2017-2018学年高中物理必修二检测:模块综合检测(二) Word版含解析
人教版高中物理必修二检测:模块综合检测 Word版含答案

模块综合检测(时间:90分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,1~5小题只有一个选项正确,6~8小题有多个选项正确。
全部选对的得6分,选不全的得3分,有选错或不答的得0分)1.在牛顿发现太阳与行星间的引力过程中,得出太阳对行星的引力表达式后推出行星对太阳的引力表达式,是一个很关键的论证步骤,这一步骤采用的论证方法是()A.研究对象的选取B.理想化过程C.控制变量法D.等效法解析:对于太阳与行星之间的相互作用力,太阳和行星的地位完全相同,既然太阳对行星的引力符合关系式F∝,依据等效法,行星对太阳的引力也符合关系式F∝,故D项正确。
答案:D2.跳伞表演是人们普遍喜欢的观赏性体育项目,如图所示,当运动员从直升机由静止跳下后,在下落过程中不免会受到水平风力的影响,下列说法中正确的是()A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力有关D.运动员着地速度与风力无关解析:根据运动的独立性原理,水平方向吹来的风不会影响竖直方向的运动,A、C错误;根据速度的合成,落地时速度v=,风速越大,v x越大,则降落伞落地时速度越大,B正确,D错误。
答案:B3.某老师在做竖直面内圆周运动快慢的实验研究,并给运动小球拍了频闪照片,如图所示(小球相邻影像间的时间间隔相等),小球在最高点和最低点的运动快慢比较,下列说法中不正确的是()A.该小球所做的运动不是匀速圆周运动B.最高点附近小球相邻影像间弧长短,线速度小,运动较慢C.最低点附近小球相邻影像间圆心角大,角速度大,运动较快D.小球在相邻影像间运动时间间隔相等,最高点与最低点运动一样快解析:由所给频闪照片可知,在最高点附近,像间弧长较小,表明最高点附近的线速度较小,运动较慢;在最低点附近,像间弧长较大,对应相同时间内通过的圆心角较大,故角速度较大,运动较快,A、B、C选项正确,D选项不正确。
陕西省2017-2018学年高二学业水平考试模块检测卷二物理试卷 Word版含答案

2017-2018学年陕西省普通高中学业水平考试物理模块检测卷二(必修2)第一部分(选择题共66分)一、选择题(共22小题,每小题3分,计66分。
在每小题给出的四个选项中,只有一个选项符合提莫要求)1.弹簧的原长为10cm,弹簧一开始被压缩到8cm,让弹簧逐渐伸长,最后弹簧被拉伸到12cm。
弹簧始终处于弹性限度内,下列说法正确的是()A.弹簧的长度逐渐变大,所以弹簧的弹性势能逐渐变大B.弹簧的形变量先变小后变大,所以弹簧的弹性势能先变大后变小C.弹簧8cm和12cm时,弹簧的弹性势能一样大D.弹簧12cm时的弹性势能比8cm时的弹性势能大答案:C2.如图所示,足够长的木板B置于光滑水平面上放着,木块A置于木板B上,A、B接触面粗糙,动摩擦因数为一定值,现用一水平恒力F作用在B上使其由静止开始运动,A、B 之间有相对运动,下列说法正确的有()A.B对A的摩擦力的功率是不变的B.力F做的功一定等于A、B系统动能的增加量C.力F对B做的功等于B动能的增加量D.B对A的摩擦力做的功等于A动能的增加量答案:D3.如图所示,将一质量为m的小球以初速度v,斜向上抛出,小球落地时的速度为v。
已知小球抛出点离地面高为h,运动过程中小球克服阻力为W f,则()A .小球的机械能减少了20)(21v v m mgh -+ B .小球的重力势能减少了20221-21mv mv C .合力做的功为mgh-W f D .小球克服阻力为W f 等于20221-21mv mv 答案:C4.如图所示,是一可视为质点的小球在外力作用下的v-t 图像。
下列说法正确的是( )A .在0~t 1时间内和t 2~t 3时间内,外力做功相等B .在0~t 4时间内,外力做的总功为零C .在t 2时刻,外力的功率最大D .在t 2~t 3时间内,外力的功率逐渐增大 答案:B5.如图所示,一重为8N 的小球被细线系于O 点,将细线拉至水平,小球静止释放,小球运动到最低点时绳子的拉力10N ,小球的速度为1m/s 。
2017-2018学年高中物理必修2学业分层测评2 含答案 精

学业分层测评(二)(建议用时:45分钟)1.使用机械时,下列说法正确的是( )A.一定能省力B.一定能省位移C.一定能改变力的方向D.一定不能省功【解析】根据功的原理,使用机械可以省力,也可以省位移,但不能同时省力和位移,即使用任何机械都不能省功.【答案】D2.关于功和能,下列说法正确的是( )【导学号:45732009】A.功可以转化为能,能可以转化为功B. 做了多少功,一定有多少能发生了转化C. 能量从一种形式转化为另一种形式时,可以不通过做功这一过程D. 人在平地上步行时,没有做功,但消耗了能量【解析】功和能是两个不同的概念,功为一个过程量,能是一个状态量,做功的过程是一种形式的能量转化为另一种形式的能量的过程,A错,B对.能量从一种形式转化为另一种形式时,必须通过做功来实现,C错.人在走路时重心有时上升,有时下降,人也要克服重力和阻力(包括空气阻力、关节内的摩擦等)做功,同时消耗能量,D错.【答案】B3.(多选)关于功的原理,下列说法中正确的是( )A.如果考虑摩擦力和机械自身的重力,功的原理就不适用了B.如果一个机械省力,另一个机械省距离,把这两个机械组合起来的装置可以既省力又省距离C.实际中,利用机械所做的功,一定大于不用机械直接用手做的功D.使用任何机械都不能既省力又省距离【解析】功的原理是一个普遍原理,不仅适用于理想机械,也适用于实际机械,如果考虑摩擦力和机械自身的重力,功的原理仍是适用的,故A项错;既省力又省距离的机械是不存在的,故B项错,D项正确;实际中,利用机械所做的功,由于克服摩擦力和机械自身重力做功,因此一定大于不用机械直接用手做的功,故C项正确.【答案】CD4.如图125所示,把同一物体分别沿BA、CA、DA三个光滑斜面匀速推到同一高度的A点,下列说法中正确的是( )图125A.沿BA斜面最费力,做的功最多B.沿DA斜面最费力,做的功最少C.沿三个斜面推力大小都一样,沿DA斜面最省功D.沿三个斜面做的功一样多,沿BA斜面最省力【解析】由功的原理知,使用任何机械都不省功,由于斜面光滑,无论沿哪个斜面将物体推上A点,都与不用斜面直接将物体从E点匀速推到A点做的功一样多.若推力为F,坡长为l,则有Fl=Gh,l越长,F越小,所以D正确,A、B、C错误.【答案】D5.(多选)举重运动员把重800 N的杠铃举高2 m,下列说法中正确的是( )A.人体内有1 600 J的化学能转化为杠铃的势能B.人体内消耗的化学能大于1 600 JC.人对杠铃做的功大于1 600 JD.人克服杠铃重力做的功等于1 600 J【解析】运动员把杠铃举高2 m的过程,需克服重力做功W G=800×2 J=1 600 J,故A、D正确;同时运动员除克服重力做功外,还要克服额外阻力做功,故人体消耗的化学能大于1 600 J,故B正确;其中有1 600 J的化学能通过人对杠铃做功而转化为杠铃的重力势能,故C错误.【答案】ABD6.如图126所示,甲、乙两种装置将同一物体升高1 m,如果不计摩擦和滑轮重力,那么,拉力F所做的功( )图126A.甲多B.乙多C.一样多D.不能比较【解析】由于都是在理想情况下,使用任何机械都不省功,甲、乙两种装置将同一物体升高1 m,不计摩擦力和滑轮重,两个机械拉力F所做的功相等,故选C.【答案】C7.如图127所示,演员正在进行杂技表演.由图可估算出他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于( )图127A.0.3 J B.3 JC.30 J D.300 J【解析】一个鸡蛋大约55 g,鸡蛋抛出的高度大约为60 cm,则将一只鸡蛋抛出至最高点的过程中人对鸡蛋做的功等于鸡蛋升高60 cm的过程中克服鸡蛋重力做的功,即W=mgh =55×10-3×10×60×10-2 J=0.33 J,故A正确.【答案】A8.