锚杆支护设计课件
《锚喷支护施工》课件
03
钢筋网布置
在喷射混凝土前,铺设或固定钢筋网 ,以增加混凝土的抗拉强度。
养护与防护
喷射完成后,对混凝土进行养护,并 采取措施防止其受到侵蚀和破坏。
05
04
喷射作业
使用喷射机将混凝土混合料喷射到岩 面上,控制好喷射厚度和均匀性。
钢丝网、钢筋施工工艺流程
钢丝网选择与加工
根据工程需要,选择 合适的钢丝网规格, 并进行加工处理。
《锚喷支护施工》PPT课件
目 录
• 锚喷支护施工概述 • 锚喷支护施工材料 • 锚喷支护施工工艺 • 锚喷支护施工质量检测与控制 • 锚喷支护施工安全措施 • 锚喷支护施工案例分析
01
锚喷支护施工概述
锚喷支护技术的定义
锚喷支护技术是一种利用锚杆和喷射混凝土联合支护围岩的施工方法,通过在岩 体中打入锚杆,并喷射混凝土,以增强围岩的稳定性,防止岩体变形和破坏。
03
04
钢筋的种类与选择
根据工程要求选择合适的钢筋规格,如直 径、长度等。
05
06
选择符合国家标准的优质钢筋,确保质量 可靠。
03
锚喷支护施工工艺
锚杆施工工艺流程
钻孔
使用钻机在岩土层中钻孔,孔 径和深度需符合设计要求。
注浆
向钻孔内注入配制好的浆液, 使锚杆与岩土层紧密结合。
锚杆材料选择
根据工程要求和地质条件,选 择合适的锚杆材料,如钢、塑 料或玻璃纤维等。
清理现场
施工完成后,及时清理施工现场,确保作业环境整洁 、有序。
总结评估
对整个锚喷支护施工过程进行总结评估,总结经验教 训,不断提高施工安全水平。
06
锚喷支护施工案例分析
某矿山的锚喷支护施工案例
锚杆支护原理及类型
(六)最大水平主应力理论
(六)最大水平主应力理论
• 最大水平应力理论论述了巷道围岩水平应力对巷 道稳定性的影响以及锚杆支护起到的作用,
• 它是以实测地应力及岩心实验室力学试验参数为 基础形成的一套锚杆支护设计方法,
• 运用有限差分法(采用莫尔一库仑强度淮则)对试 验巷道锚杆支护参数进行设计,
• 大松动圈(>150cm)
• 围岩表现出软岩的工程特征,围岩松动圈碎胀变形量大, 初期围岩收敛变形速度快,变形持续时间长,矿压显现大, 支护难度大。支护不成功时,巷道底板出现底鼓。在这种 条件下,如果用悬吊理论设计锚杆支护参数,常因设计锚 杆过长、过粗而失去其普遍应用的价值。
• 在单根锚杆作用下每根锚杆因受拉应力而对围岩产生挤压, 在锚杆两端周围形成一个两端圆锥形的受压区,合理的锚 杆群可使单根锚杆形成的压缩区彼此联系起来,形成一个 厚度为b的均匀压缩带。对于拱形巷道,压缩带将在围岩 破裂处形成拱形;对于矩形巷道,压缩带将在围岩破裂处 形成矩形结构,统称之为组合拱作用机理。
1. 围岩松动圈巷道支护理论
• 围岩松动圈巷道支护理论是在对围岩状态进行深 入研究后提出的,
• 通过研究,发现松动圈的存在是巷道围岩的固有 特性,它的范围大小(厚度值)目前可以用声波仪 或者多点位移计等手段进行测定。
• 松动圈理论认为:巷道支护的主要对象是围岩松 动圈产生、发展过程中产生的碎胀变形力,锚杆 受拉力的来源在于松动圈的发生、发展,并根据 围岩松动圈厚度值大小的不同将其分为小、中、 大三类,松动圈的类别不同,则锚杆支护机理也 就不同。
(2)巷道锚杆支护可以提高锚固体的力学参数,包括锚固 体破坏前和破坏后的力学参数(E、C、φ),改善锚固体 的力学性能。
《锚杆支护技术》课件
输标02入题
加强锚杆支护技术的实验研究,通过模拟实际工程条 件下的锚杆受力状态和岩土变形情况,揭示锚杆与岩 土体之间的相互作用机制。
01
03
结合现代信息技术和数值计算方法,开发智能化的监 测系统和数值模拟软件,实现锚杆支护技术的信息化
和智能化。
04
探索新型的锚杆材料和加工工艺,提高锚杆的承载能 力和耐久性,以满足更高要求的岩土加固工程需求。
施工简便
锚杆支护施工工艺相对简单, 不需要大型机械设备,可以大
幅缩短工期。
锚杆支护技术的局限性
地质条件限制
