小学数学《染色问题》ppt

合集下载

第五讲 立体图形染色问题

第五讲 立体图形染色问题

第五讲立体图形染色问题
姓名成绩
【例1】一个正方体棱长7cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
【例2】一个长方体长9cm,宽4cm,高8 cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
〖练习1〗一个正方体,表面涂成红色,切成棱长1cm的小正方体,期中一面涂色的有216个小正方体,这个正方体的体积是多少?
〖练习2〗一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n次后,要使各面上均没有红色的小方块为24块,则n的取值是________。

综合试题
1、某学生语文和数学平均分为90分,语文和英语的平均分为94分,英语和数学平均分为91分。

这位学生语文考()分,数学考()分。

2、甲仓库有大米95.8吨,乙仓库有大米54.5吨。

要从甲仓库中运()吨到乙仓库后,乙仓库中的大米吨数是甲仓库中的2倍。

3、有一组数据如下图排列:
一二三四五
1 2 3 4 5
9 8 7 6
10 11 12 13
17 16 15 14
······如此规律,1991排在第()列。

4、一个长方体,如果长减少2厘米,宽、高不变,它的体积减少48立方厘米,如果宽增加3厘米,长、高都不变,它的体积增加99立方厘米,如果高增加4厘米,长、宽都不变,它的体积增加352立方厘米,求原长方体的表面积是多少平方厘米?。

数学中的染色问题

数学中的染色问题

表丁(乙) 11 2 4 19 8 5 24 7 18 20 2 19 3 6 25 1
数学中的染色问题
❖ 这样,每一次操作中字母的置换就相当于 下面的置换:1 2,2 3,…,25 26,
❖26 1.显然,每次操作不改变这16个数字 和的奇偶性,但是表丙、表丁16个数字和 分别为213,174,它们的奇偶性不同,故表 丙不能变成表丁,即表甲不能变成表乙。
0 1 0 10 1 0 1 01 0 1 0 10 1 0 1 01 0 1 0 10 A
数学中的染色问题
1234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A
数学中的染色问题
❖例2 下面给出表甲表乙 0154
3267 8455 2046
❖…,最后字母Z变成A),问:能否经过若 干次操作,使甲表变成乙表?如果能,请 写出变化过程,如不能,说明理由。
数学中的染色问题
❖表甲 ❖S O B R ❖T Z F P ❖H O C N ❖A D V X
表乙 KBDS HEXG RTBS CFYA
给甲乙表上字母用字母表的序号代替
❖表丙(甲 ) ❖19 15 2 18 ❖20 26 6 16 ❖8 15 3 14 ❖1 4 22 24
数学中的染色问题
❖例题4 试证:任意6个人中,一 定有3个人或者互相认识,或者 互相都不认识。
数学中的染色问题
❖证明:用6个点
A1,A2,A3,A4,A5,A6
❖代表6个人,若人认识就用红线段 相连接,否则用黑线段相连接。

数学中的染色问题

A2

A3
❖ A1

6第四十六章 染色与覆盖问题

6第四十六章 染色与覆盖问题

第四十六章染色与覆盖问题概念本讲我们将一起学习染色与覆盖。

而这里所说的染色问题并不是要求如何染色,然后有多少种染色方法等数学问题。

而是一种解决逻辑推理题的一种方法,一种将研究对象分类的形象化的方法。

9个小格染成黑白相间的颜色,很明显就能看出是不能办到的。

因为从A格出去,第一步不管往哪走都会走入黑格,接着第二步又都会走入黑格,即走奇数步后进黑格,偶数步后进白格,这个人若要从A格出去又要回到A格,必须走9个格,所以最后一格必为黑才可以,而A格为白格,所以不可以。

三、结点问题分析与路径问题相似,只不过我们这回染得不再是小格而是点,染成黑白相间的点。

我们会发现一共14个点,6个黑点8个白点,每次的路线仍是从黑点走到白点或者从白点走到黑点,所以若想每个点不重复的都走一遍的话必须黑白相等或相差1个,但本题黑白差2个,所以不可以。

