职高数学(基础模块)下教案(教学资料)

合集下载

【高教版中职教材—数学(基础模块)下册电子教案课程】 直线与直线、直线与平面、面与面平行的判定与性质

【高教版中职教材—数学(基础模块)下册电子教案课程】 直线与直线、直线与平面、面与面平行的判定与性质

【高教版中职教材—数学(基础模块)下册电子教案课程】9.2直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】*揭示课题直线与直线、直线与平面、平面与平面平行的判定与性质*创设情境兴趣导入A B与AD所观察图9−13所示的正方体,可以发现:棱11在的直线,既不相交又不平行,它们不同在任何一个平面内.图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?图9 −14(请画出实物图)受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 −15).(1) (2) 图9−15利用铅笔和书本,演示图9−15(2)的异面直线位置关系. 引领 分析仔细分析关键 语句理解 记忆带领 学生 分析5*创设情境 兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢?观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .质疑 引导 分析思考启发 学生思考图9−16BA CD*创设情境兴趣导入将平面 内的四边形ABCD的两条边AD与DC,沿着对角线AC向上折起,将点D折D的位置(如图9−17).此叠到1D四个点不在同一个平面内.时A、B、C、1图9−17图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?如果一条直线与一个平面只有一个公共点,那么就称这条直线与这个平面相交,画直线与平面相交的图形时,要把直线延伸到平行四边形外(如图9−19(2)).如果一条直线与一个平面没有公共点,那么就称这条直线与这个平面平行. 直线l与平面α平行,记作l∥α.画直线与平面平行的图形时,要把直线画在平行四边形外,并与平行四边形的一边平行(如图9−19(3)).ll(1)(2)l(3)这样,直线与平面的位置关系有三种:直线在平面内、直线与平面相交、直线与平面平行.直线与平面相交及直线与平面平行统称为直线在平面外.*创设情境兴趣导入在桌面上放一张白纸,在白纸上画出两条平行直线,沿着其中的一条直线将纸折起(如图9−20).观察发现:在折起的各个位置上,另一条直线始终与桌面保持平行.图9−201为了叙述简便起见,将线段1DD 所在的直线,直接写作直线1DD ,本章教材中都采用这种表述方法.图9−211111ABCD A B C D -中,因为四边形图9−22(请画出实物图) 分析42*动脑思考 探索新知从大量的实验与观察中,归纳出直线与平面平行的性质:如果一条直线与一个平面平行,并且经过这条直线的一个平面和这个平面相交,那么这条直线与交线平行.如图9−23所示,设直线l 为平面α与平面β的交线,直线m 在平面β内且m α∥,则m l ∥.图9-23讲解 说明引领 分析思考 理解 带领 学生 分析45 *巩固知识 典型例题例 3 在如图9−24所示的一块木料中,已知BC ∥平面1111A B C D ,BC ∥11B C ,要经过平面11A C 内的一点P 与棱BC 将木料锯开,应当怎样画线?说明 强调 引领观察 思考通过例题进一步领会铅笔分析 设点P 和棱BC 确定的平面α,则EF 是α与平面1111A B C D 的交线,由于BC ∥平面1111A B C D ,故EF ∥BC ,11B C BC ∥.所以11EF B C ∥.解 画线的方法是:在平面1111A B C D 内,过点P 作直线11B C 的平行线EF ,分别交直线11A B 及直线11D C 与点E 、F ,连接EB 和FC .讲解 说明主动 求解48*运用知识 强化练习1.试举出一个直线和平面平行的例子.2.请在黑板上画一条直线与地面平行,并说出所画的直线与地面平行的理由.3.如果一条直线平行于一个平面,那么这条直线是不是和这个平面内所有的直线都平行?4.说明长方体的上底面各条边与下底面平行的理由. 提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况50 *创设情境 兴趣导入教室中的墙壁与地面相交于一条直线,而天花板与地面,没有公共点.质疑 思考 引导 学生 分析 52 *动脑思考 探索新知如果两个平面没有公共点,那么称这两个平面互相平行.平面α与平面β平行,记做α∥β.画两个互相平行平面的图形时,要使两个平行四边形的对应边分别平行(如图9−25).讲解 说明 引领 分析思考 理解带领 学生 分析图9−25图9−24*创设情境兴趣导入进行乒乓球或台球比赛时,必需要保证台面与地面平行.技术人员利用水准器来进行检测.水准器内的玻璃管装有水,管内的水柱相当于一条直线,水准器内的水泡在中央,表示水准器所在的直线与地平面平行.把水准器在平板上交叉放置两次(如图9−26),如果两次检测,水准器内的水泡都在中央,就表示台面与地面平行,可以进行比赛,否则就需要进行调整.图9−26例4 设平面α内的两条相交直线m ,n 分别平行于另一个平面β内的两条直线k ,l (如图9−27),试判断平面α,β是否平行解 因为m 在β外、l 在β内,且m ∥l ,所以直线m ∥平面β.同理可得 直线n ∥平面β.由于m 、n 是平面α内两条相交直线,故可以判断α∥β. *创设情境 兴趣导入将一本书放在与桌面平行的位置,用作业本靠紧书一边,绕着这条边移动作业本,观察作业本和书的交线与作业本和桌面的交线之间的关系(如图9−28).图9−28(请画出实物图)图9−27Am n桌子 书放到不同位置的本*动脑思考 探索新知由大量的观察和实验得到两个平面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行.如图9−29所示,如果αβ∥,平面γ与α、β都相交,交线分别为m 、n ,那么m ∥n .*运用知识 强化练习1.画出下列各图形:(1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.2.如图所示,//αβ,M 在α与β同侧,过M 作直线a 与b ,a 分别与α、β相交于A 、B ,b 分别与、β相交于C 、D .⑴ 判断直线AC 与直线BD 是否平行;⑵ 如果 4M A =cm ,5AB =cm ,3MC =cm ,求MD 的长.*理论升华 整体建构 ba第2题图MAC D B图9−29[0,180]1BC AD 1CBC ∠1DAD ∠AB 1BC AD 1CBC ∠nm onm o*运用知识 强化练习在如图所示的正方体中,求下列各对直线所成的角的度数:(1)1DD 与BC ; (2)1AA 与1BC .ABCD图9−32题图图9−33*动脑思考 探索新知如果直线l 和平面α内的任意一条直线都垂直,那么就称直线l 与平面α垂直,记作α⊥l .直线l 叫做平面α的垂线,垂线l 与平面α的交点叫做垂足.画表示直线l 和平面α垂直的图形时,要把直线l 画成与平行四边形的横边垂直(如图9−34所示),其中交点A 是垂足.图9−34图9−35图9−3642*动脑思考探索新知斜线l与它在平面α内的射影l'的夹角,叫做直线l与平面α所成的角.如图9−37所示,PBA∠就是直线PB与平面α所成的角.规定:当直线与平面垂直时,所成的角是直角;当直线与平面平行或直线在平面内时,所成的角是零角.显然,直线与平面所成角的取值范围是[0,90].【想一想】如果两条直线与一个平面所成的角相等,那么这两条直线一定平行吗?图9−37讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析47*巩固知识典型例题例2 如图9−38所示,等腰∆ABC的顶点A在平面α外,底边BC 在平面α内,已知底边长BC =16,腰长AB =17,又知点A 到平面α的垂线段AD =10.求(1)等腰∆ABC 的高AE 的长; (2)斜线AE 和平面α所成的角的大小(精确到1º).分析 三角形AEB 是直角三角形,知道斜边和一条直角边,利用勾股定理可以求出AE 的长;AED ∠是AE 和平面α所成的角,三角形ADE 是直角三角形,求出AED ∠的正弦值即可求出斜线AE 和平面α所成的角.解 (1) 在等腰∆ABC 中,AE BC ⊥,故由BC =16可得BE =8.在Rt ∆AEB 中,∠AEB =90°,因此222217815AE AB BE =-=-=.(2)联结DE .因为AD 是平面α的垂线,AE 是α的斜线,所以DE 是AE 在α内的射影.因此AED ∠是AE 和平面α所成的角. 在Rt ∆ADE 中,102sin 153AD AED AE ∠===,所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】为什么这三条连线都画成虚线?*运用知识 强化练习图9−381′).练习图*创设情境 兴趣导入在建筑房屋时,有时为了美观和排除雨水的方便,需要考虑屋顶面与地面形成适当的角度(如图9−39(1));在修筑河堤时,为使它经济且坚固耐用,需要考虑河堤的斜坡与地面形成适当的角度(如图9−39(2)).在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察.(2)图9−39(1)角,记作二面角l αβ--(或CD αβ--)(如图9−40).过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角.如图9−41所示,在二面角α−l −β的棱l 上任意选取一点O ,以点O 为垂足,在面α与面β内分别作OM l ⊥、ON l ⊥,则MON ∠就是这个二面角的平面角.,180].平面角是直角的二面角叫做直二面角地面就组成直二面角,此时称两个平面垂直图9−40CD图9−41loNMCD*巩固知识 典型例题例3 在正方体1111ABCD A B C D -中(如图9−42),求二面角1D AD B --的大小.图9−42解 AD 为二面角的棱, 1AA 与AB 是分别在二面角的两个面内并且与棱AD 垂直的射线,所以1A AB ∠为二面角1D AD B --的平面角.因为在正方体1111ABCD A B C D -中,1A AB ∠是直角.所以二面角1D AD B --为90°.*运用知识 强化练习练习题图*理论升华整体建构【教师教学后记】。

中职数学基础模块(高教版)下册教案:点到直线的距离

中职数学基础模块(高教版)下册教案:点到直线的距离
分析先在其中一条直线上取一个坐标数值比较简单的点,然后利用点到直线的距离公式,求出这个点到另一条直线的距离,即为两条平行直线间的距离.
解在直线 取一点 .因为点 到直线 的距离为

所以两条平行直线 与 之间的距离为 .
四、归纳总结
点到直线的距离公式
五、布置作业
P69 T7




§6.3.3 点到直线的距离
二 、探索新知
我们知道,在平面直角坐标系中,点与直线有两种位置关系:
(1)点在直线上,点的坐标满足直线方程;
(2)点在直线外,点的坐标不满足直线方程.
当点 在直线 外时,如图所示,称点 到直线




的垂线段 的长度为点 到直线 的距离.
如果点在直线上,则点到直线的距离为0;如果点在直线外,如何求直线 外一点 到直线 的距离呢?
1.点到直线的距离公式 例题
注:用公式求点到直线的距离时,直线的方程
必须是一般式方程
教后札记
(3)求点到直线 的距离.
由两点间距离公式得
,
即点 到直线 的距离为 .
用同样的方法可以求得点 到直线 的距离为
.
公式称为点到直线的距离公式.
用公式求点到直线的距离时,直线的方程必须是一般式方程.
三、例题讲解
例7求点 到直线 的距离 .
解直线 的一般式方程为 ,由点到直线的距离公式,得
.
例8求两条平行直线 与 之间的距离.
若点 的坐标为 ,直线 的方程为 ,如图所示,我们来求点 到直线 : 的距离.
(1)过点 作直线 的垂线,求垂线方程.
由直线 的方程 得直线的斜率 .若垂线的斜率为 ,则有 ,所以 .由直线的点斜式方程得垂线方程 ,即 .

