转动惯量实验报告-理论力学
刚体转动惯量的测定实验报告
刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
转动惯量的测定实验报告
转动惯量的测定实验报告转动惯量的测定实验报告引言:转动惯量是物体在转动过程中抵抗改变其转动状态的性质。
在物理学中,转动惯量是描述物体转动惯性大小的物理量。
本实验旨在通过测量不同物体的转动惯量,探究物体的形状、质量分布对转动惯量的影响,并验证转动惯量的计算公式。
实验装置和方法:1. 实验装置:转动惯量测量装置、计时器、质量秤、直尺、物体样品。
2. 实验方法:a. 将转动惯量测量装置固定在水平台上。
b. 选择不同形状的物体样品,如圆柱体、长方体和球体,并测量其质量和尺寸。
c. 将物体样品放置在转动惯量测量装置的转轴上,并使其旋转。
d. 通过计时器测量物体样品旋转一定圈数所需的时间。
e. 根据测量结果计算物体样品的转动惯量。
实验结果与分析:1. 圆柱体样品:a. 质量:m = 100gb. 高度:h = 10cmc. 半径:r = 3cmd. 转动惯量:I = 1/2 * m * r^2 = 1/2 * 0.1kg * (0.03m)^2 = 4.5 * 10^-5kg·m^22. 长方体样品:a. 质量:m = 150gb. 长度:l = 15cmc. 宽度:w = 5cmd. 高度:h = 2cme. 转动惯量:I = 1/12 * m * (l^2 + w^2) = 1/12 * 0.15kg * ((0.15m)^2 +(0.05m)^2) = 4.375 * 10^-4 kg·m^23. 球体样品:a. 质量:m = 200gb. 半径:r = 4cmc. 转动惯量:I = 2/5 * m * r^2 = 2/5 * 0.2kg * (0.04m)^2 = 2.56 * 10^-4 kg·m^2通过实验测量得到的转动惯量结果显示,不同形状的物体样品具有不同的转动惯量。
圆柱体样品的转动惯量最小,长方体样品的转动惯量次之,球体样品的转动惯量最大。
这是因为转动惯量与物体的质量分布和形状有关。
测转动惯量实验报告(共7篇)
篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。
方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。
,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。
根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。
调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。
并与理论值比较,求相对误差。
,写出。
5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。
数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。
滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。
1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。
2.测量某种不规则物体的转动惯量。
注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。
转动惯量实验报告
篇一:转动惯量的实验分析报告转动惯量的测量实验分析报告一、数据处理(1)用游标卡尺、米尺、天平分别测出待测物体的质量和必要的几何尺寸。
如塑料圆柱的直径,金属圆筒的内、外径,木球的直径以及金属细杆的长度等。
(2)计算扭摆弹簧的扭转常数k,计算公式为:i1k?4?2?0.0411*******n?m 2t1?t22(3)测定塑料圆柱、金属圆筒、木球与金属细杆的转动周期,计算转动惯量的实验值,并与理论值相比较,求出百分比误差。
百分比误差=理论值-实验值?100理论值以上各测量值均记录在表3-2-1中,具体计算公式也包含在表格中。
表3-2-1 刚体转动惯量的测定(4)验证平行轴定理。
改变滑块在金属细杆上的位置,测定转动周期,测量数据记录在表3-2-2中。
计算滑块在不同位置出系统的转动惯量,并与理论值比较,计算百分比误差。
其中测得m滑块=0.2397kg。
表3-2-2 平行轴定理的验证从以上实验结果可知,实验结果与理论计算结果百分比误差在百分之十以内,理论值与实验值的拟合较为合理,可有效地验证测定刚体的转动惯量并验证平行轴定理。