四、一般覆盖将这14个小格染成黑白相间的,那么7个相邻两方格应该是一黑一白的,所以如果能覆盖的话,14为454,所以例题1.2.(第2×23.(29-4(2).试证明mn必是8的倍数.4.(1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.5.?(1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.6.?(第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.7.8.段.9.?6格,形如的弯角板与1的矩形10.?11.?有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.12.?如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?13.?设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有????r名能用同一种语言通话.14.?(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.15.?(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.16.?为什么?17.(1)(2)18.19.20.所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?21.在一个正方形的果园里,种有63棵果树,加上右下角的一间小屋,整齐地排列成八行八列,如图(1).守园人从小屋出发经过每一棵树,不重复也不遗漏(不许斜走),最后又回到小屋,行吗?如果有80棵果树,如图(2),连小屋排成九行九列呢?22.右图是半张中国象棋盘,棋盘上已放有一只马.众所周知,马是走“日”字的.请问:这只马能否不重复地走遍这半张棋盘上的每一个点,然后回到出发点?23.右图是由14个大小相同的方格组成的图形.试问能不能剪裁成7个由相邻两方格组成的长方形?24.右图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?25.26.用和27.28.929.30.31.右图是一个圆盘,中心轴固定在黑板上.开始时,圆盘上每个数字所对应的黑板处均写着0.然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上.问:经过若干次后,黑板上的四个数是否可能都是999?32.有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样分?33.有一位老人,他有三个儿子和十七匹马.他在临终前对他的儿子们说:“我已经写好了遗嘱,我把马留给你们,你们一定要按我的要求去分.”老人去世后,三兄弟看到了遗嘱.遗嘱上写着:“我把十七匹马全都留给我的三个儿子.长子得1/2,次子得1/3,给幼子1/9,不许流血,不许杀马.你们必须遵从父亲的遗愿!”请你帮助他们分分马吧!34.8个金币中,有一个比真金币轻的假金币,你能用天平称两次就找出来吗(天平无砝码)?35.936.103斤油.要把这37.38..39.40.老师在黑板上画了9个点,要求同学们用一笔画出一条通过这9个点的折线(只许拐三个弯儿).你能办到吗?41.如右图所示,将1~12顺次排成一圈.如果报出一个数a(在1~12之间),那么就从数a的位置顺时针走a个数的位置.例如a=3,就从3的位置顺时针走3个数的位置到达6的位置;a=11,就从11的位置顺时针走11个数的位置到达10的位置.问:a是多少时,可以走到7的位置?42.对于任意一个自然数n,当n为奇数时,加上121;当n为偶数时,除以2,这算一次操作现在对231连续进行这种操作,在操作过程中是否可能出现100?43.一只电动老鼠从左下图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转。

正方体染色切拼问题PPT课件

正方体染色切拼问题PPT课件
“三面涂色”与顶点有关:1×8 = 8(块)
“两面涂色”与 棱 有关:1×12=12(块)
“一面涂色”与 面 有关:1×6 =6(块)
没有涂色的:总块数 -( 8 + 12 + 6) = 27- ( 8 + 12 + 6) = 1(块)
第2页/共6页
拓展
把一个六面都涂上颜色的正 方体木块,切成64块大小相同的 小正方体。表面涂色的小正方体 有 56 块。
“两面涂色”与 棱 有关:(棱长-2)× 12条棱 = (块)
“一面涂色”与 面 有关:(棱长-2) 2 × 6个面 = (块)
“没有涂色”的小正方体:(棱长–2)3 = (块)
“表面涂色”的小正方体:棱长3 -(棱长–2)3 = (块)
第4页/共6页
大竹县杨通乡中心小学:xxx
第5页/共6页
感谢您的一个正方体,表面涂上颜色,刚好切
成125个棱长1cm的小正方体。
三面涂色的小正方体有_____个, 两面涂色的小正方体有_____个, 一面涂色的小正方体有_____个, 没有涂色的小正方体有_____个; 表面涂色的小正方体有_____个。
“三面涂色”与顶点有关:1 × 8个顶点 = 8(块)
西师版数学五年级下册第三单元
正方体“染色切拼”问题
大竹县杨通乡中心小学:xxx
第1页/共6页
例 一个大正方体由27个小正方体搭成(如 图),把它的表面涂上颜色后,再散开: 三面涂色的小正方体有___8__个, 两面涂色的小正方体有__1__2_个, 一面涂色的小正方体有___6__个, 没有涂色的小正方体有___1__个.
方法一:
“三面涂色”:1×8=8(块) “两面涂色”:2×12=24(块) “一面涂色”:4×6=24(块) “表面涂色”:8+24+24