中职数学基础模块上下册全册教案【配套人教版教材】

中职数学基础模块上下册全册教案【配套人教版教材】

人教版中职数学教材基础模块上下册全册教案【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*新阶段学习导入语介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等.同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,介绍说明倾听了解引领学生了解新阶段的过程行为行为意图间在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始……1.学习——旅程学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下!2.老师——导游与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味.3.目的——运用我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学.4.准备——必需品轻松愉快的心情、热情饱满的精神、全力以赴的态度、踏实努力的行动、科学认真的方法、及时真诚的交流.回答为什么要学数学?学什么样的数学?怎么学数学?讲解说明领会了解数学学习特点重点是要树立学生的数学学习信心8*揭示课题缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便.这就是我们将要研究学习的 1.1集合.介绍说明了解引入教学内容10*创设情景兴趣导入问题某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里?解决播放课件质疑观看课件思考从实际事例使学生自然的走过程行为行为意图间显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐,彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐.归纳面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合.而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的元素.引导分析自我建构向知识点启发学生体会集合概念15*动脑思考探索新知概念由某些确定的对象组成的整体叫做集合,简称集.组成集合的对象叫做这个集合的元素.如大于2并且小于5的自然数组成的集合是由哪些元素组成?表示一般采用大写英文字母,,,A B C…表示集合,小写英文字母,,,a b c…表示集合的元素.拓展集合中的元素具有下列特点:(1)互异性:一个给定的集合中的元素都是互不相同的;(2)无序性:一个给定的集合中的元素排列无顺序;(3) 确定性:一个给定的集合中的元素必须是确定的.不能确定的对象,不能组成集合.例如,某班跑得快的同学,就不能组成集合.例1下列对象能否组成集合:(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程210x的所有解;(4)不等式20x的所有解.解(1) 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合.(2)由于个子高没有具体的标准,对象是不确定的,因此不总结归纳讲解说明强调质疑分析讲解理解领会记忆思考回答带领学生理解整体个体意义为后续学习做准备通过例题进一步领会元素确定性观察学生过程行为行为意图间能组成集合.(3)方程210x的解是-1和1,它们是确定的对象,所以可以组成集合.(4)解不等式20x,得2x,它们是确定的对象,所以可以组成集合.类型由方程的所有解组成的集合叫做这个方程的解集.由不等式的所有解组成的集合叫做这个不等式的解集.像方程210x的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x-2>0的解组成的集合那样,由无限个元素组成的集合叫做无限集.像平面上与点O的距离为 2 cm的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集.由数组成的集合叫做数集.方程的解集与不等式的解集都是数集.所有自然数组成的集合叫做自然数集,记作N.所有正整数组成的集合叫做正整数集,记作N或+Ζ.所有整数组成的集合叫做整数集,记作Z.所有有理数组成的集合叫做有理数集,记作Q.所有实数组成的集合叫做实数集,记作R.不含任何元素的集合叫做空集,记作.例如,方程x2+1=0的实数解的集合里不含有任何元素,所以这个解集就是空集关系元素a是集合A的元素,记作a A(读作“a属于A”),a不是集合A的元素,记作a A(读作“a不属于A”).集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一.提问归纳说明引领强调讲解分析强调讲解理解领会明确思考了解理解记忆领会是否理解知识点集合类型比较简单可以让学生自己分析强调各个数集的内涵和表示字母突出强调符号规范书写过程行为行为意图间35 *运用知识强化练习练习 1.1.11.用符号“”或“”填空:(1)-3 N,0.5 N,3 N;(2)1.5 Z,-5 Z,3 Z;(3)-0.2 Q,πQ,7.21 Q;(4)1.5 R,-1.2 R,πR.2.指出下列各集合中,哪个集合是空集?(1)方程210x的解集;(2)方程22x的解集.提问巡视指导思考动手求解交流及时了解学生知识掌握情况40*创设情景兴趣导入问题不大于5的自然数所组成的集合中有哪些元素?小于5的实数所组成的集合中有哪些元素?解决不大于5的自然数所组成的集合中只有0、1、2、3、4、5这6个元素,这些元素是可以一一列举的.而小于5的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:(1) 集合的元素都是实数;(2)集合的元素都小于 5.归纳当集合中元素可以一一列举时,可以用列举的方法表示集合;当集合中元素无法一一列举但元素特征是明显时,可以分析出集合的元素所具有的特征性质,通过对元素特征性质的描述来表示集合.质疑引导讲解总结思考自我分析自我建构用较简单的问题给学生参与学习的起点引导学生得出结论45*动脑思考探索新知集合的表示有两种方法:(1)列举法.把集合的元素一一列举出来,写在花括号内,仔细理解带领过程行为行为意图间元素之间用逗号隔开.如不大于5的自然数所组成的集合可以表示为0,1,2,3,4,5.当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法.例如,小于100的自然数集可以表示为0,1,2,3,,99,正偶数集可以表示为2,4,6,.(2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为{|5,}x x x R.如果从上下文能明显看出集合的元素为实数,那么可以将x R省略不写.如不等式360x的解集可以表示为{|2}x x.为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}.分析讲解关键词语强调说明记忆了解理解记忆了解学生总结集合两种表示方法特别注意强调写法的规范性50*巩固知识典型例题例2用列举法表示下列集合:(1)由大于4且小于12的所有偶数组成的集合;(2)方程2560x x的解集.分析这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程2560x x才能得到.解(1)集合表示为2,0,2,4,6,8,10;(2)解方程2560x x得11x,26x.故方程解集为1,6.例3用描述法表示下列各集合:(1)不等式210x,的解集;说明强调引领观察思考通过例题进一步领会集合的表示注意观察学生是否过程行为行为意图间(2)所有奇数组成的集合;(3)由第一象限所有的点组成的集合.分析用描述法表示集合关键是找出元素的特征性质.(1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数的特征性质是“元素都能写成21()k k Z的形式”.(3)题元素的特征性质是“为第一象限的点”,即横坐标与纵坐标都为正数.解(1)解不等式210x,得12x,,所以解集为12x x,;(2)奇数集合21,x x k k Z;(3)第一象限所有的点组成的集合为,0,0x y x y.讲解说明引领分析强调含义说明主动求解观察思考求解领会思考求解理解知识点突出表示法的书写要规范复习对应数学知识60*运用知识强化练习教材练习 1.1.21.用列举法表示下列各集合:(1)方程2340x x的解集;(2)方程430x的解集;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:(1)大于3的实数所组成的集合;(2)方程240x的解集;(3)大于5的所有偶数所组成的集合;(4)不等式253x的解集.巡视指导动手求解检验学习的效果70*理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确.因此表示集合时,要针对实际情况,选用合适的方法.例总结归纳理解体会从整体再一次突出集合过程行为行为意图间如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.表示方法75*巩固知识典型例题例4 用适当的方法表示下列集合:(1)方程x+5=0的解集;(2)不等式3x-7>5的解集;(3)大于3且小于11的偶数组成的集合;(4)不大于5的所有实数组成的集合;解(1){-5}; (2){x| x>4};(3) {4,6,8,10};(4) {x| x≤5} .引领分析讲解说明领会思考求解进行综合题讲解巩固所归纳的强化点80*运用知识强化练习选用适当的方法表示出下列各集合:(1)由大于10的所有自然数组成的集合;(2)方程290x的解集;(3)不等式465x的解集;(4)平面直角坐标系中第二象限所有的点组成的集合;(5)方程243x的解集;(6)不等式组330,60xx,的解集.提问巡视指导归纳强调动手求解汇总交流及时了解学生知识掌握情况85*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问回忆反思培养学生总结学习过程能力88*继续探索活动探究(1)阅读理解:教材 1.1,学习与训练 1.1;说明记录过程行为行为意图间(2)书面作业:教材习题 1.1,学习与训练 1.1训练题;(3)实践调查:探究生活中集合知识的应用90【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*复习知识揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.质疑回忆对前面学习的过程行为行为意图间元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}.4.元素与集合之间有属于或不属于的关系.完成下面的问题:用适当的符号“”或“”填空:(1) 0 ;(2) 0 N;(3) 3R;(4) 0.5 Z;(5) 1 {1,2,3};(6) 2 {x|x<1};(7)2 {x|x=2k+1, k Z}.那么集合与集合之间又有什么关系呢?引导强调明确加深回答内容进行复习有助于新内容的学习5*创设情景兴趣导入问题1.设A表示我班全体学生的集合,B表示我班全体男学生的集合,那么,集合A与集合B之间存在什么关系呢?2.设M={数学,语文,英语,计算机应用基础,体育与健康,物理,化学},N ={数学,语文,英语,计算机应用基础,体育与健康},那么集合M与集合N之间存在什么关系呢?3.自然数集Z与整数集N之间存在什么关系呢?解决显然,问题1中集合B的元素(我班的男学生)肯定是集合A的元素(我班的学生);问题2中集合N的元素肯定是集合M的元素;问题3中集合N的元素(自然数)肯定是集合Z 的元素(整数).归纳当集合B的元素肯定是集合A的元素时称集合A包含集合B.两个集合之间的这种关系叫做包含关系.播放课件质疑引导分析观看课件思考理解自我建构用问题引导学生思考集合之间关系启发学生体会包含含义10*动脑思考探索新知概念一般地,如果集合B的元素都是集合A的元素,那么称集合A包含集合B,并把集合B叫做集合A的子集.总结归纳理解领会带领学生理解包含过程行为行为意图间表示将集合A 包含集合B 记作A B 或BA (读作“A 包含B ”或“B 包含于A ”).可以用下图表示出这两个集合之间的包含关系.拓展由子集的定义可知,任何一个集合A 都是它自身的子集,即AA .规定:空集是任何集合的子集,即A .说明强调引导介绍记忆观察了解意义特别介绍符号的规范性图形有助学生加深理解15*巩固知识典型例题例1 用符号“”、“”、“”或“”填空:(1),,,a b c d,a b ;(2)1,2,3;(3) N Q ;(4) 0R ;(5) d ,,a b c ;(6)|35x x|06x x,.分析“”与“”是用来表示集合与集合之间关系的符号;而“”与“”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.解(1)集合,a b 的元素都是集合,,,a b c d 的元素,因此,,,a b c d,a b ;(2)空集是任何集合的子集,因此1,2,3;(3)自然数都是有理数,因此N Q ;(4)0是实数,因此0R ;(5)d 不是集合,,a b c 的元素,因此d ,,a b c ;(6)集合|35x x的元素都是集合|06x x,的元素,因此|35|06x xx x,.说明引领讲解强调观察思考领会主动求解通过例题进一步指导学生元素与集合集合与集合关系的分类确定20*运用知识强化练习教材练习 1.2.1提问动手了解AB过程行为行为意图间用符号“”、“”、“”或“”填空:(1)*N Q;(2)0;(3)a,,a b c;(4)2,32;(5)0;(6)|12x x,|14x x.巡视指导求解交流学生知识掌握情况25*动脑思考探索新知概念如果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集.表示记作A BY(或B Aü),读作“A真包含B”(或“B真包含于A”).拓展空集是任何非空集合的真子集.对于集合A、B、C,如果AüB,BüC,则AüC.仔细分析讲解关键词语强调说明理解记忆记忆了解特别强调真子集与子集的区别30*巩固知识典型例题例2选用适当的符号“ü”或“Y”填空:(1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x| |x|=2}; (3){1}_.解(1) {1,3,5}ü{1,2,3,4,5};(2) {2}ü{x| |x|=2};(3) {1}Y.例3设集合0,1,2M,试写出M的所有子集,并指出其中的真子集.分析集合M中有3个元素,可以分别列出空集、含1个元素的集合、含2个元素的集合、含3个元素的集合.解M的所有子集为,0,1,2,0,1,0,2,1,20,1,2.说明讲解说明讲解观察主动求解思考理解通过例题进一步理解真包含的含义特别提醒注意空集过程行为行为意图间除集合0,1,2外,所有集合都是集合M的真子集.强调35*运用知识强化练习练习 1.2.21.设集合,A c d,试写出A的所有子集,并指出其中的真子集.2.设集合{|6}A x x,集合{|0}B x x,指出集合A与集合B之间的关系.巡视指导求解交流检验学习效果40*创设情景兴趣导入问题设集合A={x|x2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?解决由于方程x2-1=0的解是x1= -1,x2=1,所以说集合A中的元素就是1,-1,可以看出集合A与集合B中的元素完全相同,集合A与集合 B 相等.归纳集合A与集合B中的元素完全相同,只是表示方法不同,我们就说集合A与集合 B 相等,即A=B.质疑引导分析总结思考理解自我建构启发学生体会相等含义45*动脑思考探索新知概念一般地,如果两个集合的元素完全相同,那么就说这两个集合相等.表示将集合A与集合B相等记作A B.拓展如果A B,同时B A,那么集合B的元素都属于集合A,同时集合A的元素都属于集合B,因此集合A与集合B的元素完全相同,由集合相等的定义知A B.讲解强调说明领会记忆理解强调集合相等的本质含义50*巩固知识典型例题注意过程行为行为意图间例4判断集合2Ax x与集合240Bx x的关系.分析要通过研究两个集合的元素之间的关系来判断这两个集合之间的关系.解由2x 得2x 或2x ,所以集合A 用列举法表示为2,2;由240x 得2x 或2x ,所以集合B 用列举法表示为2,2;可以看出,这两个集合的元素完全相同,因此它们相等,即AB .质疑提问分析引领思考主动求解总结归纳复习第一节中有关知识55*运用知识强化练习判断集合A 与B 是否相等?(1) A={0},B=;(2) A={…,-5,-3,-1,1,3,5,…},B={x|x=2m+1 ,m Z };(3) A={x|x=2m -1 ,m Z },B={x|x=2m+1 ,mZ }.巡视指导动手求解检验学习的效果60*理论升华整体建构元素与集合关系:属于与不属于(、);集合与集合关系:子集、真子集、相等(、ü、=);首先要分清楚对象,然后再根据关系,正确选用符号.总结归纳理解体会从整体再次突出65*巩固知识典型例题例5 用适当的符号填空:⑴{1,3,5}{1,2,3,4,5,6};⑵2{|9}x x {3,-3};⑶{2}{ x| |x|=2};⑷ 2 N ;⑸a { a };⑹{0};⑺{1,1}2{|10}x x.解⑴{1,3,5}{1,2,3,4,5,6}ü;⑵{x|x 2=9}={3,-3};⑶因为{|2}{2,2}x x ,所以{2}{2}x xü;⑷2∈N ;⑸a ∈{a};⑹{0}Y;⑺因为2{|10}x x=,所以{1,1}Y 2{|10}x x.引领分析质疑讲解说明领会思考求解自我强化巩固所归纳强化点, 可以适当的教给学生完成,再进行核对75过程行为行为意图间*运用知识强化练习用适当的符号填空:(1) 2.5Z;(2)13|1x x;(3)2,22|2x x;(4)a,,a b c;(5)Z N;(6){|40}x x;(7)Q;(8)1,3,53,5.提问巡视指导动手求解汇总交流及时了解学生知识掌握情况80*归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?引导提问回忆反思培养学生总结学习过程能力85*继续探索活动探究(1)阅读:教材章节 1.2;学习与训练 1.2;(2)书写:习题 1.2,学习与训练 1.2训练题;(3)实践:寻找集合和集合关系的生活实例.说明记录90【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题1.3集合的运算*创设情景兴趣导入问题 1 在运动会上,某班参加百米赛跑的有4名同学,参加跳高比赛的有6名同学,既参加百米赛跑又参加跳高比赛的同学有2名同学,那么这些同学之间有什么关系?问题 2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班哪些同学连续两个学期都是三好学生?用我们学过的集合来表示:A={李佳,王燕,张洁,王勇};B={王燕,李炎,王勇,孙颖};C={王燕,王勇}.那么这三个集合之间有什么关系?问题 3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.质疑引导分析归纳总结思考自我分析了解从实际事例使学生自然的走向知识点引导式启发学生思考集合元素之间的关系过程行为行为意图间5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即A B x x A x B且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题例1已知集合A,B,求A∩B.(1) A={1,2},B={2,3};(2) A={a,b},B={c,d , e , f };(3) A={1,3,5},B= ;(4) A={2,4},B={1,2,3,4}.分析集合都是由列举法表示的,因为A∩B是由集合A和集合B中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解(1) 相同元素是2,A∩B={1,2}∩{2,3 }={2};(2) 没有相同元素A∩B={a , b}∩{c, d , e , f }=;(3) 因为A是含有三个元素的集合,是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A∩B=;(4)因为A中的每一个元素的都是集合B中的元素,所以A ∩B=A.例2设,|0A x y x y,,|4B x y x y,求A B.分析集合A表示方程0x y的解集;集合B表示方程说明强调引领讲解观察思考主动求解观察通过例题进一步领会交集注意观察学生是否理解知识点复习过程行为行为意图间4x y 的解集.两个解集的交集就是二元一次方程组0,4x y x y的解集.解解方程组0,4.x y x y得2,2x y.所以2,2AB .例3设|12Ax x ,,|03B x x ,,求A B .分析这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解|12|03ABx x x x剟|02x x ,.由交集定义和上面的例题,可以得到:对于任意两个集合A ,B ,都有(1)A B B A ;(2)A AA,A;(3)B BAA BA ,;(4)如果A BAB A 那么,.说明引领强调含义说明启发引导思考求解领会思考求解了解方程组的解法突出数轴的作用强调数形结合可以交给学生自我发现归纳25*运用知识强化练习练习 1.3.11.设1,0,1,2A ,0,2,4,6B ,求A B .2.设,|21A x y x y,,|23Bx y x y,求AB .3.设|22A x x ≤,|04B x x剟,求A B .提问巡视指导动手求解交流及时了解学生知识掌握情况35*创设情景兴趣导入问题 1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A={该班团员};B={该班非团员};C={该班同学}.那么这三个集合之间有什么关系?问题 2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;介绍质疑了解观看课件思考从实际事例使学生自然。

