人教版初中数学讲义
九年级人教版数学讲义
九年级人教版数学讲义你好!欢迎使用九年级人教版数学讲义。
下面我将详细介绍该讲义的主要内容。
一、目录九年级人教版数学讲义主要包括以下内容:第一章:实数与数轴第二章:一次函数第三章:三角形第四章:四边形第五章:圆第六章:统计初步第七章:数学思想方法二、主要内容1. 实数与数轴:本章主要介绍实数的概念和性质,以及数轴的表示方法和基本性质。
通过本章的学习,学生可以更好地理解实数与数轴上的点之间的对应关系。
2. 一次函数:本章主要介绍一次函数的概念、性质和图像,以及一次函数在生活中的应用。
通过本章的学习,学生可以掌握一次函数的基本思想和解题方法。
3. 三角形:本章主要介绍三角形的边角关系、三角形的分类(等腰三角形、直角三角形、一般三角形)、三角形的稳定性在实际中的应用等。
通过本章的学习,学生可以掌握三角形的基本性质和解题方法。
4. 四边形:本章主要介绍平行四边形、矩形、菱形、正方形等基本概念和性质,以及它们在实际中的应用。
通过本章的学习,学生可以掌握四边形的基本性质和解题方法。
5. 圆:本章主要介绍圆的基本概念、性质和定理,以及圆在实际中的应用。
通过本章的学习,学生可以掌握圆的性质和解题方法,并提高空间想象能力。
6. 统计初步:本章主要介绍数据的收集、整理、描述和分析方法,以及统计在生活中的应用。
通过本章的学习,学生可以掌握统计的基本思想和解题方法。
7. 数学思想方法:本章主要介绍数学思想和方法,如函数与方程思想、数形结合思想、分类讨论思想等,以及这些思想和方法在解题中的应用。
通过本章的学习,学生可以提高数学思维能力和解题能力。
三、作业与练习九年级人教版数学讲义提供了大量的作业与练习,包括选择题、填空题、解答题等,旨在帮助学生巩固所学知识,提高解题能力。
学生可以通过完成这些作业与练习,加深对所学内容的理解,并提高应用所学知识解决实际问题的能力。
四、教学建议教师在教学过程中,可以根据学生的实际情况和教材内容,适当调整教学进度和难度,注重培养学生的数学思维能力和解题能力。
人教版九年级数学上册讲义(全册)之欧阳与创编
人教版九年级数学上册讲义(全册)第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(a≥0)是一个非负数,()2=a(2)理解(a≥0(a≥0).·=(a≥0,b≥0),(3)掌握;=(a≥0,b>0),=(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;(2=a(a≥0);(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点(a≥0)是一个非负数的理解;对等式1.对()2=a(a≥0)及=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键(a≥0)的式子叫做二次根式的1.重点:形如概念;(a≥0)”解决具体问2.难点与关键:利用“题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3,那么它的图象在第x一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y ,所以x 2=3.因为点在第一象限,所以问题2:由勾股定理得问题3:由方差的概念得 二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a ≥0)•(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根1x (x>0、、1x y+、x ≥0,y•≥0). 分析:二次根式应满足两个条件:第一,有二次根0.解:二次根式有:、(x>0)、、-、(x ≥0,y ≥0);不是二次根式的有:、1x 1x y+. 例2.当x在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.四、应用拓展例3.当x11x +在实数范围内有意义?分析11x +在实数范围内有意义,必须同中的≥0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32 由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知,求x y 的值.(答案:2) (2)=0,求a 2004+b 2004的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P 8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是( )A .BCD .x2.下列式子中,不是二次根式的是( )A.1x3.已知一个正方形的面积是5,那么它的边长是( )A .5 B.15 D .以上皆不对 二、填空题1.形如________的式子叫做二次根式.2.面积为a 的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,+x 2在实数范围内有意义?3.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b为实数,且+2=b+4,求a 、b 的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1a ≥0) 2.没有三、1.设底面边长为x ,则0.2x 2=1,解答:2.依题意得:2300x x +≥⎧⎨≠⎩,320x x ⎧≥-⎪⎨⎪≠⎩∴当x>-3且x≠0x2在实数范围2内没有意义.3.134.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容a≥0)是一个非负数;12)2=a(a≥0).教学目标(a≥0)是一个非负数和()2=a(a≥理解0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(谨解题.教学重难点关键(a≥0)是一个非负数;()2=a1.重点:(a≥0)及其运用.(a≥2.难点、关键:用分类思想的方法导出0)是一个非负数;•用探究的方法导出(≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?a<0有意义2.当a≥0时,吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出()2=_______;()2=_______;()2=______)2=_______;()2=______;()2=_______;()2=_______.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有2=4.同理可得:()2=2,()2=9)2=3,2=13,所以 例1 计算1.()2 2.(3)2 3.()24.(2)2分析2=a (a ≥0)的结论解题.解:()2 =32,(3)2 =32·()2=32·5=45,2=56,(2)2=22724 . 三、巩固练习计算下列各式的值:()2 ()2 ()2 ()2(2四、应用拓展例2 计算)2(x≥0)2.()21.(3242分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4)2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.(0).六、布置作业1.教材P8复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、).A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.()2=________.2_______数.三、综合提高题1.计算(12(2)-)2(3)(12)2(4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x(x≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-5第二课时作业设计答案:一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3(3)(12)2=14×6=32(4)(2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0) 3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=81 4.(1)x 2-2=()()(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)(x+)() (3)略21.1 二次根式(3) 第三课时教学内容a (a ≥0) 教学目标(a ≥0)并利用它进行计算和化简.通过具体数据的解答,探究(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程 一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式; 2a ≥0)是一个非负数; 3.)2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知 (学生活动)填空:=______;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:=2;=0.01;=110;=23;=0;37.例1 化简(1(2(3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)•去化简.解:(1(2(3(4三、巩固练习 教材P 7练习2. 四、应用拓展例2 填空:当a ≥0;当a<0时,,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3,则a 可以是什么数?分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0那么-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知│a │,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0时,,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,a的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1).A.0 B.23 C.423D.