常系数齐次线性微分方程
第七节 常系数齐次线性微分方程
(r 1)(r 2 1)2 0,
特征根为 r1 1, r2 r3 j , r4 r5 j , 故所求通解为
y C1e x (C2 C3 x ) cos x (C4 C5 x ) sin x .
四、小结
二阶常系数齐次微分方程求通解的一般步骤:
r1 j ,
1 x y ( y y ) e cos x, 重新组合 1 1 2 2 1 y2 ( y1 y2 ) ex sin x, 2j
得齐次方程的通解为
y1 e
( j ) x
,
y2 e
( j ) x
,
y e x (C1 cos x C 2 sin x ).
u ( 2r1 p)u ( r12 pr1 q )u 0,
知 u 0,
rx 则 y xe , 取 u( x ) x , 2
1
得齐次方程的通解为 y (C1 C 2 x )e
r1 x
;
有一对共轭复根 特征根为
( 0)
r2 j ,
令 z ln y
则 z z 0,
特征根 1
x x x x z C e C e y C e C e . 通解 1 2 1 2
y2 e ,
r2 x
r1 x
得齐次方程的通解为 y C1e
C2e ;
r2 x
有两个相等的实根 ( 0)
p r1 x 特征根为 r1 r2 , 一特解为 y1 e , 2
设另一特解为 y2 u( x )e r1 x ,
,y2 代入原方程并化简, 将 y2 ,y2
常微分方程课件:4_2常系数齐次线性微分方程的解法
█ 常系数齐次线性微分方程
本节先讨论aj(t)= aj(1≤ j ≤n)时的方程 L[x]=0 … … (1)
下面介绍求它的基本解组的一个经典方法-Euler待定指数函数法(特征根法).
试求形如x=eλt的解,λ∈C为待定常数.将 x=eλt代入L[x]=0得 L[eλt]=(λn+a1λn-1+…+an-1λ+an)eλt=0. 显然,x=eλt是(1)的解等价于F(λ)≡ λn+a1λn-1+…+an-1λ+an=0.
]
(dn y dtn
b1
dn1 y d t n1
b n1
dy dt
bn y)e1t
L1[ y]e1t .
因此方程(1)可化为 L1[y]=0 … … (2) bj仍为常数,而相应的特征方程是
G(μ)≡ μ n+b1 μ n-1+…+bn-1 μ +bn=0.
的复值解. 性质
定理1 设a1(t),…,an(t)均为实函数,z(t)=
φ(t)+iψ(t)是(4.2)的复值解,那么Re{z(t)}=
φ(t),Im{z(t)}=ψ(t)及 z(t)=φ(t)-iψ(t)都
是(4.2)的解.
定理2 设x=z(t)=φ(t)+iψ(t)是 L[x]=u(t)+iv(t)的复值解,u(t),v(t), aj(t) (j=1,2,…n)均为实函数,那么 x=Re{z(t)}=φ(t) 是L[x]=u(t)的解, x=Im{z(t)}=ψ(t)是L[x]=v(t)的解.
ekt≡e αt(cos β t+isin βt).
(或者用 ekt (kt)n 来定义)
常系数齐次线性微分方程解法
第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ′′+py ′+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ′′+py ′+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ′′+py ′+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r −±+−= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数、是方程的两个线性无关的解.x r e y 11=x r e y 22= 这是因为,函数、是方程的解, 又x r e y 11=x r e y 22=x r r x r x r e ee y y )(212121−==不是常数. 因此方程的通解为.x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1=r 2时, 函数、是二阶常系数齐次线性微分x r e y 11=x r xe y 12=方程的两个线性无关的解.这是因为, 是方程的解, 又x r e y 11=x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+′+′′ ,0)()2(121111=++++=q pr r xe p r e x r x r 所以也是方程的解, 且xr xe y 12=x e xe y y x r x r ==1112不是常数. 因此方程的通解为.x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α−i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α−i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α−i β)x =e αx (cos βx −i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1−y 2=2ie αx sin βx , )(21sin 21y y ix e x −=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ′′+py ′+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ′′−2y ′−3y =0的通解.解 所给微分方程的特征方程为r 2−2r −3=0, 即(r +1)(r −3)=0.其根r 1=−1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e −x +C 2e 3x .例2 求方程y ′′+2y ′+y =0满足初始条件y |x =0=4、y ′| x =0=−2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=−1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e−x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e−x.将上式对x求导,得y′=(C2−4−C2x)e−x.再把条件y′|x=0=−2代入上式,得C2=2.于是所求特解为x=(4+2x)e−x.例 3 求微分方程y′′−2y′+5y= 0的通解.解所给方程的特征方程为r2−2r+5=0.