【人教版】中职数学(基础模块)下册:6.3《等比数列》教案(Word版).pdf

【人教版】中职数学(基础模块)下册:6.3《等比数列》教案(Word版).pdf

【课题】 6.3 等比数列
【教学目标】
知识目标:
理解等比数列前n 项和公式. 能力目标:
通过学习等比数列前n 项和公式,培养学生处理数据的能力.
【教学重点】
等比数列的前n 项和的公式.
【教学难点】
等比数列前n 项和公式的推导.
【教学设计】
本节的主要内容是等比数列的前n 项和公式,等比数列应用举例.重点是等比数列的前
n 项和公式;难点是前n 项和公式的推导、求等比数列的项数n 的问题及知识的简单实际
应用.
等比数列前n 项和公式的推导方法叫错位相减法,这种方法很重要,应该让学生理解并学会应用.等比数列的通项公式与前n 项和公式中共涉及五个量:n n S a n q a 、、、、1,只要知道其中的三个量,就可以求出另外的两个量.
教材中例6是已知n n S a a 、、1求n q 、的例子.将等号两边化成同底数幂的形式,利用指数相等来求解n 的方法是研究等比数列问题的常用方法.
【教学备品】
教学课件.
【课时安排】
3课时.(135分钟)
【教学过程】
式的两边分别减去(2)式的两边,得
【教师教学后记】
−。

高教版中职数学基础模块下册《直线的方程》教案 (一)

高教版中职数学基础模块下册《直线的方程》教案 (一)

高教版中职数学基础模块下册《直线的方程》教案 (一)本教案是根据高教版中职数学基础模块下册的《直线的方程》内容而制定的,旨在帮助学生更好地理解和掌握直线的方程相关知识,提高其数学素养和解决实际问题的能力。

一、教学目标:1. 理解直线的方程的定义与相关概念。

2. 掌握一般式和截距式直线方程的求法。

3. 能够利用直线方程解决实际问题。

二、教学内容:1. 直线的方程的定义和相关概念。

2. 一般式和截距式直线方程的求法。

3. 利用直线方程解决实际问题。

三、教学过程:1. 引入新知识:通过引入实际问题,如两个点的坐标,来引出直线的概念和方程。

2. 讲解相关概念:讲解直线的概念和相关概念,如斜率、截距、公垂线等,让学生更好地理解直线方程的求法。

3. 介绍一般式和截距式直线方程:介绍一般式和截距式直线方程的求法,以及它们之间的关系,让学生学会灵活运用不同的直线方程。

4. 练习:提供一些练习题,让学生巩固所学知识。

5. 解决实际问题:通过解决实际问题,如求两点的连线方程、求公垂线方程等,让学生体会到直线方程的应用。

四、教学方法:1. 课堂讲解。

2. 组织小组讨论,让学生巩固所学知识。

3. 提供练习题,让学生自主练习。

4. 解决实际问题,让学生将所学知识应用到实际中。

五、教学重点:1. 一般式和截距式直线方程的求法。

2. 利用直线方程解决实际问题。

六、教学难点:直线方程的综合应用。

七、教学效果评估:通过给学生布置思考题或小测验的方式来检测学生对所学知识的掌握情况。

通过学生的表现来评估教学效果。

通过教学反思来进一步完善教学方法和教学内容。

八、教学总结:通过本教案,学生可以更好地掌握直线的方程相关知识,提高其数学素养和解决实际问题的能力,为之后的学习打下扎实的基础。

同时,也为教师提供了一种教学方法和思路,帮助教师更好地组织教学,提高教学效果。

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B()

教案:人教版中职数学教材-基础模块下册第一章:函数1.1 函数的概念教学目标:1. 理解函数的概念及其表示方法。

2. 掌握函数的性质,包括单调性、奇偶性、周期性等。

教学内容:1. 函数的定义及表示方法。

2. 函数的性质及其应用。

教学步骤:1. 引入函数的概念,引导学生理解函数的定义。

2. 介绍函数的表示方法,如解析式、表格、图像等。

3. 讲解函数的单调性、奇偶性、周期性等性质。

4. 应用函数的性质解决实际问题。

1.2 函数的图像教学目标:1. 理解函数图像的性质及其绘制方法。

2. 学会绘制常见函数的图像。

教学内容:1. 函数图像的概念及其性质。

2. 函数图像的绘制方法。

教学步骤:1. 引入函数图像的概念,引导学生理解函数图像的性质。

2. 介绍函数图像的绘制方法,如描点法、直线法等。

3. 绘制常见函数的图像,如正弦函数、余弦函数、指数函数等。

4. 分析函数图像的性质,如单调性、奇偶性、周期性等。

第二章:三角函数2.1 三角函数的概念教学目标:1. 理解三角函数的概念及其表示方法。

2. 掌握特殊角的三角函数值。

教学内容:1. 三角函数的定义及其表示方法。

2. 特殊角的三角函数值。

教学步骤:1. 引入三角函数的概念,引导学生理解三角函数的定义。

2. 介绍三角函数的表示方法,如正弦、余弦、正切等。

3. 讲解特殊角的三角函数值,如0°、30°、45°、60°等。

4. 应用三角函数解决实际问题。

2.2 三角函数的图像教学目标:1. 理解三角函数图像的性质及其绘制方法。

2. 学会绘制常见三角函数的图像。

教学内容:2. 三角函数图像的绘制方法。

教学步骤:1. 引入三角函数图像的概念,引导学生理解三角函数图像的性质。

2. 介绍三角函数图像的绘制方法,如描点法、直线法等。

3. 绘制常见三角函数的图像,如正弦函数、余弦函数、正切函数等。

4. 分析三角函数图像的性质,如周期性、对称性等。

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B()