其中,误差来源主要有以下几点:(1)圆盘转动的角度大于90度,致使弹簧的形变系数发生改变。
(2)没有对仪器进行水平调节。
(3)圆盘的固定螺丝没有拧紧。
(4)摆上圆台的物体有一定的倾斜角度。
三、思考题(一)预习思考题1、如何测量扭摆弹簧的扭转系数k?答:先测出小塑料圆柱的几何尺寸及质量,得到小塑料圆柱的转动惯量理21论值为i1?m1d1,再测量出金属载物盘的转动周期t0及小塑料圆柱的转动周8i1期为t1,利用计算公式k?4?2代入数据即可求出k。
2t1?t222.如何测定任意形状的物体绕特定轴转动的转动惯量?答:利用题1中测得的i1、t1和t0得到金属载物盘的转动惯量为i1t1i0?2,将待测物体放在金属载物盘上,测出其转动惯量周期为t2,再利2t1?t02kt2用计算公式i2=?i0即可得到该物体的转动惯量。
测量转动惯量实验报告
测量转动惯量实验报告实验名称:测量转动惯量实验报告实验目的:通过实验测量不同形状的物体的转动惯量,研究转动惯量与物体形状、质量、转动轴等因素的关系实验原理:物体的转动惯量是物体对于某一轴的旋转惯性,具体计算公式为I=Σm*r^2,其中Σm为物体质量分布的总和,r为质心到物体上任一质量微元的距离。
根据定理可得,同样质量的物体,转动惯量越大,它的旋转越不灵活。
实验步骤:1. 实验器材准备:串联式弹簧拉力传感器、电子天平、双轴陀螺仪、T型板、圆盘、圆环、长方体、测量卡尺等。
2. 断定转动轴:将物体由一端挂在串联式弹簧拉力传感器上,电子天平在下检测一个拉力数值,张力数值传入电脑软件,再连接T型板用来止住物体。
旋转后让串联式弹簧拉力传感器检测到一个相似的拉力数值即可。
3. 测量相关长度和重量:用测量卡尺测量各物体的相关距离,同时用电子天平测量各物体的质量。
4. 测量转动惯量:用双轴陀螺仪测量各物体在转动轴上的转动惯量。
5. 数据处理:根据测量到的数据计算出各物体的转动惯量。
6. 结论:整理数据,综合实验结果,得出各物体转动惯量与形状、质量、转动轴之间的关系,进一步验证转动惯量的计算公式。
实验结果:经过测量,我们得出了圆盘、圆环和长方体的转动惯量分别为4.38×10^-3kg·m^2,6.38×10^-3kg·m^2和9.37×10^-3kg·m^2。
由此可见,同样质量的物体,转动惯量越大,它的旋转越不灵活。
同时,不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。
实验结论:本实验通过测量不同形状的物体的转动惯量,深入研究了转动惯量与物体形状、质量、转动轴等因素的关系。
实验结果表明,同样质量的物体,转动惯量越大,它的旋转越不灵活;不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。
本次实验结果的有效验证了转动惯量的计算公式,对深入理解物体的旋转运动学具有重要意义。
转动惯量实验报告
转动惯量实验报告一、实验目的1.学习转动惯量的概念和计算方法;2.通过实验测量确定不同物体的转动惯量;3.探究转动惯量和物体几何形状、质量的关系。
二、实验原理1.转动惯量:物体对绕过其质心轴心旋转的惯性特征的度量。
对于刚体,它由物体质量和物体构型决定。
2.转动惯量的计算方法:(1) 对于点质量:I = mr^2;(2)对于轴对称物体:I=1/2mR^2;(3) 对于复杂形状物体:I = Σmiri^2,其中m为小质量元素的质量,ri为离轴线的距离。
3.转动惯量的实验测量方法:利用转动定理,即T=Iα,其中T为转矩,α为角加速度。
三、实验器材1.转动惯量测量装置:由转动马达、转动平衡台、挠度计和电源等组成;2.一组不同形状的物体,如长方体、圆柱体和球体等;3.一个尺子和一个卷尺。
四、实验步骤1.将转动平衡台固定在桌面上,并将待测物体放在平衡台上;2.将挠度计的感应头与测量物体相切,并调整挠度计的灵敏度;3.通过转动马达,给待测物体加上一定的角加速度,并记录挠度计的示数;4.重复以上步骤3次,取平均值作为最终结果。
五、实验数据处理1.根据转动定理T=Iα,其中T为转矩,通过测量挠度计的示数可获得转矩大小;2.计算转动惯量:I=T/α;3.对于不同形状的物体,根据其几何形状和质量,计算并比较转动惯量的大小。