人骑自行车在水平路面上匀速行驶,受摩擦阻力30 N,行驶20 m过程中,人对自行车做功2 000 J,试求此过程中所做的额外功是多少?【解析】根据题意W动=2 000 J,W输出=fs=600 J由功的原理W动=W输出+W额外知W额外=1 400 J.【答案】1 400 J9.重为100 N、长1 m的不均匀铁棒平放在水平面上,某人将它一端缓慢竖起,需做功55 J,将它另一端缓慢竖起,需做功( )A.45 J B.55 JC.60 J D.65 J【解析】将不均匀铁棒缓慢竖起的过程中,根据功的原理,人对铁棒做的功等于铁棒克服自身重力所做的功.根据功能关系可知,人对铁棒做55 J的功,铁棒的重心位置升高了0.55 m,若将铁棒另一端缓慢竖起,铁棒的重心位置升高0.45 m,根据功能关系可知,人需要克服铁棒重力对铁棒做45 J的功,选项A正确.【答案】A10.(多选)下列说法中正确的是( )A.煤的燃烧是将化学能转化为内能B.物体自由下落是将重力势能转化为内能C.太阳能热水器是将光能转化为内能D.太阳能电池是将光能转化为电能【解析】燃烧是发生化学变化而释放出热,A 正确.物体下落,高度降低,重力势能减小,速率增大,则动能增大,B 错误.太阳能热水器、太阳能电池分别是利用太阳光的能量对水加热、让电池对外供电,C 、D 正确.【答案】ACD11.如图128所示,绳的一端固定在天花板上,通过一动滑轮将质量m =10 kg 的物体由静止开始以2 m/s 2的加速度提升3 s .求绳的另一端拉力F 在3 s 内所做的功.(g 取10 m/s 2,动滑轮和绳的质量及摩擦均不计)【导学号:45732010】图128【解析】物体受到两个力的作用:拉力F ′和重力mg ,由牛顿第二定律得F ′-mg =ma 所以F ′=m (g +a )=10×(10+2) N =120 N 则力F =12F ′=60 N物体从静止开始运动,3 s 内的位移为s =12at 2=12×2×32 m =9 m力F 作用在绳的端点,而在物体发生9 m 位移的过程中,绳的端点的位移为2s =18 m ,所以力F 所做的功为W =F ·2s =60×18 J=1 080 J.【答案】1 080 J12.工人在劳动中为了方便,利用一个斜面将一个重为106N 的机座升高了0.5 m .斜面长为4 m ,若机座与斜面之间的动摩擦因数μ=0.1,则对机座的拉力所做的功为多大?【解析】在斜面上对机座的拉力是动力,故拉力所做的功是总功,机座的重力沿斜面向下的分力和斜面对机座的摩擦力都是阻力,做负功;克服重力所做的功是有用功,克服摩擦力所做的功是额外功.根据机械功的原理可得W 动=W 阻=W 有用+W 额外即Fl =Gh +μG cos α·l ,又由cos α=l 2-h 2l得cos α=42-0.524=378故拉力对机座所做的功为W 动=106×0.5 J+0.1×106×378×4 J=8.97×105J. 【答案】8.97×105J。
高中物理必修二模块水平综合检测(全册最新整理含答案)

高中物理必修二模块水平综合检测(最新整理)(时间:90分钟 满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是( )A .若小球初速度增大,则θ减小B .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .小球水平抛出时的初速度大小为gt tan θ2.关于摩擦力做功,以下说法正确的是( )A .滑动摩擦力阻碍物体的相对运动,所以一定做负功B .静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C .静摩擦力和滑动摩擦力不一定都做负功D .一对相互作用力,若作用力做正功,则反作用力一定做负功3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A 轮有48齿,B 轮有42齿,C 轮有18齿,D 轮有12齿,则( )A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4 D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1 4.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1D.3n2-15.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R27.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 为水平的,其距离d =0.50 m 盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .08.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC .动能损失了mghD .动能损失了32mgh 9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为()A.n3k2T B.n3k T C.n2k T D.nk T10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B 即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点14.(全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2,则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O 的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p =__________,动能变化量ΔE k=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.16.(8分)如图所示,在固定光滑水平板上有一光滑小孔O,一根轻绳穿过小孔,一端连接质量m=1 kg的小球A,另一端连接质量M=4 kg的物体B.当A球沿半径r=0.1 m的圆周做匀速圆周运动时,要使物体B不离开地面,A球做圆周运动的角速度有何限制(g取10 m/s2)?17.(14分)据报道,人们最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍.已知一个在地球表面质量为50 kg 的人在这个行星表面的重量约为800 N,地球表面处的重力加速度为10 m/s2.求:(1)该行星的半径与地球的半径之比;(2)若在该行星上距行星表面2 m高处,以10 m/s的水平初速度抛出一只小球(不计任何阻力),则小球的水平射程是多大.18.(16分)如图所示,一长度L AB =4.98 m 、倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度L BC =0.4 m ,离地面高度H =1.4 m ,在C 处有一挡板,小物块与挡板碰撞后以原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内.在斜面顶端A 处由静止释放质量为m =2 kg 的小物块(可视为质点),忽略空气阻力,小物块与BC 间的动摩擦因数μ=0.1,g 取10 m/s 2.求:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B 点多少次停下来,在BC 上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D 点,已知半球体半径r =0.75 m ,OD 与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板(sin 53°=45,cos 53°=35)?高中物理必修二模块水平综合检测(最新整理)参考答案一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是()A .