个点不在直线上,但位于直线的延长线上,我们可以说这个点在直线的延长线上。
例如,点D在直线AB的延长线上。
4. 平行于直线:如果一条直线与给定直线没有任何交点,我们可以说这条直线平行于给定直线。
例如,直线CD平行于直线AB。
二、点与平面的位置关系1. 在平面上:当一个点位于一个平面内部时,我们可以说这个点在平面上。
例如,点A在平面P上。
2. 不在平面上:如果一个点既不在平面上,也不在平面的延长线上,我们可以说这个点不在平面上。
例如,点B不在平面P上。
3. 在平面的延长线上:如果一个点不在平面上,但位于平面的延长线上,我们可以说这个点在平面的延长线上。
例如,点C在平面P的延长线上。
4. 垂直于平面:如果一条直线与给定平面的任意一条线都垂直,我们可以说这条直线垂直于给定平面。
例如,直线EF垂直于平面P。
三、直线与平面的位置关系1. 相交于一点:当一条直线与平面有且仅有一个交点时,我们可以说这条直线与平面相交于一点。
例如,直线L与平面P相交于点A。
2. 平行于平面:如果一条直线与给定平面的任意一条线都平行,我们可以说这条直线平行于给定平面。
例如,直线M平行于平面P。
3. 包含于平面:当一条直线上的所有点都位于给定平面上时,我们可以说这条直线被包含于给定平面中。
例如,直线N被包含于平面P 中。
4. 相交于一条线:当一条直线与平面有无穷多个交点时,我们可以说这条直线与平面相交于一条线。
必修2 第二章空间点线面的位置关系知识点
必修2 第二章《点、直线、平面之间的位置关系》知识点
编写人:元丽丽
第一讲 空间点、直线、平面之间的位置关系 1.四个公理
2.异面直线的概念:把 的两条直线叫做异面直线.
3.等角定理
空间中如果有两个角的两边分别对应平行,那么这两个角 或 . 4.两条异面直线所成的角(夹角)
(1)定义:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或 角)叫异面直线,a b 所成的夹角. (2)异面直线所成角的范围:
5.空间两条直线的位置关系:
7.空间中平面与平面之间的位置关系
第二讲 直线、平面平行的判定及其性质
1.四个定理
第三讲直线、平面平垂直的判定及其性质
1.直线与平面垂直:
如果直线l与平面α内的一条直线都垂直,我们就说直线l与平面α垂直,记作 .
直线l叫做平面α的,平面α叫做直线l的 .直线与平面的公共点P叫做 .
2. 直线与平面所成的角:
过斜足上斜足以外的一点向平面平面引,过和的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的,叫做这条直线和这个平面所成的角.
角的取值范围: .
3.二面角。
高三数学 空间点线面之间的位置关系
课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定3进一步反映了平面的延展 性.其作用是:(1)判定两平面相交;(2) 作两平面相交的交线(当知道两个平面 的两个公共点时,这两点的连线就是交 线);(3)证明多点共线(如果几个点都是 某两个平面的公共点,则这几个点都在 这两个平面的交线上).
随堂即时巩固
点击进入
课时活页训练
PQ、CB的延长线交于M,RQ、DB的延
长线交于N,RP、DC的延长线交于K.求
证:M、N、K三点共线.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分
高中数学 空间点、线、面的位置关系
(2)证明两直线为异面直线的方法: ①定义法(不易操作); ②反证法:先假设两条直线共面,由假设出发,经过推理导出矛盾,从而否定假设,肯定两条直线为 异面直线; ③利用结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线. (3)异面直线所成的角:
①范围: 0, ; 2
空间点、线、面的位置关系
知识清单
一、平面的基本性质 1.三个公理的用途 公理1:证明“点在面内”或“线在面内”; 公理2:①判断两个平面是否重合;②确定一个平面;③证明点、线共面; 公理3:①证明三点共线、三线共点;②确定两平面的交线. 2.对公理2及推论中“有且只有一个平面”的理解:平面存在,而且唯一,“有且只有”有时也说 成“确定”.
例1 如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB和AA1的中点.
求证:(1)E、C、D1、F四点共面; (2)CE、D1F、DA三线共点.
解题导引 (1)证明EF∥A1B 证明EF∥CD1 E、C、D1、F四点共面 (2)先证直线D1F与CE相交 再证交点在直线DA上 三线共点,结论成立 证明 (1)如图所示,连接CD1、EF、A1B, ∵E、F分别是AB和AA1的中点, ∴FE∥A1B且EF= A1B. ∵A1D1������ BC,∴四边形A1BCD1是平行四边形, ∴A1B∥D1C,∴FE∥D1C, ∴EF与CD1可确定一个平面,即E、C、D1、F四点共面.