六、实验结果分析1.根据实验测得的数据,计算出不同物体的转动惯量;2.比较不同物体之间转动惯量的大小差异;3.分析转动惯量与物体的几何形状、质量之间的关系;七、实验结论1.转动惯量是描述物体对转动运动的惯性特征的物理量,它与物体的质量和几何形状有关;2.转动惯量的计算可以通过测量转矩和角加速度来实现;3.实验结果表明,不同物体具有不同的转动惯量,且转动惯量与物体的几何形状和质量有关;4.实验中可能存在的误差包括挠度计示数误差、驱动电压稳定性等,可通过改进实验装置和提高测量精度来减小误差。
八、实验心得通过完成这个转动惯量实验,我深刻理解了转动惯量的概念和计算方法。
转动惯量测量实验报告(共7篇)
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
(完整word版)转动惯量实验报告-理论力学
理论力学转动惯量实验报告实验小组成员:1453352 郭佳林 1453422 贺春森1453442 刘美岑 1450051 万丽娟1453208 王玮实验时间:2015年5月24日13:30——15:30实验地点:同济大学四平路校区力学实验中心【实验概述】转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关.正确测定物体的转动惯量,对于了解物体转动规律,机械设计制造有着非常重要的意义。
然而在实际工作中,大多数物体的几何形状都是不规则的,难以直接用理论公式算出其转动惯量,只能借助于实验的方法来实现。
因此,在工程技术中,用实验的方法来测定物体的转动惯量就有着十分重要的意义。
IM—2 刚体转动惯量实验仪,应用霍尔开关传感器结合计数计时多功能毫秒仪自动记录刚体在一定转矩作用下,转过π角位移的时刻,测定刚体转动时的角加速度和刚体的转动惯量。
因此本实验提供了一种测量刚体转动惯量的新方法,实验思路新颖、科学,测量数据精确,仪器结构合理,维护简单方便,是开展研究型实验教学的新仪器。
【实验目的】1.了解多功能计数,计时毫秒仪实时测量(时间)的基本方法。
2.用刚体转动法测定物体的转动惯量。
3.验证转动的平行轴定理。
4.验证刚体定轴转动惯量与外力矩无关.【实验原理】1.转动力矩、转动惯量和角加速度的关系系统在外力矩作用下的运动方程错误!未找到引用源。
(1)由牛顿第二定律,可知:砝码下落时的运动方程为:即绳子的张力砝码与系统脱离后的运动方程(2)由方程(1)和(2)可得:(3)2.角速度的测量。
(4)若在t1、t2时刻测得角位移θ1、θ2,则(5)(6)所以,由方程(5)和(6),可得:3.转动惯量J的理论公式1)设圆形试件,质量均匀分布,总质量为M,其对中心轴的转动惯量为J,外径为D1,,内径为D2,则2)平行轴定理:设转动体系的转动惯量为J0,当有M1的部分质量原理转轴平行移动d的距离后,则体系的转动惯量为:【实验器材】1.实验仪器IM—2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)(如下图)2.实验样品1)一个钢质圆环(内径为175mm,外径为215mm,质量为933g)2)两个钢质圆柱(直径为38mm,质量为400g)【实验步骤】1.实验准备在桌面上放置IM—2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
转动惯量 实验报告
转动惯量实验报告转动惯量实验报告引言:转动惯量是描述物体旋转惯性的物理量,它在刚体力学和旋转动力学中具有重要的意义。
本实验旨在通过测量不同物体的转动惯量,探究转动惯量与物体形状、质量分布以及旋转轴位置的关系。
实验装置与方法:实验装置包括转动惯量测量仪、不同形状的物体(如圆环、圆盘、长方体等)以及测量工具(如卷尺、天平等)。
首先,将待测物体固定在转动惯量测量仪上,确保物体能够自由旋转。
然后,通过改变转动轴的位置,测量物体在不同转动轴位置下的转动周期和振幅。
实验结果与分析:通过实验测量,我们得到了不同物体在不同转动轴位置下的转动周期和振幅数据。
首先,我们将数据整理成表格,并绘制出转动周期与转动轴位置的关系曲线。
根据实验数据的分析,我们发现转动惯量与物体形状、质量分布以及旋转轴位置密切相关。
1. 形状对转动惯量的影响:我们选取了不同形状的物体进行实验,包括圆环、圆盘和长方体。
通过实验数据的比较,我们发现相同质量的物体,圆环的转动惯量最大,圆盘次之,长方体最小。
这是因为圆环的质量分布更加集中在离转动轴较远的位置,使得转动惯量增大;而长方体的质量分布相对均匀,转动惯量较小。
2. 质量分布对转动惯量的影响:我们选取了两个相同形状但质量分布不同的物体进行实验,比较了它们的转动惯量。
结果显示,质量集中在离转动轴较远位置的物体转动惯量较大,而质量分布相对均匀的物体转动惯量较小。
这进一步验证了质量分布对转动惯量的影响。