《正方体染色切拼问题》课件

《正方体染色切拼问题》课件

02
01
正方体的所有面都是相等的
正方形。
03
正方体的所有棱长都相等。
04
05
正方体的所有顶点都在同一 个平面上。
正方体的几何结构
总结词:正方体的几何 结构
01
正方体有8个顶点,每 个顶点都是三条棱的交
点。
03
正方体的体对角线是三 个顶点的连线,且长度
等于棱长的√3倍。
05
正方体有12条棱,这些 棱连接着相对的顶点。
可分为单一目标和多目标两类。单一目标是指通过切拼得到一个新的 几何体,多目标是指同时满足多个条件或达到多个目标。
06
正方体切拼问题的解决方法
切拼问题的解析解法
解析解法定义ቤተ መጻሕፍቲ ባይዱ
通过数学公式和逻辑推理 ,将问题转化为可计算的 形式,从而得到精确解的 方法。
应用场景
适用于规则简单、约束条 件明确的问题,可以快速 得到答案。
几何变换
研究几何体的变换,如旋 转、平移、对称等,以及 这些变换对几何体的影响 。
组合数学
研究组合问题的方法和技 巧,如排列、组合、概率 等。
切拼问题的分类
按切割方式分类
可分为直线切割和曲线切割两类。
按拼接方式分类
可分为平面拼接和立体拼接两类。
按染色方式分类
可分为单色染色和多色染色两类。
按目标分类
染色问题的定义
染色问题
在几何形状的表面进行染色,使 得相邻的面或区域有不同的颜色 ,且相邻的面或区域的颜色不同 。
正方体染色问题
在正方体的表面进行染色,使得 相邻的面或区域有不同的颜色。
染色问题的数学模型
数学模型
通过建立数学模型,将染色问题转化为数学问题,以便进行求解和分析。

小学五年级竞赛 第十二讲 染色问题

小学五年级竞赛 第十二讲 染色问题

第十二讲染色问题一、课前热身:1、如果用红、黄、绿三种颜色给下列两幅图涂色,共有几种不同的涂色方法。

(要求:相邻的部分不能涂相同的颜色)2、图中的网格是由6个相同的小正方形构成,将其中4个小正方形涂上灰色,要求每行每列都有涂色的小正方形,经旋转后两种涂色的网格相同,则视为相同的涂法,那么有多少种不同的涂色方法?二、典例精析:3、如图,用红、黄、蓝、绿四种颜色给小方块涂色(每个小方块涂一种颜色),且每种颜色都要用上,共有多少种涂法?4、小明想要对图中的每个小三角形进行染色,要求任意一个三角形的三边都是一条染红色、一条染绿色、一条染蓝色。

图中给出了某些边的颜色,则AB边应该染色。

5、用五种颜色染下面的图形,相邻两块不同色,有种方法。

6、在3×3的方格纸上(如图1),用铅笔涂其中的5个方格,要求每横行和每竖行列被涂方格的个数都是奇数,如果两种涂法经过旋转后相同,则认为它们是相同类型的涂法,否则是不同类型的涂法.例如图2和图3是相同类型的涂法。

回答最多有多少种不同类型的涂法?7、如图,在5×5的方格表中,涂黑若干个小方格,使得在任意3×3的正方形内恰好有4个黑格。

请画出黑格最多和最少的涂法,并说明理由。

8、有一个正方体木块,外表全部涂上红色后将它切成27个小正方体(如图),切好后:涂有1面红色的小正方体有块;涂有2面红色的小正方体有块;涂有3面红色的小正方体有块。

9、如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块。

10、把一个棱长为整数的长方体的表面都涂上红色,然后切割成棱长为1的小立方体.其中,两面有红色的小立方块有40块,一面有红色的小立方块有66块,那么这个长方体的体积是多少?三、竞赛真题:11、(2010•华罗庚金杯)如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法。

《正方体染色切拼问题》课件

《正方体染色切拼问题》课件

解决方法
解决正方体染色切拼问题的方法有多种。其中一种常用的方法是使用图论和组合数学的知识,通过建立 模型和应用算法来找到最优解。
实际应用
正方体染色切拼问题在许多领域都有实际应用,如计算机图形学、工程设计 和游戏开发等。它可以帮助我们了解空间配置和模型的设计原理。
挑战与难点
尽管正方体染色切拼问题看起来简单,但其中存在着许多挑战和难点。其中一些挑战包括确定染色和切 割的顺序以及解决可能导致无解的特殊情况。
研究成果与讨论
许多学者和数学爱好者对正方体染色切拼问题进行了深入的研究,并取得了许多有趣的发现和讨论。这 些研究成果可以方体染色切拼问题不仅具有理论意义,还能激发我们的思维和创造力。希望这个PPT课件能为大家带 来启发,并促进对这个问题的更深入探索。
《正方体染色切拼问题》 PPT课件
这个PPT课件将带你进入正方体染色切拼问题的神奇世界。
背景介绍
正方体染色切拼问题是一个有趣而有挑战性的数学问题,它涉及将一个正方 体进行染色和拼接,探索其中的规律和特性。
定义与规则
我们首先来定义正方体染色切拼问题。它是指给定一个正方体,通过染色其 中的面并切割和拼接,使每个面的颜色相同以及相邻面颜色不同的一系列操 作。