锚杆支护的效果受地质条件影响较大 ,对于复杂的地质结构,可能需要更 精确的设计和施工方法。
材料要求高
锚杆支护对材料的要求较高,需要高 质量的钢材和特殊的锚固剂,增加了 材料成本。
施工质量影响大
锚杆的工作原理主要基于摩擦力和粘结力。通过锚杆与岩土体之间的摩擦力和粘 结力,将岩土体紧密地连接在一起,形成一个整体,提高岩土体的承载能力和稳 定性。
锚杆的受力分析
锚杆的受力分析主要包括拉拔力和剪切力两个方面。拉拔力 是指锚杆受到的垂直于杆轴向的力,剪切力是指锚杆受到的 沿着杆轴向的力。
在锚杆支护技术中,需要根据岩土体的性质和工程要求,对 锚杆的受力进行详细的分析和计算,以确保锚杆能够满足工 程需求,并保证工程的安全性和稳定性。
锚杆支护技术具有施工简便、快速、安全可靠 等优点,适用于各种复杂地形和地质条件的岩 土加固工程。
锚杆支护技术在实际应用中需根据工程地质条 件、环境因素和工程要求进行合理的设计和施 工,以达到最佳的加固效果。
对未来研究的建议与展望
进一步研究锚杆支护技术的理论体系,完善锚杆设计 计算方法和施工工艺,提高锚杆支护技术的可靠性和
锚杆支护设计交
锚杆支护设计
锚杆长度 锚杆长度增加,有效压应力区范围
扩大。 锚杆中上部压应力减小,两锚杆间
中部围岩压应力减小。锚杆越长, 预应力作用越不明显。 锚杆越长,预应力应越大。通过提 高预应力,可减小锚杆长度。
1.8m 2.4m
锚杆支护设计
锚杆密度 单根锚杆形成锥形压力区,尾部
大,锚固起始次之,中部小; 间距过大,锚杆压应力区独立,
工程类比法:根据已经支护巷道的实践经验,通过类比,直接提出锚 杆支护形式与参数。也可根据巷道围岩稳定性分类结果进行锚杆支护 形式与参数设计;
理论计算法:选择适合本矿区煤巷条件的锚杆支护理论进行理论计算 设计;
数值模拟法:根据地质力学评估结果建立数值模拟模型,通过多方案 比较,确定锚杆支护初始设计。
锚杆支护设计
锚杆角度 锚杆角度增加,角锚杆与中部锚杆有效压应力区分离,叠
加区变小。15°明显分离,独立支护单元。 近水平煤层,角锚杆最好垂直布置,最大不超过10°
0°
10°
30°
锚杆支护设计
巷道支护应优先采用预应力螺纹钢树脂锚杆。软岩巷道、煤层顶板 巷道、破碎围岩巷道、深部高应力巷道、采动影响明显的巷道及大断面巷 道等复杂困难巷道,宜采用高预应力(大于锚杆屈服力的30%)、高强度 (杆体屈服强度大于500MPa)螺纹钢树脂锚杆。必要时,可采用锚杆、 锚索联合支护,锚杆与锚索的力学性能与支护参数应相互匹配。
锚杆ppt课件
锚杆的应用场景
岩土工程
建筑结构
在岩土工程中,锚杆被广泛应用于隧 道、地下洞室、边坡等工程中,用于 加固和稳定岩土结构。
在高层建筑、大跨度结构等建筑结构 中,锚杆被用于固定和支撑建筑结构 ,提高结构的抗震性能和稳定性。
桥梁工程
在桥梁工程中,锚杆常被用于固定桥 梁支座、桥墩等部位,提高桥梁的整 体稳定性和安全性。
采用绿色环保技术,如环保材料、节能技术等,降低锚杆施工对环 境的影响。
锚杆在未来工程中的应用前景
高层建筑
01
随着高层建筑的发展,对锚杆的需求将不断增加,用于高层建
筑的桩基、基坑支护等。
地下工程
02
在地铁、隧道、地下商场等地下工程中,锚杆将发挥重要作用
,用于支护、加固等。
边坡工程
03
在边坡工程中,锚杆可用于边坡加固、滑坡治理等,提高边坡
的稳定性和安全性。
THANK YOU
。
材料准备
采购符合要求的锚杆、 水泥、砂石等材料,确
保质量合格。
场地准备
清理施工现场,确保作 业面平整、无障碍物。
锚杆的施工流程
清孔
用高压空气清除孔内残渣,确 保孔内干净。
注浆
用注浆机将配置好的水泥砂浆 注入锚杆孔中,使锚杆与岩土 体紧密结合。
成孔
根据设计要求,使用钻机在岩 土中钻出锚杆孔。
置入锚杆
。
验收标准
锚杆施工质量需符合国家相关 规范和设计要求,确保工程安
全。
05
锚杆的维护与保养
锚杆的日常检查与维护
01
02
03
锚杆的外观检查