人教版中职数学教材-基础模块下册全册教案B(可编辑)第一章:函数的性质1.1 函数的单调性【教学目标】1. 理解函数单调性的概念;2. 学会判断函数的单调性;3. 能够运用函数单调性解决实际问题。

【教学内容】1. 函数单调性的定义;2. 函数单调性的判断方法;3. 函数单调性在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入函数单调性的概念;2. 新课:讲解函数单调性的定义和判断方法;3. 练习:让学生通过练习题巩固函数单调性的理解和判断;4. 应用:结合实际问题,让学生运用函数单调性解决问题。

1.2 函数的奇偶性【教学目标】1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 能够运用函数奇偶性解决实际问题。

【教学内容】1. 函数奇偶性的定义;2. 函数奇偶性的判断方法;3. 函数奇偶性在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入函数奇偶性的概念;2. 新课:讲解函数奇偶性的定义和判断方法;3. 练习:让学生通过练习题巩固函数奇偶性的理解和判断;4. 应用:结合实际问题,让学生运用函数奇偶性解决问题。

第二章:三角函数2.1 三角函数的定义和性质【教学目标】1. 理解三角函数的定义;2. 学会判断三角函数的性质;3. 能够运用三角函数解决实际问题。

【教学内容】1. 三角函数的定义;2. 三角函数的性质;3. 三角函数在实际问题中的应用。

【教学过程】1. 导入:通过具体例子引入三角函数的定义;2. 新课:讲解三角函数的定义和性质;3. 练习:让学生通过练习题巩固三角函数的理解和判断;4. 应用:结合实际问题,让学生运用三角函数解决问题。

2.2 三角函数的图像和性质【教学目标】1. 理解三角函数图像的特点;2. 学会判断三角函数图像的性质;3. 能够运用三角函数图像解决实际问题。

【教学内容】1. 三角函数图像的特点;2. 三角函数图像的性质;3. 三角函数图像在实际问题中的应用。

人教版中职数学教材基础模块下册全册教案B

人教版中职数学教材基础模块下册全册教案B

教案:人教版中职数学教材-基础模块下册全册教案B第一章:三角函数1.1 三角函数的概念教学目标:1. 理解三角函数的概念;2. 掌握锐角三角函数的定义;3. 会用直角三角形求解锐角三角函数值。

教学内容:1. 三角函数的定义;2. 锐角三角函数的定义及求解方法;3. 直角三角形求解锐角三角函数值。

教学重点:三角函数的概念及锐角三角函数的定义。

教学难点:直角三角形求解锐角三角函数值。

教学方法:1. 采用讲解法,引导学生理解三角函数的概念;2. 采用演示法,让学生通过观察直角三角形模型,直观地理解锐角三角函数的定义;3. 采用练习法,让学生通过实际操作,掌握直角三角形求解锐角三角函数值的方法。

教学步骤:1. 引入直角三角形,引导学生认识三角函数的概念;2. 讲解锐角三角函数的定义,让学生理解正弦、余弦、正切等概念;3. 通过演示法,让学生观察直角三角形模型,直观地理解锐角三角函数的定义;4. 引导学生运用直角三角形求解锐角三角函数值,让学生掌握求解方法;5. 布置练习题,让学生巩固所学知识。

1.2 三角函数的图像与性质教学目标:1. 了解三角函数的图像特点;2. 掌握三角函数的性质;3. 会利用三角函数的性质解决实际问题。

教学内容:1. 三角函数的图像特点;2. 三角函数的性质;3. 利用三角函数的性质解决实际问题。

教学重点:三角函数的图像特点及性质。

教学难点:利用三角函数的性质解决实际问题。

教学方法:1. 采用讲解法,引导学生理解三角函数的图像特点;2. 采用演示法,让学生通过观察函数图像,直观地理解三角函数的性质;3. 采用练习法,让学生通过实际操作,掌握利用三角函数的性质解决实际问题的方法。

教学步骤:1. 讲解三角函数的图像特点,让学生了解函数图像的波动规律;2. 讲解三角函数的性质,让学生掌握正弦、余弦、正切等函数的性质;3. 通过演示法,让学生观察函数图像,直观地理解三角函数的性质;4. 引导学生运用三角函数的性质解决实际问题,让学生学会将理论知识应用于实际;5. 布置练习题,让学生巩固所学知识。

职高数学(基础模块)下教案

职高数学(基础模块)下教案

【课题】6.1 数列的概念【教学目标】知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】根据数列的前若干项写出它的一个通项公式.【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序"不一样,因此是不同的数列.例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成。

要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受。

【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】,.从小到大依次取正整数时,cos1,1,….,,n a ,.()n N其中,下角码中的数为项数,表示第1项,表示第….当由小至大依次取正整数值时,依次可以表示数列中的项叫做数列{}的通项【教师教学后记】【课题】6.2 等差数列(一)【教学目标】知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.【教学重点】等差数列的通项公式.【教学难点】等差数列通项公式的推导.【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式。

人教版中职数学教材-基础模块下册全册教案

人教版中职数学教材-基础模块下册全册教案

人教版中职数学教材-基础模块下册全册教案人教版中职数学教材基础模块下册全册教案(2012 年7 月第4 版)目录第六章数列................................................................................................................ ............................................. 1 6.1.1 数列的定义................................................................................................................ ............................. 1 6.1.2 数列的通项................................................................................................................ ............................. 5 6.2.1 等差数列的概念................................................................................................................ ..................... 9 6.2.2 等差数列的前n 项和................................................................................................................ .......... 15 6.3.1 等比数列的概念................................................................................................................ ................... 19 6.3.2 等比数列的前n 项和................................................................................................................ .......... 23 6.4 数列的应用................................................................................................................ .............................. 26第七章平面向量................................................................................................................ ................................... 29 7.1.1 位移与向量的表示................................................................................................................ ............. 29 7.1.2 向量的加......................... 33 7.1.3 向量的减法................................................................................................................ ......................... 37 7.2 数乘向量................................................................................................................ ................................ 41 7.3.1 向量的分解................................................................................................................ ......................... 45 7.3.2 向量的直角坐标运算................................................................................................................ ......... 48 7.4.1 向量的内积................................................................................................................ ......................... 55 7.4.2 向量内积的坐标运算与距离公式..................................................................................................... 59 7.5 向量的应用................................................................................................................ ............................ 63第八章直线和圆的方程................................................................................................................ ....................... 66 8.1.1 数轴上的距离公式与中点公式.. (66)8.1.2 平面直角坐标系中的距离公式和中点公式........................................................................................ 69 8.2.1 直线与方........................... 73 8.2.2 直线的倾斜角与斜率................................................................................................................ ........... 75 8.2.3 直线方程的几种形式(一)........................................................................................................ ....... 78 8.2.3 直线方程的几种形式(二)........................................................................................................ ....... 81 8.2.4 直线与直线的位置关系(一)...........................................................................................................86 8.2.4 直线与直线的位置关系(二)...........................................................................................................91 8.2.5 点到直线的距离................................................................................................................ ................... 94 8.3.1 圆的标准方程................................................................................................................ ....................... 96 8.3.2 圆的一般方程................................................................................................................ ....................... 98 8. 4 直线与圆的位置关系................................................................................................................ ........... 102 8.5 直线与圆的方程的应用................................................................................................................ ........ 105第九章立体几................................. 107 9.1.1 立体图形及其表示方法................................................................................................................ ...... 107 9.1.2 平面的基本性质................................................................................................................ ................. 110 9.2.1 空间中的平行直线................................................................................................................ .............. 113 9.2.2 异面直线................................................................................................................ ............................. 117 9.2.3 直线与平面平行................................................................................................................ ................. 120 9.2.4 平面与平面的平行关系................................................................................................................ ..... 124 9.3.1 直线与平面垂直................................................................................................................ ................. 129 9.3.2 直线与平面所成的角................................................................................................................ ......... 132 9.3.3 平面与平面所成的角................................................................................................................ ......... 135 9.3.4 平面与平面垂直................................................................................................................ ................. 138 9.4.1 棱..................................... 141 9.4.2 棱锥................................................................................................................ ..................................... 144 9.4.3 直棱柱和正棱锥的侧面积................................................................................................................. 146 9.4.4 圆柱、圆锥(一)........................................................................................................ ..................... 149 9.4.4 圆柱、圆锥(二)........................................................................................................ ...................... 152 9.4.5 球................................................................................................................ ......................................... 155 9.4.6 多面体与旋转体的体积一............................................................................................................... 158 9.4.6 多面体与旋转体的体积二................................................................................................................ 161第十章概率与统计初步................................................................................................................ ..................... 165 10.3.4 一元线性回归................................................................................................................ ................... 165 10.1 计数原理................................................................................................................ .............................. 169 10.2 概率初.............................. 173 10.3.1 总体、样本和抽样方法(一)....................................................................................................... 177 10.3.1 总体、样本和抽样方法(二)....................................................................................................... 180 10.3.1 总体、样本和抽样方法(三)....................................................................................................... 183 10.3.2 频率分布直方图................................................................................................................ ............... 186 10.3.3 用样本估计总体................................................................................................................ ............... 190 第六章数列6.1.1 数列的定义【教学目标】1. 理解数列的有关概念和通项公式的意义. 2. 了理解数列与函数的关系,培养学生观察分析的能力.3. 使学生体会数学与生活的密切联系,提高数学学习的兴趣.【教学重点】数列的概念及其通项公式.【教学难点】数列通项公式的概念.【教学方法】这节课主要采用情景教学法.利用多媒体,在教师的引导下,根据学生的认知水平,设计了创设情境——引入概念,观察归纳——形成概念,讨论研究——深化概念,即时训练——巩固新知等环节.各步骤环环相扣,层层深入,引导学生体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受.【教学过程】环节教学内容师生互动设计意图1.讲故事,感受数列教师讲述古印度传说故事创设情境,让学《棋盘上的麦粒》.生认识数列,激发学学生倾听故事,认识数列.生的好奇心,增强学生的学习兴趣.导入2.提出问题,引入新课教师提出问题.提出和本节课我国有用十二生肖纪年的习俗,每学生分组讨论,找出问题密切相关的问题,让年都用一种动物来命名,12 年轮回一的答案.学生思考,充分发挥次.2009 年(农历乙丑年)是21 世纪的学习小组的作用,展第一个牛年,请列出21 世纪所有牛年的开讨论.年份.1.数列的定义把21 世纪所有牛年的年份排成一教师在学生探究的基础列,得到上,给出问题的答案.新2 009,2 021,2 033,2 045,2 057,人教版中职教材-基础模块下册全册教案第1 页共194 页课2 069,2 081,2 093.①像①这样按一定次序排列的一列教师板书定义.数,叫做数列.数列中的每一个数都叫做这个数列教师出示一组数列的例的项,各项依次叫做这个数列的第 1 项子.(或首项),第2 项,…,第n 项,…,2 比如,009 是数列①的第1 项(或首项),师:数列4,5,6,7,8,强调数列的“有2 093 是数列①的第8 项.9,10;与10,9,8,7,6,5,序性”,使学生对数举出一些数列的例子:4 是不同的数列.列定义有更深刻的大于3 且小于11 的自然数排成一列而集合{4,5,6,7,8,认识,又为后面学习4,5,6,7,8,9,10;②9,10}与{10,9,8,7,6,数列的通项公式埋正整数的倒数排成一列5,4}是相同的集合.下伏笔.1 1 1 强调数列的有序性,集合1,2,3,4,…;③元素的无序性.2精确到1,0.1,0.01,0.001,…的近似值排成一列重视举例这一1,1.4,1.41,1.414,…;④环节,调动学生的思2 3 4 -1 的1 次幂,次幂,次幂,次幂,… 维,发挥学生的主动排成一列性,加深对数列定义-1,1,-1,1,-1,…;⑤的理解.无穷多个2 排成一列2,2,2,2,…;⑥新这些都是数列.课2.数列的分类教师利用上面举过的例观察实例,培养项数有限的数列叫做有穷数列,项子,讲解“数列的分类”.学生分类能力.数无限的数列叫做无穷数列.请学生指出上述数列中的有穷数列和无穷数列:①②是有穷数列,③④⑤⑥是无穷数列.练习同桌之间讨论,完成练习.通过练习,让学(1)已知数列3,7,11,15,…,生进一步掌握数列则3 3是它的第项.教师巡视指导.的定义.1 1 1 (2)已知数列1,2,-3,4,…,人教版中职教材-基础模块下册全册教案第2 页共194 页1 -1n1 n ,…,那么它的第10 项是().(A)-1 (B)1 1 1 (C)-10 (D)10 3.数列的一般形式数列从第一项开始,按顺序与正整观察数列.培养学生的观数对应.所以数列的一般形式可以写成1 1 1 察能力和由特殊到1,2 ,3 ,4 ,….a1,a2,a3,…,an,…,一般的归纳能力.教师提出问题:数列的每其中,an 是数列的第n 项,叫做数列的一项与这一项的序号是否有一通项,n 叫做an 的序号.定的对应关系?这一关系可否整个数列可记作an.用一个公式表示?学生分组讨论.4.数列的通项公式对于上面的数列,第一项新如果an(n1,2,3,…)与n 之间与这一项的序号有这样的对应课的关系可用关系:an f n 1 1 1 项1 2 3 4来表示,那么这个关系式叫做这个数列的通项公式,其中n 的取值是正整数集↓ ↓ ↓ ↓ 的一个子集.由此可知,数列的通项可序号1 2 3 4 以看成以.。