特征方程的根为r1=1+2i,r2=1−2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n−1)+p2 y(n−2) +⋅⋅⋅+p n−1y′+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n−1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y′, D2y=y′′, D3y=y′′′,⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx );k 重实根r 对应于k 项: e rx (C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1);一对k 重复根r 1, 2=α ±i β 对应于2k 项:e αx [(C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1)cos βx +( D 1+D 2x + ⋅ ⋅ ⋅ +D k x k −1)sin βx ].例4 求方程y (4)−2y ′′′+5y ′′=0 的通解.解 这里的特征方程为r 4−2r 3+5r 2=0, 即r 2(r 2−2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±−=β. 因此所给微分方程的通解为)2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++−.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ′′+py ′+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=Q m (x )e λx .(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +1 次多项式:Q (x )=xQ m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解 y *=xQ m (x )e λx .(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +2次多项式:Q (x )=x 2Q m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=x 2Q m (x )e λx .综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ′′+py ′+qy =f (x )有形如y *=x k Q m (x )e λx的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ′′−2y ′−3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为y ′′−2y ′−3y =0,它的特征方程为r 2−2r −3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得−3b 0x −2b 0−3b 1=3x +1,比较两端x 同次幂的系数, 得, −3b ⎩⎨⎧=−−=−13233100b b b 0=3, −2b 0−3b 1=1.由此求得b 0=−1, 311=b . 于是求得所给方程的一个特解为 31*+−=x y .例2 求微分方程y ′′−5y ′+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为y ′′−5y ′+6y =0,它的特征方程为r 2−5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得−2b 0x +2b 0−b 1=x .比较两端x 同次幂的系数, 得, −2b ⎩⎨⎧=−=−0212100b b b 0=1, 2b 0−b 1=0. 由此求得210−=b , b 1=−1. 于是求得所给方程的一个特解为 x e x x y 2)121(*−−=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+−+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]′=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]′′=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *′′−5y *′+6y *=[(b 0x 2+b 1x )e 2x ]′′−5[(b 0x 2+b 1x )e 2x ]′+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x −5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)−5(2b 0x +b 1)]e 2x =[−2b 0x +2b 0−b 1]e 2x .方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e e x P e x i x i n x i x i l x ωωωωλ−−−++= x i n lx i n l e x iP x P e x iP x P )()()]()(21)]()([21ωλωλ−+++−= x i x i e x P e x P )()()()(ωλωλ−++=, 其中)(21)(i P P x P n l −=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ′′+py ′+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y −=必是方程)()(ωλi e x P qy y p y −=+′+′′的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ−++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ−++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ′′+py ′+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ−i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ′′+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ′′+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(−3ax −3b +4c )cos2x −(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31−=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+−=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *′=a cos2x −2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(−2ax −2b +c )sin2x ,y *′′=2c cos2x −2(2cx +a +2d )sin2x −2a sin2x +2(−2ax −2b +c )cos2x =(−4ax −4b +4c )cos2x +(−4cx −4a −4d )sin2x .y *′′+ y *=(−3ax −3b +4c )cos2x +(−3cx −4a −3d )sin2x .由, 得⎪⎩⎪⎨⎧=−−=−=+−=−0340304313d a c c b a 31−=a , b =0, c =0, 94=d .。
四阶常系数齐次线性微分方程
四阶常系数齐次线性微分方程\[a_4y^{(4)}+a_3y^{(3)}+a_2y''+a_1y'+a_0y=0\]的微分方程,其中$a_0,a_1,a_2,a_3,a_4$为常数,$y^{(4)}$表示$y$的四阶导数,$y''$表示$y$的二阶导数,$y'$表示$y$的一阶导数。
在本文中,我们将详细研究这种类型的微分方程及其解的性质。
一、特征方程和特征根对于四阶常系数线性齐次微分方程,我们可以构造其特征方程。
将$y=e^{rx}$代入方程,可得\[a_4r^4+a_3r^3+a_2r^2+a_1r+a_0=0\]这是一个关于$r$的代数方程,称为特征方程。
通过求解特征方程,可以得到其根$r_1,r_2,r_3,r_4$,这些根被称为特征根。
二、特解的形式根据特征根的不同情况,我们可以分为以下几种情况:1.当特征根都是不相同的实数$r_1,r_2,r_3,r_4$时,方程的通解可表示为\[y(x)=C_1e^{r_1x}+C_2e^{r_2x}+C_3e^{r_3x}+C_4e^{r_4x}\]其中$C_1,C_2,C_3,C_4$为任意常数。
2. 当有重根$r_1=r_2=r_3\neq r_4$时,方程的通解可表示为\[y(x)=(C_1+C_2x+C_3x^2)e^{r_1x}+C_4e^{r_4x}\]其中$C_1,C_2,C_3,C_4$为任意常数。
3. 当有一对共轭复根$r_1 = \alpha + \beta i, r_2 = \alpha -\beta i$和两个不相同实根$r_3, r_4$时,方程的通解可表示为\[y(x) = e^{\alpha x}[(C_1 \cos(\beta x) + C_2 \sin(\beta x)) + C_3e^{r_3x} + C_4e^{r_4x}]\]其中$C_1,C_2,C_3,C_4$为任意常数。
4.2.1常微分方程-线性齐次常系数方程
x
(n)
a1 x
( n 1)
an1 x an x 0
1、复值函数 定义
z (t ) (t ) i (t ) t [a, b],
(t ), (t )是定义在 [ a , b ] 上的实函数。
极限
lim z (t ) lim (t ) i lim (t ) t0 [a, b],
z (t ) z (t0 ) dz d lim z (t0 ) t t0 t t0 dt t t0 dt
t t0
d i dt
t t0
易验证
d dz1 (t ) dz2 (t ) ( z1 (t ) z2 (t )) dt dt dt d dz1 (t ) [cz1 (t )] c dt dt d dz1 (t ) dz2 (t ) ( z1 (t ) z2 (t )) z2 (t ) z1 (t ) dt dt dt
()
F ( ) n a1n1 an1 an 0
① 特征根为实根 I. 设 1 0 是 k 重特征根 方程 ( ) 有 k 个线性无关的解 II. 设
1, t , t 2 ,
, t k 1
1 0 是 k 重特征根
e1t , te1t , t 2e1t , , t k 1e1t
性质1
e e
t
t
性质2
性质3 性质4
det et dt
e
( 1 2 ) t
e e
1t 2t
d n et n t e n dt
3、复值解 定义 如果定义在 [a, b] 上的实变量的复值函数
x z (t ) 满足方程
常系数高阶齐次线性微分方程
总结词
通过幂级数展开来求解高阶线性微分方 程的一种方法。
VS
详细描述
幂级数法的基本思想是将未知函数表示为 一个幂级数,然后利用微分方程的性质, 将原方程转化为一个递推关系式,求解这 个递推关系式可以得到幂级数的系数,从 而得到原方程的解。这种方法适用于具有 特定形式的未知函数的高阶线性微分方程 。
积分因子法
计算
根据求解方法,通过计算得到通解的具体形 式。
05 方程的应用实例
在物理问题中的应用
量子力学
常系数高阶齐次线性微分方程在 量子力学中用于描述粒子的波函 数随时间的变化。例如,在求解 氢原子能级问题时,需要用到此 类方程。
波动问题
在研究波动问题,如声波、电磁 波等时,常系数高阶齐次线性微 分方程可以用来描述波的传播和 演化。
热传导问题
在求解热传导问题时,常系数高 阶齐次线性微分方程可以用来描 述温度随时间和空间的变化。
在工程问题中的应用
控制系统
在控制系统的分析和设计中,常系数高阶齐次线性微分方程用于描述系统的动态特性。例如,在航空航天、化工等领 域中,此类方程被广泛应用于各种控制系统的建模和仿真。
信号处理
在信号处理中,常系数高阶齐次线性微分方程用于描述信号的滤波、预测和补偿等过程。例如,在通信、雷达和图像 处理等领域中,此类方程被广泛应用于信号处理算法的设计和实现。
02 方程的解法
特征方程法
总结词
通过解特征方程来求解高阶线性微分方程的一种方法。
详细描述
特征方程法的基本思想是将高阶线性微分方程转化为多个一阶线性微分方程来求解。首先,我们对方程进行整理, 得到一个关于未知函数和其导数的多项式方程,然后令其为0,得到一个关于未知函数的多项式方程,即特征方 程。求解特征方程,可以得到一组根,对应于原方程的一组解。
高数第十二章常系数齐次线性微分方程
C1,C2是 任 意 常 数 .