突破方法
方法1 证明点共线、线共点及点线共面的方法
(1)证明点共线的方法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这 些点都在这两个平面的交线上. (2)证明多线共点的方法:证明若干条线共点的基本思路是先找出两条直线的交点,再证明其他 直线都经过该点.证明一条直线过一点的方法是证明该点是以该直线为交线的两个平面的公共 点. (3)证明点线共面的方法:①纳入平面法:先确定一个平面,再证点、线在该平面内;②辅助平面法: 先证一些点、线确定平面α,再证其余点、线确定平面β,最后证明平面α、β重合.
(完整版)空间点线面之间位置关系知识点总结,推荐文档
符号表示为:P∈α∩β =>α∩β=L,且 P∈L
公理 3 作用:判定两个平面是否相交的依据
β
2.1.2 空间中直线与直线之间的位置关系
1 空间的两条直线有如下三种关系:
共面直线
相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;
α
P
·L
异面直线: 不同在任何一个平面内,没有公共点。
aα
bβ
=>a∥α
a∥b
2.2.2 平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
②圆柱的表面积S = 2πrl + 2πr 2
③圆锥的表面积 S rl r 2
重点记忆:
④圆台的表面积 S rl r 2 Rl R2 ⑤球的表面积 S 4 R2
⑥扇形的面积公式 S扇形
n R2 360
1 lr 2
(其中 l 表示弧长, r 表示半径)
2、空间几何体的体积
①柱体的体积 V S底 h
α 来表示
作用:可以由平面与平面平行得出直线与直线平行 2.3 直线、平面垂直的判定及如果直线 L 与平面 α 内的任意一条直线都垂直,我们就说直线 L 与平面 α 互相垂直,记作 L⊥α,
直线 L 叫做平面 α 的垂线,平面 α 叫做直线 L 的垂面。如图,直线与平面垂直时,它们唯一公共点 P 叫
②锥体的体积
V
1 3 S底
h
③台体的体积
V 13(S上上 S S下下 S ) h
④球体的体积V 4 R3 3
第二章 直线与平面的位置关系
2.1 空间点、直线、平面之间的位置关系
D
高中数学空间点线面之间的位置关系的知识点总结
高中空间点线面之间位置关系知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
高中数学同步专题-空间点线线线线面的位置关系
高中数学复习------空间点线·线线·线平面的位置关系一 知识要点1点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉.◆公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线) 直线l 在平面α内,记作l ⊂α。
用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂◆公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论;两条平行直线确定一个平面。
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a 。
符号语言:,P A B A B l P l ∈⇒=∈◆·过空间三点可确定 平面;过两平行线可确定 平面;过一条直线和直线外一点可确定 平面.2.异面直线定义:不同在任何一个平面内的两条直线.3.异面直线所成的角(或夹角):过空间任意一点作两条异面直线的平行线,这两条平行线所成的锐角或直角。
当异面直线所成的角为直角时称这两条异面直线互相垂直。
4.空间两条直线的位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.公理4:平行于同一条直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两角相等。
等角定理的推论:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
5直线和平面平行定义:直线和平面没有公共点。
6直线和平面的位置关系: ①直线在平面内 ②相交 ③平行;三种位置关系的符号表示: a ⊂α a ∩α=A a ∥α (后两个统称为a ⊄α)二 典例分析题型一 线共面问题例1 求证:两两平行的三条直线如果都与第四条直线相交,那么这四条直线共面练习1 求证:两两相交且不共点的四条直线共面题型二 点与线问题例2 (1)空间四点A 、B 、C 、D 共面而不共线,那么四点中( )A 、 必有三点共线B 、 必有三点不共线C 、 至少三点共线D 、 不可能有三点共线(2)下面给出四个条件:① 空间三个点;② 两两相交的三条直线;③ 一条直线和一个点;④ 和同一条直线相交的两条直线。
空间点线面之间位置关系知识点总结
高中空间点线面之间位置关系知识点总结第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积①棱柱、棱锥的表面积: 各个面面积之和②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+④圆台的表面积22Srl r Rl R ππππ=+++ ⑤球的表面积24S R π=⑥扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积①柱体的体积 V S h =⨯底 ②锥体的体积 13V S h =⨯底③台体的体积1)3V S S h =+⨯下上( ④球体的体积343V R π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
空间点线面之间位置关系知识点总结
4.斜二测法:在坐标系 中画直观图时,图形中平行于坐标轴的线段保持平行性不变,平行于x轴〔或在x轴上〕的线段保持长度不变,平行于y轴〔或在y轴上〕的线段长度减半。 重点记忆:直观图面积= 原图形面积
(三)空间几何体的外表积与体积
1、空间几何体的外表积
— 2.1.4 空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
〔1〕直线在平面内 —— 有无数个公共点
〔2〕直线与平面相交 —— 有且只有一个公共点
〔3〕直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
2 平面的画法及表示
〔1〕平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长〔如图〕
〔2〕平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3 三个公理:
如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
L
p
α
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
注意点: a)定理中的“两条相交直线〞这一条件不可无视;
4 注意点:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0,);