中职数学基础模块上下册全册教案【配套人教版教材】

中职数学基础模块上下册全册教案【配套人教版教材】

中职数学教材基础模块上下册全册教案目录第一章集合 (1)1.1.1 集合的概念 (1)1.1.2 集合的表示方法 (5)1.1.3 集合之间的关系(一) (8)1.1.3 集合之间的关系(二) (11)1.1.4 集合的运算(一) (14)1.1.4 集合的运算(二) (18)1.2.1 充要条件 (21)1.2.2 子集与推出的关系 (24)第二章不等式 (27)2.1.1 实数的大小 (27)2.1.2 不等式的性质 (31)2.2.1 区间的概念 (35)2.2.2 一元一次不等式(组)的解法 (38)2.2.3 一元二次不等式的解法(一) (42)2.2.3 一元二次不等式的解法(二) (45)2.2.4 含有绝对值的不等式 (48)2.3 不等式的应用 (51)第三章函数 (54)3.1.1 函数的概念 (54)3.1.2 函数的表示方法 (58)3.1.3 函数的单调性 (61)3.1.4 函数的奇偶性 (65)3.2.1 一次、二次问题 (69)3.2.2 一次函数模型 (72)3.2.3 二次函数模型 (76)3.3 函数的应用 (81)第四章指数函数与对数函数 (83)4.1.1 有理指数(一) (83)4.1.1 有理指数(二) (87)4.1.2 幂函数举例 (91)4.1.3 指数函数 (94)4.2.1 对数 (98)4.2.2 积、商、幂的对数 (101)4.2.3 换底公式与自然对数 (105)4.2.4 对数函数 (107)4.3 指数、对数函数的应用 (110)第五章三角函数 (113)5.1.1 角的概念的推广 (113)5.1.2 弧度制 (117)5.2.1 任意角三角函数的定义 (120)5.2.2 同角三角函数的基本关系式 (124)5.2.3 诱导公式 (128)5.3.1 正弦函数的图象和性质 (133)5.3.2 余弦函数的图象和性质 (137)5.3.3 已知三角函数值求角 (140)第六章数列 (1)6.1.1 数列的定义 (1)6.1.2 数列的通项 (5)6.2.1 等差数列的概念 (9)6.2.2 等差数列的前n 项和 (15)6.3.1 等比数列的概念 (19)6.3.2 等比数列的前n项和 (23)6.4 数列的应用 (26)第七章平面向量 (29)7.1.1 位移与向量的表示 (29)7.1.2 向量的加法 (33)7.1.3 向量的减法 (37)7.2 数乘向量 (41)7.3.1 向量的分解 (45)7.3.2 向量的直角坐标运算 (48)7.4.1 向量的内积 (55)7.4.2 向量内积的坐标运算与距离公式 (59)7.5 向量的应用 (63)第八章直线和圆的方程 (66)8.1.1 数轴上的距离公式与中点公式 (66)8.1.2 平面直角坐标系中的距离公式和中点公式 (69)8.2.1 直线与方程 (73)8.2.2 直线的倾斜角与斜率 (75)8.2.3 直线方程的几种形式(一) (78)8.2.3 直线方程的几种形式(二) (81)8.2.4 直线与直线的位置关系(一) (85)8.2.4 直线与直线的位置关系(二) (90)8.2.5 点到直线的距离 (93)8.3.1 圆的标准方程 (95)8.3.2 圆的一般方程 (97)8. 4 直线与圆的位置关系 (101)8.5 直线与圆的方程的应用 (104)第九章立体几何 (106)9.1.1立体图形及其表示方法 (106)9.1.2 平面的基本性质 (109)9.2.1空间中的平行直线 (112)9.2.2 异面直线 (116)9.2.3 直线与平面平行 (119)9.2.4 平面与平面的平行关系 (123)9.3.1 直线与平面垂直 (128)9.3.2 直线与平面所成的角 (131)9.3.3 平面与平面所成的角 (134)9.3.4 平面与平面垂直 (136)9.4.1棱柱 (139)9.4.2棱锥 (142)9.4.3 直棱柱和正棱锥的侧面积 (144)9.4.4 圆柱、圆锥(一) (147)9.4.4圆柱、圆锥(二) (150)9.4.5 球 (153)9.4.6 多面体与旋转体的体积(一) (156)9.4.6多面体与旋转体的体积(二) (159)第十章概率与统计初步 (163)10.3.4 一元线性回归 (163)10.1计数原理 (167)10.2概率初步 (171)10.3.1 总体、样本和抽样方法(一) (175)10.3.1 总体、样本和抽样方法(二) (178)10.3.1 总体、样本和抽样方法(三) (181)10.3.2频率分布直方图 (184)10.3.3 用样本估计总体 (187)第一章集合1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学方法】本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】1.1.2集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学方法】本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】1.1.3集合之间的关系(一)【教学目标】1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】1.1.3集合之间的关系(二)【教学目标】1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.2. 理解掌握元素与集合、集合与集合之间关系的区别.3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识.【教学重点】1. 理解集合间的包含、真包含、相等关系及传递关系.2. 元素与集合、集合与集合之间关系的区别.【教学难点】弄清元素与集合、集合与集合之间关系的区别.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.【教学过程】1.1.4集合的运算(一)【教学目标】1. 理解交集与并集的概念与性质.2. 掌握交集和并集的表示法,会求两个集合的交集和并集.3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力.【教学重点】交集与并集的概念与运算.【教学难点】交集和并集的概念、符号之间的区别与联系.【教学方法】这节课主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解.【教学过程】1.1.4集合的运算(二)【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.【教学过程】新课我们在研究数集时,常常把实数集R作为全集.二、补集1. 定义.如果A 是全集U的一个子集,由U中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解{2,4,6};∅;U.例2已知U={ x | x是实数},Q={ x | x 是有理数}.则U Q=;Q∩U Q=;Q∪U Q=.解{ x | x 是无理数};∅;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=∅;(3) U(U A)=A.例3已知全集U=R,A={x | x>5},求U A.解U A={x | x≤5}.练习 1(1) 已知全集U=R,A={ x | x<1},求U A.(2) 已知全集U=R,A={ x | x师:通过引导学生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.从引例的集合关系中直观感知补集涵义.通过画图来理解补集定义,突破难点.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.结合具体例题和Venn图,使学生自己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.AUC U A新课≤1},求U A.练习2设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩U B;UA ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,U A∪U,A ∩U A,A ∪U A.学生做练习2、3,老师点拨、解答学生疑难.通过练习加深学生对补集的理解.小结补集定义记法图示性质1. 学生读书、反思,说出自己学习本节课的收获和存在问题.2. 老师引导梳理,总结本节课的知识点,学生填表巩固.让学生读书、反思,培养学生形成良好的学习习惯,提高学习能力.作业教材P17,练习A组第1~4题.学生课后完成.巩固拓展.1.2.1充要条件【教学目标】1. 使学生正确理解充分条件、必要条件和充要条件三个概念.2. 能在判断、论证中灵活运用上述三个概念.3. 培养学生思维的严密性.【教学重点】正确理解充分条件、必要条件和充要条件三个概念.【教学难点】正确区分充分条件、必要条件.【教学方法】本节课采用启发式教学和讲练结合的教学方法,引导学生分析归纳,形成概念.【教学过程】1.2.2子集与推出的关系【教学目标】1. 正确理解子集和推出的关系.2. 掌握通过“推出”判断集合的关系.3. 启发学生发现问题和提出问题,培养学生独立思考的能力,学会分析问题和解决问题;培养学生抽象概括能力和逻辑思维能力.【教学重点】理解子集和推出的关系.【教学难点】理解通过“推出”判断集合的包含关系.【教学方法】本节课采用启发式教学和讲练结合的教学方法,运用现代化教学手段进行教学.通过创设情景,用普遍联系的观点审视事物,引导学生自己去发现、分析、归纳,形成概念.穿插有针对性的练习及讲解,并配以题组训练模式,使学生边学边练,及时巩固,深化对概念的理解.【教学过程】第二章不等式2.1.1实数的大小【教学目标】1.理解并掌握实数大小的基本性质,初步学习用作差比较法来比较两个实数或代数式的大小.2.从学生身边的事例出发,体会由实际问题上升为数学概念和数学知识的过程.3.培养学生勤于分析、善于思考的优秀品质.善于将复杂问题简单化也是我们着意培养的一种优秀的思维品质.【教学重点】理解实数的大小的基本性质,初步学习作差比较的思想.【教学难点】用作差比较法比较两个代数式的大小.【教学方法】这节课主要采用讲练结合法.通过联系公路上的限速标志,引入不等式的问题,并且从关注数字的大小入手,引导学生学习用作差比较法来比较两个实数、代数式的大小.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握作差比较法.【教学过程】教学环节教学内容师生互动设计意图导入右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40 km/h.若用v(km/h)表示汽车的速度,那么v 与40之间的数量关系用怎样的式子表示?右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得低于50 km/h.若用v(km /h)表示汽车的速度,那么v 与50之间的数量关系用怎样的式子表示?学生根据生活经验回答情境问题.答:v≤40.答:v≥50.从学生身边的生活经验出发进行新知的学习,有助于调动学生学习积极性.2.1.2不等式的性质【教学目标】1.掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题.2. 掌握应用作差比较法比较实数的大小.3.通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质.【教学重点】不等式的三条基本性质及其应用.【教学难点】不等式基本性质3的探索与运用.【教学方法】这节课主要采用讲练结合法与分组探究教学法.通过引导学生回顾玩跷跷板的经验,师生共同探究天平两侧物体的质量的大小,引导学生理性地认识不等式的三条基本性质,并运用作差比较法来证明之.通过题组训练,使学生逐步掌握不等式的基本性质,为后面运用不等式的基本性质解不等式打下理论基础.【教学过程】教学环节教学内容师生互动设计意图导入【课件展示情境1】创设天平情境问题:观察课件,说出物体a和c哪个质量更大一些?由此判断:如果a>b,b>c,那么a和c的大小关系如何?从学生身边的生活经验出发进行新知的学习,有助于调动学生学习的积极性.新性质1(传递性) 学生思考、课新课如果a>b,b>c,则a>c.分析要证a>c,只要证a-c>0.证明因为a-c=(a-b)+(b-c),又由a>b,b>c,即a-b>0,b-c>0,所以(a-b)+(b-c)>0.因此a-c>0.即a>c.【课件展示情境2】性质2(加法法则)如果a>b,则a+c>b+c.证明因为(a+c)-(b+c)=a-b,又由a>b,即a-b>0,所以a+c>b+c.思考:如果a>b,那么a-c>b-c.是否正确?不等式的两边都加上(或减去)同一个数,不等号的方向不变.推论1如果a+b>c,则a>c-b.证明因为a+b>c,所以a+b+(-b)>c+(-b),即a>c-b.不等式中任何一项,变号后可以从一边移到另一边.练习1(1)在-6<2 的两边都加上9,得;(2)在4>-3 的两边都减去6,得;(3)如果a<b,那么a-3 b-3;(4)如果x>3,那么x+2 5;(5)如果x+7>9,那么两边都,得x>2.回答得出性质1.引导学生判断:不等式的两边都加上(或减去)同一个数,不等号的方向是否改变?学生口答,教师点评.创设一种情境,给学生提供了想象的空间,为后续学习做好了铺垫.让学生在“做”数学中学数学,真正成为学习的主人.把课堂变为学生再发现、再创造的乐园.对不等式的性质及时练习,进行巩固.2.2.1区间的概念【教学目标】1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点.3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心.【教学重点】用区间表示数集.【教学难点】对无穷区间的理解.【教学方法】本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】新课全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”.例1用区间记法表示下列不等式的解集:(1) 9≤x≤10;(2) x≤0.4.解(1) [9,10];(2) (-∞,0.4].练习1用区间记法表示下列不等式的解集,并在数轴上表示这些区间:(1) -2≤x≤3;(2) -3<x≤4;(3) -2≤x<3;(4) -3<x<4;(5) x>3;(6) x≤4.例2用集合的性质描述法表示下列区间:(1) (-4,0);(2) (-8,7].解(1) {x | -4<x<0};(2) {x | -8<x≤7}.练习2用集合的性质描述法表示下列区间,并在数轴上表示这些区间:(1) [-1,2);(2) [3,1].例3在数轴上表示集合{x|x<-2或x≥1}.解如图所示.练习3已知数轴上的三个区间:(-∞,-3),(-3,4),用表格呈现相应的区间,便于学生对比记忆.教师强调“∞”只是一种符号,不是具体的数,不能进行运算.学生在教师的指导下,得出结论,师生共同总结规律.学生抢答,巩固区间知识.学生代表板演,其它学生练习,相互评价.同桌之间讨论,完学生理解无穷区间有些难度,教师要强调“∞”只是一种符号,并结合数轴多加练习。