每日对锚杆进行外观检查 ,查看锚杆是否有裂纹、 变形或腐蚀现象。
锚杆的设计
锚杆的设计根据《建筑基坑支护技术规程》JGJ120-2012,锚杆的倾角宜取15°∽20°,本段基坑锚杆倾角20α=,锚杆钢筋采用HRB400,机械钻孔D=150mm ,锚杆的间距为1500mm 。
(1)锚杆自由长度的计算:1-挡土构件;2-锚杆; 3-理论直线滑动面图3.3锚杆自由长度计算简图锚杆的自由段长度应按下式确定:12(tan )sin(45)2 1.5cos sin(45)2m f md d l ϕαααϕαα+--≥++++ (3.7) ①第一根锚杆的自由段长度:13a m = 20.5a m =2.214 2.814.1 1.518.714.56.5m ϕ⨯+⨯+⨯== ()114.330.50.8tan 20sin 450.82 1.5 4.814.3cos 20sin 45202f l m ⎛⎫+-- ⎪⎝⎭≥++=⎛⎫++ ⎪⎝⎭取16f l m =,自由段穿过淤泥质粉质粘土。
②第二根锚杆的自由段长度:13a m = 20.5a m =2.214 2.814.1 4.518.716.79.5m ϕ⨯+⨯+⨯== ()116.330.50.8tan 20sin 4520.8 1.55cos 2016.3sin 45202f l m ⎛⎫+--⎪⎝⎭≥++=⎛⎫++ ⎪⎝⎭ (2)锚杆锚固段长度的计算:t sik i KN D q l π≤∑ (3.8)①第一根锚杆的锚固段长度计算:101 1.0 1.2561.92 1.5123.44d F a T r R S kN γ==⨯⨯⨯=11116.1131.31cos cos 20d t T N kN α=== 本段基坑的锚固段长度全部在粉质粘土中,采用二次压力注浆工艺取70sik q kPa =。
11 1.6123.55 5.993.140.1570t a sik KN l m Dq π⨯≥==⨯⨯ 取16a l m = 第一根锚杆的长度1116612f a l l l m =+=+= ②第二根锚杆的锚固段长度计算: 202 1.0 1.2553.82 1.5100.91d F a T r R S γ==⨯⨯⨯=22100.91132.09cos cos 20d t T N kN α=== 22 1.6123.09 6.43.140.1570t a sik KN l m Dq π⨯≥==⨯⨯ 取27a l m = 第二根锚杆的长度:2225712f a l l l m =+=+=(3)锚杆的配筋锚杆杆体的受拉承载力应符合下式规定:py p N f A ≤ (3.9)①第一根锚杆:321123.5510343.2360t py N A mm f ≥=⨯=;配122,21380.1A mm =。
《锚杆锚索工程》课件
日常维护与保养
定期清洁
定期清除锚杆锚索表面的灰尘和污垢,保持 其外观整洁。
涂装保护
对锚杆锚索表面进行涂装保护,防止腐蚀和 磨损。
检查紧固件
定期检查锚杆锚索的紧固件,如螺栓、螺母 等,确保其紧固完好。
定期检测
定期对锚杆锚索进行质量检测,及时发现并 处理潜在问题。
常见问题的处理方法
锈蚀问题
对锈蚀部位进行除锈处理,并进行涂装保护 。
感谢您的观看
THANKS
锚索
一种用于深部岩土加固的高强度 钢索,通过一端固定在岩土中, 另一端与结构物连接,起到传递 大拉力的作用。
锚杆锚索工程的应用领域
01
02
03
岩土工程
锚杆锚索广泛应用于岩土 工程领域,如边坡加固、 隧道支护、地下工程等。
桥梁工程
在桥梁建设中,锚杆锚索 常用于桥梁墩台基础的加 固和桥墩之间的连接。
隧道工程
智能化设计
利用计算机模拟技术,实现锚杆锚索工程的智能化设计,提 高设计效率和准确性。
智能化施工
通过引入机器人和自动化设备,实现锚杆锚索工程的智能化 施工,提高施工质量和安全性。
绿色施工在锚杆锚索工程中的发展
环保材料
优先选择环保、可再生的材料,减少 对环境的破坏和污染。