若小球初速度增大,则θ减小B .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .小球水平抛出时的初速度大小为gt tan θ解析:小球落地时竖直方向上的速度v y =gt ,因为落地时速度方向与水平方向的夹角为θ,则tan θ=gt v 0,可知若小球初速度增大,则θ减小,故A 正确;小球落地时位移方向与水平方向夹角的正切值tanα=y x =12gt 2v 0t =gt 2v 0,tan θ=2tan α,但α≠θ2,故B 错误;平抛运动的落地时间由高度决定,与初速度无关,故C 错误;速度方向与水平方向夹角的正切值tan θ=v y v 0=gt v 0,小球的初速度v 0=gt tan θ,故D 错误.答案:A2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功解析:摩擦力可以是动力,故摩擦力可做正功;一对相互作用力,可以都做正功,也可以都做负功;静摩擦力可以做功,也可以不做功,故选项A、B、D错误,C正确.答案:C3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1解析:由题意知,A轮通过链条分别与C、D连接,自行车可有两种速度,B轮分别与C、D连接,又可有两种速度,所以该车可变换四种挡位;当A与D组合时,两轮边缘线速度大小相等,A转一圈,D 转4圈,即ωAωD=14,选项C 对. 答案:C4.已知靠近地面运转的人造卫星,每天转n 圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为( )A .nB .n 2 C.n 3-1 D.3n 2-1 解析:设同步卫星离地面的高度为h ,地球半径为R .近地卫星的周期为T 1=24 h n ,同步卫星的周期为T 2=24 h ,则T 1∶T 2=1∶n ,对于近地卫星有G Mm R 2=m 4π2T 21R , 对于同步卫星有G Mm ′(R +h )2=m ′4π2T 22(R +h ), 联立解得h =(3n 2-1)R ,故D 正确.答案:D5.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A .这三滴油依次落在OA 之间,且后一滴比前一滴离O 点远B .这三滴油依次落在OA 之间,且后一滴比前一滴离O 点近C .这三滴油依次落在OA 间同一位置上D.这三滴油依次落在O点上解析:油滴下落的过程中,在竖直方向上做自由落体运动,根据自由落体运动的规律可得,油滴运动的时间是相同的,在水平方向上,油滴离开车之后做匀速直线运动,但此时车做匀加速直线运动,油滴相对于车厢在水平方向上的位移就是车在水平方向上多走的位移,即Δx=12at2,由于时间和加速度都是确定不变的,所以三滴油会落在同一点,即落在OA间同一位置上,故C正确.答案:C6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R2解析:设其他土豆对该土豆的作用力为F,则该土豆受到重力mg和F作用.由于该土豆做匀速圆周运动,所以这两个力的合力提供该土豆做匀速圆周运动的向心力,如图所示.根据直角三角形的关系得F=(mg)2+F2向,而F向=mω2R,所以F=m2g2+m2ω4R2,C正确.答案:C7.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C为水平的,其距离d=0.50 m 盆边缘的高度为h=0.30 m.在A处放一个质量为m的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B的距离为()A.0.50 m B.0.25 mC.0.10 m D.0解析:设小物块在BC面上运动的总路程为s.物块在BC面上所受的滑动摩擦力大小始终为f=μmg,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh-μmgs=0,得到s=hμ=0.30.1m=3 m,d=0.50 m,则s=6d,所以小物块在BC面上来回运动共6次,最后停在B点.故选D.答案:D8.如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC .动能损失了mghD .动能损失了32mgh解析:重力做功W G =-mgh ,故重力势能增加了mgh ,A 错.物体所受合力F =ma =34mg ,合力做功W 合=-F h sin 30°=-34mg ×2h =-32mgh ,由动能定理知,动能损失了32mgh ,B 、C 错,D 正确. 答案:D9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2k T D.nk T解析:设两颗星的质量分别为m 1、m 2,做圆周运动的半径分别为r1、r2,根据万有引力提供向心力可得:Gm1·m2(r1+r2)2=m1r14π2T2,Gm1·m2(r1+r2)2=m2r24π2T2,联立解得:m1+m2=4π2(r1+r2)3GT2,即T2=4π2(r1+r2)3G(m1+m2),因此,当两星总质量变为原来的k倍,两星之间的距离变为原来的n倍时,两星圆周运动的周期为T′=n3k T,选项B正确,其他选项均错.答案:B10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2解析:若s1<s2,由于高度决定了平抛运动的时间,所以两个物体运动时间相等.由x=v0t知:水平抛出两个物体的初速度关系为v1<v2.由于以相同的动能从同一点水平抛出,所以两个物体的质量关系是m2<m1.自抛出到落地的过程中,重力做的功W=mgh,所以W1>W2,平抛运动竖直方向做自由落体运动,所以落地瞬间两个物体的竖直方向速度v y相等,根据瞬时功率P=F v cos α,落地瞬间重力的即时功率P=mg v y.由于m2<m1,所以P1>P2,故A正确,B错误.以相同的动能从同一点水平抛出两个物体a和b,由于高度决定时间,所以两个物体运动时间相等.若s1=s2,平抛运动水平方向做匀速直线运动,所以水平抛出两个物体的初速度相等.由于以相同的动能从同一点水平抛出,所以两个物体的质量相等.所以自抛出到落地的过程中,重力做的功相等,即W1=W2.落地瞬间重力的即时功率相等,即P1=P2,则C、D错误.故选A.答案:A二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A .B 球在最低点较A 球在最低点更易脱离轨道B .若B 球在最低点与杆间的作用力为3mg ,则A 球在最高点受杆的拉力C .若某一周A 球在最高点和B 球在最高点受杆的力大小相等,则A 球受杆的支持力,B 球受杆的拉力D .若每一周做匀速圆周运动的角速度都增大,则同一周B 球在最高点受杆的力一定大于A 球在最高点受杆的力解析:两球的角速度相同,由向心力公式F n =mω2r 可知,由于B 的运动半径较大,所需要的向心力较大,而由题意,两球的重力相等,杆对两球的最大拉力相等,所以在最低点B 球更容易做离心运动,更容易脱离轨道,故A 正确.若B 球在最低点与杆间的作用力为3mg ,设B 球的速度为v B .则根据牛顿第二定律,得N B -mg =m v 2B 2L ,且N B =3mg ,得v B =2gL ,由v =ωr ,ω相等,A 的半径是B 的一半,则得此时A 的速度为v A =12v B =gL .对A 球,设杆的作用力大小为N A ,方向向下,则有mg +N A =m v 2A L ,解得N A =0,说明杆对A 球没有作用力,故B 错误.若某一周A 球在最高点和B 球在最高点受杆的力大小相等,设为F ,假设在最高点杆对A 、B 球产生的都是支持力,对B球有mg-F=mω2·2L;对A球有mg-F=mω2L;很显然上述两个方程不可能同时成立,说明假设不成立,则知两球所受的杆的作用力不可能同时是支持力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不可能同时成立,所以两球不可能同时受杆的拉力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是支持力,有mg-F=mω2L;两个方程能同时成立,所以可能A球受杆的支持力、B球受杆的拉力.