备考2020中考数学高频考点分类突破12相交线和平行线训练含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线和平行线
一.选择题
1.(2019•安顺)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()
A.35°B.45°C.55°D.65°
【解答】解:
∵∠1+∠3=90°,∠1=35°,
∴∠3=55°,
∴∠2=∠3=55°,
故选:C.
2.(2019·浙江中考模拟)用反证法证明“在同面内,若a⊥c,b⊥c,则a∥b”时应假设()
A.a不垂直于b B.a⊥b
C.a与b相交D.a,b不垂直于c
答案C
【解析】用反证法解题时,要假设结论不成立,即假设a与b不平行,即a与b相交.
【详解】解:反证法证明“在同面内,若a⊥c,b⊥c,则a∥b”时应假设a与b相交,
故选:C.
【点睛】本题考查的是反证法,反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
3.(2019•济宁)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()
A.65°B.60°C.55°D.75°
【解答】解:∵∠1=∠2,
∴a∥b,
∴∠4=∠5,
∵∠5=180°﹣∠3=55°,
∴∠4=55°,
故选:C.
4.(2019•吉林)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()
A.两点之间,线段最短
B.平行于同一条直线的两条直线平行
C.垂线段最短
D.两点确定一条直线
【解答】解:这样做增加了游人在桥上行走的路程,其中蕴含的数学道理是:利用两点之间线段最短,可得出曲折迂回的曲桥增加了游人在桥上行走的路程.
故选:A.
5.(2019•河池)如图,∠1=120°,要使a∥b,则∠2的大小是()
A.60°B.80°C.100°D.120°
【解答】解:如果∠2=∠1=120°,
那么a∥b.
所以要使a∥b,则∠2的大小是120°.
故选:D.
6.(2019•河北)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容
则回答正确的是()
A.◎代表∠FEC B.@代表同位角
C.▲代表∠EFC D.※代表AB
【解答】证明:延长BE交CD于点F,
则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).
又∠BEC=∠B+∠C,得∠B=∠EFC.
故AB∥CD(内错角相等,两直线平行).
故选:C.
7.(2019•东营)将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF 等于()
A.75°B.90°C.105°D.115°
【解答】解:∵BA∥EF,∠A=30°,
∴∠FCA=∠A=30°.
∵∠F=∠E=45°,
∴∠AOF=∠FCA+∠F=30°+45°=75°.
故选:A.
8.(2019•金华)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()
A.在南偏东75°方向处B.在5km处
C.在南偏东15°方向5km处D.在南偏东75°方向5km处
【解答】解:由图可得,目标A在南偏东75°方向5km处,
故选:D.
9.(2019•武汉)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()
A.B.C.D.
【解答】解:如图,连接EB.设OA=r.
∵AB是直径,
∴∠ACB=90°,
∵E是△ACB的内心,
∴∠AEB=135°,
作等腰Rt△ADB,AD=DB,∠ADB=90°,则点E在以D为圆心DA为半径的弧上运动,运动轨迹是,点C的运动轨迹是,
∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α
∴.
故选:A.
10.(2019•武汉)已知反比例函数y的图象分别位于第二、第四象限,A(x1,y1)、B(x2,y2)两点在该图象上,下列命题:①过点A作AC⊥x轴,C为垂足,连接OA.若△ACO的面积为3,则k=﹣6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中真命题个数是()
A.0 B.1 C.2 D.3
【解答】解:过点A作AC⊥x轴,C为垂足,连接OA.
∵△ACO的面积为3,
∴|k|=6,
∵反比例函数y的图象分别位于第二、第四象限,
∴k<0,
∴k=﹣6,正确,是真命题;
②∵反比例函数y的图象分别位于第二、第四象限,
∴在所在的每一个象限y随着x的增大而增大,
若x1<0<x2,则y1>0>y2,正确,是真命题;
③当A、B两点关于原点对称时,x1+x2=0,则y1+y2=0,正确,是真命题,
真命题有3个,
故选:D.
二.填空题
11.(2019•广州)如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l 的距离是cm.
【解答】解:∵PB⊥l,PB=5cm,
∴P到l的距离是垂线段PB的长度5cm,