节能减排
通过优化施工工艺和设备,降低能耗 和减少排放,实现绿色施工。
《锚杆锚索工程》PPT 课件
目录 CONTENT
• 锚杆锚索工程概述 • 锚杆锚索的种类与选择 • 锚杆锚索工程的施工工艺 • 锚杆锚索工程的质量检测与维护 • 工程案例分析 • 未来发展趋势与展望
01
锚杆锚索工程概述
锚杆锚索定义
锚杆
一种用于加固岩土工程的杆件, 通过一端固定在岩土中,另一端 与结构物连接,起到传递拉力的 作用。
锚喷支护精品PPT课件
•
L2:有效锚固长度
•
L3:锚固段长度 端头L3=0.3-0.4m
•
B、锚杆杆体直径:
•
d=35.52﹙Q/δ﹚1/2
• 式中 Q:锚固力=KHD2r
•
δ:锚杆材料抗拉强度
•
K:安全系数
•
H:抗弱岩层厚度
•
C、锚杆间、排距
•
a=(Q/krL)1/2
• 式中 r:岩石体积(密度)
•
k:安全系数1.5-2
• 〈7〉快硬水泥锚杆 • 〈8〉快硬膨胀水泥锚杆 • 与树脂性质相似
• (2)锚杆支护作用原理:
• 〈1〉悬吊作用(悬吊软弱层状顶板、悬吊危岩)
• 指锚杆将软弱的直接顶吊挂在其上的坚固老顶上, 或将松动的岩块连结在松动区外的完整坚固岩体上,使 松动岩块不致冒落。
• 〈2〉组合梁作用
• 指将层状岩体各层用锚杆连结并紧固,锚杆把数层 薄的岩层组合成类似铆钉加固的组合梁,提高了岩层的 整体抗弯能力。在相同载荷作用下,组合梁在板梁的挠 度和内应力大为减少。
•
D、货源充足,供应有保证。选择时考虑供方产量,
运输条件。原则是不能影响生产。
•
总之,选用锚杆要全面考虑。优先选用树脂锚杆、
管缝锚杆和泵注砂浆锚杆。煤巷不宜用砂浆锚杆倒楔式 和涨壳式锚杆。
• 〈2〉按悬吊理论设计锚杆支护参数:
•
A、锚杆长度:
•ห้องสมุดไป่ตู้
L=L1+L2+L3
• 式中 L为锚杆长度
•
L1:锚杆外露长度 一般为0.15m
• 〈4〉冒落拱理论法设计锚杆支护参数:P127-129
• A、锚杆根数:Ny=K3QHNy/P
《锚杆锚索工程》课件
一种高强度钢丝束,通过注浆方 式固定在岩土体中,起到传递拉 力的作用,常用于大型结构物的 加固和边坡防护。
锚杆锚索工程应用领域
岩土工程
锚杆锚索广泛应用于岩土工程中,如隧道、 地下工程、边坡防护等。
桥梁工程
在桥梁建设中,锚杆锚索常用于桥梁墩台基 础的加固。
水利工程
在水利工程中,锚杆锚索用于大坝、水库的 加固和防护。
04
根据施工工艺进行选择,如需进行注浆工艺时则选用 注浆锚杆或锚索。
03
锚杆锚索工程设计
锚杆锚索设计基本原则
安全可靠
锚杆锚索设计应确保工 程安全可靠,满足结构 稳定和安全防护要求。
经济合理
在满足安全可靠的前提 下,应尽量降低工程成
本,提高经济效益。
施工方便
设计应考虑施工的可行 性和方便性,尽量减少
工程实例二:边坡加固工程
总结词
边坡加固工程是另一个常见的锚杆锚索工程应用领域,通过在边坡上设置锚杆和锚索,提高边坡的稳 定性和安全性。
详细描述
在边坡工程中,为了防止边坡滑移和坍塌,通常采用锚杆和锚索进行加固。锚杆和锚索的插入深度和 方向需要根据边坡的实际情况进行设计,以确保其能够有效地传递荷载并提高边坡的整体稳定性。此 外,为了保护锚杆和锚索不受腐蚀和机械损伤,通常需要进行防腐和防护处理。
《锚杆锚索工程》PPT课件
目录
• 锚杆锚索工程概述 • 锚杆锚索种类与特性 • 锚杆锚索工程设计 • 锚杆锚索工程施工工艺 • 锚杆锚索工程实例分析 • 锚杆锚索工程未来展望
01
锚杆锚索工程概述
锚杆锚索定义
锚杆
一种用于加固岩土体的杆件,通 过一端固定在岩土体中,另一端 与结构物相连,起到传递拉力的 作用。
6 超前锚杆预支护技术 PPT课件
6.2.3 小导管的施工技术
❖ (3)小导管注浆设计 2)注浆参数的确定
❖ 注浆扩散半径:可根据导管密度和现场地质条件试验确定。一 般应考虑注浆范围相互重叠为原则。小导管间距按下式计算