职高数学基础模块下(人教版)教案:组合.doc

职高数学基础模块下(人教版)教案:组合.doc

职高数学基础模块下(人教版)教案:组合一、方法与例题1 .抽屉原理。

例1设整数nN4,ag …q是区间(0, 2n)内n个不同的整数,证明:存在集合{禽,&,•••, an}的一个子集'它的所有元素之和能被2n整除。

[证明](1)若{a b&,・・•,诚,则n个不同的数属于nT个集合{1, 2n~l}, {2, 2n-2}, •••, {n-1, n+1} o由抽屉原理知其中必存在两个数aji^j)属于同一集合,从而aj+"2n 被2n整除;(2)若{a】,&2,…,a…},不妨设a n=n,从a b血,…,喝血-1>3)中任意取3个数a., a j9a k(aj,<aj< a k),则aj-a,与a k-a s中至少有一个不被n整除,否则ak・ai=(ak・aj)+(aj-ai)N2n,这与a k e (0, 2n)矛盾,故ab a2, ―, a, 】中必有两个数之差不被n整除;不妨设山与血之差(a2-a.>0)不被n整除,考虑n个数a b a2, ai+a2, ai+a2+a3, ai+a2+ioi)若这n个数中有一个被n整除,设此数等于虹,若k为偶数,则结论成立;若k为奇数,则加tarn知结论成立。

ii)若这n个数中没有一个被n整除,则它们除以n的余数只能取1, 2,…,n-1 这nT个值,由抽屉原理知其中必有两个数除以n的余数相同,它们之差被n整除,而电电不被n整除,故这个差必为出,可,叫中若干个数之和,同i)可知结论成立。

2.极端原理。

例2在nXn的方格表的每个小方格内写有-•个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于】】。

证明:表中所有数之和不小于-/z2o2[证明]计算各行的和、各列的和,这2n个和中必有最小的,不妨设第m行的和最小,记和为k,则该行中至少有n・k个0,这n・k个0所在的各列的和都不小于n-k,从而这n-k列的数的总和不小于(n-k)2,其余各列的数的总和不小于k2,2从而表中所有数的总和不小于"+1?曰妇 + " =-n2.2 23.不变量原理。

中职数学基础模块下册:6《数列》教案设计(全章)

中职数学基础模块下册:6《数列》教案设计(全章)

6.1.1 数列的定义【教学目标】1. 理解数列的有关概念和通项公式的意义.2. 了理解数列与函数的关系,培养学生观察分析的能力.3. 使学生体会数学与生活的密切联系,提高数学学习的兴趣.教学重点数列的概念及其通项公式.教学难点数列通项公式的概念.教学方法这节课主要采用情景教学法.利用多媒体,在教师的引导下,根据学生的认知水平,设计了创设情境——引入概念,观察归纳——形成概念,讨论研究——深化概念,即时训练——巩固新知等环节.各步骤环环相扣,层层深入,引导学生体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受.【教学过程】环节教学内容师生互动设计意图导入1.讲故事,感受数列2.提出问题,引入新课我国有用十二生肖纪年的习俗,每年都用一种动物来命名,12年轮回一次.2009年(农历乙丑年)是21世纪的第一个牛年,请列出21世纪所有牛年的年份.教师讲述古印度传说故事《棋盘上的麦粒》.学生倾听故事,认识数列.教师提出问题.学生分组讨论,找出问题的答案.创设情境,让学生认识数列,激发学生的好奇心,增强学生的学习兴趣.提出和本节课密切相关的问题,让学生思考,充分发挥学习小组的作用,展开讨论.新课1.数列的定义把21世纪所有牛年的年份排成一列,得到2 009,2 021,2 033,2 045,2 057,2 069,2 081,2 093.①像①这样按一定次序排列的一列数,叫做数列.数列中的每一个数都叫做这个数列教师在学生探究的基础上,给出问题的答案.教师板书定义.教师出示一组数列的例新课新课的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,…,比如,2 009是数列①的第1项(或首项),2 093是数列①的第8项.举出一些数列的例子:大于3且小于11的自然数排成一列4,5,6,7,8,9,10;②正整数的倒数排成一列1,12,13,14,…;③2精确到1,0.1,0.01,0.001,…的近似值排成一列1,1.4,1.41,1.414,…;④-1的1次幂,2次幂,3次幂,4次幂,…排成一列-1,1,-1,1,-1,…;⑤无穷多个2排成一列2,2,2,2,…;⑥这些都是数列.2.数列的分类项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.练习(1)已知数列3,7,11,15,…,则33是它的第项.(2)已知数列1,12,-13,14,…,(-1)n+1·1n,…,那么它的第10项是().(A)-1 (B)1(C)-110(D)1103.数列的一般形式数列从第一项开始,按顺序与正整数对应.所以数列的一般形式可以写成a1,a2,a3,…,a n,…,子.师:数列4,5,6,7,8,9,10;与10,9,8,7,6,5,4是不同的数列.而集合{4,5,6,7,8,9,10}与{10,9,8,7,6,5,4}是相同的集合.强调数列的有序性,集合元素的无序性.教师利用上面举过的例子,讲解“数列的分类”.请学生指出上述数列中的有穷数列和无穷数列:①②是有穷数列,③④⑤⑥是无穷数列.同桌之间讨论,完成练习.教师巡视指导.强调数列的“有序性”,使学生对数列定义有更深刻的认识,又为后面学习数列的通项公式埋下伏笔.重视举例这一环节,调动学生的思维,发挥学生的主动性,加深对数列定义的理解.观察实例,培养学生分类能力.通过练习,让学生进一步掌握数列的定义.。

高教版中职教材—数学(基础模块)下册电子教案

高教版中职教材—数学(基础模块)下册电子教案

【课题】6.1 数列的概念【教学目标】知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】根据数列的前若干项写出它的一个通项公式.【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】从小到大依次取正整数时,cosN)下角码中的数为项数,a1【教师教学后记】【课题】6.2 等差数列(一)【教学目标】知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.【教学重点】等差数列的通项公式.【教学难点】等差数列通项公式的推导.【教学设计】本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:d a a n n =-+1(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:,,,,1n a n d a 只要知道其中任意三个量,就可以求出另外的一个量. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】6.3 等比数列(一)【教学目标】知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.【教学重点】等比数列的通项公式.【教学难点】等比数列通项公式的推导.【教学设计】本节的主要内容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导.等比数列与等差数列在内容上相类似,要让学生利用对比的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公式的基础,教学中要给以足够的重视.同时要强调“等比”的特点:q a a nn =+1(常数). 例1是基础题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:1a ,q ,n , n a ,只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例3都是这类问题.注意:例3中通过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到,若三个数成等比数列,则将这三个数设成是aq a qa,,比较好,因为这样设了以后,这三个数的积正好等于,3a 很容易将a 求出. 【教学备品】教学课件. 【课时安排】2课时.(90分钟) 【教学过程】【教师教学后记】【课题】7.1 平面向量的概念及线性运算【教学目标】知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.【教学重点】向量的线性运算.【教学难点】已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.【教学设计】从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念.向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a-b=a+(-b),它可以通过几何作图的方法得到,即a-b可表示为从向量b的终点指向向量a的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数λ乘以非零向量a,是数乘运算,其结果记作λa,它是一个向量,其方向与向量a 相同,其模为a的λ倍.由此得到λ∥.对向量共线的充要条件,要特别注意“非⇔=a b a bλ≠”等条件.零向量a、b”与“0【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图手写时应在字母上面加箭头,记作AB.模为零的向量叫做两个向量的方向相同;向量CD与PQ所在的直线平行,两个,方向相反,模相等.我们所研究的向量只有大小与方向两个要素.DC的负向量;)找出与向量AB平行的向量要结合平行四边形的性质进行分析.两个向量相等,-,CDBA=DCBA//AB,DC//AB,CD//AB强化练习A F共线的向量.巡视BC.+b ,即总结向量加法的平行四边形法则.为水流速度,由向量加法的平行四边形法则,AD 22AD AB AC=+=又512tan =∠CAD ,利用计算器求得图7-12(2)兴趣导入(-=+-OA OB OA-=BA(7.OA OB可以得到:起点相同的两个向量BA= a-b .BC BA-=______________-=______________OD OA.如图,在平行四边形表示向量AC、BD、*创设情境可以看出,向量OC与向量分析 因为2AO AC =所以需要首先分别求向量ACAC,BD的中点,所以OD=12BD=12a+12b和−12a+12λa+μb叫做aAB.a与向量活动探究【教师教学后记】【课题】7.2 平面向量的坐标表示【教学目标】知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.【教学重点】向量线性运算的坐标表示及运算法则.【教学难点】向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键.【教学设计】向量只有“模”与“方向”两个要素,为了研究方便,我们首先将向量的起点放置在坐标原点(一般称为位置向量).设x轴的单位向量为i,轴的单位向量为j.如果点A的坐标为(x,y),则i j,=+OA x y将有序实数对(x,y)叫做向量OA的坐标.记作OA=(x,y).例1是关于“向量坐标概念”的知识巩固性例题.要强调此时起点的位置.让学生认识到,当向量的起点为坐标原点时,其终点的坐标就是向量的坐标.例2是关于“向量线性运算的坐标表示”的知识巩固性例题.要强调与公式的对应.在研究起点为坐标原点的向量的基础上,利用向量加法的三角形法则,介绍起点在任意位置的向量的坐标表示,向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标,由此得到公式(7.8).数值上可以简单记为:终点的坐标减去起点的坐标.例3是关于“起点在任意位置的向量的坐标表示”的巩固性例题.要强调“终点的坐标减去起点的坐标”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】.则由平行四边形法则知22,)x y (如图)所示,起点为原点,终点为所示,起点为典型例题MAa=(5,3),OA,,求PQ QP1)(3,2)Q,运用知识强化练习,写出向量两点的坐标,求AB BA,两个向量和的坐标恰好是这两个向量对应坐标的和.【教师教学后记】【课题】7.3 平面向量的内积【教学目标】知识目标:(1)了解平面向量内积的概念及其几何意义.(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础. 能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力. 【教学重点】平面向量数量积的概念及计算公式. 【教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角. 【教学设计】教材从某人拉小车做功出发,引入两个向量内积的概念.需要强调力与位移都是向量,而功是数量.因此,向量的内积又叫做数量积.在讲述向量内积时要注意:(1)向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定;(2)向量数量积的正确书写方法是用实心圆点连接两个向量. 教材中利用定义得到内积的性质后面的学习中会经常遇到,其中:(1)当<a ,b >=0时,a ·b =|a ||b |;当<a ,b >=180时,a ·b =-|a ||b |.可以记忆为:两个共线向量,方向相同时内积为这两个向量模的积;方向相反时内积为这两个向量模的积的相反数.(2)|a |显示出向量与向量的模的关系,是得到利用向量的坐标计算向量模的公式的基础;(3)cos<a ,b >=||||⋅a ba b ,是得到利用两个向量的坐标计算两个向量所成角的公式的基础;(4)“a·b=0⇔a⊥b”经常用来研究向量垂直问题,是推出两个向量内积坐标表示的重要基础.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】+cos30FOA与OB 夹角,记作。