探索图形——正方体表面涂色问题PPT课件可编辑全文

探索图形——正方体表面涂色问题PPT课件可编辑全文

每个面中间位置的正方体露出1个面,一面涂色的个数与 面 有关,一个
面上1面涂色的小正方体个数(有n-2)² 个,正方体有6个面,所以1 面涂色的小正方体个数为6:x(n-2)² 个。
2021
17
导入
思 考:
(1)三面涂色的小正方体有多少块?
8个
(2)两面涂色的小正方体有多少块?
12 x(10-2)=96(个)
8
探索规律2 2面涂色的小正方体有多少个?
2021
9
探索规律2 2面涂色的小正方体有多少个?
棱等分 的份数
3
2面涂色 的位置
棱上
1条棱上有几个两 面涂色的正方体
(列式)
3—2=1
2面涂色的个数 (列式)
12x(3-2)=12
2021
10
探索规律2 2面涂色的小正方体有多少个?
棱等分 的份数
4
2面涂色 的位置
顶点处 顶点处 顶点处 顶点处
三面涂色的个数
8 8 8 8
2021
7
探索规律1
棱等分的 份数
2 3 4 5
n
三面涂色的位置
顶点处 顶点处 顶点处 顶点处 顶点处
三面涂色的个数
8 8 8 8
8
在顶点位置的正方体露出 3 个面,三面涂色的个数与顶点数相
同,无论是哪一种情况,三面涂色的个数都是8个 。
2021
棱上
1条棱上有几个两 面涂色的正方体
(列式)
4—2=2
2面涂色的个数 (列式)
12x(4-2)=24
2021
11
探索规律2 2面涂色的小正方体有多少个?
棱等分 的份数
5
2面涂色 的位置

染色问题

染色问题

什么是染色问题这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。

染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法。

染色问题基本解法:三面涂色和顶点有关 8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*60面染色和体积有关。

用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

染色问题的解题思路染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。

图一首先,拿到一道题先认真观察,看这个题的突破点。

什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。

例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。

找到这个区域问题就容易解决了。

这个区域可以任意添色就是染最多的颜色。

本题中有4种颜色那么A可以染4种颜色了。

完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。

这道题找到了最特殊的A 区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。

区域B跟A、C相连那么 B可以染2种。

D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D 则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。

数学人教版五年级下册探索图形(染色问题)课件

数学人教版五年级下册探索图形(染色问题)课件

一共有( a 8×b 6×h 5= )个小正方体 240 )个小正方体 1、三面涂色的块数有( 8 )个。 2、两面涂色的块数有( ([( [( 8-2 a-2 )) +( +( 6-2 b-2 )) +( +( 5-2 h-2 )) ] ] ×× 4=452)) 个。 个。 3、一面涂色的块数有([( a-2 8-2)×(b-2 6-2)+ ( a-2 8-2)×(h-2 5-2)+ ( + 6-2 (b-2 )×( )×( 5-2 h-2 )] )× ] 2=108 ×2 4、没有涂色的块数有( ( a-2 8-2)×(b-2 6-2)×(h-2 5-2)= 72 )) 个。 个。 )个。
把1000个小正方体拼成的大正方体表面涂上颜色1三面涂色的块数有101010把一个长10厘米宽7厘米高5厘米的长方体木块的表面涂上漆然后切成棱长是1厘米的小正方体
五年级数学思维专题---- 染色问题
绵阳东辰国际学校 赵波



第一模块:正方体的染色问题
下面3个图分别是由8个、27个、64个棱长为1厘米的小正方体拼成 一个大正方体,将它的表面全部涂成红色。请你先认真观察各类正方体 的分布位置,通过涂一涂、想一想、数一数或算一算,并按要求填空。
1、三面涂色的块数有多少个? 2、两面涂色的块数有多少个? (5—2)×12=36 (个) 3、一面涂色的块数有多少个?
8个
(5-2)×(5-2)× 6=54(个)
4、没有涂色的块数有多少个? (5-2)×(5-2)×(5-2) =27(个)
第二模块:长方体的染色问题
把一个长8厘米,宽6厘米、高5厘米的长方体木块的表面涂上 漆,然后切成棱长是1厘米的小正方体。