L0 1.5 ~ 1.7Rk
❖ 注浆量的计算:单根导管浆液注入量可按下式估算
QL Rk2L
为简化计算,将 α和β的乘积假定为 1,则上式可简化为
6.1.2 超前支护原理
❖ 围岩的破坏是有时间过程的,其原因包括开挖的端头效应和时间效应: (1)端头效应。荷载并非同时全部地施加在端头附近的围岩上的, 只有随开挖向前推进到超出端头影响区以后,应力才被全部施加, 端头的夹持作用也失去。因此,许多开挖工程常常是在开挖后的一 段时间里会发生破坏性事故。 (2)时间效应。岩土的蠕变特性说明,围岩存在一个对应于某段时 间的长期强度,当应力超过此强度值时,则围岩在到达此时间后就 会发生破坏。 ❖ 无限长时间的长时强度约为瞬时强度的70%。应力越高,破坏的 时间越短;因此,当围岩应力低于瞬时强度,而高于长时强度时, 就会在某个时间里发生破坏(如果不支护)。
6.2.3 小导管的施工技术
❖ (2)小导管施工工艺
布孔。根据小导管施工设计和开挖断面的中线,拱顶外轮廓线 中心高程和支距进行布孔放样,并以插钎为标记控制小导管的 间距。
成孔。首先架设方向架,确定打孔方向、位置和仰角。然后依 据不同地质条件,采用不同成孔设备打孔: ❖一般砂层可用Φ20 mm管以压力风吹孔; ❖粉细砂、亚粘土可采用风镐推进导管; ❖粘土层可采用煤电钻钻孔; ❖在土夹石、风化岩可使用液压或风枪打眼成孔。孔方向要 求顺直,不得弯曲和塌孔等。
锚杆支护设计
锚杆支护设计锚杆支护设计是关系到巷道锚杆支护技术可靠、经济合理的重要保证,因此,对锚杆支护必须有科学合理的设计,我矿锚杆支护是根据中国知识出版社陈大力主编的《锚杆支护新技术与产品选型设计及事故防范处理实务全书》中锚杆支护设计方法的经验公式计算法而得:一、锚杆支护设计1、锚杆长度L=N(1.5+W/10)式中:W——巷道宽度为4mL——锚杆总长度N——根据《煤矿井巷工程锚杆、喷浆、喷射混凝土支护设计试行规范》中围岩影响系数表取1.3由此得:锚杆长度L=1.3(1.5+4/10)=2.5故:锚杆长度确定为2.5m。
2、锚杆间距M≤0.4L≤0.4×2.5≤1故:锚杆间距确定为1m。
3、锚杆直径d=L/110=2.5/110=0.022m故:锚杆直径确定为22mm。
二、支护形式(一)永久支护永久支护形式顶板采用“锚杆+W钢带+金属菱形网+锚索”联合支护。
选用4000mm钢带,其锚杆间、排距为:1000mm×800mm 呈长方形布置。
巷道中部打二排锚索,选用3000mm钢带,锚索间距为2400mm,且两钢带互相搭接,排距为2000mm;两帮采用1500mm 竹锚杆配合竹托板并加挂菱形网支护。
锚杆间、排距:第Ⅰ排锚杆距顶板300mm,Ⅰ、Ⅱ、Ⅲ、Ⅳ间距为700mm,排距为800mm。
1、顶锚杆支护使用左旋无纵筋高强度螺纹钢加长锚固锚杆。
锚杆规格:ф×L=22×2500mm,使用CK2340型树脂锚固剂全长锚固,钻孔直径28mm,每排4根锚杆,靠近两帮的锚杆安装角度向煤壁成25°,其他锚杆垂直顶板布置,锚杆眼直径28mm,深2.45m,并配套钢带和12号铁丝编织的菱形金属网支护,打锚杆使用MYT—120C型液压锚杆钻机,ф28mm钻头,采用ф19mm长1.0m中孔钻杆打眼,280mm 中空六角套杆紧固。
采用MYT液压锚杆机搅拌树脂锚固剂,搅拌时间30—35秒,锚杆安装5分钟后,必须使用力矩扳手检查紧固力。
锚杆支护ppt课件
❖
L=L1+L2+L3
17
❖ 式中:
❖ L1为锚杆外露长度,一般L1=0.1~0.15m。对于 端头锚固型锚杆,L1=垫板厚度+螺母厚度+ (0.03~0.05)m;对于全长锚固锚杆,还要加 上穹形球体的厚度。
❖ L2为锚杆有效长度。
❖ L3为锚杆锚固段长度,一般端锚L3=0.3~0.4m,
由拉拔实验确定;当围岩松软时还要加大。
33
锚喷支护图示例
34
❖ 2、锚网支护