6
2 .特 征 根 是 实 重 根 的 情 形
r p (二重), 2
则 y 1 e r x 是 微 分 方 程 的 一 个 解 ,要 求 方 程 的 通 解 , 只 令 需 y y再 1 2 求 u 一 (x 个 ),解 则 y2y ,2 且 y yy 1 21不 u(是 x)常 数 erx .u(x),
12
例 1 求 微 分 方 程 y 2 y 3 y 0 的 通 解 . 解 特征方程为
r2 2r30,
解 得 特 征 根 r 1 1 ,r 2 3 , 故 所 求 方 程 的 通 解 为
yC1exC2e3x. C1,C2是 任 意 常 数 .
13
例 2 求 方 程d2s2dss0满 足 初 始 条 件 dt2 dt
y1
1 2 ( y1
y2 )
ex cosx
y2
1 2i ( y1
y2 )
ex sinx
9
y1,y2仍 是 微 分 方 程 的 解 .且
y1 y2
eexxcsoinsxxcotx
不是常数. 于 是 微 分 方 程 的 通 解 为
y e x (C 1c o sx C 2s inx )
则 (1 )的 通 解 即 可 求 得 :
yC1y1C2y2
2
分 析 : 一 阶 常 系 数 齐 次 线 性 微 分 方 程
dy ay 0 dx 有 形 如 y e a x 的 解 ( 通 解 y C e a x 中 C 1 ) ,
猜 想 : 假 如 方 程 ( 1 ) 也 有 指 数 形 式 的 解
线性齐次微分方程与常系数齐次微分方程
线性齐次微分方程与常系数齐次微分方程线性齐次微分方程是微分方程中的常见类型之一,特点是方程中只包含未知函数及其导数,且各项的系数是常数。
常系数齐次微分方程是线性齐次微分方程的一种特殊形式,其中各项的系数都是常数。
一、线性齐次微分方程的定义与性质在数学中,线性齐次微分方程的一般形式可表示为:$$\frac{{d^n y}}{{dx^n}} + a_{n-1}\frac{{d^{n-1} y}}{{dx^{n-1}}} + \cdots + a_1\frac{{dy}}{{dx}} + a_0y = 0$$其中,$a_0, a_1, \cdots, a_{n-1}$为常数,$y$为未知函数,$n$为正整数。
线性齐次微分方程的性质如下:1. 线性齐次微分方程是n阶微分方程,其解包括n个独立的任意常数;2. 如果$y_1(x), y_2(x), \cdots, y_n(x)$是齐次方程的解,那么对应的线性组合$c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x)$也是方程的解;3. 如果$y_1(x)$和$y_2(x)$分别是齐次方程的解,那么它们的线性组合$c_1y_1(x) + c_2y_2(x)$也是齐次方程的解;4. 对于齐次方程的任意解$y(x)$,可以通过乘以任意非零常数$k$得到另一个解$k\cdot y(x)$。
二、常系数齐次微分方程的解法常系数齐次微分方程是线性齐次微分方程的特殊形式,其特点是方程中各项的系数均为常数。
对于一阶常系数齐次微分方程,其一般形式为:$$\frac{{dy}}{{dx}} + ay = 0$$其中,$a$为常数。
常系数齐次微分方程的解法如下:1. 将方程改写为$\frac{{dy}}{{dx}} = -ay$;2. 将方程分离变量,得$\frac{{dy}}{{y}} = -a\,dx$;3. 对两边同时求不定积分,得到$\ln|y| = -ax + C$;4. 解出原方程的解为$y(x) = Ce^{-ax}$,其中$C$为任意常数。
常系数齐次线性微分方程
常系数齐次线性微分方程常系数齐次线性微分方程是研究微分方程的一个重要类别。
它是指形如dy/dx=f(x)或者F(x,y,yy...,y^(n))=0,其中f(x)和F(x,y,yy...,y^(n))是x的多项式函数,或者更一般地说,是某个定义域内的可积函数。
研究常系数齐次线性微分方程的方法有很多,包括拉格朗日求解法、拉普拉斯变换、幂级数解法等.首先,我们来讨论拉格朗日求解法。
拉格朗日求解法是针对常系数齐次线性微分方程的一种可行的解法,它将常系数齐次线性微分方程转换为一个特殊方程组,每个方程组的近似解就是线性微分方程的普遍解,也就是解析解。
解析解可以提供常系数线性微分方程的有界性、有效性及其它特性的结论。
其次,我们来讨论拉普拉斯变换。