以上都不对2.a≥0时,、、-,比较它们的结果,下面四个选项中正确的是().AC.二、填空题1..2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.,求a-19952的值.2.若│1995-a│3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以a-1995+=a,=1995,a-2000=19952,所以a-19952=2000.3. 10-x21.2 二次根式的乘除第一课时教学内容=a≥0,b≥0(a≥0,b≥0)及其运用.教学目标理解·(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简由具体数据,发现规律,导出·=(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键·=(a≥0,b≥0),重点:(a≥0,b≥0)及它们的运用.难点:发现规律,导出0).(a<0,b<0)=b,如关键:要讲清教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空=______;(1(2(3参考上面的结果,用“>、<或=”填空.×_____,_____,2.利用计算器计算填空×______,(2)×(1)×______,(4)×(3).(5老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为×(2)×(3)×(1)(4(a≥0,b≥0)计算分析:即可.解:(1(2(3=(4例2 化简(1(2(3(4(5=·(a≥0,b≥0)直接化简分析:利用即可.×4=12解:(1(2(3(4=3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2)×=4××=4×解:(1)不正确.×3=6(2)不正确.改正:×=×=五、归纳小结==(a≥0,b≥本节课应掌握:(1)六、布置作业1.课本P15 1,4,5,6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题cm1.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是().cm B..9cm D.27cmA.2.化简)....-A311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().B.A.C.二、填空题.12它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)3验证:=同理可得:==通过上述探究你能猜测出:a=_______(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D2.12s二、1.三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:====21.2 二次根式的乘除第二课时教学内容=(a≥0,b>0),反过来=(a≥0,b>0)及利用它们进行计算和化简.教学目标理解=(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1=a≥0,b>0),(a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空=________;(1=________;(2=________;(3(4=________.______;______;规律:3.利用计算器计算填空:=_________,(2=_________,(3)(1=______,(4.______;_______;规律:(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:例1.计算:(1(2(3)(4分析:上面4a≥0,b>0)便可直接得出答案.解:(1(2==×(3==2(4例2.化简:(1)(2)(3)(4)分析:直接利用=(a≥0,b>0)就可以达到化简之目的.解:(18=(2)8 3ba =(3)=(4)=三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x 为偶数,求(1+x )的值.分析:a ≥0,b>0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8. 解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值=6.五、归纳小结本节课要掌握=(a ≥0,b>0)和=(a≥0,b>0)及其运用. 六、布置作业1.教材P 15 习题21.2 2、7、8、9.2.选用课时作业设计. 3.课后作业:《同步训练》 第二课时作业设计 一、选择题1的结果是( ).A .27.27C .72.阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简). A .2 B .6 C .13D二、填空题 1.分母有理化:(1)=_________;(2)=________;(3)=______.2.已知x=3,y=4,z=5是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长1,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少? 2.计算(1·(m>0,n>0)(2)(a>0)答案:一、1.A 2.C二、1.2==2 三、1.设:矩形房梁的宽为x (cm ),则长为,依题意,)2+x 2=(32,4x 2=9×15,x=32cm ),x ·x 2=135(cm 2).2.(1)原式==-22n n m m =-(2)原式=-2=-2=-a21.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算. 教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求. 重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式. 教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(12,(3老师点评:2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h 1km ,h 2km ,•那么它们的传播半径的比是_________.。
人教版初中数学七年级上册有理数的加减乘除讲义
人教版初中数学七年级上册有理数的加减乘除讲义本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March一、有理数的加、减法1.同号两数相加,取相同的符号,并把绝对值相加.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0.2.减去一个数,等于加上这个数的相反数.用式子表示为:a-b=a+(-b)例1.计算:30+(-20),(-20)+30例2.计算:[8+(-5)]+(-4), 8+[(-5)+(-4)]例3.计算:16+(-25)+24+(-35)例4.计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);例4.计算:(-20)+(+3)-(-5)-(+7)练习1.填空.(1)_______+3=10;(2)30+_______=27;(3)______+(-3)=10;(4)(-13)+____=6.练习2.(1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);(4)(-8)-6; (5)5-14练习3.(1)-3-4+19-11 (2)二、有理数的乘除1.两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
2.当负因数的个数为奇数时,积为负数;当负因数的个数为偶数时,积为正数3.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积4.除以一个不等于0的数,等于乘以这个数的倒数.5.两数相除,同号得正,异号得负,并把绝对值相除.6. 零除以任何一个不等于零的数,都得零观察:下列各式的积是正的还是负的?(1)2×3×4×(-5); (2)2×3×4×(-4)×(-5);(3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5)12411()()()23523+-++-+-8)16()14(26+-+-+8.4)5.2()2.3()5.5(----+-例1.计算:(1)│-5│-(-2) (2) (3)0×(-99.9)练习1、计算:1×(-1)×(-7)例2:计算: (1)(-3)×56×(-95)×(-14); (2)(-5)×6×(-45)×14.例3:用两种方法计算例4:计算:(1)(-36)÷9; (2)例5:化简下列分数:例6:计算:(1)-8+4÷(-2); (2)-2.5÷58×(-14).]31)78[()2(⨯-⨯+12216141⨯⎪⎭⎫ ⎝⎛-+)53()2512(-÷-4512--123-例8:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7•~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈利情况如何?巩固练习1.(2019·温州)计算:(﹣3)×5的结果是()A.﹣15 B.15 C.﹣2 D.22.计算.(1)11+(-22)-3×(-11);(2)(-0.1)÷12×(-100);(3)0÷(-34)×(-23-13);(4)(34-78)÷(-78);(5)45(8)()( 1.25)34-⨯-⨯-⨯; (6)1138()842-⨯+-;(7)3311.83(11.8) 1.711.811.8(0.3)44⨯--⨯-⨯-⨯-提高练习1.(2018·大庆)已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.已知四个数:2,﹣3,﹣4,5,任取其中两个数相乘,所得积的最大值是( )A .20B .12C .10D .﹣63.有理数a ,b ,c ,d 在数轴上所对应的点的位置如图,则下列各式正确的是( )A .0abc -<B .0bcd -<C .0acd >D .0abcd <4.已知a +b <0,b >0,则下列结论:①a >b >0;②|a |<|b |;③ab <0;④b ﹣a >b +a ,正确的是( )A .①②B .②③C .③④D .①④5.若有理数a ,b 互为倒数(a ,b 都不为零),则下列等式中成立的是( )A .a+b =0B .ab =﹣1C .ab =1D .a ﹣b =06.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.7.若00a b <,>,那么ab _______0(填“<”、“>”或“=”).8.有理数a b c 、、在数轴上对应点的位置如图所示,下列结论:4000a c b ac a c -+①>;②<;③>;④>,中正确的是_____(填序号即可).9.若|a|=3,|﹣b|=|﹣2|,且ab <0,求a ﹣b+ab 的值.10.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(-4)的值;(2)求(-2)*(6*3)的值.(2)求(-2)*(6*3)的值。