❖ 锚网支护是将金属网用托板固定或绑扎在锚杆上所组成 的支护形式。金属网用来维护锚杆间的围岩,防止小块松散 岩石掉落,也可作为喷射混凝土的配筋。被拉紧的金属网还 能起到联系各锚杆组成支护整体的作用。
❖ 常见的金属网有金属菱形网、经纬网,一般采用直径 3~4㎜的铁丝编制而成,一般采用镀锌铁丝,由于金属网消 耗钢材较大,目前正在使用具有一定抗拉强度和延伸率的玻 璃钢纤维或塑料网代替。
❖ 软弱岩层H的确定是根据地质资料,实测或经验估计,冒落 拱高度是按下式估算,即
19
❖ 当f≥3时, ❖ 当f ≤ 2时,
---------------②-1 ----------- ②-2
❖ 式中:K --- 安全系数,一般取1.5~2;
❖
b或b1 --- (普氏免压拱高)围岩松动圈冒落高度,m;
(4)临界支护强度与刚度原则。锚杆支护系统存在临界 支护强度与刚度,如果支护强度与刚度低于临界值,巷道将 长期处于不稳定状态,围岩变形与破坏得不到有效控制。因 此,设计锚杆支护系统的强度与刚度应大于临界值。
15
(5)相互匹配原则。锚杆各构件,包括托板、螺母、钢 带等的参数与力学性能应相互匹配,锚杆与锚索的参数与力 学性能应相互匹配,以最大限度地发挥锚杆支护的整体支护 作用。
煤巷锚杆支护技术教学课件PPT
❖ (3)锚杆支护的巷道围岩变形量通常要比棚式支护减 少一半以上;(4)减少支护材料的运输和装卸支架工 作量,减轻工人的劳动强度和改善作业环境;(5)能 够保持两道和开切眼的畅通,为回采工作面快速推进和 高产高低成本生产创造有利条件;(6)锚杆支护巷道 施工简单,机械化程度高,可大幅度降低巷道支护成本, 提高掘进速度和生产效率。(7)降低支护成本,采用 锚杆支护可以大幅度节约大量钢材、木材等支护材料, 降低支护成本,有利于节约自然资源,改善生态环境。 (8)提高掘进速度,锚杆支护巷道施工简单、机械化 程度高,随着锚杆机具、掘进机及其配套设备性能的完 善与提高,配套材料,如钻头、钎杆性能的提高,以及 一大批锚杆支护材料的应用,巷道掘进速度和生产效率 可大幅提高。
5)国内情况
自50年代以来,锚杆支护技术在我国也得到了逐步 应用,煤矿于1956年开始使用锚杆,主要是机械端锚 和钢丝绳砂浆无托盘锚杆,用在较稳定的岩石巷道中, 70~80年代,国家科技攻关中一直将软岩锚杆支护列 为主攻方向之一,80年代末期,开始引进澳大利亚技 术,树脂锚杆研制成功并推广应用,煤巷锚杆进入发 展的快车道,Ⅰ、Ⅱ、Ⅲ类巷道锚杆支护很快取得成 功,Ⅳ、Ⅴ类巷道也积累了很多经验,煤巷锚杆的推 广应用力度进一步加强,但由于我国煤矿地质条件相 对于美国、澳大利亚、英国等更加复杂,我国煤巷锚 杆支护不仅要使用在煤质中硬、围岩稳定程度较高的 Ⅰ、Ⅱ、Ⅲ类回采巷道,而且要使用在软岩回采巷道、 深井巷道、沿空掘巷等复杂困难条件下,所以总体使 用比重较低,各地区发展很不平衡。
美国的主要经验是:将锚杆加工产业化;锚杆支护作为一门技 术,而非材料消耗、废品利用,形成了锚杆产品的多样化、多系 列,以适应各种不同的条件;锚杆设计、制造、服务一体化;将 高新技术用于锚杆设计;强调锚杆的高强度、高预拉力,并将锚 杆的预拉力作为锚杆支护的主要参数进行设计,形成了不同与其 它国家的锚杆支护方法。
锚杆支护理论和工程实践培训课件
2)全属倒楔式锚杆
由杆体、固定楔、活动倒楔、垫板和螺帽组成, 属端头锚固型,安装后可立即承载,可回收。锚固 力达40kN左右。常用于围岩比较破碎,需要立即承 载的地下工程。
3) 楔缝式锚杆
楔缝式锚杆结构
1-杆体 2-楔缝 3-丝扣 4-楔子 5-垫板 6-螺母
锚杆支护具有巨大的技术经济效益和社会效益,是 我国煤炭行业继综合机械化之后的第二次支护技术革命
木支架严重损坏
支架破坏实况
拱型可缩性支架破坏
架棚巷道变形和支架损坏情况
沿空掘巷维护状况
锚杆支护巷道维护状况
2 锚杆支护理论
(1)悬吊理论