拉普拉斯变换是一种有助于求解常系数齐次线性微分方程的方法,可以将常系数齐次线性微分方程转换为一个独立于空间变量x的时间变量t的线性系统。
拉普拉斯变换可以大大简化此类方程的求解,而且还可以利用其它线性系统的技术来求解相关方程,例如,矩阵求解法及线性系统的坐标变换。
最后,我们来讨论幂级数解法。
幂级数解法是求解常系数齐次线性微分方程的另一种可行的方法,它将方程的解表示为一个无穷级数式,形如y= a_0+a_1x^1+a_2x^2+a_3x^3+…+a_nx^n。
一般来说,幂级数解法主要利用线性求解法来求解微分方程,其关键步骤是求解微分方程的两边均为幂级数的特殊情况,即称之为“特殊幂级数”。
以上是常系数齐次线性微分方程的相关知识介绍,从以上的分析可以看出,常系数齐次线性微分方程是一个相当复杂的问题,涉及到很多的理论和数学技术,解决它的方法有很多种,需要结合具体的问题进行深入的研究。
总结起来,常系数齐次线性微分方程是一个重要的研究对象,其研究方法有很多,主要包括拉格朗日求解法、拉普拉斯变换和幂级数解法等。
不论是从理论上还是从实际应用角度来考虑,都必须深入了解这个重要的问题,以此为基础在推进相关研究的发展,从而使得更多的研究者能够从中受益。
常微分方程33线性常系数齐次方程
2! 4!
3! 5!
cos t i sin t ei t cos t i sin t
cos t 1 (ei t ei t )
2
sin t 1 (ei t ei t )
2i
4
2) 复指函数的性质
记 i 表示 i 的共轭. 性质1: et et
设特征方程有k 重根 1 ,则有 F (1) F ' (1) F (k1) (1) 0, F k (1) 0
(1) 若 1 0 则特征方程有因子k,因此,
an an1 ank1 0
则特征方程有形式:n a1n1 ankk 0
则方程相应地有两个复值解:
e(i )t et (cos t i sin t) e(i )t et (cos t i sin t)
由定理3.12知它们的实部和虚部也是方程的解,
故方程的两个实值解为:et cos t, et sin t
14
2 特征根有重根
因此有解 et , e2t ,te2t . 方程通解为:
x(t) c1et c2e2t c3te2t . 其中 c1, c2, c3 为任意常数.
19
例2:求 d 4 x x 0 的通解. dt 4
解:特征方程 4 1 0 故特征根为1 1, 2 1, 3 i, 4 i
nent
nn1ent
1
11
e(1 2 n )t 1
1n 1
2
n2 1
n
nn1
(
1 jin
i
j
常系数齐次线性微分方程组
dx (t ) du (t ) dv (t ) i A(t ) u (t ) iv (t ) dt dt dt A(t )u (t ) iA(t )v (t )
由于两个复数表达式相等等价于实部和虚部相等,
常系数线性方程组
所以有
du (t ) dv (t ) A(t )u (t ), A(t )v (t ) dt dt 即 u (t ) 和 v (t ) 是方程组(2)的解.
X (t ) X (t ) X 1 (0)
常系数线性方程组
1 0 0 3 3 t e cos 2t sin 2t cos 2t sin 2t . 2 2 3 1 sin 2t cos 2t sin 2t cos 2t 2
0
(1)矩阵A具有n个互不相同的特征值时 由线代知识知道A一定有对应的n个线性无关 的特征向量。
常系数线性方程组
5 28 18 dx x 的通解. 1 5 3 例1 求方程组 dt 3 16 10
解 系数矩阵A的特征方程为
det( E A) 3 (1 2 ) 0
§7.3 常系数线性方程组
常系数线性方程组
一阶常系数线性微分方程组:
dx Ax f (t ), dt
( 1)
这里系数矩阵A为n n常数矩阵, f (t )在 a t b上连续的向量函数;
若f (t ) 0, 则对应齐线性微分方程组为
dx Ax (2) dt
本节先讨论(2)的基解矩阵的求法.
t
3e 0 et
t
故通解为
2 2et x (t ) (t )C 1 et 1 2et
第四讲 常系数线性齐次微分方程
考虑方程
L[ y]
dny dxn
a1
d n1 y dxn1
L
an y 0
(4.19)
其中a1, a2 , , an为常数, 称(4.19)为n阶常系数齐线性方程.