初一人教版必备数学精讲讲义
初一人教版必备数学精讲讲义一、整数与分数1. 整数的概念及表示整数是由自然数、零和负数组成的数集,表示为Z。
2. 整数的运算2.1 加法整数加法的运算规则:同号相加,异号相减,结果的符号由绝对值较大的数决定。
2.2 减法整数减法的运算规则:减去一个数等于加上这个数的相反数。
2.3 乘法整数乘法的运算规则:同号相乘得正,异号相乘得负。
2.4 除法整数除法的运算规则:同号相除得正,异号相除得负。
3. 分数的概念及表示分数是表示整体中的一部分的数,由分子和分母组成,表示为a/b (b≠0)。
4. 分数的运算4.1 加法和减法分数的加法和减法运算规则:将分数转化为相同分母后,对分子进行加或减。
4.2 乘法分数的乘法运算规则:将两个分数的分子和分母分别相乘。
4.3 除法分数的除法运算规则:将除法转化为乘法,将除数的倒数作为乘法的因数。
二、代数式与方程1. 代数式的概念及表示代数式是由数字、字母和运算符号组成的表达式,可以表示数或量。
2. 代数式的运算2.1 合并同类项合并同类项是将具有相同字母变量的项进行加减运算。
2.2 提取公因式提取公因式是将代数式中的公共因子提取出来。
2.3 展开式和因式展开式是将乘积式或幂式展开为加减式;因式是将加减式写成乘积式或幂式的形式。
3. 方程的概念及解法方程是含有未知数的等式,通过求解未知数的值来满足等式成立。
4. 一元一次方程一元一次方程的一般形式为ax + b = 0,其中a、b为已知常数,x为未知数。
5. 一元一次方程的解法5.1 用逆运算法解方程根据一元一次方程的定义,通过逆运算法求解方程。
5.2 用等式变形法解方程利用等式的性质进行变形,将方程转化为更简单的形式以求解。
三、图形的认识与几何运算1. 点、线、面的概念及表示点是几何图形的基本要素,用大写字母表示;线是由无数个点组成的集合,用小写字母表示;面是由无数个连在一起的线组成的集合。
2. 直线、射线和线段直线是一定方向上无限延伸的线段;射线是起点固定,沿着一定方向无限延伸的线段;线段是由两个点确定的有限部分。
人教版初中数学讲义第7讲 平方根
第7讲 平方根知识点1: 平方根 (一)什么叫做平方根? 探索一什么数的平方等于9?2() =9,2() =9 什么数的平方等于16?2() =16,2() =16, 什么数的平方等于49?2() =49,2() =49 什么数的平方等于121? 2() =121,2() =121总结:一般地,如果一个数的平方等于a ,那么这个数叫做a的 或 . 用数学式子表述为:若2x =a ,则x 是a 的平方根。
平方根的特点结论一:一个正数的平方根有 个,它们互为 数。
探索二2() =0结论二:0的平方根有 个,是 ; 探索三2() =-4,2() =-9,2() =-16,结论三:负数 平方根(填“有”或“没有” )重点点击:一个正数的平方根有 个,它们互为 数; 0的平方根有 个,是 ;负数 平方根 (二)算术平方根:一个正数有两个平方根,一正一负,其中 叫做算术平方根。
如:81的算术平方根是 ,规定:0的算术平方根是0 (三)如何表示一个数的平方根,算数平方根(1) “25的平方根”可以表示为±, “25的算数平方根”可以表示为,,(2)小结:正数a 的平方根可以用 表示;正数a 的算术平方根可以用 表示;正数a 的负的平方根可以用 表示。
(3a 满足的条件时 如:9的平方根可以表示为±9或3±2的算术平方根可以表示为: (四)平方根的性质(1)a (a 的算数平方根)具有双重非负性:a 是非负数,a 也是非负数(2))0()(2≥=a a a ,||2a a =(3)平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25= 2.5=0.25=. 【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( )2、x 为何值时,下列各式有意义?.举一反三:【变式1】代数式y =3-x 有意义,则x 的取值范围是 .【变式2】已知2b =,求11a b+的算术平方根.类型二、平方根的运算2、 填空:(1)4-是 的负平方根. (2表示 的算术平方根,= .(3的算术平方根为 . (43=,则x = ,若3=,则x = .举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3. ③4是8的正的平方根.④ 8-是64的负的平方根. A .1个 B .2个 C .3个 D .4个 【变式2】求下列各式的值:(1) (2(3(44.若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【变式】已知2a -1与-a +2是m 的平方根,求m 的值.类型三、利用平方根解方程5、求下列各式中的x .(1)23610;x -= (2)()21289x +=;(3)()2932640x +-=【变式】求下列等式中的x :(1)若21.21x =,则x =______; (2)2169x =,则x =______;(3)若29,4x =则x =______; (4)若()222x =-,则x =______. 类型四、平方根的综合应用5、已知a 、b |0b -=,解关于x 的方程2(2)1a x b a ++=-举一反三:0=,求20112012x y +的值.1、—8是 的平方根; 64的平方根是 ; =64 ;—5的平方是 ;=9 ; 9的平方根是 。
最新人教版初中数学讲义
基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
第12章全等三角形模型一:一线三等角讲义2022—2023学年人教版数学八年级上册
一线三等角模型构造全等三角形【模型说明】在初中数学《全等三角形》中有许多的模型,这些模型是数学重要知识点的总结与运用,很多几何题中都有数学模型的影子,掌握好这些模型,孩子们学习几何就会比较简单,成绩不会差。
今天我要与大家分享是“一线三等角”模型,那么什么是“一线三等角”?顾名思义,一线三等角是指三个相等的角的顶点在同一条直线上。
这个模型贯穿初中几何的始终。
下面我们具体分析一下这个模型。
【同侧型一线三等角(常见)】 在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角直角一线三等角 钝角一线三等角∠FAC=∠ABD=∠CED 添加任一边相等【基础训练】1.如图,在等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,点B 在直线l 上,过A 作AD l ⊥于D ,过C 作CE l ⊥于E .下列给出四个结论:①BD CE =;②BAD ∠与BCE∠互余;③AD CE DE +=.其中正确结论的序号是( )A.①②B.①③C.②③D.①②③2.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,BE=1cm,求DE的长.3.如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为D,E.(1)求证:△ABD≌△CAE;(2)若BD=2cm,CE=4cm,DE=cm.4.如图,在△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.若BC=BD,求证:CD=DE.5.在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.6.如图,点P,M,N分别在等边△ABC的各边上,MP⊥AB于点P,MN⊥BC于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若BP=2cm,求等边△ABC的边长.7.如图①,点B 、C 在∠MAN 的边AM 、AN 上,点E ,F 在∠MAN 内部的射线AD 上,∠1、∠2分别是△ABE 、△CAF 的外角.已知AB =AC ,∠1=∠2=∠BAC .求证:△ABE ≌△CAF .8.如图,已知∠DCE =90°,∠DAC =90°,BE ⊥AC 于B ,且DC =EC ,能否在△BCE 中找到与AB+AD 相等的线段,并说明理由.9、如图,在等腰△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形; (2)当∠A =36°时,求∠DEF 的度数.10.如图,在ABC ∆中,2==AC AB ,︒=∠36B ,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作︒=∠36ADE ,DE 交线段AC 于点E.线段DC 的长度为何值时,DCEABD∆≅∆请说明理由;【提升训练】1.在△ABO中,∠AOB=90°,AO=BO,直线MN经过点O,且AC⊥MN于C,BD ⊥MN于D(1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC﹣BD;(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明.2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD ⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状并说明理由.ADEB C3.