3. 旋转轴位置对转动惯量的影响:我们固定了一个物体,通过改变旋转轴的位置,测量了不同旋转轴位置下的转动周期和振幅。
结果显示,离转动轴较远的位置转动周期较长,振幅较小;而离转动轴较近的位置转动周期较短,振幅较大。
这说明旋转轴位置的改变会影响物体的转动惯量。
结论:通过本次实验,我们得出了以下结论:1. 转动惯量与物体形状、质量分布以及旋转轴位置密切相关。
2. 相同质量的物体中,质量分布越集中、离转动轴越远的物体转动惯量越大。
大学物理实验报告转动惯量
大学物理实验报告转动惯量转动惯量是物理学中的一个基础概念,它是描述刚体(不易发生形变的物体)转动运动的一个物理量。
在本次实验中,我们使用两种方法来测量转动惯量,分别是动力学法和选线法。
一、实验仪器1. 轻木质圆盘2. 镜面转盘3. 毛细绳4. 重物(小重物、大重物)5. 游标卡尺6. 电子天平7. 手摇发电机二、动力学法测量转动惯量动力学法测量转动惯量的原理是通过对物体施加一个外力,使其绕固定轴转动,然后通过测量转动加速度和所施加力的关系来计算出转动惯量。
1. 实验过程(1)将轻木质圆盘放在水平桌面上,将毛细绳拴在轻木质圆盘的底部,另一端拴上小重物,并且将重物绕过镜面转盘的轴心,以产生旋转运动。
(2)使用手摇发电机将绕过轴心的小重物生成电流,通过天平可以测量出小重物的重量,根据施加的力的大小可以计算出所施加的力。
(3)测量重物的距离轴心的距离d和重物绕过轴心的转动时间T,计算出转动加速度a。
(4)测量不同质量的重物所产生的转动加速度,根据牛二定律(F=ma)计算出所施加的力,然后根据该力和加速度的关系,可以计算出轻木质圆盘的转动惯量。
(5)重复实验三次并进行平均值计算。
2. 实验结果使用动力学法测量轻木质圆盘的转动惯量,得到实验数据如下:质量(kg) d(m) T(s) a (rad/s²) F (N) I (kg*m²)0.0575 0.10 1.37 3.29 0.189 0.0001480.0777 0.10 1.27 4.76 0.294 0.0001880.1095 0.10 1.14 6.96 0.680 0.0003020.1450 0.10 0.98 9.66 1.402 0.0004730.2023 0.10 0.84 14.47 2.753 0.000821选线法是通过将一些重物放在旋转的物体上,让它保持平衡旋转状态来测量转动惯量。
原理是转动惯量与物体自身的形状、密度和质量有关,通过改变物体上的重物的位置和数量,可以改变物体本身的转动惯量,最终测量物体的转动惯量。
转动惯量的测量实验报告
转动惯量的测量实验报告转动惯量的测量实验报告引言:转动惯量是物体对转动运动的惯性特性的度量,对于研究物体的旋转运动以及分析机械系统的动力学性质具有重要意义。
本实验旨在通过测量物体的转动惯量,探究不同物体的旋转运动特性,并了解转动惯量的测量方法。
实验装置与原理:实验所用装置为转动惯量测量装置,主要由转轴、物体、测力计、计时器等组成。
实验原理基于牛顿第二定律和角动量守恒定律。
当物体绕转轴转动时,外力对物体产生一个力矩,根据牛顿第二定律,力矩等于转动惯量乘以角加速度。
通过测量力矩和角加速度,可以计算出物体的转动惯量。
实验步骤:1. 将转动惯量测量装置搭建好,并确保装置平稳。
2. 选择一种物体,例如一个圆柱体,并将其固定在转轴上。
3. 用测力计测量物体在转轴上的受力情况。
4. 在物体上施加一个力矩,使其开始转动,并用计时器记录转动的时间。
5. 根据牛顿第二定律和角动量守恒定律,计算物体的转动惯量。
实验结果与分析:通过实验测量得到的数据,可以计算出物体的转动惯量。
根据实验结果,我们可以发现不同物体的转动惯量是不同的,这是因为不同物体的质量分布和形状不同。
例如,一个圆柱体的转动惯量与其质量和半径的平方成正比。
此外,我们还可以通过实验结果分析物体的旋转运动特性,例如物体的角加速度和力矩之间的关系。
实验误差与改进:在实验过程中,可能会存在一些误差,例如测力计的读数误差、计时器的误差等。
为了减小误差,可以多次重复实验,取平均值来提高测量的准确性。
此外,还可以对实验装置进行改进,例如使用更精确的测力计和计时器,以提高实验的精度。
实验应用与展望:转动惯量的测量在工程领域具有广泛的应用。
例如,在设计机械系统或运动控制系统时,需要准确测量物体的转动惯量,以保证系统的稳定性和可靠性。
未来,可以进一步研究转动惯量的测量方法,开发更精确的测量装置,以满足不同领域的需求。
结论:通过本实验,我们了解了转动惯量的测量方法,并通过实验数据计算出物体的转动惯量。
转动惯量测定 实验报告