正方体涂色问题ppt课件

正方体涂色问题ppt课件

每 个 面 的 中 间
棱长3厘米
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
4 -2 4 -2 棱长4厘米
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
棱长4厘米
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
棱长5厘米
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
棱长4厘米
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
棱长4厘米
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

染色问题完整ppt课件

染色问题完整ppt课件
问题四:若将内圆作为第五部分,有四种颜 色可供使用,又有多少种不同的方法?
2003年•高考
ppt精选版
5
例:某城市在中心广场建造一个如图所示的 花圃,现要栽种4种不同颜色的花,每部分 栽一种且相邻部分不能栽种同样颜色的花, 不同的栽种方法有多少种?
解:根据分步计数原理,不同的栽种方法有:
4 3 2 1 A 2 1 1 1 1 2 1 ( 种 ) 2 2
答:不同的栽种方法p有pt精选1版20种。
6
强化训练 1、至少需要几种颜色才能使 右图中所有有公共端点的线段 涂上不同的颜色? 4种
2、将一个四棱锥S–ABCD的 每个顶点染上一种颜色,并使 同一条棱的两个端点异色,如 果有5种颜色可供使用,那么 A 不同的染色方法有多少种?
420种 ppt精选版
不同的栽种方法有120ppt精选版将一个四棱锥sabcd的每个顶点染上一种颜色并使同一条棱的两个端点异色如果有5种颜色可供使用那么不同的染色方法有多少种
染色问题
执教:叶 春 天
ppt精选版
1
二十世纪现代数学十大成果之一——四色问题:
给任意一张平面地图着色时,最多用四 种颜色就可使任何具有公共边界线的区域 着不同颜色。
S
D
C
B
7
小结:
解决染色问题的基本方法有二:分步 法和分类法。但分步法中有些步骤却要分 类计算,而分类法中的有些类型则要分步 计算。因此,要注意将二者结合使用。
作业:
课堂新坐标P282 一、二
ppt精选版
8
下课 谢谢指导
ppt精选版
9
ppt精选版
2
问题一:给四川、青海、西藏、云南四省 (区)的地图染色,要求每省(区)用一种 颜色,相邻省(区)着不同色,有四种颜色 可供使用,则不同的染色方法有多少种?