如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.4.(1)如图1,直线m经过等腰直角△ABC的顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别为D、E,求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D,E,使∠ADB=∠AEC=α,补充∠BAC=(用α表示),线段BD,CE与DE之间满足BD+CE=DE,补充条件后并证明;(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB=∠AEC=(用α表示).通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.5.如图1,已知∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分别为D、E.(这几何模型具备“一线三直角”)如下图1:(1)①请你证明:△ACE≌△CBD;②若AE=3,BD=5,求DE的长;(2)迁移:如图2:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分别是边BC,AC上的点,将DE绕点D顺时针旋转90°,点E刚好落在边AB上的点F 处,则CE=.(不要求写过程)6.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC 于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=.我们把这个数学模型称为“K字”模型或“一线三等角”模型;【模型应用】(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AH 于点H,DE与直线AH交于点G.求证:点G是DE的中点;7.如图所示,在△ABC中,AB=AC=24cm,BC=18cm,∠B=∠C,D为AB的中点,点P在线段BC上由点B出发向点C运动,同时点Q在线段CA上由点C出发向点A 运动,设运动时间为t(s).(1)若点P与点Q的速度都是3cm/s,则经过多长时间△BPD与△CQP全等?请说明理由.(2)若点P的速度比点Q的速度慢3cm/s,则经过多长时间△BPD与△CQP全等?请求出此时两点的速度.(3)若点P、点Q分别以(2)中的速度同时从点B,C出发,都按逆时针方向沿△ABC 三边运动,则经过多长时间点P与点Q第一次相遇?相遇点在△ABC的哪条边上?请求出相遇点到点B的距离.。
七年级数学上册知识讲义-1.有理数的概念、分类、数轴及相反数-人教版
精讲精练知识精讲1. 有理数的概念及分类正整数、0、负整数统称为整数;正分数、负分数统称为分数。
整数和分数统称为有理数。
即:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0,或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 2. 数轴:规定了原点、正方向和单位长度的直线叫做数轴.(1)数轴三要素:原点、正方向、单位长度;(2)0是正数和负数的分界点,原点是数轴的“基准点”,负数都在原点的左侧,正数都在原点的右侧;(3)设a 是一个正数,则数轴上表示数a 的点到原点的距离是a 个单位长度;表示数-a 的点到原点的距离是a 个单位长度。
注意:(1)画数轴时,三要素缺一不可,原点可以在直线上任意选取,但必须有原点;(2)数轴是一条直线,不要画成线段或射线,一般规定向右为正方向,画上箭头,而反方向为负方向,一定不能画箭头;(3)单位长度的确定,可以根据实际需要灵活选取.在同一条数轴上,单位长度的大小必须统一。
3. 相反数(1)只有符号不同的两个数互为相反数,0的相反数是0;(2)设a 是一个正数,数轴上与原点的距离是a 的点有两个,分别在原点的左右两侧,这两点关于原点对称,它们互为相反数。
(3)求一个数、字母或式子的相反数的方法改变数前面的符号,如:3的相反数是-3;字母前面添加“-”号,如:a 的相反数是-a ;式子前面添加“-”号,并给算式加括号,如:a -2的相反数是-(a -2)。
(4)互为相反数的两个数和为零,如:如果a 与b 互为相反数,则a+b=0。
高频考题例题1 下列说法中,错误的有( )①-274是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数A. 1个B. 2个C. 3个D. 4个思路分析:①②正确;③错误,非负有理数包括0和正有理数;④错误,整数和分数统称为有理数,整数包括正整数、负整数和0;⑤错误,0不是最小的有理数,负数都小于0,没有最小的有理数;⑥错误,3.14是有理数,但π不是有理数。
人教版初中数学讲义完整版
人教版初中数学讲义标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、48、定理四边形的内角和等于360°49、49、四边形的外角和等于360°50、50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、51、推论任意多边的外角和等于360°52、52、平行四边形性质定理1 平行四边形的对角相等53、53、平行四边形性质定理2 平行四边形的对边相等54、54、推论夹在两条平行线间的平行线段相等55、55、平行四边形性质定理3 平行四边形的对角线互相平分56、56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、60、矩形性质定理1 矩形的四个角都是直角61、61、矩形性质定理2 矩形的对角线相等62、62、矩形判定定理1 有三个角是直角的四边形是矩形63、63、矩形判定定理2 对角线相等的平行四边形是矩形64、64、菱形性质定理1 菱形的四条边都相等65、65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、67、菱形判定定理1 四边都相等的四边形是菱形68、68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、71、定理1 关于中心对称的两个图形是全等的72、72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、75、等腰梯形的两条对角线相等76、76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、77、对角线相等的梯形是等腰梯形78、78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),86、那么(a+c+…+m)/(b+d+…+n)=a/b87、86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例88、87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例89、88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边90、89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例91、90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似92、91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)93、92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似94、93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)95、94、判定定理3 三边对应成比例,两三角形相似(SSS)96、95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似97、96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比98、97、性质定理2 相似三角形周长的比等于相似比99、98、性质定理3 相似三角形面积的比等于相似比的平方100、99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值101、100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值102、101、圆是定点的距离等于定长的点的集合103、102、圆的内部可以看作是圆心的距离小于半径的点的集合104、103、圆的外部可以看作是圆心的距离大于半径的点的集合105、104、同圆或等圆的半径相等106、105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆107、106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线108、107、到已知角的两边距离相等的点的轨迹,是这个角的平分线109、108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线110、109、定理不在同一直线上的三点确定一个圆。
新人教版七年级下册数学讲义
新人教版七年级下册数学讲义第一章:整数
整数是数学中非常重要的概念之一。
在这一章中,我们将研究整数的基本概念和运算法则。
1. 整数的概念
整数由正整数、0和负整数组成,以...(文档中内容超过800字,请随意补充相关知识点)
第二章:代数式
代数式是数学中用字母表示数的算式。
在这一章中,我们将研究如何理解和使用代数式。
1. 代数式的概念
代数式由字母、数字和运算符号组成,表示数...(文档中内容超过800字,请随意补充相关知识点)
...
(继续添加章节和相关内容)
第六章:几何图形
几何图形是数学中研究形状和结构的重要内容。
在这一章中,我们将研究各种几何图形的性质和计算方法。
1. 直角三角形
直角三角形是一种特殊的三角形,其中一个角为直角。
在这一节中,我们将研究直角三角形的性质和重要定理。
1.1 定理一:勾股定理
勾股定理是直角三角形中非常重要的定理,描述了直角三角形的边之间的关系。
1.2 定理二:余弦定理
余弦定理是直角三角形中另一个重要的定理,描述了直角三角
形的边和角之间的关系。
...