机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以 避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉 力来自被悬吊的岩层重量。 缺点:没有考虑围岩的自承能力,而且将被锚固体与 原岩体分开。
有比较可靠的配套机具,采用掘锚一体化联合掘 进机或性能良好的单体锚杆钻机,满足施工要求, 并能实现快速掘进。
国内支护发展
2个阶段:以1995年引进澳大利亚锚杆支护技术为 分界点。(之前机械锚固、钢丝绳砂浆锚杆以及开发 研制的快硬水泥锚杆;之后高强度树脂锚固锚杆)
锚杆支护理论、锚杆支护设计方法、施工机具、小 孔径预应力锚索加强支护、锚杆孔径、锚固剂及锚固 方式、监测技术等均发生了变化。
(4)最大水平应力理论
(5)锚杆支护围岩强度强化理论
围岩与支护强度的关系 随支护强度增加,围岩的极限强度和残余强度提高, 围岩残余强度提高到一定程度就能保持巷道稳定。
(5)锚杆支护强度强化理论
锚杆与围岩相互作用,形成锚杆—围岩的共同承载 结构,改善锚固体力学性能,提高锚固体峰值强度和残 余强度,特别是残余强度的提高,有效提高围岩的自承 能力,控制围岩塑性区、破碎区发展,促使巷道围岩由 不稳定状态向稳定状态转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ (3)围岩松动圈与支护的关系:一般的支护不能有效 地阻止松动圈的发生和发展。
➢ (4)围岩松动圈与巷道宽度的关系:在相似材料模型 试验与现场的对应试验中发现,巷道宽度在3—7m范围内,
其他条件不变时松动圈(LP)变化不明显。
锚杆支护设计
16
• 松动圈测试分析
图6围岩松动圈实测结果
锚杆支护设计
17
• 椭圆形:为全封闭式支护, 巷道围岩四周压力都很大, 且不均匀时,可选用此断 面形状。
由此可见,选择断面形状,要针对不同的地点,具体问题具体分析,届时,
必须综合考虑巷道围岩的性质、地应力大小和方向、巷道的服务年限、用途
及位置、巷道支护形式和支护材料这三大因素有针对性的作出选择。(充分
发挥其力学性能)
锚杆支护设计
8
三、锚杆支护经典原理
(一)锚杆悬吊理论 (二)锚杆组合梁理论 (三)锚杆组合拱理论 (四)挤压加固拱理论 (五)巷道围岩松动圈理论 (六)高强高预应力支护理论 (七)二次支护理论
锚杆支护设计
9
(一)锚杆悬吊理论
巷道开挖后,围岩中的原始地应力出现重新分布,形成应力集中区。在该区域内,岩体 中原有的节理、裂隙、层理、断层等不连续面可能进一步发展,并可能产生新的不连续 面,各不连续面可能相交、贯通,并在自重作用下产生冒落。锚杆的悬吊作用就是将这 些松散、破碎岩石锚固在围岩内部较坚硬、稳定的岩层中。如图1所示。
锚杆支护设计
11
锚杆支护设计
12
锚杆支护设计
13
(四)挤压加固拱理论 对于被纵横交错的弱面所切割的块状或破裂状围岩,如果及时用锚
杆加固,就能提高岩体结构弱面的抗剪强度,在围岩周边一定厚度的 范围内形成.一个不仅能维持自身稳定,而且能防止其上部围岩松动 和变形的加固拱,从而保持巷道的稳定。如图4所示
锚杆巷道支护
锚杆支护设计
1
一、巷道支护类型
目前巷道支护的主要形式有:
锚杆支护:(还包括锚杆支护、锚网支护、锚网带支护)
架棚支护
砌碹支护
锚喷支护:(锚喷支护包括锚喷支护、锚网喷支护、喷锚喷锚
网
喷支护、喷锚梁喷、锚网喷支护。 )
锚杆支护设计
2
二、巷道断面设计选择
巷道围岩应力是引起围岩变形和失稳破坏的根 本作用力,其压力大小和分布与巷道的断面形状 有关,在巷道拐角处应力集中程度高,能产生较大 的剪应力,拐角处的曲率半径愈小,应力集中系 数愈大,巷道直线部分则容易产生拉应力。因此 在围岩稳定的条件下 ,可选择形状简单的折线 型巷道断面,在围岩不稳定的条件下,可选择形 状复杂的曲线型巷道断面。
锚杆支护设计
3
不同形断面应力集中系数见表1
表1
巷道断面形状 椭圆形巷道(长短轴之比1:5) 圆形巷道 圆拱形巷道 拱形巷道 矩形、梯形巷道