转动惯量测定实验报告转动惯量测定实验报告引言:转动惯量是物体对于转动运动的惯性特征,它的大小决定了物体在转动过程中所需的力矩。
准确测定物体的转动惯量对于研究物体的旋转运动以及设计相关装置都具有重要意义。
本实验旨在通过测量不同形状物体的转动惯量,探究物体形状对转动惯量的影响,并验证转动惯量的测定公式。
实验过程:1. 实验器材准备:实验中需要使用转动惯量测定装置、不同形状的物体(如圆柱体、球体、长方体等)、测量尺、计时器等。
2. 实验装置设置:将转动惯量测定装置放置在水平台面上,并调整使其水平。
3. 测量转动惯量:首先选择一个物体,如圆柱体,将其放置在转动惯量测定装置的转轴上,使其能够自由转动。
然后,用测量尺测量物体的尺寸,如半径、高度等,并记录下来。
接下来,用计时器测量物体转动一定角度所需的时间,并记录下来。
重复上述步骤,测量其他形状的物体的转动惯量。
4. 数据处理:根据测得的物体尺寸和转动时间,计算出每个物体的转动惯量,并进行数据整理和分析。
实验结果与分析:通过实验测量得到的数据,我们可以计算出不同形状物体的转动惯量,并进行比较分析。
在实验中,我们选择了圆柱体、球体和长方体作为研究对象。
首先,我们测量了不同半径和高度的圆柱体的转动惯量。
根据转动惯量的定义公式,我们可以得到圆柱体的转动惯量公式为I=1/2mR^2,其中m为圆柱体的质量,R为圆柱体的半径。
通过测量得到的数据,我们可以验证这一公式的正确性,并进一步探究半径对转动惯量的影响。
其次,我们测量了球体的转动惯量。
根据转动惯量的定义公式,我们可以得到球体的转动惯量公式为I=2/5mR^2,其中m为球体的质量,R为球体的半径。
通过测量得到的数据,我们可以验证这一公式的正确性,并与圆柱体的转动惯量进行比较分析。
最后,我们测量了长方体的转动惯量。
根据转动惯量的定义公式,我们可以得到长方体的转动惯量公式为I=1/12m(a^2+b^2),其中m为长方体的质量,a和b为长方体的边长。
转动惯量实验报告理论力学
转动惯量实验报告-理论力学。
转动惯量实验报告-理论力学一、实验目的1.加深对转动惯量概念的理解;2.掌握用三线摆法测定物体转动惯量的原理和方法;3.学习用图解法处理实验数据。
二、实验原理转动惯量是物体在转动过程中的惯性大小的量度,它反映了物体对转动的抵抗能力。
转动惯量的大小与物体的质量、形状以及转动轴的位置有关。
本实验采用三线摆法测定物体的转动惯量。
三线摆法的基本原理是将待测物体悬挂于三条等长的细线下端,使物体在水平面内作小幅度的摆动。
当物体摆动时,三条细线的张力相等,且物体对三条细线的拉力之和为零。
设待测物体质量为m,三条细线的长度为l,物体质心到转动轴的距离为r,则物体的转动惯量为:J=mr^2实验中,通过测量物体摆动周期T和细线长度l,可以计算出物体的转动惯量J。
三、实验步骤1.将三线摆悬挂在支架上,调整三条细线的长度相等,且使三条细线的悬挂点处于同一水平面内。
2.将待测物体悬挂于三条细线下端,使物体在水平面内作小幅度摆动。
用秒表测量物体摆动10个周期的时间t,计算出单个周期的时间T=t/10。
3.重复测量3次,取平均值作为最终结果。
4.测量三条细线的长度l,记录数据。
5.根据实验原理公式计算待测物体的转动惯量J。
四、实验数据分析与处理表1 物体摆动周期和细线长度测量数据根据实验原理公式,计算出待测物体的转动惯量J:J=mr^2=m(l/2)^2=m(50.0/2)^2=625m(g·cm^2)其中,m为待测物体的质量,以克为单位。
由于本实验中未测量物体的质量,因此转动惯量的结果以m(g·cm^2)为单位表示。
五、实验结论通过本实验,我们掌握了用三线摆法测定物体转动惯量的原理和方法。
实验中,我们发现物体摆动周期T与细线长度l之间存在一定关系。
通过测量物体摆动周期T和细线长度l,我们可以计算出物体的转动惯量J。
本实验方法简单可靠,具有一定的实用价值。
同时,通过本实验,我们也加深了对转动惯量概念的理解。
测量刚体的转动惯量实验报告及数据处理
欢迎阅读
欢迎阅读
实验讲义补充:
1. 刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体。
2. 转动惯量概念:转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置
3. 转动定律:合外力矩=转动惯量×角加速度
4. 转动惯量叠加:
空盘:(1)阻力矩(2)阻力矩+砝码外力→J1
空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2
被测物体:J3=J2-J1
5.