通过本讲义的研究,我们将掌握数学中的一些基本概念和方法,为更深入的数学研究打下坚实的基础。
注:本文档内容仅供参考,具体内容以教材为准。
(完整)人教版七年级数学上册辅导讲义
最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。
人教版初中数学讲义
人教版初中数学讲义一、教材结构与特点人教版初中数学教材分为多个章节,涵盖了数与代数、图形与几何、统计与概率、综合与实践等领域。
在数与代数部分,从有理数、实数的概念开始,逐步深入到整式、分式、方程与不等式等内容。
通过这一系列的学习,学生能够建立起扎实的数的运算和代数表达式处理能力。
图形与几何方面,包括了点、线、面、体的基本概念,三角形、四边形、圆等常见图形的性质和判定。
注重培养学生的空间想象能力和逻辑推理能力。
统计与概率部分,让学生了解数据的收集、整理、分析和解释,以及概率的基本概念和简单计算,培养学生的数据分析和决策能力。
综合与实践则强调数学知识在实际生活中的应用,引导学生运用所学解决实际问题,提高学生的数学应用意识和创新能力。
二、重点知识点1、代数式的运算包括整式的加减乘除、乘法公式的应用,以及分式的化简和运算。
这是后续学习方程和函数的基础。
2、方程与不等式一元一次方程、二元一次方程组、一元二次方程的解法及应用,不等式的性质和解法。
3、函数一次函数、反比例函数、二次函数的图像和性质,以及函数的应用。
函数是数学中的重要概念,与实际生活联系紧密。
4、三角形三角形的内角和定理、全等三角形和相似三角形的判定和性质,勾股定理等。
5、圆圆的有关性质、与圆相关的位置关系、圆的周长和面积计算。
6、数据的分析平均数、中位数、众数、方差等统计量的计算和意义。
三、学习方法1、理解概念数学概念是学习的基石,要深入理解每个概念的内涵和外延,通过具体例子来加深印象。
2、多做练习通过大量的练习题来巩固所学知识,提高解题能力。
但要注意不要盲目刷题,要注重总结解题方法和思路。
3、建立错题本将做错的题目整理到错题本上,分析错误原因,总结经验教训,避免再次犯错。
4、小组学习与同学组成学习小组,相互讨论、交流,共同解决问题,有助于开拓思路。
5、联系实际将数学知识与实际生活相联系,体会数学的应用价值,提高学习兴趣。
四、教学建议1、激发兴趣采用生动有趣的教学方法,如数学故事、数学游戏等,激发学生的学习兴趣。
人教版九年级数学上册讲义(全册)
人教版九年级数学上册讲义(全册)之答禄夫天创作第二十一章二次根式教材内容1.本单位教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单位在教材中的位置和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等外容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(a≥0)是一个非负数,()2=a(a≥(2)理解0)(a≥0).(3a≥0,b≥0)a≥0,b>0)a≥0,b>0).2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,到达对二次根式进行计算和化简的目的. 3.情感、态度与价值观通过本单位的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点(a≥0)的内涵.a≥0)是一个非负1.二次根式2=a(a≥0(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点a≥0)是一个非负数的理解;对等式(2=a1(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单位课时划分本单位教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题理解二次根式的概念,并利用目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键a≥0)的式子叫做二次根式的概念;12a≥0)”解决具体问题.一、复习引入(学生活动)请同学们自力完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC 中,AC=3,BC=1,∠C=90°,那么AB 边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________. 老师点评:问题1:横、纵坐标相等,即x=y,所以x 2=3.因为点在第一象限,所以问题2:由勾股定理得问题3:由方差的概念得 二、探索新知很明显,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,a ≥0)•的式子叫做二次根式,二次根号.(学生活动)议一议: 1.-1有算术平方根吗?2.0的算术平方根是几多? 3.当老师点评:(略)例1.下列式子,哪些是二次根式,1xx>01x y+x ≥0,y•≥0). 分析:二次根式应满足两个条件:第一,第二,被开方数是正数或0.解:二次根式有:、x>0)、-、(x ≥0,y ≥01x1x y+. 例2.当x 是几多时在实数范围内有意义?分析:由二次根式的界说可知,被开方数一定要年夜于或即是0,所以3x-1≥才华有意义.解:由3x-1≥0,得:x≥13当x≥13时在实数范围内有意义.三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x是几多时11x+在实数范围内有意义?分析11x+在实数范围内有意义,必需同时满足0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-32由②得:x≠-1当x≥-32且x≠-1时11x+在实数范围内有意义.例4(1)已知求xy的值.(谜底:2)(2)求a2004+b2004的值.(谜底:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0)的式子叫做二次根式,“号.2.要使二次根式在实数范围内有意义,必需满足被开方数是非负数.六、安插作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A..x2.下列式子中,不是二次根式的是()A.1x3.已知一个正方形的面积是5,那么它的边长是( ) A .5 B.15D .以上皆分歧毛病 二、填空题1.形如________的式子叫做二次根式. 2.面积为a 的正方形的边长为________. 3.负数________平方根. 三、综合提高题1.某工厂要制作一批体积为1m 3的产物包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是几多? 2.当x 是几多时2在实数范围内有意义? 3,.x 有( )个.A .0B .1C .2D .无数5.已知a 、b 为实数,=b+4,求a 、b 的值. 第一课时作业设计谜底: 一、1.A 2.D 3.B二、1a ≥0) 2.没有 2=1,解答:2.依题意得:2300x x +≥⎧⎨≠⎩,320x x ⎧≥-⎪⎨⎪≠⎩∴当x>-32且x ≠0时x 2在实数范围内没有意义.3.134.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1a ≥0)是一个非负数;22=a (a ≥0). 教学目标a ≥0)是一个非负数和(2=a (a ≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出a ≥0)是一个非负数,2=a (a ≥0);最后运用结论严谨解题. 教学重难点关键1a ≥02=a (a ≥0)及其运用.2.难点、关键:用分类思想的方法导出a ≥0)是一个非负数;•2=a (a ≥0). 教学过程 一、复习引入 (学生活动)口答1.什么叫二次根式?2.当a ≥0时a<0时 老师点评(略). 二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?,我们可以得出()2=_______;()2=_______;()2=______;2=_______;2=______2=_______)2=_______.4的算术平方根,根据算术平方根的意义是一个平方即是4的非负数,2=4.同理可得:()2=2,()2=9,()2=3,()2=13,2=72,2=0,所以例1 计算1.()2 2.(3)23.()242分析2=a (a ≥0)的结论解题.2 =32,(2 =322=32·5=45,2=56,(2)2=22724=.三、巩固练习计算下列各式的值:()2()2(4)2 ()2(2四、应用拓展 例2 计算12(x ≥0) 22 3242分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0;(4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的42=a (a ≥0)的重要结论解题.解:(1)因为x ≥0,所以x+1>02=x+1(2)∵a 2≥0,2=a 2(3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 ,2+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2又∵(2x-3)2≥0∴4x 2-12x+9≥0,2=4x 2-12x+9 例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略)五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;22=a (a ≥0);反之:a=2(a ≥0). 六、安插作业1.教材P 8 复习巩固2.(1)、(2) P 9 7.2.选用课时作业设计.3.课后作业:《同步训练》 第二课时作业设计 一、选择题1二次根式的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.(2=________.2,那么是一个_______数. 三、综合提高题 1.计算(1)()2(2)-()2(3)(12)2(4)(2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0) 3求x y的值. 4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-5 第二课时作业设计谜底: 一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)(12)2=14×6=32(4)(2=9×23=6 (5)-62.(1)5=2(2)3.4=2(3)16=2 (4)x=2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=((2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)((3)略21.1 二次根式(3)第三课时教学内容a (a ≥0) 教学目标(a ≥0)并利用它进行计算和化简.通过具体数据的解答,(a ≥0),并利用这个结论解决具体问题.教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0时a 才成立. 教学过程 一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式; 2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0时是否也成立呢?下面我们就来探究这个问题. 二、探究新知 (学生活动)填空:=______;=________. (老师点评):根据算术平方根的意义,我们可以获得:23=037.