能量守恒定律

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量守恒定律的定义

这就叫做质量守恒定律(law of conservation of mass)

原子的种类没有改变,数目没有增减,原子的质量也没有改变。

质量守恒定律简解

种变化或过程,其总质量保持不变。18

后,这一定律始得公认。20

简称质能守恒定律)。

验证

20世纪初,德国和英国化学家分别做了精确度极高的实验,以求能得到更精确的实验结果,反应前后的质量变化小于一千万分之一,这个误差是在实验误差允许范围之内的,因此质量守恒定律是建立在严谨的科学实验基础之上的。质量守恒定律就是参加化学反应的各

物质的质量总和,等于反应后生成的各物质的质量总和。例如,

质量守恒定律即,

中,参加反应的各物质的总和等于反应后生成的各物质总和。微观解释:在化学反应前后,原子的种类,数目,质量均不变。六个不变:宏观:1.反应前后物质总质

量不变 3.物质的总质量不变微观:4.原子的种类不变;5.原子的数

目不变;6.原子的质量不变。两个一定改变:宏观:物质种类改变。微观:物质的粒子构成方式一定改变。两个可能改变:宏观:元素的化合价可能改变微观:分子总数可能改变。

质量守恒定律发现简史

1756年俄国化学家罗蒙诺索夫把锡放在密闭的容器里煅烧,锡发生变化,生成白色的氧化锡,但容器和容器里的物质的总质量,在煅烧前后并没有发生变化。经过反复的实验,都得到同样的结果,于是他认为在化学变化中物质的质量是守恒的。但这一发现当时没有引起科学家的注意,直到1777年法国的拉瓦锡做了同样的实验,也得到同样的结论,这一定律才获得公认。但要确切证明或否定这一结论,都需要极精确的实验结果,而拉瓦锡时代的工具和技术(小于%的质量变化就觉察不出来)不能满足严格的要求。因为这是一个最基本的问题,所以不断有人改进实验技术以求解决。1908年德国化学家朗道耳特(Landolt)及1912年英国化学家

罗蒙诺索夫

曼莱(Manley)做了精确度极高的实验,所用的容器和反应物质量为1 000 g左右,反应前后质量之差小于 1 g,质量的变化小于一千万分之一。这个差别在实验误差范围之内,因此科学家一致承认了这一定律。

发展

爱因斯坦

自从爱因斯坦(Einstein)提出狭义相对论和质能关系公式(E=mc2)以后,说明物质可以转变为辐射能,辐射能可以转变为物质。这个结论对质量守恒定律在化学中的应用有何影响呢实验结果证明1 000 g硝化甘油爆炸之后,放出的能量为×10^6 J。根据质能关系公式计算,产生这些能量的质量是×10^-8 g,与原来1 000 g相比,差别小到不能用现在实验技术所能测定。从实用观点来看,可以说在化学反应中,质量守恒定律是完全正确的。20世纪以来,人们发现原子核裂变所产生的能量远远超过最剧烈的化学反应。1 000 g 铀235裂变的结果,放出的能量为×10^16 J,与产生这些辐射能相等的质量为 g,和原来1 000 g相比,质量变化已达到千分之一。于是人们对质量守恒定律就有了新的认识。在20世纪以前,科学家承认两个独立的基本定律:质量守恒定律和能量守恒定律。现在科学家则将这两个定律合而为一,称它为质能守恒定律。1756年俄国罗蒙诺索夫首先测定化学反应中物质的质量关系,将锡放在密闭容器中燃烧,反应前后质量没有变化,由此得出结论:“参加反应的全部物质的质量,常等于全部反应产物的质量。”1774年法国.拉瓦锡重复类似的实验,并得出同样的结论。由于罗蒙诺索夫和拉瓦锡时代所用的天平不够精密,所以后来又有不少科学家用更精确的方法证明这一定律。例如19世纪中叶,比利时分析化学家.斯塔用银和碘制备碘化银,所得碘化银的质量与碘和银的总质量只相差%。19世纪末,.兰多尔特用很精密的天平再一次证明这一定律的正确性。20世纪,爱因斯坦推导出了狭义相对论,他指出,物质的质量和它的能量成正比,可用以下公式表示:E=mc^2式中E 为能量;m为质量;光速c=±km/s (一般取300000km/s)。以上公式说明物质可以转变为辐射能,辐射能也可以转变为物质。这一现象并不意味着物质会被消灭,而是物质的静质量转变成另外一种运动形式。

狭义相对论

(由于当时科学的局限,这条定律只在微观世界得到验证,后来又在核试验中得到验证)所以20世纪以后,这一定律已经发展成为质量守恒定律和能量守恒定律,合称质能守恒定律。

检验质量守恒的实验

方案一在底部铺有细沙的锥形瓶口,放入一粒火柴大的白磷。在锥形瓶口的橡皮塞上安装一根玻璃管,在其上端系牢一个小气球,并使玻璃管下端能与白磷接触。将锥形瓶与玻璃管放在托盘天平上用砝码平衡。然后,取下锥形瓶。将橡皮塞上的玻璃管放到酒精灯火焰上灼烧至红热后,迅速用橡皮塞将锥形瓶塞紧,白磷引燃。待锥形瓶冷却后,重新放到托盘天平上,观察天平是否平衡。磷+ 氧气点燃十氧化四磷配平:4P+5O2=2(P2O5)(条件:点燃)P4+5O2=P4O10(条件:点燃)实验现象白磷燃烧发黄光,并且产生大量白烟,放出热量,并且,天平平衡。注意事项 1.白磷的取用及其注意事项:白磷是一种易燃而又有剧毒的物质,通常把它贮存在水里,切割白磷也在水中进行。取白磷,要用镊子,不可用手接触,表面的水分可用滤纸吸干,接触过的东西上往往有磷的碎粒,不能随便乱放,白磷的碎粒和吸过白磷表面水分的滤纸,一定要烧掉以保证安全。 2.气球的作用:系气球的目的是为了防止由于白磷燃烧,放出大量热量,气体膨胀造成瓶塞被冲开。瓶内气体膨胀时,气球被吹大,冷却时气球缩进瓶内,起保护作用。 3.误差分析:由于点燃白磷时需将橡皮塞上的玻璃管取出,放到酒精灯火焰上灼烧至红热后,再用橡皮塞将锥形瓶塞紧,这一操作会因为锥形瓶内空气受热膨胀和白磷燃烧产生的白烟外逸而造成实验时托盘天平不平衡。方案二在100mL烧杯中加入30mL的稀硫酸铜溶液,用砂纸将几根铁钉打磨干净,将盛有硫酸铜溶液的烧杯和铁钉一起

放在托盘天平上称量,记录所称的质量m1。将铁钉浸到硫酸铜溶液中,观察实验现象。

记录所称的质量m2。比较反应前后的质量。

相关文档
最新文档