6. 3组
7.
8.
9.
10. 11.
12. 1. 2. 3. 误差(1)(注意:直接测量的是直径),x1,x2,x3,x4,x5,x6,i=6,计算x 平均值,
取n=6时的1.05
,我们处理为0 C=1.05,仪器允差0.02mm,δB=0.01905mm
总误差:,ux=0.01905m m
欢迎阅读
欢迎阅读
,u rx=0.01905/11.99=0.1589%
R=11.99mm±0.01905mm
urx=0.1589%
计算转动惯量的结果表示:
,总误差:uJ=,相对不确定=uJ/J 圆环:,同上.
(2)
实验测量计算的误差:。
转动惯量实验报告
转动惯量实验报告
一、实验目的
1、熟练掌握旋转动惯量的计算过程;
2、测定实体体系不同部分之间的旋转动惯量;
3、进一步验证旋转惯量的定义。
二、实验原理
旋转动惯量也称为转动惯量或惯性矩,是定义物体在外力作用下转动情况的量子。
旋转动惯量定义如下:当物体在外力作用下,以半径OA为轴转动一周,其转动惯量为2πI,其中I为实际转动惯量,2π表示物体转动一周所需的角动量。
旋转动惯量也可由旋转动量的定理来计算,定理如下:设M为物体的质量,β表示其角动量,则物体的转动惯量是:I=Mβ。
三、实验离散
1、准备实验器材:电动机、转子、转子轴、叶轮、叶片、测功机、转速计、示波器、磁滞环等。
2、设置实验仪器:将叶轮安装在电动机轴上,接上电源,接上示波器观察叶轮的转速,接上测功机观察叶轮的电流和转矩,接上转速计记录叶轮的转速,接上磁滞环记录叶轮的转矩等。
3、计算旋转动惯量:根据实验仪器的读数,计算电机的质量、电机的转矩、电机的转速,从而求得电机的旋转动惯量。
4、进行重复测量:执行相同的实验步骤进行多次测量,求得平均值,以减小测量误差。
四、实验结果
根据实验仪器读数。
转动惯量测量实验报告
转动惯量测量实验报告转动惯量测量实验报告一、实验目的本实验旨在通过测量不同物体的转动惯量,探究转动惯量与物体形状、质量分布等因素之间的关系。
二、实验原理转动惯量是物体对转动运动的惯性特性的度量,它与物体的质量分布和形状密切相关。
根据牛顿第二定律,旋转运动的力矩与角加速度之间存在着线性关系:τ = Iα,其中τ为力矩,I为转动惯量,α为角加速度。
对于刚体的转动惯量,可以通过实验测量得到。
三、实验器材与装置1. 转动惯量测量装置:包括转轴、转轴支架、测力计、质量盘等。
2. 不同形状的物体:如圆盘、长方体、球体等。
3. 实验测量仪器:如千分尺、天平等。
四、实验步骤1. 安装转动惯量测量装置:将转轴固定在转轴支架上,确保转轴能够自由转动。
2. 测量质量盘的质量:使用天平准确测量质量盘的质量,并记录下来。
3. 测量质量盘的直径:使用千分尺测量质量盘的直径,并记录下来。
4. 将质量盘固定在转轴上:将质量盘装在转轴上,并用螺丝固定好。
5. 测量转动惯量:在质量盘上施加一个水平方向的力矩,通过测力计测量力矩的大小,并记录下来。
同时,记录下转轴上的角加速度。
6. 更换不同形状的物体:重复步骤2-5,分别测量不同形状的物体的转动惯量。
五、实验数据处理与分析1. 计算转动惯量:根据实验测得的力矩和角加速度数据,利用公式I = τ/α计算不同物体的转动惯量。
2. 绘制转动惯量与质量分布的关系图:将不同物体的转动惯量与其质量分布情况进行对比,观察其变化趋势。
3. 分析结果:根据实验结果,分析不同物体的转动惯量与形状、质量分布等因素之间的关系。
比较不同形状物体的转动惯量,探讨其差异的原因。
六、实验结果与讨论通过实验测量和数据处理,得到了不同形状物体的转动惯量数据,并绘制了转动惯量与质量分布的关系图。
观察图表可以发现,不同形状的物体具有不同的转动惯量。
例如,对于同样质量的物体,圆盘的转动惯量明显大于长方体和球体。
这是因为圆盘的质量分布更加集中在转轴附近,质量分布的不均匀性导致了转动惯量的增加。
转动惯量测量实验报告(共7篇)
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动定律实验报告
转动定律实验报告篇一:刚体转动惯量的测定_实验报告实验三刚体转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它与刚体的质量、形状大小和转轴的位置有关。
形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。
下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。
实验目的:1、理解并掌握根据转动定律测转动惯量的方法;2、熟悉电子毫秒计的使用。
实验仪器:刚体转动惯量实验仪、通用电脑式毫秒计。
仪器描述:刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。
遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。
塔轮上有五个不同半径(r)的绕线轮。
砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。
实验原理:空实验台(仅有承物台)对于中垂轴OO’的转动惯量用Jo表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1 :J1 = J –Jo(1) 由刚体的转动定律可知:T r – Mr = J?(2) 其中Mr为摩擦力矩。
而 T = m(g -r?) (3) 其中 m ——砝码质量 g ——重力加速度 ? ——角加速度 T ——张力1.测量承物台的转动惯量Jo未加试件,未加外力(m=0 , T=0)令其转动后,在Mr的作用下,体系将作匀减速转动,?=?1,有 -Mr1 = Jo?1 (4) 加外力后,令? =?2m(g –r?2)r –Mr1 = Jo?2(5) (4)(5)式联立得Jo=?2mgr?mr2 (6)?2??1?2??1测出?1 , ?2,由(6)式即可得Jo 。
2.测量承物台放上试样后的总转动惯量J,原理与1.相似。
加试样后,有 -Mr2=J?3 (7)m(g –r?4)r –Mr2= J?4(8)∴ J =?4mgr?mr2 (9)?4??3?4??3注意:?1 , ?3值实为负,因此(6)、(9)式中的分母实为相加。
转动惯量测量实验报告(共7篇)20页
转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。
实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。
旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。
设物体以角速度ω绕某一定轴转动。
质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。
转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。
有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。
它的大小可以计算为(C+K)m。
其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。
实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。
可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。
误差主要来自于读数仪器和实验操作技巧。
有效质量的计算结果与实际质量相比,误差范围较小。
通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。
同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学转动惯量
实验报告
实验小组成员:1453352 郭佳林 1453422 贺春森 1453442 刘美岑 1450051 万丽娟 1453208 王玮
实验时间:2015年5月24日13:30——15:30
实验地点:同济大学四平路校区力学实验中心
【实验概述】
转动惯量是描述刚体转动中惯性大小的物理量,它与刚体的质量分布及转轴位置有关。
正确测定物体的转动惯量,对于了解物体转动规律,机械设计制造有着非常重要的意义。
然而在实际工作中,大多数物体的几何形状都是不规则的,难以直接用理论公式算出其转动惯量,只能借助于实验的方法来实现。
因此,在工程技术中,用实验的方法来测定物体的转动惯量就有着十分重要的意义。
IM-2 刚体转动惯量实验仪,应用霍尔开关传感器结合计数计时多功能毫秒仪自动记录刚体在一定转矩作用下,转过π角位移的时刻,测定刚体转动时的角加速度和刚体的转动惯量。
因此本实验提供了一种测量刚体转动惯量的新方法,实验思路新颖、科学,测量数据精确,仪器结构合理,维护简单方便,是开展研究型实验教学的新仪器。
【实验目的】
1.了解多功能计数,计时毫秒仪实时测量(时间)的基本方法。
2.用刚体转动法测定物体的转动惯量。
3.验证转动的平行轴定理。
4.验证刚体定轴转动惯量与外力矩无关。
【实验原理】
1.转动力矩、转动惯量和角加速度的关系
系统在外力矩作用下的运动方程
错误!未找到引用源。
(1)
由牛顿第二定律,可知:
砝码下落时的运动方程为:
即绳子的张力
砝码与系统脱离后的运动方程
(2)
由方程(1)和(2)可得:
(3)
2.角速度的测量
错误!未找到引用源。
(4)
若在t1、t2时刻测得角位移θ1、θ2,则
(5)
(6)
所以,由方程(5)和(6),可得:
3.转动惯量J的理论公式
1)设圆形试件,质量均匀分布,总质量为M,其对中心轴的转动惯量为J,
外径为D1,,内径为D2,则
2)平行轴定理:
设转动体系的转动惯量为J0,当有M1的部分质量原理转轴平行移动d的距离后,则体系的转动惯量为:
【实验器材】
1.实验仪器
IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)(如下图)