【高教版中职教材—数学(基础模块)下册电子教案课程】10

【高教版中职教材—数学(基础模块)下册电子教案课程】10

【高教版中职教材—数学(基础模块)下册电子教案课程】10.1 计数原理【教学目标】知识目标:掌握分类计数原理和分步计数原理.能力目标:培养学生的观察、分析能力.【教学重点】掌握分类计数原理和分步计数原理.【教学难点】区别与运用分类计数原理和分步计数原理.【教学设计】分类计数原理的特点:各类办法间相互独立,各类办法中的每种办法都能独立完成这件事(一步到位).分步计数原理的特点:一步不能完成,依次完成各步才能完成这件事(一步不到位).确定适用分类计数原理还是分步计数原理的关键是判断能否一次完成.例1、例2及例3是巩固性练习,主要是让学生巩固所学的分类计数原理、分步计数原理.“想一想”中的问题:如果第一步选团支部书记,第二步选班长,计算出的结果与上面的结果相同吗?答案是相同.因为第一步选团支部书记是从3个人中选出1个人,共有3种⨯=种结果.结果,对第一步的每种结果,第二步选班长都有2种结果.因此共有326“试一试”中的问题:你能说出分类计数原理和分步计数原理的区别吗?答案是:确定适用分类计数原理还是分步计数原理的关键是看能否一次完成;能一次完成,适用分类计数原理;不能一次完成,适用分步计数原理.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】n k +(种)上面的计数原理叫做分类计数原理1分类计数原理有些教科书上写作加法原则.2本章中,袋子中的球除了颜色不同外,外形、重量等完全相同。

每个球都有编号,任意两个同色球都是不同的球。

如图10-1所示,第一步从3个人中选出1个人,共有3种结果,对第一步的每种结果,第二步都有2种结果.因此共有326⨯=种结果.【想一想】如果第一步选团支部书记,第二步选班长,计算出的结果与上面的结果相同吗?第一步选班长第二步选团支部书记唐华张凤张凤薛贵 薛贵唐华薛贵 唐华张凤图10-1k•(种)n分步计数原理1分布计数原理有些教科书上写作乘法原则.【教师教学后记】。

中职数学基础模块上下册全册教案【配套人教版教材】

中职数学基础模块上下册全册教案【配套人教版教材】

中职数学教材基础模块上下册全册教案目录第一章集合 (1)1.1.1 集合的概念 (1)1.1.2 集合的表示方法 (5)1.1.3 集合之间的关系(一) (8)1.1.3 集合之间的关系(二) (11)1.1.4 集合的运算(一) (14)1.1.4 集合的运算(二) (18)1.2.1 充要条件 (21)1.2.2 子集与推出的关系 (24)第二章不等式 (27)2.1.1 实数的大小 (27)2.1.2 不等式的性质 (31)2.2.1 区间的概念 (35)2.2.2 一元一次不等式(组)的解法 (38)2.2.3 一元二次不等式的解法(一) (42)2.2.3 一元二次不等式的解法(二) (45)2.2.4 含有绝对值的不等式 (48)2.3 不等式的应用 (51)第三章函数 (54)3.1.1 函数的概念 (54)3.1.2 函数的表示方法 (58)3.1.3 函数的单调性 (61)3.1.4 函数的奇偶性 (65)3.2.1 一次、二次问题 (69)3.2.2 一次函数模型 (72)3.2.3 二次函数模型 (76)3.3 函数的应用 (81)第四章指数函数与对数函数 (83)4.1.1 有理指数(一) (83)4.1.1 有理指数(二) (87)4.1.2 幂函数举例 (91)4.1.3 指数函数 (94)4.2.1 对数 (98)4.2.2 积、商、幂的对数 (101)4.2.3 换底公式与自然对数 (105)4.2.4 对数函数 (107)4.3 指数、对数函数的应用 (110)第五章三角函数 (113)5.1.1 角的概念的推广 (113)5.1.2 弧度制 (117)5.2.1 任意角三角函数的定义 (120)5.2.2 同角三角函数的基本关系式 (124)5.2.3 诱导公式 (128)5.3.1 正弦函数的图象和性质 (133)5.3.2 余弦函数的图象和性质 (137)5.3.3 已知三角函数值求角 (140)第六章数列 (1)6.1.1 数列的定义 (1)6.1.2 数列的通项 (5)6.2.1 等差数列的概念 (9)6.2.2 等差数列的前n 项和 (15)6.3.1 等比数列的概念 (19)6.3.2 等比数列的前n项和 (23)6.4 数列的应用 (26)第七章平面向量 (29)7.1.1 位移与向量的表示 (29)7.1.2 向量的加法 (33)7.1.3 向量的减法 (37)7.2 数乘向量 (41)7.3.1 向量的分解 (45)7.3.2 向量的直角坐标运算 (48)7.4.1 向量的内积 (55)7.4.2 向量内积的坐标运算与距离公式 (59)7.5 向量的应用 (63)第八章直线和圆的方程 (66)8.1.1 数轴上的距离公式与中点公式 (66)8.1.2 平面直角坐标系中的距离公式和中点公式 (69)8.2.1 直线与方程 (73)8.2.2 直线的倾斜角与斜率 (75)8.2.3 直线方程的几种形式(一) (78)8.2.3 直线方程的几种形式(二) (81)8.2.4 直线与直线的位置关系(一) (85)8.2.4 直线与直线的位置关系(二) (90)8.2.5 点到直线的距离 (93)8.3.1 圆的标准方程 (95)8.3.2 圆的一般方程 (97)8. 4 直线与圆的位置关系 (101)8.5 直线与圆的方程的应用 (104)第九章立体几何 (106)9.1.1立体图形及其表示方法 (106)9.1.2 平面的基本性质 (109)9.2.1空间中的平行直线 (112)9.2.2 异面直线 (116)9.2.3 直线与平面平行 (119)9.2.4 平面与平面的平行关系 (123)9.3.1 直线与平面垂直 (128)9.3.2 直线与平面所成的角 (131)9.3.3 平面与平面所成的角 (134)9.3.4 平面与平面垂直 (136)9.4.1棱柱 (139)9.4.2棱锥 (142)9.4.3 直棱柱和正棱锥的侧面积 (144)9.4.4 圆柱、圆锥(一) (147)9.4.4圆柱、圆锥(二) (150)9.4.5 球 (153)9.4.6 多面体与旋转体的体积(一) (156)9.4.6多面体与旋转体的体积(二) (159)第十章概率与统计初步 (163)10.3.4 一元线性回归 (163)10.1计数原理 (167)10.2概率初步 (171)10.3.1 总体、样本和抽样方法(一) (175)10.3.1 总体、样本和抽样方法(二) (178)10.3.1 总体、样本和抽样方法(三) (181)10.3.2频率分布直方图 (184)10.3.3 用样本估计总体 (187)第一章集合1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学方法】本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】1.1.2集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学方法】本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】1.1.3集合之间的关系(一)【教学目标】1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】1.1.3集合之间的关系(二)【教学目标】1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.2. 理解掌握元素与集合、集合与集合之间关系的区别.3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识.【教学重点】1. 理解集合间的包含、真包含、相等关系及传递关系.2. 元素与集合、集合与集合之间关系的区别.【教学难点】弄清元素与集合、集合与集合之间关系的区别.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.【教学过程】1.1.4集合的运算(一)【教学目标】1. 理解交集与并集的概念与性质.2. 掌握交集和并集的表示法,会求两个集合的交集和并集.3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力.【教学重点】交集与并集的概念与运算.【教学难点】交集和并集的概念、符号之间的区别与联系.【教学方法】这节课主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解.【教学过程】1.1.4集合的运算(二)【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.【教学过程】新课我们在研究数集时,常常把实数集R作为全集.二、补集1. 定义.如果A 是全集U的一个子集,由U中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解{2,4,6};∅;U.例2已知U={ x | x是实数},Q={ x | x 是有理数}.则U Q=;Q∩U Q=;Q∪U Q=.解{ x | x 是无理数};∅;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=∅;(3) U(U A)=A.例3已知全集U=R,A={x | x>5},求U A.解U A={x | x≤5}.练习 1(1) 已知全集U=R,A={ x | x<1},求U A.(2) 已知全集U=R,A={ x | x师:通过引导学生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.从引例的集合关系中直观感知补集涵义.通过画图来理解补集定义,突破难点.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.结合具体例题和Venn图,使学生自己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.AUC U A新课≤1},求U A.练习2设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩U B;UA ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,U A∪U,A ∩U A,A ∪U A.学生做练习2、3,老师点拨、解答学生疑难.通过练习加深学生对补集的理解.小结补集定义记法图示性质1. 学生读书、反思,说出自己学习本节课的收获和存在问题.2. 老师引导梳理,总结本节课的知识点,学生填表巩固.让学生读书、反思,培养学生形成良好的学习习惯,提高学习能力.作业教材P17,练习A组第1~4题.学生课后完成.巩固拓展.1.2.1充要条件【教学目标】1. 使学生正确理解充分条件、必要条件和充要条件三个概念.2. 能在判断、论证中灵活运用上述三个概念.3. 培养学生思维的严密性.【教学重点】正确理解充分条件、必要条件和充要条件三个概念.【教学难点】正确区分充分条件、必要条件.【教学方法】本节课采用启发式教学和讲练结合的教学方法,引导学生分析归纳,形成概念.【教学过程】1.2.2子集与推出的关系【教学目标】1. 正确理解子集和推出的关系.2. 掌握通过“推出”判断集合的关系.3. 启发学生发现问题和提出问题,培养学生独立思考的能力,学会分析问题和解决问题;培养学生抽象概括能力和逻辑思维能力.【教学重点】理解子集和推出的关系.【教学难点】理解通过“推出”判断集合的包含关系.【教学方法】本节课采用启发式教学和讲练结合的教学方法,运用现代化教学手段进行教学.通过创设情景,用普遍联系的观点审视事物,引导学生自己去发现、分析、归纳,形成概念.穿插有针对性的练习及讲解,并配以题组训练模式,使学生边学边练,及时巩固,深化对概念的理解.【教学过程】第二章不等式2.1.1实数的大小【教学目标】1.理解并掌握实数大小的基本性质,初步学习用作差比较法来比较两个实数或代数式的大小.2.从学生身边的事例出发,体会由实际问题上升为数学概念和数学知识的过程.3.培养学生勤于分析、善于思考的优秀品质.善于将复杂问题简单化也是我们着意培养的一种优秀的思维品质.【教学重点】理解实数的大小的基本性质,初步学习作差比较的思想.【教学难点】用作差比较法比较两个代数式的大小.【教学方法】这节课主要采用讲练结合法.通过联系公路上的限速标志,引入不等式的问题,并且从关注数字的大小入手,引导学生学习用作差比较法来比较两个实数、代数式的大小.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握作差比较法.【教学过程】教学环节教学内容师生互动设计意图导入右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40 km/h.若用v(km/h)表示汽车的速度,那么v 与40之间的数量关系用怎样的式子表示?右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得低于50 km/h.若用v(km /h)表示汽车的速度,那么v 与50之间的数量关系用怎样的式子表示?学生根据生活经验回答情境问题.答:v≤40.答:v≥50.从学生身边的生活经验出发进行新知的学习,有助于调动学生学习积极性.2.1.2不等式的性质【教学目标】1.掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题.2. 掌握应用作差比较法比较实数的大小.3.通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质.【教学重点】不等式的三条基本性质及其应用.【教学难点】不等式基本性质3的探索与运用.【教学方法】这节课主要采用讲练结合法与分组探究教学法.通过引导学生回顾玩跷跷板的经验,师生共同探究天平两侧物体的质量的大小,引导学生理性地认识不等式的三条基本性质,并运用作差比较法来证明之.通过题组训练,使学生逐步掌握不等式的基本性质,为后面运用不等式的基本性质解不等式打下理论基础.【教学过程】教学环节教学内容师生互动设计意图导入【课件展示情境1】创设天平情境问题:观察课件,说出物体a和c哪个质量更大一些?由此判断:如果a>b,b>c,那么a和c的大小关系如何?从学生身边的生活经验出发进行新知的学习,有助于调动学生学习的积极性.新性质1(传递性) 学生思考、课新课如果a>b,b>c,则a>c.分析要证a>c,只要证a-c>0.证明因为a-c=(a-b)+(b-c),又由a>b,b>c,即a-b>0,b-c>0,所以(a-b)+(b-c)>0.因此a-c>0.即a>c.【课件展示情境2】性质2(加法法则)如果a>b,则a+c>b+c.证明因为(a+c)-(b+c)=a-b,又由a>b,即a-b>0,所以a+c>b+c.思考:如果a>b,那么a-c>b-c.是否正确?不等式的两边都加上(或减去)同一个数,不等号的方向不变.推论1如果a+b>c,则a>c-b.证明因为a+b>c,所以a+b+(-b)>c+(-b),即a>c-b.不等式中任何一项,变号后可以从一边移到另一边.练习1(1)在-6<2 的两边都加上9,得;(2)在4>-3 的两边都减去6,得;(3)如果a<b,那么a-3 b-3;(4)如果x>3,那么x+2 5;(5)如果x+7>9,那么两边都,得x>2.回答得出性质1.引导学生判断:不等式的两边都加上(或减去)同一个数,不等号的方向是否改变?学生口答,教师点评.创设一种情境,给学生提供了想象的空间,为后续学习做好了铺垫.让学生在“做”数学中学数学,真正成为学习的主人.把课堂变为学生再发现、再创造的乐园.对不等式的性质及时练习,进行巩固.2.2.1区间的概念【教学目标】1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点.3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心.【教学重点】用区间表示数集.【教学难点】对无穷区间的理解.【教学方法】本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】新课全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”.例1用区间记法表示下列不等式的解集:(1) 9≤x≤10;(2) x≤0.4.解(1) [9,10];(2) (-∞,0.4].练习1用区间记法表示下列不等式的解集,并在数轴上表示这些区间:(1) -2≤x≤3;(2) -3<x≤4;(3) -2≤x<3;(4) -3<x<4;(5) x>3;(6) x≤4.例2用集合的性质描述法表示下列区间:(1) (-4,0);(2) (-8,7].解(1) {x | -4<x<0};(2) {x | -8<x≤7}.练习2用集合的性质描述法表示下列区间,并在数轴上表示这些区间:(1) [-1,2);(2) [3,1].例3在数轴上表示集合{x|x<-2或x≥1}.解如图所示.练习3已知数轴上的三个区间:(-∞,-3),(-3,4),用表格呈现相应的区间,便于学生对比记忆.教师强调“∞”只是一种符号,不是具体的数,不能进行运算.学生在教师的指导下,得出结论,师生共同总结规律.学生抢答,巩固区间知识.学生代表板演,其它学生练习,相互评价.同桌之间讨论,完学生理解无穷区间有些难度,教师要强调“∞”只是一种符号,并结合数轴多加练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】6.1 数列的概念
【教学目标】
知识目标:
(1)了解数列的有关概念;
(2)掌握数列的通项(一般项)和通项公式.
能力目标:
通过实例引出数列的定义,培养学生的观察能力和归纳能力.
【教学重点】
利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.【教学难点】
根据数列的前若干项写出它的一个通项公式.
【教学设计】
通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列.讲解数列的通项(一般项)和通项公式.
从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数.学生往往不易理解什么是“一定次序”.实际上,不论能否表述出来,只要写出来,就等于给出了“次序”,比如我们随便写出的两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照“一定次序”排成的一列数,因此它们就都是数列,但它们的排列“次序”不一样,因此是不同的数列.
例1和例3是基本题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用.
例2是巩固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比较直观,降低了难度,学生容易接受.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
教学过程教师
行为
学生
行为
教学
意图