第14讲 染色问题

第14讲 染色问题

第14讲 染色问题 本节主要讲述用染色的方法解有关的竞赛题.染色,是一种辅助解题的手段,通过染色,把研究对象分类标记,以便直观形象地解决问题,因此染色就是分类的思想的具体化,例如染成两种颜色,就可以看成是奇偶分析的一种表现形式.染色,也是构造抽屉的一个重要方法,利用染色分类,从而构造出抽屉,用抽屉原理来解题. A 类例题例1⑴ 有一个6×6的棋盘,剪去其左上角和右下角各一个小格(边长为1)后,剩下的图形能不能剪成17个1×2的小矩形? ⑵ 剪去国际象棋棋盘左上角2×2的正方形后,能不能用15个由四个格子组成的L 形完全覆盖?分析 把棋盘的格子用染色分成两类,由此说明留下的图形不能满足题目的要求.证明 ⑴如图,例例1(!把6×6棋盘相间染成黑、白二色,使相邻两格染色不同.则剪去的两格同色.但每个1×2小矩形都由一个白格一个黑格组成,故不可能把剩下的图形剪成17个1×2矩形.⑵如图,把8×8方格按列染色,第1,3,5,7列染黑,第2、4、6、8列染白.这样染色,其中黑格有偶数个.由于每个L 形盖住三黑一白或三白一黑,故15个L 形一定盖住奇数个黑格,故不可能.说明 用不同的染色方法解决不同的问题.例2 用若干个由四个单位正方形组成的“L ”形纸片无重叠地拼成一个m n 的矩形,则mn 必是8的倍数.分析 易证mn 是4的倍数,再用染色法证mn 是8的倍数. 证明:每个L 形有4个方格,故4|mn .于是m 、n 中至少有一个为偶数.设列数n 为偶数,则按奇数列染红,偶数列染蓝.于是红格与蓝格各有12mn 个,而12mn 是偶数.每个L 形或盖住3红1蓝,或盖住1红3蓝,设前者有p 个,后者有q 个.于是红格共盖住3p +q 个即p +q 为偶数,即有偶数个L 形.设有2k 个L 形.于是mn =2k ×4=8k .故证.说明 奇偶分析与染色联合运用解决本题.情景再现1.下面是俄罗斯方块的七个图形:请你用它们拼出(A)图,再用它们拼出(B)图(每块只能用一次,并且不准翻过来用).如果能拼出来,就在图形上画出拼法,并写明七个图形的编号;如果不能拼出来,就说明理由.(5)(6)(7)(4)(2)(3)(1)2.能否用图中各种形状的纸片(不能剪开)拼成一个边长为75的正方形?(图中每个小方格的边长都为1)请说明理由.B 类例题例3 ⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在无穷条长为1的线段,这些线段的端点为同一颜色.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:存在同色的三点,且其中一点为另两点中点.分析任意染色而又要求出现具有某种性质的图形,这是染色问题常见的题型,常用抽屉原理或设置两难命题的方法解.证明 ⑴取边长为1的等边三角形,其三个顶点中必有两个顶点同色.同色两顶点连成线段即为一条满足要求的线段,由于边长为1的等边三角形有无数个,故满足要求的线段有无数条.⑵ 取同色两点A 、B ,延长AB到点C ,使BC =AB ,再延长BA 到点D ,使AD =AB ,若C 、D 中有一点为红色,例如点C 为红色,则点B 为AC 中点.则命题成立.否则,C 、D 全蓝,考虑AB 中点M ,它也是CD 中点.故无论M 染红还是蓝,均得证.说明 ⑴中,两种颜色就是两个“抽屉”,三个点就是三个“苹(B)(A )果”,于是根据抽屉原理,必有两个点落入同一抽屉.⑵中,这里实际上构造了一个两难命题:非此即彼,二者必居其一.让同一点既是某两个红点的中点,又是两个蓝点的中点,从而陷入两难选择的境地,于是满足条件的图形必然存在.达到证明的目的.例4 ⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点为为同一种颜色的等腰三角形.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点为为同一种颜色的等腰直角三角形.分析 ⑴同样可以设置两难命题:由于等腰三角形的顶点在底边的垂直平分线上,故先选两个同色点连成底边,再在连线的垂直平分线上找同色的点,这是解法1的思路.利用圆的半径相等来构造等腰三角形的两腰,这是解法2的思路.利用抽屉原理,任5个点中必有三点同色,只要这5点中任三点都是一个等腰三角形的顶点即可,而正五边形的五个顶点中任三个都是等腰三角形的顶点,这是解法3的思路.⑵连正方形的对角线即得到两个等腰直角三角形,所以从正方形入手解决相题第2问. ⑴ 证明1 任取两个同色点A 、B (设同红),作AB 的垂直平分线MN ,若MN 上(除与AB 交点外)有红色点,则有红色三角形,若无红色点,则MN 上至多一个红点其余均蓝,取关于AB 对称的两点C 、D ,均蓝.则若AB 上有(除交点外)蓝点,则有蓝色三角形,若无蓝点,则在矩形EFGH 内任取一点K (不在边上)若K 为蓝,则可在CD 上取两点与之构成蓝色三角形,若K 为红,则可在AB 上找到两点与之构成红色三角形.证明2 任取一红点O ,以O 为圆心任作一圆,若此圆上有不是同一直径端点的两个红点A 、B ,则出现红色顶点等腰三角形OAB ,若圆上只有一个红点或只有同一直径的两个端点A (2)(1)是红点,则圆上有无数蓝点,取两个蓝点(不关于红点为端点的直径对称)C 、D ,于是CD 的垂直平分线与圆的两个交点E 、F 为蓝点,于是存在蓝色顶点的等腰三角形CDE . 