我们知道,一阶常系数齐线性方程
dy ax 0 dx
有解 y ceax ,
受此启发,对(4.19)尝试求指数函数形式的解
y ex , (4.20)
dy 1 dy , dx x dt
把上式入原方程得
d 2 y 1 d 2 y dy
dx2
x2 ( dt2
), dt
d 2 y dy
dt 2
2 dt
y0
上述方程的通解为: y(t) (c1 c2t)et ;
故原方程的通解为:
y(x) (c1 c2 ln x )x; 这里c1, c2为任常数;
2
en x
n en x
L
e n1 nx n
1 1 1
e (1 2 L n ) x 1
2 n
n1 1
n1
2
n1 n
e(12 L n ) x
(i j ) 0
1 jin
故解组(4.22)线性无关.
若i (i 1,2, , n)均为实数,
则(4.22)是方程(4.19)的基本解组 ,从而(4.19)的通解为
把方程 (4.19 )的2k个复值解 , 换成2k个实值解.
et cos t, tet cos t, , t k1et cos t; et sin t, tet sin t, , t k1et sin t.
(3) 求方程(4.19)通解的步骤
第一步: 求(4.19)特征方程的特征根 1, 2, , k ,
常系数齐次线性微分方程
思考与练习
求方程 答案:
a 0: a 0: a 0:
的通解 .
通解为 y C1 C2 x 通解为 y C1 cos a x C2 sin a x 通解为 y C1 e a x C2 e a x
作业 P340 1 (3) , (6) , (10) ;
例3.
的通解.
解: 特征方程 r 4 2 r3 5 r 2 0, 特征根:
r1 r2 0, r3 , 4 1 2 i
因此原方程通解为
y C1 C2x ex (C3 cos 2x C4 sin 2x )
例4. 解方程 y(5) y(4) 0.
解: 特征方程: r5 r 4 0, 特征根 :
(1) 当 r1 r2 时, 通解为 y C1 er1 x C 2 er2 x (2) 当 r1 r2 时, 通解为 y (C1 C 2 x ) er1 x
(3) 当 r1,2 i 时, 通解为 y e x (C1 cos x C 2 sin x)
d2s dt2
2
d d
s t
s
0
s t0 4 ,
ds dt
t
0 2
解: 特征方程 r 2 2 r 1 0 有重根 r1 r2 1 ,
因此原方程的通解为 s (C1 C2 t ) e t
利用初始条件得
C1 4, C2 2
于是所求初值问题的解为
代入方程得:
er1 x [ (u 2 r1u r12u ) p(u r1u ) q u 0
u ( 2 r1 p )u ( r12 p r1 q )u 0
二阶常系数齐次线性微分方程
二阶常系数齐次线性微分方程在微积分的学习中,我们经常接触到二阶常系数齐次线性微分方程,那么什么是二阶常系数齐次线性微分方程呢?简单来说,二阶常系数齐次线性微分方程是指形如$y''+ay'+by=0$ 的微分方程,其中 $a$ 和 $b$ 都是常数,齐次指方程右边恒等于 $0$。
从这个微分方程的形式中我们可以看出,它是一个二阶微分方程,即方程中含有 $y''$ 这一项,同时它是一个常系数微分方程,因为$a$ 和$b$ 都是常数,不会随着自变量的变化而改变。
而且,由于 $y''+ay'+by=0$,方程右边恒等于 $0$,可以说是一次条件齐次线性微分方程。
那么为什么我们要学习二阶常系数齐次线性微分方程呢?这是因为它们在物理、工程、自然科学和社会科学等领域中都具有非常广泛的应用。
例如,在物理学中,可以用二阶常系数齐次线性微分方程来描述运动学问题、振动问题和电磁学问题等;在经济、生态和环境科学等领域中,也会出现这样的微分方程。
不过,对于二阶常系数齐次线性微分方程,我们不仅需要掌握它的基本概念和性质,还需要学习如何解这类微分方程。
对于 $y''+ay'+by=0$ 这样的常系数齐次线性微分方程,我们可以通过求解其特征方程 $\lambda^2+a\lambda+b=0$ 来确定其通解的形式。
关于特征方程,它的形式为$r^2+ar+b=0$,其中$r$ 是特征根,$\lambda$ 是 $r$ 的一种更广泛的表示形式,在解这类微分方程的时候常常用到。