*揭示课题
6.1 数列的概念.
*创设情境兴趣导入
介绍了解0
教学过程教师
行为
学生
行为
教学
意图


将正整数从小到大排成一列数为
1,2,3,4,5,….(1 ) 将2的正整数指数幂从小到大排成一列数为
2345
2,2,2,2,2,.(2 )当n从小到大依次取正整数时,cosπ
n的值排成一列数为
-1,1,-1,1,….(3 )取无理数π的近似值(四舍五入法),依照有效数字的个数,排成一列数为
3,3.1,3.14,3.141,3.1416,….(4)播放
课件
质疑
引导
分析
观看
课件
思考
自我
分析
从实
例出
发使
学生
自然
的走
向知
识点
5
*动脑思考探索新知
【新知识】
象上面的实例那样,按照一定的次序排成的一列数叫做数列.数列中的每一个数叫做数列的项.从开始的项起,按照自左至右的排序,各项按照其位置依次叫做这个数列的第1项(或首项),第2项,第3项,…,第n项,…,其中反映各项在数列中位置的数字1,2,3,…,n,分别叫做对应的项的项数.只有有限项的数列叫做有穷数列,有无限多项的数列叫做无穷数列.
【小提示】
数列的“项”与这一项的“项数”是两个不同的概念.如数列(2)中,第3项为32,这一项的项数为3.
【想一想】
上面的4个数列中,哪些是有穷数列,哪些是无穷数列? 总结
归纳
仔细
思考
理解
带领
学生
分析
教 学 过 程
教师 行为 学生 行为 教学 意图 时间 【新知识】
由于从数列的第一项开始,各项的项数依次与正整数相对应,所以无穷数列的一般形式可以写作
123,,,,n a a a a ,.()n ∈N
简记作{n a }.其中,下角码中的数为项数,1a 表示第1项,2a 表示第2项,….当n 由小至大依次取正整数值时,n a 依次可以表示数列中的各项,因此,通常把第n 项n a 叫做数列{n a }的通项或一般项. 分析 讲解 关键 词语
记忆
引导 式启 发学 生得 出结 果
10
*运用知识 强化练习
1.说出生活中的一个数列实例.
2.数列“1,2,3,4,5”与数列“5 ,4, 3,2,1 ”是否为同一个数列?
3.设数列{}n a 为“-5,-3,-1,1,3, 5,…” ,指出其中3a 、
6a 各是什么数?
提问 巡视 指导
思考 口答
及时 了解 学生 知识 掌握 得情 况
15 *创设情境 兴趣导入 【观察】
6.1.1中的数列(1)中,各项是从小到大依次排列出的正整数.
11a =,22a =,33a =,…, 可以看到,每一项与这项的项数恰好相同.这个规律可以用 *
()n a n n =∈N
表示.利用这个规律,可以方便地写出数列中的任意一项,如1111a =,2020a =.
质疑
引导 分析
思考 参与 分析
引导启发学生思考
教 学 过 程
教师 行为 学生 行为 教学 意图
时间 6.1.1中的数列(2)中,各项是从小到大顺次排列出的2的正整数指数幂.
12a =,222a =,332a =,…, 可以看到,各项的底都是2,每一项的指数恰好是这项的项数.这个规律可以用
*2()n n a n =∈N
表示,利用这个规律,可以方便地写出数列中的任意一项,如11112a =,20202a =.
25
*动脑思考 探索新知 【新知识】
一个数列的第n 项n a ,如果能够用关于项数n 1
的一个式
子来表示,那么这个式子叫做这个数列的通项公式.
数列(1)的通项公式为n a n =,可以将数列(1)记为数列{n };数列(2)的通项公式为2n n a =,可以将数列(2)记为数列{2}n
. 总结 归纳 仔细
分析 讲解 关键 词语 思考 归纳 理解 记忆 带领 学生 总结
35
*巩固知识 典型例题
例1 设数列{n a }的通项公式为
1
2n n
a =
, 写出数列的前5项.
分析 知道数列的通项公式,求数列中的某一项时,只需
将通项公式中的n 换成该项的项数,并计算出结果.
解 111122a =
=;221142a ==;331182a ==;4
411
16
2a ==; 说明 强调 引领
讲解 观察 思考 主动
教 学 过 程
教师 行为 学生 行为 教学 意图 时间 55
11
322
a =
=. 例2 根据下列各无穷数列的前4项,写出数列的一个通项
公式.
(1)5,10,15,20,…; (2)1111
,,,,2468…;
(3)−1,1,−1,1,….
分析 分别观察分析各项与其项数之间的关系,探求用式子表示这种关系.
解 (1)数列的前4项与其项数的关系如下表: 项数n 1 2 3 4 项n a 5
10
15
20
关系
551=⨯ 1052=⨯ 1553=⨯ 2054
=⨯
由此得到,该数列的一个通项公式为
5n a n =.
(2)数列前4项与其项数的关系如下表: 由此得到,该数列的一个通项公式为
1
2n a n
=
. (3)数列前4项与其项数的关系如下表: 序号 1 2 3 4 项n a
12 14 16 1
8 关系
11221
=
⨯ 11422
=
⨯ 11623
=
⨯ 11824
=

序号
1
2
3
4
说明
引领 分析
求解 观察
通过例题进一步领会 注意 观察 学生 是否 理解 知识 点。

相关文档
最新文档