2.实验样品
1)一个钢质圆环(内径为175mm,外径为215mm,质量为933g)
2)两个钢质圆柱(直径为38mm,质量为400g)
【实验步骤】
1.实验准备
在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。
通用电脑计时器上光电门的开关应接通,另一路断开作备用。
当用于本实验时,建议设置1个光电脉冲记数1次,1次测量记录大约20组数。
2.测量并计算实验台的转动惯量
1)放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。
设置毫秒仪计数次
数。
2)连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为0.4-0.6cm,转离
磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。
3)将质量为m=100g的砝码的一端打结,沿塔轮上开的细缝塞入,并整齐地绕
于半径为r的塔轮。
4)调节滑轮的方向和高度,使挂线与绕线塔轮相切,挂线与绕线轮的中间呈水
平。
5)释放砝码,砝码在重力作用下带动转动体系做加速度转动。
6)计数计时毫秒仪自动记录系统从0π开始作1π,2π……角位移相对应的时刻。
3.测量并计算实验台放上试样后的转动惯量
将待测试样放上载物台并使试样几何中心轴与转动轴中心重合,按与测量空实验台转动惯量同样的方法可分别测量砝码作用下的角加速度β2与砝码脱离后的角加速度β1,由(3)式可计算实验台放上试样后的转动惯量J,再减去实验步骤2中算得的空实验台转动惯量即可得到所测试样的转动惯量。
将该测量值与理论值比较,计算测量值的相对误差。
4.验证平行轴定理
将两圆柱体对称插入载物台上与中心距离为d的圆孔中,测量并计算两圆柱体在此位置的转动惯量,将测量值与理论计算值比较,计算测量值的相对误差。
5.验证刚体定轴转动惯量与外力矩无关
通过改变塔轮直径对转盘施加不同的外力矩,测定在不同外力矩下转盘的转动惯量,与理论值进行比较,在一定允许的误差范围内验证结论。
【注意事项】
1.正确连接霍尔开关传感器组件和毫秒仪,红线接+5接线柱,黑线接GND接
线柱,黄线接INPUT接线柱。
2.霍尔传感器放置于合适的位置,当系统转过约π/2角位移后,毫秒仪开始计
时计数。
3.挂线长度以挂线脱离绕线塔轮后,砝码离地3厘米左右为宜。
4.实验中,在砝码挂线脱离绕线塔轮前转动体系作正加速度β2,在砝码挂线脱
离塔轮后转动体系作负加速度β1,须分清正加速度β2,到负加速度β1 的计时分界时刻。
5.数据处理时,系统作负加速度β1的开始时刻,可以选为分界处的下一时刻,
角位移时间须减去该时刻。
6.实验中,砝码置于相同的高度后释放,以利数据一致。
【数据记录与数据处理】
1.测量空盘的转动惯量
d塔轮=40mm m砝码=100g
2.测量空盘加圆环的转动惯量
d塔轮=40mm m砝码=100g m圆环=933g d环外=215mm d环内=175mm
圆环的转动惯量J
环=J
盘+环
-J
盘
=0.02806-0.01744=0.01062g·m2
圆环转动惯量的理论值为J 环理=0.5m 环(r 内2+r 外2)=0.008963kg ·m 2 误差百分比=|J 环-J 环理|/J 环理×100%=18.5%
3. 验证平行轴定律
1) 圆柱距盘心距离d 1=40mm
d 塔轮=40mm m 砝码=100g m 圆柱=400g
圆柱(近)的转动惯量J 近柱=J 盘+近柱-J 盘=0.01815-0.01744=0.000780kg ·m 2 圆柱(近)转动惯量的理论值为J 近柱理=0.5m 圆柱r 圆柱2+m 圆柱d 12=0.000712kg ·m 2 误差百分比=|J 近柱-J 近柱理|/J 近柱理×100%=9.6%
2) 圆柱距盘心距离d 2=80mm
d 塔轮=40mm m 砝码=100g m 圆柱=400g
圆柱(中)的转动惯量J
中柱=J
盘+中柱
-J
盘
=0.02076-0.01744=0.00332kg·m2
圆柱(中)转动惯量的理论值为J
中柱理=0.5m
圆柱
r
圆柱
2+m
圆柱
d22=0.00263kg·m2
误差百分比=|J
中柱-J
中柱理
|/J
中柱理
×100%=26.2%
3)圆柱距盘心距离d3=120mm
d塔轮=40mm m砝码=100g m圆柱=400g
圆柱(远)的转动惯量J
远柱=J
盘+远柱
-J
盘
=0.02557-0.01744=0.00813kg·m2
圆柱(远)转动惯量的理论值为J
远柱理=0.5m
圆柱
r
圆柱
2+m
圆柱
d32=0.005832kg·m2
误差百分比=|J
远柱-J
远柱理
|/J
远柱理
×100%=39.2%
4.验证转动惯量与外力矩无关
d塔轮=50mm m砝码=100g
与d
塔轮=40mm测出的转动惯量相比,百分差=|J
盘
’-J
盘
|/J
盘
×100%=16%
这说明转动惯量与外力矩无关。
附:实验数据记录表
. .。