对B球,若杆对B球产生的是支持力,有mg-F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不能同时成立,所以不可能A球受杆的拉力,而B球受杆的支持力.综上,A球在最高点和B球在最高点受杆的力大小相等时,A球受杆的支持力、B球受杆的拉力,故C正确.当两球在最高点所受的杆的作用力都是支持力时,则对B球,有mg-F B=mω2·2L,得F B=mg-2mω2L;对A球,若杆对A球产生的是支持力,有mg-F A=mω2L,得F A=mg-mω2L,可得F A>F B,故D错误.答案:AC12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大解析:在转动过程中,两物块做圆周运动都需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以提供所需向心力时,绳子中就会产生拉力,当这两个力的合力都不足以提供向心力时,物块将会与CD杆发生相对滑动.根据向心力公式F向=m v 2R=mω2R,可知在发生相对滑动前物块的运动半径是不变的,质量也不变,随着速度的增大,向心力增大,而向心力大小等于物块所受的合力,故D 正确.由于A的运动半径比B的小,A、B的角速度相同,知当角速度逐渐增大时,B物块先达到最大静摩擦力;角速度继续增大,B物块靠绳子的拉力和最大静摩擦力提供向心力;角速度增大,拉力增大,则A物块所受的摩擦力减小,当拉力增大到一定程度,A物块所受的摩擦力减小到零后反向,角速度增大,A物块所受的摩擦力反向增大.所以A所受的摩擦力先增大后减小,再增大;B物块所受的静摩擦力一直增大,达到最大静摩擦力后不变,故A、C错误,B正确.答案:BD13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点解析:过山车在竖直圆轨道上做圆周运动,机械能守恒,动能和重力势能相互转化,速度大小变化,不是匀速圆周运动,故A错误;在最高点,重力和轨道对车的压力提供向心力,当压力为零时,速度最小,则mg=m v 2R,解得:v=gR,故B正确;在最低点时,重力和轨道对车的压力提供向心力,加速度向上,乘客处于超重状态,故C正确;过山车在斜面h=2R高处由静止滑下到最高点的过程中,根据动能定理得:12m v ′2=mg (h -2R )=0.解得;v ′=0,所以不能通过最高点,故D 错误.故选B 、C.答案:BC14.(2015·课标全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2,则此探测器( )A .在着陆前的瞬间,速度大小约为8.9 m/sB .悬停时受到的反冲作用力约为2×103 NC .从离开近月圆轨道到着陆这段时间内,机械能守恒D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度解析:在地球表面附近有G M 地mR 2地=mg 地,在月球表面附近有G M 月m R 2月=mg 月,可得g 月=1.656 m/s 2,所以探测器落地的速度为v =2g 月h =3.64 m/s ,故A 错误;探测器悬停时受到的反冲作用力为F =mg 月≈2×103 N ,B 正确;探测器由于在着陆过程中开动了发动机,因此机械能不守恒,C 错误;在靠近星球的轨道上有G Mm R 2=mg =m v 2R ,即有v =gR ,可知在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故选项D正确.答案:BD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O。
2017-2018学年高中物理教科版必修2:模块综合检测 含

模块综合检测(时间:90分钟 满分:110分)一、选择题(本题共14小题,每小题4分,共56分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~14题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法正确的是( ) A .牛顿运动定律就是经典力学 B .经典力学的基础是牛顿运动定律C .牛顿运动定律可以解决自然界中所有的问题D .经典力学可以解决自然界中所有的问题解析:选B 经典力学并不等于牛顿运动定律,牛顿运动定律只是经典力学的基础,经典力学并非万能,也有其适用范围,并不能解决自然界中所有的问题,没有哪个理论可以解决自然界中所有的问题。
因此只有搞清牛顿运动定律和经典力学的隶属关系,明确经典力学的适用范围,才能正确解决此类问题。
2.(全国丙卷)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍。
该质点的加速度为( )A.st 2 B.3s 2t 2C.4s t2 D.8s t2解析:选A 质点在时间t 内的平均速度v =st ,设时间t 内的初、末速度分别为v 1和v 2,则v =v 1+v 22,故v 1+v 22=s t 。
由题意知:12m v 22=9×12m v 12,则v 2=3v 1,进而得出2v 1=st 。
质点的加速度a =v 2-v 1t =2v 1t =s t2。
故选项A 正确。
3.图1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。
左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r 。
c 点和d 点分别位于小轮和大轮的边缘上。
若在传动过程中,皮带不打滑。
则( )图1A .a 点与b 点的线速度大小相等B .a 点与b 点的角速度大小相等C .b 点与d 点的向心加速度大小相等D.a点与c点的线速度大小相等解析:选D a、c两点的线速度大小相等,b、c两点的角速度相等,根据v=rω,c 的线速度大于b的线速度,则a、b两点的线速度不等,故A错误,D正确;a、c的线速度相等,根据v=rω,知角速度不等,但b、c角速度相等,所以a、b两点的角速度不等,故B错误;b点与d点的角速度相等,转动半径不等,根据a=ω2r,向心加速度不等,故C 错误。
2018学年高中物理必修2模块综合测评 含解析

模块综合测评(用时:60分钟满分:100分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.物体以初速度v0水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是()【导学号:01360191】A.v0g B.2v0gC.4v0g D.8v0g【解析】设平抛的水平位移是x,则竖直方向上的位移就是2x,水平方向上:x=v0t①竖直方向上:2x=12gt2②联立①②可以求得:t=4v0g.故选C.【答案】 C2.甲沿着半径为R的圆周跑道匀速跑步,乙沿着半径为2R的圆周跑道匀速跑步,在相同的时间内,甲、乙各自跑了一圈,他们的角速度和线速度的大小分别为ω1、ω2和v1、v2,则()A.ω1>ω2,v1>v2B.ω1<ω2,v1<v2C.ω1=ω2,v1<v2D.ω1=ω2,v1=v2【解析】由于甲、乙在相同时间内各自跑了一圈,v1=2πRt,v2=4πRt,v1<v2,由v=rω,得ω=vr,ω1=v1R=2πt,ω2=2πt,ω1=ω2,故C正确.【答案】 C3.如图1所示,运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是( )图1A .阻力对系统始终做负功B .