证明3 取一个正五边形ABCDE ,根据抽屉原理,它的5个顶点中,必有三个顶点(例如A 、B 、C)同色,则△ABC 即为等腰三角形.⑵证明 任取两个蓝点A 、B ,以AB 为一边作正方形ABCD ,若C 、D 有一为蓝色,则出现蓝色三角形.若C 、D 均红,则对角线交点E 或红或蓝, 出现红色或蓝色等腰直角三角形.显然按此作法可以得到无数个等腰直角三角形.(由本题也可以证明上一题.)例5 设平面上给出了有限个点(不少于五点)的集合S ,其中若干个点被染成红色,其余点被染成蓝色,且任意三个同色点不共线.求证:存在一个三角形,具有下述性质:⑴ 以S 中的三个同色点为顶点;⑵ 此三角形至少有一条边上不含另一种颜色的点.分析 要证明存在同色三角形不难,而要满足第⑵个条件,可以用最小数原理.证明 由于S 中至少有五点,这些点染成两种颜色,故必存在三点同色.且据已知,此三点不共线,故可连成三角形.取所有同色三角形,由于S 只有有限个点,从而能连出的同色三角形只有有限个,故其中必有面积最小的.其中面积最小的三角形即为所求.首先,这个三角形满足条件⑴,其次,若其三边上均有另一种颜色的点,则此三点必可连出三角形,此连出三角形面积更小,矛盾.说明 最小数原理,即极端原理.见第十二讲.例6 将平面上的每个点都染上红、蓝二色之一,证明:存在两个A B C D相似的三角形,其相似比为1995,且每一个三角形的三个顶点同色.(1995年全国联赛加试题)分析 把相似三角形特殊化,变成证明相似的直角三角形,在矩形的网格中去找相似的直角三角形,这是证法1的思路.证法2则是研究形状更特殊的直角三角形:含一个角为30˚的直角三角形.证明可以找到任意边长的这样的三角形,于是对任意的相似比,本题均可证.证法3则是考虑两个同心圆上三条半径交圆得的三组对应点连出的两个三角形一定相似,于是只要考虑找同心圆上的同色点,而要得到3个同色点,只要任取5个只染了两种颜色的点就行;而要得到5个同色点,则只要取9个只染了两种颜色的点即行.证明1 首先证明平面上一定存在三个顶点同色的直角三角形. 任取平面上的一条直线l ,则直线l 上必有两点同色.设此两点为P 、Q ,不妨设P 、Q 同着红色.过P 、Q 作直线l 的垂线l 1、l 2,若l 1或l 2上有异于P 、Q 的点着红色,则存在红色直角三角形.若l 1、l 2上除P 、Q 外均无红色点,则在l 1上任取异于P 的两点R 、S ,则R 、S 必着蓝色,过R 作l 1的垂线交l 2于T ,则T 必着蓝色.△RST 即为三顶点同色的直角三角形.下面再证明存在两个相似比为1995的相似的直角三角形.设直角三角形ABC 三顶点同色(∠B 为直角).把△ABC 补成矩形ABCD (如图).把矩形的每边都分成n等分(n 为正奇数,n >1,本题中取n=1995).连结对边相应分点,把矩形ABCD 分成n 2个小矩形. AB 边上的分点共有n +1个,由于n 为奇数,故必存在其中两个相邻的分点同色,(否则任两个相邻分点异色,则可得A 、B 异色),不妨设相邻分点E 、F 同色.考察E 、F 所在的小矩形的另两个顶点E '、F ',若E '、F '异色,则△EFE '或△DFF '为三个顶点同色的小直角三角形.若E '、F '同色,再考察以此二l l点为顶点而在其左边的小矩形,….这样依次考察过去,不妨设这一行小矩形的每条竖边的两个顶点都同色.同样,BC边上也存在两个相邻的顶点同色,设为P、Q,则考察PQ所在的小矩形,同理,若P、Q所在小矩形的另一横边两个顶点异色,则存在三顶点同色的小直角三角形.否则,PQ所在列的小矩形的每条横边两个顶点都同色.现考察EF所在行与PQ所在列相交的矩形GHNM,如上述,M、H都与N同色,△MNH为顶点同色的直角三角形.由n=1995,故△MNH∽△ABC,且相似比为1995,且这两个直角三角形的顶点分别同色.证明2 首先证明:设a为任意正实数,存在距离为2a的同色两点.任取一点O(设为红色点),以O为圆心,2a为半径作圆,若圆上有一个红点,则存在距离Array为2a的两个红点,若圆上没有红点,则任一圆内接六边形ABCDEF的六个顶点均为蓝色,但此六边形边长为2a.故存在距离为2a的两个蓝色点.下面证明:存在边长为a,3a,2a的直角三角形,其三个顶点同色.如上证,存在距离为2a的同色两点A、B(设为红点),以AB为直径作圆,并取圆内接六边形ACDBEF,若C、D、E、F中有任一点为红色,则存在满足要求的红色三角形.若C、D、E、F为蓝色,则存在满足要求的蓝色三角形.下面再证明本题:由上证知,存在边长为a,3a,2a及1995a,19953a,1995⨯2a的两个同色三角形,满足要求.证明3 以任一点O为圆心,a及1995a为半径作两个同心圆,在小圆上任取9点,其中必有5点同色,设为A、B、C、D、E,作射线OA、OB、OC、OD、OE,交大圆于A',B',C',D',E',则此五点中必存在三点同色,设为A'、B'、C'.则∆ABC与∆A'B'C'为满足要求的三角形.情景再现3.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在一个矩形,它的四个顶点同色.4.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点全为同一种颜色的全等三角形.5.图中是一个6×6的方格棋盘,现将部分1×1小方格涂成红色。