应力集中系数 1.5 2 2.5 3 3.5
锚杆支护设计
4
根据矿不同的埋深、围岩条件、技术条件、用途、服务年限等选 择不同的巷道断面形状。
(一)矩形,倒梯形断面
顶板围岩自承能力相对较差,当顶压和侧压均不大时,可选择矩形或倒梯 形断面。
锚杆支护设计
5
(二)圆弧拱、微弧拱、切圆拱、偏心拱断面
➢ 拱形巷道受力较为均匀,不容易形成应力集中区域和集中点,并且,拱型巷道 围岩自撑能力强,是深部巷道较为理想的断面。
➢ 偏心拱和微弧拱适用于顶板压力相对较小,围岩相对较稳定,加服务年限较短 的回采巷道采煤工作面上下顺槽。
图5
锚杆支护设计
15
2、围岩松动圈的性质
➢ (1)围岩松动圈的形状:由于围岩性质不同,松动圈 可能有圆形、椭圆形和异形等形状。
➢ (2)围岩松动圈形成的时间性:在有控制条件下松动 圈的稳定时间是,当Lp<l00cm时,10~20d;Lp=100~ 150cm,20—30d;Lp >150cm,1—3个月。
➢ 切圆拱和圆弧拱适应于顶板压力相对较大,顶板围岩相对较松软,稳定性较差 的回采巷道。
锚杆支护设计
6
(三)马蹄形、椭圆、半圆拱、曲墙拱型断面
适用于服务年限相对较长的开拓、准备巷道和永久峒室。
直墙半圆拱形:顶板承载效果较好,由于帮部为直墙,抵抗帮部围岩变 形能力较差,在侧压较大时,不利于控制帮部变形。
锚杆支护设计
14
(五)巷道围岩松动圈理论
1、围岩松动圈的概念
• 该理论认为,开巷以后巷道围岩 应力将发生显著变化,巷道周边 径向应力(σr)为0,围岩强度明显 下降;围岩中出现应力集中现象。 如果集中应力小于岩体强度,围 岩将处于弹性状态。当围岩应力 超过围岩强度之后,巷道周边将 首先破坏,并逐渐向深部扩展, 直至在—定深度取得三向应力平 衡为止。此时,围岩已过渡到破 碎状态。围岩中产生的这种松弛 破碎带被定义为围岩松动圈(Lp) 见图5
(六)高强高预应力支护理论
巷道开挖后在围岩变形很小(约在破坏载荷的25%以下)时,脆性特征明 显的岩体就出现开裂、离层、滑动、裂纹扩展和松动等现象,使围岩强度 大大弱化,如果巷道开挖后立即安装锚杆但未施加预拉力,由于锚杆极限 变形量大于围岩极限变形量,又由于各类锚杆都有一定的初始滑移量,因 而锚杆不能阻止围岩的开裂、滑动和弱化。只有当围岩的开裂位移达到相 当的程度(在钢筋混凝土中达到极限载荷的60~75%)以后,锚杆才起到阻 止裂纹扩展的作用,这时 围岩已几乎丧失抗拉和抗剪的能力,加固体的抗 拉和抗剪能力主要依赖于锚杆。这也就是说,这里围岩和锚杆不同步承载, 先是围岩受力破坏,达到一定程度,锚杆才开始承载。在目前开采深度不 大和非强烈构造应力区,这种矛盾常常不突出,支护的成功掩盖了问题的 实质。
曲墙拱形:顶部仍为半圆拱形,帮部由过去直墙改为曲墙,围岩自身抵
抗帮部变形的能力大大增强,在深部顶压和侧压都较大的情况下,是控制
巷道变形、提高巷道自稳比较理想的断面。
马蹄形;为不规则断面形状,适用于服务年限比较长对巷道底板质量要 求比较高的峒室。
锚杆支护设计
7
• 皮带机头峒室底板布置设 备基础,对质量要求比较 高,不允许出现犟底,底 臌,否则,影响设备运行, 马蹄形断面为全封闭支护, 底板上的三心拱梁可进一 部扼制底板底臌变形,满 足设备平稳运行的需要。
该理论在浅部还具有一定的指导意义,在深部巷道围岩一定范围内已不存 在坚硬稳定岩层,围岩形成大松动圈,半径在2m以上,因此该理论已不能 有效指导我矿锚杆支护设计。
锚杆支护设计
10
(二)锚杆组合梁理论
• 该理论适用于巷道顶板为较厚的层状岩层。当巷道顶板出现 下沉和离层时,沿层面将产生垂直位移和水平位移,锚杆所 提供的轴向力将对岩层的下沉和离层产生约束,并且增大岩 层间的摩擦力,该摩擦力与锚杆所提拱的抗剪力一同阻止岩 层间产生相对滑动,从而将几个薄岩层通过锚杆夹紧而形成 一个岩层组合梁。根据材料力学知识,组合梁作用与组合梁 前后的内应力对比如图2所示。