系统受到的合外力始终向下C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内重力做的功相等【解析】 下降过程中,阻力始终与运动方向相反,做负功,A 对;加速下降时合力向下,减速下降时合力向上,B 错;下降时重力做功等于重力势能减少量,C 错;由于任意相等的时间内下落的位移不等,所以,任意相等时间内重力做的功不等,D 错.【答案】 A4.如图2所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )【导学号:01360192】图2A .2RB .5R 3 C.4R3D .2R 3【解析】如图所示,以AB 为系统,以地面为零势能面,设A 质量为2m ,B 质量为m ,根据机械能守恒定律得:2mgR =mgR +12×3m v 2,A 落地后B 将以v 做竖直上抛运动,即有12m v 2=mgh ,解得h =13R .则B 上升的高度为R +13R =43R ,故选项C 正确.【答案】 C5.如图3所示,螺旋形光滑轨道竖直放置,P 、Q 为对应的轨道最高点,一个小球以一定速度沿轨道切线方向进入轨道,且能过轨道最高点P ,则下列说法中正确的是( )图3A .轨道对小球做正功,小球的线速度v P >v QB .轨道对小球不做功,小球的角速度ωP <ωQC .小球的向心加速度a P >a QD .轨道对小球的压力F P >F Q【解析】 轨道光滑,小球在运动的过程中只受重力和支持力,支持力时刻与运动方向垂直,所以不做功,A 错;那么在整个过程中只有重力做功,满足机械能守恒,根据机械能守恒有v P <v Q ,在P 、Q 两点对应的轨道半径r P >r Q ,根据ω=v r ,a =v 2r ,得小球在P 点的角速度小于在Q 点的角速度,B 正确;在P 点的向心加速度小于在Q 点的向心加速度,C 错;小球在P 和Q 两点的向心力由重力和支持力提供,即mg +F N =ma 向,可得P 点对小球的支持力小于Q 点对小球的支持力,D 错.6.人造地球卫星可在高度不同的轨道上运转,已知地球质量为M 、半径为R 、表面重力加速度为g ,万有引力常量为G ,则下述关于人造地球卫星的判断正确的是( )【导学号:01360193】A .各国发射的所有人造地球卫星的运行速度都不超过GM RB .各国发射的所有人造地球卫星的运行周期都应小于2πR gC .若卫星轨道为圆形,则该圆形的圆心必定与地心重合D .地球同步卫星可相对地面静止在广州的正上空 【解析】 由GMmr 2=m v 2r ,得v = GMr ,当r =R 时,卫星的运行速度最大,v max =GM R ,选项A 正确;此时对应的周期最小,T min =2πR v max,且GM =gR 2,解得T min =2πRg ,选项B 错误;由万有引力完全用来充当向心力可知,选项C 正确;同步卫星只能定位于赤道上空固定的高度,选项D 错误.【答案】 AC7.如图4所示,小滑块从一个固定的光滑斜槽轨道顶端无初速开始下滑,用v 、t 和h 分别表示小球沿轨道下滑的速率、时间和距轨道顶端的高度.如图所示的v -t 图象和v 2-h 图象中可能正确的是( )图4【解析】 小滑块下滑过程中,小滑块的重力沿斜轨道切向的分力逐渐变小,故小滑块的加速度逐渐变小,故A 错误,B 正确;由机械能守恒得:mgh =12m v 2,故v 2=2gh ,所以v 2与h 成正比,C 错误,D 正确.8.如图5所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8 m,bc=0.4 m,那么在整个过程中下列说法正确的()【导学号:01360194】图5A.滑块动能的最大值是6 JB.弹簧弹性势能的最大值是6 JC.从c到b弹簧的弹力对滑块做的功是6 JD.滑块和弹簧组成的系统整个过程机械能守恒【解析】滑块能回到原出发点,所以机械能守恒,D正确;以c点为参考点,则a点的机械能为6 J,c点时的速度为0,重力势能也为0,所以弹性势能的最大值为6 J,从c到b弹簧的弹力对滑块做的功等于弹性势能的减少量,故为6 J,所以B、C正确;由a→c时,因重力势能不能全部转变为动能,故A错.【答案】BCD二、实验题(共2小题,18分)9.(8分)某实验小组利用如图6甲所示的实验装置来验证机械能守恒定律.重锤的质量为m,已知当地的重力加速度g=9.80 m/s2.实验小组选出一条纸带如图乙所示,其中O点为打点计时器打下的第一个点,A、B、C为三个计数点,在计数点A和B、B和C之间还各有一个点,测得h1=12.01 cm,h2=19.15 cm,h3=27.86 cm.打点计时器通以50 Hz的交流电.根据以上数据算出:当打点计时器打到B点时重锤的重力势能比开始下落时减少了________J;此时重锤的动能比开始下落时增加了________J,根据计算结果可以知道该实验小组在做实验时出现的问题是________.(重锤质量m已知)图6【解析】打点计时器打B点时重锤减小的重力势能为ΔE p=mgh2=1.88mJ.因为重锤做的是匀加速直线运动,所以v B=h3-h14T=1.98 m/s,打B点时重锤增加的动能为:ΔE k=12m v2B=1.96m J.由于ΔE k>ΔE p,所以可能是先释放纸带后接通电源开关.【答案】 1.88m 1.96m该实验小组做实验时先释放了纸带,然后再合上打点计时器的开关或者释放纸带时手抖动了(其他答案只要合理均可) 10.(10分)在“探究功与速度变化的关系”的实验中,某实验研究小组的实验装置如图7甲所示.木块从A点静止释放后,在一根弹簧作用下弹出,沿足够长的木板运动到B1点停下,记录此过程中弹簧对木块做的功为W1.O点为弹簧原长时所处的位置,测得OB1的距离为L1.再用完全相同的2根、3根…弹簧并在一起进行第2次、第3次…实验并记录2W1,3W1…及相应的L2、L3…数据,用W-L 图象处理数据,回答下列问题:图7(1)如图乙是根据实验数据描绘的W-L图象,图线不过原点的原因是________;(2)由图线得木块从A到O过程中摩擦力做的功是________W1;(3)W-L图象斜率的物理意义是________.【解析】(1)从A到B根据能量守恒可得:W-W f=fL,所以图象不过原点的原因是在AO段还有摩擦力做功;(2)由图知图象两点坐标为(0.06,1)、(0.42,5)代入W-W f=fL解得木块从A到O过程中摩擦力做的功为13W1;(3)由W-W f=fL知图象的斜率为摩擦力.【答案】(1)未计算AO间的摩擦力做功(2)13(3)摩擦力三、计算题(共2小题34分)11.(16分)用一台额定功率为P0=60 kW的起重机,将一质量为m=500 kg 的工件由地面竖直向上吊起,不计摩擦等阻力,g取10 m/s2.求:【导学号:01360195】(1)工件在被吊起的过程中所能达到的最大速度v m;(2)若使工件以a=2 m/s2的加速度从静止开始匀加速向上吊起,则匀加速过程能维持多长时间?(3)若起重机在始终保持额定功率的情况下从静止开始吊起工件,经过t=1.14 s工件的速度v t=10 m/s,则此时工件离地面的高度h为多少?【解析】(1)当工件达到最大速度时,F=mg,P=P0=60 kW故v m=P0mg=60×103500×10m/s=12 m/s.(2)工件被匀加速向上吊起时,a不变,v变大,P也变大,当P=P0时匀加速过程结束,根据牛顿第二定律得F ′-mg =ma ,解得F ′=m (a +g )=500×(2+10)N =6 000 N 匀加速过程结束时工件的速度为 v =P 0F ′=60×1036 000 m/s =10 m/s 匀加速过程持续的时间为t 0=v a =102 s =5 s. (3)根据动能定理,有P 0t -mgh =12m v 2t -0 代入数据,解得h =8.68 m.【答案】 (1)12 m/s (2)5 s (3)8.68 m12.(18分)如图8甲所示,质量为m =0.1 kg 的小球,用长l =0.4 m 的细线与固定在圆心处的力传感器相连,小球和传感器的大小均忽略不计.当在A 处给小球6 m/s 的初速度时,恰能运动至最高点B ,设空气阻力大小恒定,g 取10 m/s 2.求:图8(1)小球在A 处时传感器的示数;(2)小球从A 点运动至B 点过程中克服空气阻力做的功;(3)小球在A 点以不同的初速度v 0开始运动,当运动至B 点时传感器会显示出相应的读数F ,试通过计算在图乙坐标系中作出F -v 20图象.【解析】 (1)在A 点,由F -mg =m v 2Al ,解得:F =10 N.(2)由mg =m v 2Bl 得:v B =2 m/s小球从A 到B 过程中,根据动能定理:W f -2mgl =12m v 2B -12m v 2A 得到:W f =-0.8 J所以克服空气阻力做功0.8 J.(3)小球从A 到B 过程中,根据动能定理: W f -2mgl =12m v 2B-12m v 20 小球在最高点F +mg =m v 2Bl 两式联立得:F =14v 20-9 图象如图所示【答案】 (1)10 N (2)0.8 J (3)如解析图所示。