因此, 例1 化简(1(2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a (a ≥0)•去化简.解:(1(2=4(3(4=3三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0时;当a<0时并根据这一性质回答下列问题.(1则a可以是什么数?(2则a可以是什么数?(3则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不成,应变形,使“()2”中的数是正数,因为,当a≤0时那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要年夜于a,只有什么时候才华保证呢?a<0.解:(1所以a≥0;(2所以a≤0;(3)因为当a≥0即使a>a所以a不存在;当a<0时即使-a>a,a<0综上,a<0例3当x>2,分析:(略)五、归纳小结本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时a的应用拓展.六、安插作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1).A.0 B.23 C.423D.以上都分歧毛病2.a≥0时,、比力它们的结果,下面四个选项中正确的是().AC.二、填空题.1.2三、综合提高题1.先化简再求值:当a=9时,求,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是毛病的,毛病的原因是__________.求a-19952的值.2.若│1995-a│3. 若-3≤x≤2时,试化简│x-2│.谜底:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥20002,所以3. 10-x21.2 二次根式的乘除第一课时教学内容=a≥0,b≥0),反之=(a≥0,b≥0)及其运用.教学目标a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简由具体数据,发现规律,(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0)(a≥0,b≥0)及它们的运用.难点:发现规律,(a≥0,b≥0).关键:要讲清教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空;(1(2(3×_____,×_____,×2.利用计算器计算填空(2(1(3(5二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除即是一个二次根式,•而且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.(1)(2(3)(4)分析:a≥0,b≥0)计算即可.(2(3(4例2 化简(2(3(1(5(4(a≥0,b≥0)直接化简即可.解:(1×9=36(3(4(5三、巩固练习(1)计算(学生练习,老师点评)(2) 化简教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2解:(1)不正确.×3=6=五、归纳小结·==(a≥0,b≥本节课应掌握:(1)0)六、安插作业1.课本P15 1,4,5,6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题1.若直角三角形两条直角边的边长分别为那么此直角三角形斜边长是()...9cm D.27cmA.2.化简)...A311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x ≤-14.下列各等式成立的是()..A.C.二、填空题.1210m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部份水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是几多厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==……通过上述探究你能猜想出: a=_______(a>0),并验证你的结论.谜底:二、1..12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,2.验证:==21.2 二次根式的乘除第二课时教学内容a≥0,b>0),反过来(a≥0,b>0)及利用它们进行计算和化简.教学目标理解a≥0,b>0)和(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1.重点:理解a≥0,b>0),(a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1;;(2;(3.(43.利用计算器计算填空:=_________,(2)=_________,(3)=______,(1).(4______;_______;_____;规律:每组推荐一名学生上台论述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据年夜家的练习和回答,我们可以获得:反过来例1.计算:(1(2(3(4分析:上面4a ≥0,b>0)即可直接得出谜底.解:(1(2==(3=(4例2.化简:(1(2(3 (4分析:直接利用(a ≥0,b>0)就可以到达化简之目的.解:(1=(283b a=(3=(4= 三、巩固练习 教材P14 练习1. 四、应用拓展例3.=,且x 为偶数,求(1+x 值.分析:只有a ≥0,b>0时才华成立.因此获得9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值. 五、归纳小结本节课要掌握a ≥0,b>0(a ≥0,b>0)及其运用.六、安插作业1.教材P 15 习题21.2 2、7、8、9.2.选用课时作业设计. 3.课后作业:《同步训练》 第二课时作业设计 一、选择题1 ).A .27.27C 2.阅读下列运算过程:3==5== 数学上将这种把分母的根号去失落的过程称作“分母有理化”,那么,). A .2 B .6 C .13二、填空题 1.分母有理化2.已知x=3,y=4,z=5,_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为1,•现用直径为cm 的一种圆木做原料加工这种房梁,那么加工后的房染的最年夜截面积是几多? 2.计算(1·(m>0,n>0)(2) (a>0)谜底:一、1.A 2.C二、1.==2 三、1.设:矩形房梁的宽为x (cm ),依题意,得:()2+x 2=(2,4x 2=9×15,x=32cm ),·2=1354cm 2).2.(1)原式==-22n n m m =-(2)原式21.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算. 教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求. 重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1(2(32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传布半径的比是_________.。
人教版九年级数学上册讲义(全册)之欧阳术创编
人教版九年级数学上册讲义(全册)第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(a≥0)是一个非负数,(2=a(a≥0),(2)理解(a≥0).(a≥0,b≥0;(3a≥0,b>0a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.(a≥0)是一个非负2=a(a≥0(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时21.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1(a≥0)的式子叫做二次根式的概念;2教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:,那么它的图象在第一象限问题1:已知反比例函数y=3x横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以问题2:由勾股定理得问题3:由方差的概念得二、探索新知、,都是一些正数的算术平方根.像这样很明显一些正数的算术平方根的式子,我们就把它称二次根式.因(a≥0)•的式子叫做二次根式,此,一般地,我们把形如(学生活动)议一议: 1.-1有算术平方根吗?2.0的算术平方根是多少? 3.当a<0有意义吗? 老师点评:(略)例1、1x(x>0、、1x y +(x ≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号0.解:二次根式有:、(x>0、-(x ≥0,y ≥0、1x、1x y+. 例2.当x 是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义. 解:由3x-1≥0,得:x ≥13当x ≥13在实数范围内有意义.三、巩固练习教材P 练习1、2、3. 四、应用拓展 例3.当x11x +在实数范围内有意义? 分析11x +在实数范围内有意义,必须同时满足0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义. 例4(1)已知,求xy的值.(答案:2)(2),求a 2004+b 2004的值.(答案:25)五、归纳小结(学生活动,老师点评) 本节课要掌握:1(a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P 8复习巩固1、综合应用5.2.选用课时作业设计. 3.课后作业:《同步训练》 第一课时作业设计一、选择题 1.下列式子中,是二次根式的是( ) A .B C D .x2.下列式子中,不是二次根式的是( ) AB .1x3.已知一个正方形的面积是5,那么它的边长是( ) A .5 B.15D .以上皆不对 二、填空题1.形如________的式子叫做二次根式. 2.面积为a 的正方形的边长为________. 3.负数________平方根. 三、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 2在实数范围内有意义?3. 4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b=b+4,求a 、b 的值. 第一课时作业设计答案: 一、1.A 2.D 3.B二、1a ≥0) 2.没有三、1.设底面边长为x ,则0.2x 2=1,解答:.2.依题意得:2300x x +≥⎧⎨≠⎩,320x x ⎧≥-⎪⎨⎪≠⎩ ∴当x>-32且x ≠0时,x +x 2在实数范围内没有意义.3.134.B5.a=5,b=-421.1 二次根式(2)第二课时教学内容1a ≥0)是一个非负数; 2)2=a (a ≥0). 教学目标(a ≥0)是一个非负数和()2=a (a ≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出2=a (a ≥0);最后运用结论严谨解题. 教学重难点关键1.重点:(a ≥0)是一个非负数;(2=a (a ≥0)及其运用.2.难点、关键:用分类思想的方法导出(a ≥0)是一个非负数;•)2=a (a ≥0). 教学过程 一、复习引入 (学生活动)口答1.