特征方程的根决定了通解的形式,当特征方程的两个根不相等时,通解可以表示为 $y=c_1 e^{\lambda_1 x}+c_2e^{\lambda_2 x}$ 的形式;当特征方程仅有一个根时,通解可以表示为 $y=(c_1+c_2 x)e^{\lambda x}$ 的形式;当特征方程的两个根为实数且相等时,通解可以表示为 $y=(c_1+c_2 x)e^{\lambdax}$ 的形式;当特征方程的两个根为纯虚数时,通解可以表示为$y=e^{\alpha x}(c_1 \cos{\beta x}+c_2 \sin{\beta x})$ 的形式。
常系数齐次微分方程求解
C2e r2x ;
第3页/共20页
2. 当 p2 4 q 0 时, 特征方程有两个相等实根
则微分方程有一个特解
设另一特解
( u (x) 待定)
代入方程得:
er1 x [ (u 2 r1u r12u ) p(u r1u ) q u 0
u ( 2 r1 p )u ( r12 p r1 q )u 0
x Aent sin(t )
运动周期:
振幅: A ent 衰减很快,
随时间 t 的增大物体 趋于平衡位置.
第13页/共20页
大阻尼解的特征:
(n>k)
其中 r1, 2 n n2 k 2 n n2 k 2 0
1) 无振荡现象;
2) 对任何初始条件
lim x(t) 0.
t
即随时间 t 的增大物体总趋于平衡位置.
第8页/共20页
例3. 质量为m的物体自由悬挂在一端固定的弹簧上,
在无外力作用下做自由运动,
取其平衡位置为原点建
立坐标系如图,
设 t = 0 时物体的位置为
求物体的运动规律
初始
解: 由第七节例1 (P293) 知, 位移满足
自由振动方程 ,
因此定解问题为
d2x dt2
2n
dx dt
k
2
x
0
o x
x
此图参数:
n 1.5, k 1 x0 1.5 v0 5.073
第14页/共20页
临界阻尼解的特征 :
(n=k)
任意常数由初始条件定,
无论 C1,C2 取何值都有
1) x(t) 最多只与 t 轴交于一点;
2) 无振荡现象 ;
即随时间 t 的增大物体总趋于平衡位置.
四阶常系数齐次微分方程通解方程
四阶常系数齐次微分方程通解方程【原创实用版】目录1.引言2.四阶常系数齐次线性微分方程的概念和解法3.费拉里解法和卡尔丹公式在求解四阶常系数齐次线性微分方程中的应用4.特解的求解方法和通解的表示形式5.结论正文一、引言微分方程是一种数学模型,用于描述各种自然现象和社会现象的变化规律。
在微分方程中,四阶常系数齐次线性微分方程是一个重要的类别。
对于这类微分方程,我们可以通过费拉里解法和卡尔丹公式来求解其通解。
二、四阶常系数齐次线性微分方程的概念和解法四阶常系数齐次线性微分方程是指具有如下形式的微分方程:y""" + p(x)y"" + q(x)y" + r(x)y = 0其中,p(x)、q(x)、r(x) 是已知函数,y(x) 是未知函数。
齐次线性微分方程的解法主要包括费拉里解法和卡尔丹公式。
三、费拉里解法和卡尔丹公式在求解四阶常系数齐次线性微分方程中的应用费拉里解法是一种求解线性微分方程的常用方法。
对于四阶常系数齐次线性微分方程,我们可以先假设其通解为 y(x) = e^r(x),然后求解特征方程,得到 r 的值。
将 r 的值代入 y(x) = e^r(x),即可得到通解。
卡尔丹公式是另一种求解线性微分方程的方法。
对于四阶常系数齐次线性微分方程,我们可以利用卡尔丹公式求解其特解。
特解的形式为 y(x) = c_1e^r1(x) + c_2e^r2(x) + c_3e^r3(x),其中 c_1、c_2、c_3 为待定系数,r1、r2、r3 为特征根。
四、特解的求解方法和通解的表示形式在求解四阶常系数齐次线性微分方程时,我们通常需要先求解特征方程,得到特征根。
然后,根据特征根求解特解。
最后,将特解与通解相加,即可得到四阶常系数齐次线性微分方程的通解。
五、结论四阶常系数齐次线性微分方程的求解方法主要包括费拉里解法和卡尔丹公式。
通过这两种方法,我们可以有效地求解这类微分方程。
4.2.1常微分方程-线性齐次常系数方程解读
1 , 2 ,L, n
均为实根
方程 ( ) 的通解可表示为
x c1e 1t c2 e 2t cn e nt
②若特征方程有复根 因方程的系数是实常数。复根将成对共轭出现 设
1 a ib 是方程的一个特征根
2 a ib 也是一个特征根 则方程 ( ) 有两个复值解
e e