2017-2018学年高中物理物理教科版必修2:模块检测 含

模块检测(时间:90分钟 满分:100分)一、选择题(共10小题,每小题4分,共40分。
其中1~6 题为单项选择题,7~10题为多项选择题。
)1.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图1),记录了我们祖先的劳动智慧。
若A 、B 、C 三齿轮半径的大小关系如图,则( )图1A .齿轮A 的角速度比C 的大B .齿轮A 、B 的角速度大小相等C .齿轮B 与C 边缘的线速度大小相等D .齿轮A 边缘的线速度比齿轮C 边缘的线速度大解析 由图可知,r A >r B >r C ,齿轮A 边缘的线速度v A 与齿轮B 边缘的线速度v B 相等,齿轮B 、C 的角速度ωB =ωC 。
由v A =ωA r A ,v B =ωB r B ,v C =ωC r C ,可得:ωA <ωB ,ωA <ωC ,v B >v C ,v A >v C ,故选项A 、B 、C 错误,选项D 正确。
答案 D2.如图2所示,某人在对面的山坡上水平抛出两个质量不等的小石块,分别落在A 、B 两处。
不计空气阻力,则落到A 处的石块( )图2A .初速度大,运动时间短B .初速度大,运动时间长C .初速度小,运动时间短D .初速度小,运动时间长解析 物体做平抛运动的时间t =2h g,因落到A 处的石块的竖直高度大,则运动时间长;根据v 0=xt可知因落到A 处的石块的水平位移小,则初速度小,故选D 。
答案 D3.有一条两岸平直、河水均匀流动、流速恒为v 的大河。
小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直。
去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A .k vk 2-1 B .v1-k 2 C .k v 1-k 2 D .v k 2-1 解析 设大河宽度为d ,小船在静水中的速度为v 0,则去程渡河所用时间t 1=dv 0,回程渡河所用时间t 2=d v 20-v2。
2017-2018学年高中物理二检测:模块综合检测(二)含解析

模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是()A.质点经过C点的速率比D点的大B.质点经过A点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小解析:小球做匀变速曲线运动,所以加速度不变,故选项C错误.由于在D点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,即C点速率比D点大,故选项A正确.在A点速度方向与加速度方向的夹角也为钝角,故选项B错误.而从B到E的过程中速度方向与加速度的方向间的夹角越来越小,故选项D错误.答案:A2。
如图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上。
若不计空气阻力,则A、B两个小球的运动时间之比为()A.1∶1B.4∶3C.16∶9 D.9∶16解析:两小球均做平抛运动,且均落在斜面上,则对于A球有tan 37°=错误!=错误!=错误!,解得t A=错误!,同理对于B球有t B=错误!,则错误!=错误!=错误!,故D正确.答案:D3.如图所示,河水流动的速度为v,且处处相同,河宽度为a,在船下水点A的下游距离为b处是瀑布,为了使小船安全渡河(不掉到瀑布里去),本题中小船速度均指静水中的速度,则下列说法正确的是()A.小船船头垂直于河岸渡河时间最短,最短时间为t=错误!,此时小船速度最大,最大速度为v max=a v bB.小船沿y轴方向渡河,位移最小,速度最大,最大速度为v max=错误!C.小船沿轨迹AB运动,位移最大,时间最长,速度最小,最小速度v min=错误!D.小船沿轨迹AB运动,位移最大,速度最小,最小速度v min=错误!解析:小船船头垂直于河岸渡河时间最短,最短时间t=错误!,A错误;小船沿y轴方向渡河,位移最小,此时船头与河岸有一定夹角,指向上游,即小船的两个分速度夹角为钝角,合速度比两分速度夹角为锐角时小,故不是最大速度,B错误;小船沿轨迹AB 运动位移最大,但渡河的时间由船速的大小和方向共同决定,此时船速有最小值,即当船速方向与AB垂直时,船速最小,由相似三角形,得错误!=错误!,解得v min=错误!,C错误,D正确.答案:D4.汽车在平直公路上行驶,前一段时间内发动机的功率为P1,后一段时间内的功率为P2,已知在两段时间内发动机做的功相等,则在全部时间内发动机的平均功率为( )A.P 1+P 22B 。
2017-2018学年高二物理选修3-2习题: 模块综合测评2 含答案 精品

模块综合测评(二) (时间:60分钟 满分:100分)一、选择题(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)1.如图1甲所示,一闭合线圈置于磁场中,若磁感应强度B 随时间变化的规律如图乙所示,线圈中感应电动势E 随时间t 变化的图象是( )【导学号:05002180】图1【解析】 由E =ΔΦΔt =ΔB Δt ·S 可知,因磁感应强度B 随时间变化的变化率ΔBΔt 是分段恒定的,因此电动势E 随时间变化的规律也是分段恒定的,故D 正确.【答案】 D2.如图2所示电路中,线圈L 与灯泡L A 并联,当合上开关S 后灯L A 正常发光.已知,线圈L 的电阻小于灯泡L A 的电阻.则下列现象可能发生的是( )图2A .当断开S 时,灯泡L A 立即熄灭B .当断开S 时,灯泡L A 突然闪亮一下,然后逐渐熄灭C .若把线圈L 换成电阻,断开S 时,灯泡L A 逐渐熄灭D .若把线圈L 换成电阻,断开S 时,灯泡L A 突然闪亮一下,然后逐渐熄灭【解析】 当断开S 时,线圈L 产生断电自感,灯泡L A 突然闪亮一下,然后逐渐熄灭,B 项正确,A 项错误;若把线圈L 换成电阻,断开S 时,灯炮L A 立即熄灭,C 、D 均错误.【答案】 B3.通过理想变压器给用电器供电,电路如图3甲所示,变压器初级线圈匝数n 1=1 000匝,两次级线圈的匝数分别为n 2=50匝、n 3=100匝.在初级线圈ab 端接如图乙所示的交变电流,下列说法正确的是( )【导学号:05002181】甲 乙图3A .交流电的频率为100 HzB .U 2=50 V ,U 3=100 VC .I 1∶I 2=1∶20D .闭合开关S ,则I 1增大【解析】 交流电的周期为0.02 s ,频率为50 Hz ,选项A 错误;根据变压器的匝数与电压比可知,U 2=n 2U 1n 1=501 000·1 0002 V =25 2 V ;U 3=n 3U 1n 1=1001 000·1 0002V =50 2 V ,选项B 错误;因电流与匝数之间满足:I 1n 1=I 2n 2+I 3n 3,故选项C 错误;闭合开关S ,则I 3变大,根据I 1n 1=I 2n 2+I 3n 3可知I 1增大,选项D 正确.【答案】 D4.如图4所示,接在家庭电路上的理想降压变压器给小灯泡L 供电,如果将原、副线圈减少相同匝数,其他条件不变,则( )图4A .小灯泡变亮B .小灯泡变暗C .原、副线圈两端电压的比值不变D .