什么叫二次根式?2.当a ≥0a<0有意义吗? 老师点评(略). 二、探究新知议一议:(学生分组讨论,提问解答)(a ≥0)是一个什么数呢?做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;2=_______;(2=______2=_______)2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4)2=4.同理可得:()2=2,()2=9,()2=3,()2=132=72)2=0,所以例1 计算12 2.(2 32 4.(2)2分析2=a (a ≥0)的结论解题.解:(2 =32,(2 =322=32·5=45,2=56,(2)2=22724.三、巩固练习计算下列各式的值:(222)2(2四、应用拓展例2 计算2(x≥0) 22 32142分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.)2=a(a≥0)的重要结论所以上面的4题都可以运用(解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0 =a2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴(2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)五、归纳小结本节课应掌握:1a≥0)是一个非负数;2六、布置作业1.教材P8复习巩固2.(1)、(2) P9 7.2.选用课时作业设计.3.课后作业:《同步训练》第二课时作业设计一、选择题1.下列各式中、、、、、). A .4 B .3 C .2 D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.()2=________.2_______数. 三、综合提高题 1.计算(12 (2)-)2 (3)(12)2 (4)(2(5)2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y 的值.4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5 第二课时作业设计答案: 一、1.B 2.C二、1.3 2.非负数三、1.(1)()2=9 (2)-()2=-3 (3)(12)2=14×6=32(4)(2=9×23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0) 3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩x y =34=81 4.(1)x 2-2=()()(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)() (3)略21.1 二次根式(3) 第三课时教学内容a (a ≥0) 教学目标(a ≥0)并利用它进行计算和化简.通过具体数据的解答,探究(a ≥0),并利用这个结论解决具体问题.教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程 一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式; 2a ≥0)是一个非负数; 3.)2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知 (学生活动)填空:=______;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:23=37.例1 化简(2(3(4(1=32,所以都可运用(a≥0)•去化简.解:(1(2(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0时,,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析:∵(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结本节课应掌握:=a(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业1.教材P8习题21.1 3、4、6、8.2.选作课时作业设计.3.课后作业:《同步训练》第三课时作业设计一、选择题1).A.0 B.23 C.423D.以上都不对2.a≥0、个选项中正确的是().AC..二、填空题1.=________.2.若是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以a-1995+=a,=1995,a-2000=19952,所以a-19952=2000.3. 10-x21.2 二次根式的乘除第一课时教学内容·(a≥0,b≥0(a≥0,b≥0)及其运用.教学目标=a≥0,b≥0=(a≥0,b≥0),并利用它们进行计算和化简·=(a≥0,b≥0)由具体数据,发现规律,导出并运用它进行计算;•利用逆向思维,得出0,b≥0)并运用它进行解题和化简.教学重难点关键·=(a≥0,b≥0),=·(a≥重点:0,b≥0)及它们的运用.a≥0,b≥0).关键:要讲清.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2(3参考上面的结果,用“>、<或=”填空.×_____,×_____,×2.利用计算器计算填空,(2(1(3(5老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.例1.计算(1(2)(3(4(a≥0,b≥0)计算即可.分析:解:(1(2(3(4例2 化简(2(3(1(5(a≥0,b≥0)直接化简即可.解:(1(2(3(4=3xy=(5三、巩固练习(1)计算(学生练习,老师点评)×①(2) 化简教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1==4(2解:(1)不正确.×3=6(2)不正确.=五、归纳小结本节课应掌握:(1)·==(a≥0,b≥0),=(a≥0,b≥0)及其运用.六、布置作业1.课本P15 1,4,5,6.(1)(2).2.选用课时作业设计.3.课后作业:《同步训练》第一课时作业设计一、选择题和,1•那么此直角三角形斜边长是()...9cm D.27cmA.2.化简).A..-311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A..5×C.二、填空题.1210m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:4==通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,2.验证:==21.2 二次根式的乘除第二课时教学内容=a≥0,b>0),反过来=(a≥0,b>0)及利用它们进行计算和化简.教学目标理解(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1.重点:理解=(a≥0,b>0),=(a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1=________;(2;=________;(3(4.3.利用计算器计算填空:(1)=_________,(2)=_________,(3)=______,(4.______;_______;_____;规律:每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:下面我们利用这个规定来计算和化简一些题目.例1.计算:(1(2(3(4)分析:上面4a≥0,b>0)便可直接得出答案.解:(1(2==×(3==2(4例2.化简:(1(2(3(4分析:直接利用(a≥0,b>0)就可以达到化简之目的.解:(1=(2)8 3ba =(38y=(4)13y=三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x为偶数,求(1+x的值.分析:a ≥0,b>0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩∴6<x ≤9 ∵x 为偶数 ∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值=.五、归纳小结本节课要掌握=(a ≥0,b>0)和=(a ≥0,b>0)及其运用. 六、布置作业1.教材P 15 习题21.2 2、7、8、9.2.选用课时作业设计. 3.课后作业:《同步训练》 第二课时作业设计 一、选择题1的结果是( ).A .27.27C D .72.阅读下列运算过程:==== 数学上将这种把分母的根号去掉的过程称作“分母有理). A .2 B .6 C .13D二、填空题 1.分母有理化=______.2.已知x=3,y=4,z=5,那么的最后结果是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3cm 的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少? 2.计算(1·(m>0,n>0)(2)(a>0)答案:一、1.A 2.C二、1.2==2 三、1.设:矩形房梁的宽为x (cmxcm ,依题意,)2+x 2=(2,4x 2=9×15,x=32cm ),x ·x 2=135cm 2).2.(1)原式==-22n n m m =-(2)原式=-2a21.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(12,(32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________.。
人教版九年级上册数学讲义知识点归纳
九年级上册数学讲义知识点归纳第21章一元二次方程一、学习目标一、明白得一元二次方程的概念二、学会一元二次方程的解法3、了解方程的根与系数的关系4、把握一元二次方程的实际应用二、重点一、一元二次方程一、一元二次方程含有一个未知数(一元),而且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
二、一元二次方程的一样形式)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的进程(不管用什么方式解一元二次方程,都是要一元二次方程降次)2、直接开平方式利用平方根的概念直接开平方求一元二次方程的解的方式叫做直接开平方式。
直接开平方式适用于解形如x 2=b 或b a x =+2)(的一元二次方程。
依照平方根的概念可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
3、配方式:配方式的理论依照是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,那么有222)(2b x b bx x ±=+±。
配方式解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判定2个根是不是实数根。
4、公式法:公式法是用求根公式,解一元二次方程的解的方式。
一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x当ac b 42->0时,方程有两个实数根。
当ac b 42-=0时,方程有两个相等实数根。
当ac b 42-<0时,方程没有实数根。
5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于0的形式,再使这两个一次式别离等于0,从而实现降次,这种解叫因式分解法。