(a i b ) t (a i b ) t
e (cos bt i sin bt )
ea t (cos bt i sin bt )
at
对应两个实值解
e cos bt , e sin bt
at
at
例1 解
求方程 x 2 x 3x 0
第一步:求特征根
的通解。
性质1
e e
t
t
性质2
性质3 性质4
det et dt
e
( 1 2 ) t
e e
1t 2t
d n et n t e n dt
3、复值解 定义 如果定义在 [a, b] 上的实变量的复值函数
x z (t ) 满足方程
dnx d n 1 x a1 (t ) n 1 n dt dt dx an 1 (t ) an (t ) x f (t ) dt ()
三、变系数齐次线性方程
欧拉(Euler) 方程
n n 1 d x d x dx n n 1 t a1t an1t an x f (t ) n n 1 dt dt dt
其中 a1 , a2 ,..., an 为常数。
引入自变量代换
t eu , u ln t
类似方法进行下去,可得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x ex (cos
1 2
(
y1
x
y2 )
i sin x)
ex cos x,
y2
1 2i
( y1
y2 )
ex
sin
x,
(4) 的通解为
5/10
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
y C1e r1 x C 2e r2 x y (C1 C2 x)e r2 x y ex (C1 cos x C2 sin x)
通解 C1e x (C2 C3 x)cos x (C4 C5 x)sin x.
例4
解 特征方程 r 1 0, 特征根 r 1,
通解 y C1e x .
9 /10
四、小结
用代数法求常系数齐次线性微分方程通 解的一般步骤: (1)写出特征方程; (2)求出特征根; (3)根据特征根的情况写出相应的特解; (4)这些特解的线性组合即为所求通解.
例1 解 特征方程为 解得
故所求通解为 y (C1 C2 x)e2x .
6/10
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
y C1e r1 x C 2e r2 x y (C1 C2 x)e r2 x y ex (C1 cos x C2 sin x)
一、特征方程
n阶常系数线性微分方程的标准形式 n阶常系数齐次线性微分方程的标准形式
(2)的特征方程
2/10
二、二阶常系数齐次线性方程的代数解法
1. 有两个相异实(特征)根
p r1
p2 2
4q
,
r2
p
p2 4q , 2
两个特解 y1 e r1x , y2 e r2x ,(线性无关)
(4) 的通解为
10/10
❖ 习题12-8 1-(5)(9)
作业
2-(6)
u (2r1 p)u (r12 pr1 q)u 0, 即 u 0,
则 y2 xer1x ,
(4) 的通解为
4/10
3. 有一对共轭复(特征)根
r1 i , r2 i , 一对复值解
y1 e( i )x ex (cos x i sin x)
y2 e(
其线性组合
i )
3/10
2. 有两个相等的实(特征)根
r1
r2
p 2
,得Βιβλιοθήκη 解y1 e r1x ,求另一特解 y2( x), y2( x) 与 y1( x) 线性无关 ,
即 y2( x) / y1( x) u( x) 常数 . 求u( x):
y2 ( x) u( x) y1( x) u( x)er1x 为(4)的解
根 i ex sin x, xex sin x, , xk1ex sin x
注 1、n次代数方程恰有n个根。 2、属于不同特征根的解线性无关。
8 /10
例3
解 特征方程 r 5 r 4 2r 3 2r 2 r 1 0,
即 (r 1)(r 2 1)2 0,
特征根 r1 1, r2 r3 i , r4 r5 i ,
例2 解 特征方程为 解得
故所求通解为 y ex (C1 cos2x C2 sin 2x).
7/10
三、n阶常系数齐次线性方程的代数解法
特征方程
特征根
对应的特解
k重 实 根r
erx , xerx , , xk1erx
k重共轭复ex cos x, xex cos x, , xk1ex cos x