通过原、副线圈电流的比值不变【解析】 由于家庭电路上理想变压器为降压变压器,故n 1>n 2,当原、副线圈减少相同的匝数时,其变压比n ′1n ′2变大,根据U 1U 2=n ′1n ′2,U 1一定,U 2变小,故小灯泡变暗,选项A 错误,选项B 正确;由U 1U 2=n ′1n ′2知,原、副线圈电压的比值变大,选项C 错误;根据I 1I 2=n ′2n ′1,则通过原、副线圈电流的比值变小,选项D 错误.【答案】 B5.为了能安全对某一高电压U 、大电流I 的线路进行测定,图中接法可行的是(绕组匝数n 1>n 2)( )【解析】 电流互感器是将大电流变成便于测量的小电流,由I 1I 2=n 2n 1知I 2=n 1n 2I 1,副线圈的匝数应大于原线圈的匝数且测量时应串联在被测电路中,A 、C 错误;电压互感器是将高电压变成低电压,由U 1U 2=n 1n 2知U 2=n 2n 1U 1,n 1应大于n 2,且测量时应并联在待测电路中,B 正确,D 错误.【答案】 B6.如图5所示,A 是长直密绕通电螺线管.小线圈B 与电流表连接,并沿A 的轴线Ox 从O 点自左向右匀速穿过螺线管A .下面4个选项能正确反映通过电流表中电流I 随x 变化规律的是( )【导学号:05002182】图5【解析】 通电螺线管产生稳定的磁场,磁场特征为:两极附近最强且不均匀,管内场强近似匀强.当小线圈穿过两极时,因磁场不均匀,故穿过小线圈的磁通量发生变化,产生感应电流,且因磁场的变化不同,故在小线圈中感应出方向相反的电流,小线圈在螺线管内部运动时,因穿越区域的磁感应强度不变,小线圈中没有感应电流产生.【答案】 C7.有人设计了一个汽车“再生能源装置”,原理简图如图6甲所示.当汽车减速时,线圈受到辐向磁场的阻尼作用帮助汽车减速,同时产生电能储存备用.图甲中,线圈匝数为n ,ab 长度为L 1,bc 长度为L 2.图乙是此装置的侧视图,切割处磁场的磁感应强度大小恒为B ,有理想边界的两个扇形磁场区边线夹角都是90°.某次测试时,外力使线圈以角速度ω逆时针匀速转动,线圈中电流i 随时间t 变化的图象如图丙所示(I 为已知量),取ab 边刚开始进入右侧的扇形磁场时刻t =0,不计线圈转轴处的摩擦,则( )图6A .线圈在图乙所示位置时,线圈中电流方向为a →b →c →d →aB .线圈在图乙所示位置时,线圈产生电动势的大小为12nBL 1L 2ωC .外力做功的平均功率为nBL 1L 2ωI2D .闭合电路的总电阻为nBL 1L 2ωI【解析】 根据右手定则或者楞次定律和安培定则,可以判定当线圈在图乙位置时,线圈中的电流方向为a →b →c →d →a ,所以A 正确.当线圈在图乙位置时,ab 边和cd 边同时切割磁感线,产生的都是沿a →b →c →d →a 方向的感应电流,所以线圈在此位置时产生的电动势为ab 边产生的电动势的两倍,且线圈绕O 1O 2轴匀速转动,ab 边的切割速度v =L 22ω,则E =n ·2BL 1L 2ω2=nBL 1L 2ω,总电阻R =E I =nBL 1L 2ωI,所以B 错误,D 正确.根据能量守恒定律,外力做功的平均功率等于电路中的电功率,取一个周期T ,P =EI T2T =EI 2=nBL 1L 2ωI2,所以C 正确.【答案】 ACD8.电吉他中电拾音器的基本结构如图7所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音.下列说法正确的有( )【导学号:05002183】图7A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D .弦振动过程中,线圈中的电流方向不断变化【解析】 铜不能被磁化,铜质弦不能使电吉他正常工作,选项A 错误;取走磁体后,弦的振动无法通过电磁感应转化为电信号,音箱不能发声,选项B 正确;增加线圈匝数,根据法拉第电磁感应定律E =N ΔΦΔt 知,线圈的感应电动势变大,选项C 正确;弦振动过程中,线圈中感应电流的磁场方向发生变化,则感应电流的方向不断变化,选项D 正确.【答案】 BCD9.如图8所示,在同一水平面内有两根足够长的光滑水平金属导轨,间距为20 2 cm ,电阻不计,其左端连接一阻值为10 Ω的定值电阻.两导轨之间存在着磁感应强度为 1 T 的匀强磁场,磁场边界虚线由多个正弦曲线的半周期衔接而成,磁场方向如图.一接入电阻阻值为10 Ω的导体棒AB 在外力作用下以10 m/s 的速度匀速向右运动,交流电压表和交流电流表均为理想电表,则( )图8A .电流表的示数是210A B .电压表的示数是1 VC .导体棒运动到图示虚线CD 位置时,电流表示数为零 D .导体棒上消耗的热功率为0.1 W【解析】 当导体棒切割磁感线时,产生的感应电动势为E =BLv ,由于L 按正弦规律变化,这个过程产生正弦式电流,磁场方向变化时,电流方向变化,所以回路中产生的是正弦式交变电流.产生的感应电动势的最大值E m =BLv =1×202×10-2×10 V=2 2 V ,则电动势的有效值E =E m2=2 V ,电流表的示数I =ER +r =220A =0.1 A ;电压表测量R 两端的电压,则U =IR =1 V ,故A 错误,B 正确;电流表示数为有效值,一直为0.1 A ,故C 错误;导体棒上消耗的热功率P =U ′2r=-210W =0.1 W ,故D 正确.【答案】 BD10.如图9甲所示,一光滑的平行金属导轨AB 、CD 竖直放置,AB 、CD 相距L ,在A 、C 之间接一个阻值为R 的电阻;在两导轨间的abdc 矩形区域内有垂直导轨平面向里、高度为5h 的有界匀强磁场,磁感应强度为B .一质量为m 、电阻为r 、长度也为L 的导体棒放在磁场下边界ab 上(与ab 边重合).现用一个竖直向上的力F 拉导体棒.使它由静止开始向上运动,导体棒刚要离开磁场时恰好做匀速直线运动,导体棒与导轨始终垂直且保持良好接触,导轨电阻不计.F 随导体棒与初始位置的距离x 变化的情况如图乙所示,下列判断正确的是( )【导学号:05002184】甲 乙图9A .导体棒离开磁场时速度大小为3mg R +rB 2L2B .离开磁场时导体棒两端电压为2mgR BLC .导体棒经过磁场的过程中,通过电阻R 的电荷量为2BLhRD .导体棒经过磁场的过程中,电阻R 产生焦耳热为9mghR r +R -2m 3g 2R R +rB 4L 4【解析】 导体棒刚要离开磁场时,做匀速直线运动,则3mg =mg +B BLvr +RL ,可求得v =2mgR +r B 2L 2,A 错;由3mg =mg +B U R L 知U =2mgRBL,B 对;导体棒经过磁场的过程中,通过电阻R 的电荷量q =ΔΦr +R =5BLh r +R,C 错;导体棒经过磁场的过程中,产生的总热量为Q ,由能量守恒得:2mgh +3mg ·4h -mg ·5h =12mv 2+Q总,知Q R =R R +rQ总=9mghRr +R-2m 3g 2R R +rB 4L 4,D 对.【答案】 BD二、非选择题(本题3小题,共40分.按题目要求作答)11.(10分)(1)按图10所示连接好电路,合上S 和S′,发现小灯泡不亮,用电吹风对热敏电阻吹一会儿,会发现小灯泡发光了,原因是__________________________________________________________________.图10(2)若将热敏电阻换成光敏电阻,合上S 和S′,发现小灯泡发光,用黑纸包住光敏电阻后,小灯泡熄灭,其原因是________________________________________________________________________________________________.【解析】 (1)热敏电阻阻值较大,左侧电路电流较小,电磁铁磁性较弱,吸不住衔铁,小灯泡不亮,电吹风对热敏电阻加热,使其阻值变小,电路中电流增大,电磁铁磁性增强吸住衔铁,使上、下触点接触,小灯泡发光;(2)用黑纸包住去敏电阻后,光敏电阻的阻值增大,左侧电路电流减小,电磁铁磁性变弱,使上、下触点断开,造成小灯泡熄灭.【答案】 见解析12.