初三数学人教版秋季讲义
第四讲 一元二次方程根与系数的关系一、典题回顾:1、已知x 、y 都是正整数,且18=+y x ,求x+y 的值。
2、2222)11(y xy x y x y x ++÷+--,其中23,23-=+=y x .3、按要求解方程: ①033212=+-x x (利用配方法) (2)0822=--x x (利用因式分解方法)③2)1(5)1(32=+-+x x (利用公式法)二、根与系数的关系:1、如果方程)0(02≠=++a x bx ax 有两个实数根21,x x ,那么 ;2、一些常见的关于两根代数式的变形:(1)2221x x += ;(2)))((21a x a x ++= ;(3)1221x x x x += ;(4)21x x -= ; 3、求关于一元二次方程根的代数式的值的方法:遇双平方,先 ;遇括号,先展开;遇分式,先 ;遇公因式,先 ;遇两根之差,先 ,再 。
例1、(1)设a 、b 是方程020092=-+x x 的两个实数根,则b a a ++22的值为( )A 、2006B 、2007C 、2008D 、2009(2)已知α、β是一元二次方程0252=--x x 的两个实数根,则22βαβα++= .(3)已知m 和n 是方程03522=--x x 的两根,则nm 11+= . (4)设21,x x 是方程0242=+-x x=-21x ,()()=++1121x x 。
例2、方程012222=+-++k k kx x 的两个实数根是21,x x ,满足42221=+x x ,则k = 。
例3、已知关于x 的一元二次方程0222=+-m x x 有两个不相等的实数根。
(1)求实数m 的最大整数值;例4、(七中高新·半期)已知21,x x 是关于方程()()()()m p p m x x --=--22的两个实数根.(1)求21,x x 的值;(用m 和p 表示出来)(2)若21,x x 是某直角三角形的两直角边的边长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学讲义 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、48、定理四边形的内角和等于360°49、49、四边形的外角和等于360°50、50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、51、推论任意多边的外角和等于360°52、52、平行四边形性质定理1 平行四边形的对角相等53、53、平行四边形性质定理2 平行四边形的对边相等54、54、推论夹在两条平行线间的平行线段相等55、55、平行四边形性质定理3 平行四边形的对角线互相平分56、56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、60、矩形性质定理1 矩形的四个角都是直角61、61、矩形性质定理2 矩形的对角线相等62、62、矩形判定定理1 有三个角是直角的四边形是矩形63、63、矩形判定定理2 对角线相等的平行四边形是矩形64、64、菱形性质定理1 菱形的四条边都相等65、65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、67、菱形判定定理1 四边都相等的四边形是菱形68、68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、71、定理1 关于中心对称的两个图形是全等的72、72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、75、等腰梯形的两条对角线相等76、76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、77、对角线相等的梯形是等腰梯形78、78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),86、那么(a+c+…+m)/(b+d+…+n)=a/b87、86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例88、87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例89、88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边90、89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例91、90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似92、91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)93、92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似94、93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)95、94、判定定理3 三边对应成比例,两三角形相似(SSS)96、95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似97、96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比98、97、性质定理2 相似三角形周长的比等于相似比99、98、性质定理3 相似三角形面积的比等于相似比的平方100、99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值101、100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值102、101、圆是定点的距离等于定长的点的集合103、102、圆的内部可以看作是圆心的距离小于半径的点的集合104、103、圆的外部可以看作是圆心的距离大于半径的点的集合105、104、同圆或等圆的半径相等106、105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆107、106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线108、107、到已知角的两边距离相等的点的轨迹,是这个角的平分线109、108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线110、109、定理不在同一直线上的三点确定一个圆。
111、110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧112、111、推论1113、①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧114、②弦的垂直平分线经过圆心,并且平分弦所对的两条弧115、③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧116、112、推论2 圆的两条平行弦所夹的弧相等117、113、圆是以圆心为对称中心的中心对称图形118、114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等119、115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等120、116、定理一条弧所对的圆周角等于它所对的圆心角的一半121、117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等122、118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径123、119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形124、120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角125、121、①直线L和⊙O相交 d<r126、②直线L和⊙O相切 d=r127、③直线L和⊙O相离 d>r128、122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线129、123、切线的性质定理圆的切线垂直于经过切点的半径130、124、推论1 经过圆心且垂直于切线的直线必经过切点131、125、推论2 经过切点且垂直于切线的直线必经过圆心132、126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角133、127、圆的外切四边形的两组对边的和相等134、128、弦切角定理弦切角等于它所夹的弧对的圆周角135、129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等136、130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等137、131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项138、132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项139、133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等140、134、如果两个圆相切,那么切点一定在连心线上141、142、135、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r) 143、④两圆内切 d=R-r(R>r) ⑤两圆内含 d<R-r(R>r)144、136、定理相交两圆的连心线垂直平分两圆的公共弦145、137、定理把圆分成n(n≥3):146、⑴依次连结各分点所得的多边形是这个圆的内接正n边形147、⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形148、138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆149、139、正n边形的每个内角都等于(n-2)×180°/n150、140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形151、141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长152、142、正三角形面积√3a/4 a表示边长153、143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4154、144、弧长计算公式:L=n兀R/180155、145、扇形面积公式:S扇形=n兀R2/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)147完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2常用数学公式乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=π(R+r)l 球的表面积 S=4π*r2圆柱侧面积 S=c*h=2π*h 圆锥侧面积 S=1/2*c*l=π*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*π*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=π*r2h。