小学数学《染色与赋值》ppt

小学数学《染色与赋值》ppt
矛盾。由此可以判定符合要求的走法不存在。
培优训练
用15个1×4的长方形和1个2×2的 正方形,能否覆盖8×8的棋盘?
解:不能。如图,给8×8的方格棋盘涂上4种 不同的颜色(用数字1,2,3,4表示)。显然标有 1,2,3,4的小方格各有16个。每个1×4的长方形 恰好盖住标有1,2,3,4的小方格各一个,但一个 2×2的正方形只能盖住有三种数字的方格,故无法
思维小体操
1、猫见了老鼠为什么撒腿就跑? 答案:去捉老鼠。 2、什么人一年中只工作一天? 答案:圣诞老人。 3、一头牛,向北走10米,再向西走10米,再向南 走10米,倒退右转,问牛的尾巴朝哪儿?答案:朝下。 4、“新华字典”有多少个字?答案:四个字。 5、房间里着火了,小明怎么也拉不开门,请问他 后来是怎么出去的? 答案:推开门。
如左下图所示,将8×8方格黑白交替地染色。
+1 +1 +1 +1
-1 -1 -1 -1
解题指导2
有一批商品,每件都是长方体形状,尺寸是 1×2×4。现在有一批现成的木箱,内空尺寸是 6×6×6。问:能不能用这些商品将木箱填满?
解:我们用染色法来解决这个问题。先将6×6×6的木箱分成216个小正方 体,这216个小正方体,可以组成27个棱长为2的正方体。我们将这些棱长 为2的正方体按黑白相间涂上颜色(如下图)。
将每个方格盖住,即不可能有题目要求的覆盖。
一时的挫折往往可以通过不 屈的搏击,变成学问及见识。
一笔一划关乎成绩,一字一 句决定人生。
解:如下图,将 8×8的棋盘染成黑白相间的形状。 如果15个“T”字形纸片和1个“田”字形纸片能够 覆盖一个8×8的棋盘,那么它们覆盖住的白格数 和黑格数都应该是32个,但是每个“T”字形纸片 只能覆盖1个或3个白格,而1和3都是奇数,因此 15个“T”字形纸片覆盖的白格数是一个奇数;又 每个“田”字形纸片一定覆盖2个白格,从而15个 “T”字形纸片与1个“田”字形纸片所覆盖的白格 数是奇数,这与32是偶数矛盾,因此,用它们不 能覆盖整个棋盘。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自主猜想
用红、黄两种颜色把下列长 方形中的每个小方格都随意染 成一种颜色。引导得出结论: 不管怎么涂色必有两列的涂色 方式完全相同。
好好思考一下
每列只有两格,而这上下两格的染色 方法之一以下四种:
红黄
红黄




❖题中所有的方格共有5列,根 据抽屉原理,有5个苹果要放 到4个抽屉中,则至少有一个 抽屉中放两个,所以至少有两 列的染色方式完全相,现要对 这7个区域着色,要求用红、黄、蓝、 绿、紫5种颜色对这7个区域着色,任意 相邻的两个区域涂上不同的颜色。现在 分男女两组,哪组涂得最快最准确,就 可以寻找其中的宝物。
地图
给出一种涂色情况:A---红色,B---黄色, C---蓝色,D---黄,E---绿,F---蓝 G---紫
解决染色问题往往要用到抽屉原 理,抽屉原理是指:把N+1个元 素,任意放入n个抽屉,则其中 必有一个抽屉里至少有2个元素. 应用抽屉原理来解一些数学题目, 往往会起到较好的效果。
你知道吗?
❖ “抽屉原理”又称“鸽笼 原理”,最先是由19世纪德国 数学家狄利克雷提出来的,所 以又称“狄利克雷原理”。
在一个3行7列的小方格中每一小格染成 红色或蓝色。试证:一定存在一个矩形,
它的四个角上的小方格颜色相同。
课堂小结:
通过今天学习,你有什么 收获?和老师同学一起分享。
课后延伸
调查我们生活中哪些能用 今天所学的知识来解决的,其 中一个写一篇数学日记。
谢谢
❖抽屉原理较简单的一个应用如:在 任意3名同学中,至少有2名同学的 性别相同.我们不妨将男、女性别视 为两个抽屉,3名同学视为3个元素, 依据抽屉原理,其中必有一个抽屉 里至少有2个元素,即至少有2名同 学的性别相同。
智慧城堡
加油啊!
有7个不同的区域。现要对这7个区域 着色,要求用红、黄、蓝、绿4种颜 色对这7个区域着色。任意相邻的两 个区域涂上不同的颜色。可以怎样涂?
相关文档
最新文档