(15分)如图11甲所示,一固定的矩形导体线圈水平放置,线圈的两端接一只小灯泡,在线圈所在空间内存在着与线圈平面垂直的均匀分布的磁场.已知线圈的匝数n =100匝,总电阻r =1.0 Ω,所围成矩形的面积S =0.040 m 2,小灯泡的电阻R =9.0 Ω,磁场的磁感应强度按如图乙所示的规律变化,线圈中产生的感应电动势瞬时值的表达式为e =nB m S2πT·cos 2πTt ,其中B m 为磁感应强度的最大值,T 为磁场变化的周期,不计灯丝电阻随温度的变化,求:【导学号:05002185】甲 乙图11(1)线圈中产生感应电动势的最大值;(2)小灯泡消耗的电功率;(3)在磁感应强度变化的0~T4的时间内,通过小灯泡的电荷量.【解析】 (1)由图象知,线圈中产生的交变电流的周期T =3.14×10-2s , 所以E m =nB m S ω=2πnB m ST=8.0 V.(2)电流的最大值I m =E mR +r=0.80 A有效值I =I m2=225 A小灯泡消耗的电功率P =I 2R =2.88 W.(3)在0~T 4时间内,电动势的平均值E -=nS ΔBΔt平均电流I -=E -R +r=nS ΔBR +r Δt流过灯泡的电荷量Q =I -Δt =nS ΔB R +r=4.0×10-3C.【答案】 (1)8.0 V (2)2.88 W (3)4.0×10-3C13.(15分)如图12甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.图12(1)由b 向a 方向看到的装置如图乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.【解析】 (1)如图所示,重力mg ,竖直向下;支持力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =BLv ,此时电路中电流I =E R =BLvRab 杆受到安培力F =BIL =B 2L 2vR根据牛顿运动定律,有ma =mg sin θ-F =mg sin θ-B 2L 2vR ,a =g sin θ-B 2L 2vmR.(3)当B 2L 2v R =mg sin θ时,ab 杆达到最大速度v m =mgR sin θB 2L 2.【答案】 (1)见解析 (2)BLv R g sin θ-B 2L 2vmR(3)mgR sin θB 2L 2。
2017-2018学年高中物理模块综合检测(二)1

模块综合检测(二)(测试时间:60分钟 分值100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中正确的是( ) A .选为参考系的物体一定静止B .质量大、体积大的物体不可以看作质点C .我们早上第一节课是7时30分开始,这个“7时30分”表示一段时间D .力学中的三个基本物理量是:长度、质量、时间 答案:D2.下列说法中正确的是( ) A .伽利略认为重的物体下落比较快B .牛顿发现并总结了弹簧弹力与伸长量的关系C .牛顿第一定律也称为惯性定律D .速度表达式v =st表示的是t 时刻的瞬时速度 答案:C3.张明同学双手握住竖直竹竿匀速攀上和匀速滑下的过程中,张明受到的摩擦力分别为f 1和f 2,那么( )A .f 1和f 2都是静摩擦力B .f 1和f 2都是滑动摩擦力C .f 1方向竖直向下,f 2方向竖直向上,且f 1=f 2D .f 1方向竖直向上,f 2方向竖直向上,且f 1=f 2解析:匀速向上攀时,双手受向上的静摩擦力,匀速下滑时,双手受向上的滑动摩擦力,它们都等于重力.选D.答案:D4.物体静止在一斜面上,则下列说法中正确的是( ) A .物体对斜面的压力和斜面对物体的支持力是一对平衡力B .物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力C .物体所受重力和斜面对物体的作用力是一对作用力和反作用力D .物体所受重力可以分解为沿斜面向下的分力和对斜面的压力解析:平衡力是作用在同一个物体上的两个力,作用力和反作用力是两个物体间相互作用的一对力,选项A 、C 错误,B 正确;物体的重力分解为沿斜面向下的分力和垂直斜面的分力,D 项错误.答案:B5.如图所示,在探究摩擦力的实验中,测力计与水平桌面平行,拉力从零逐渐增大,拉力为8 N 时,木块不动;拉力为12 N 时,木块恰好被拉动;木块匀速运动时拉力为10 N .木块与桌面间的滑动摩擦力和最大静摩擦力分别是( )A .12 N ,8 NB .12 N ,10 NC .10 N ,12 ND .10 N ,8 N答案:C6.随着居民生活水平的提高,家庭轿车越来越多,行车安全就越显得重要.在行车过程中规定必须要使用安全带.假设某次急刹车时,由于安全带的作用,使质量为70 kg 的乘员具有的加速度大小约为6 m/s 2,此时安全带对乘员的作用力最接近( )A .100 NB .400 NC .800 ND .1 000 N解析:刹车过程安全带对乘员的作用力F 可近似看作合外力,根据牛顿第二定律F =ma =70×6 N =420 N ,选择B.答案:B7.某时刻,物体甲受到的合力是10 N ,加速度为2 m/s 2,速度是10 m/s ;物体乙受到的合力是8 N ,加速度也是2 m/s 2,但速度是20 m/s ,则 ( )A .甲比乙的惯性小B .甲比乙的惯性大C .甲和乙的惯性一样大D .无法判定哪个物体惯性大解析:由牛顿第二定律F =ma ,得m 甲=F 甲a 甲=102 kg =5 kg ,m 乙=F 乙a 乙=82kg =4 kg ,物体的惯性只与其质量有关,与速度无关,m 甲>m 乙,所以B 正确.答案:B二、多项选择题(本题共5小题,每小题4分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得4分,漏选得3分,错选或不选得0分)8.下列各图中,图(1)是甲物体的位移—时间图象;图(2)是乙物体的位移—时间图象;图(3)是丙物体的加位移—时间图象;图(4)是丁物体所受合力随时间变化的图象.四幅图的图线都是直线,由图可以判定( )A .甲物体受到的合力不为零且恒定B .乙物体受到的合力不为零且恒定C .丙物体的速度一定越来越大D .丁物体的加速度越来越大 答案:BD9.升降机地板上水平放置一完好的盘秤,现往盘秤上放一质量为m 的物体,当秤的示数为0.8mg 时,升降机可能做的运动是( )A .加速上升B .减速下降C .减速上升D .加速下降解析:超重、失重现象是由于物体做竖直方向的变速运动时产生的“视重”发生变化,当物体具有向下的加速度,处于失重状态,所以升降机减速上升或加速下降过程,盘秤的计数会减小.答案:CD10.一物体做竖直上抛运动(不计空气阻力),初速度为30 m/s ,当它位移大小为25 m 时,经历时间为(g 取10 m/s 2)( )A .1 sB .2 sC .5 sD .3 s解析:由s =v 0t +12at 2知:当s =25 m 时,t 1=5 s ,t 2=1 s ,当s =-25 m 时,t 3=6.7 s ,A 、C 正确.答案:AC11.如图所示,车内绳AB 与绳BC 拴住一小球,BC 水平,车由原来的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则( )A .AB 绳拉力F T1不变,BC 绳拉力F T2变大 B .AB 绳拉力F T1变大,BC 绳拉力F T2变小 C .AB 绳拉力F T1变大,BC 绳拉力F T2不变D .AB 绳拉力F T1不变,BC 绳拉力F T2的大小为(F T1sin θ+ma )解析:受力分析如图所示,由F T1cos θ=mg 可知F T1不变;由F T2-F T1sin θ=ma 可知F T2=F T1sin θ+ma .答案:AD12.在光滑水平面上有一物块受水平恒力F的作用而运动,在其正前方固定一个足够长的轻质弹簧,如图所示,在物块与弹簧接触后,将弹簧压缩到最短的过程中,下列说法正确的是( )A.物块接触弹簧后立即做减速运动B.物块接触弹簧后先加速后减速C.当弹簧处于压缩量最大时,物块的加速度不等于零D.当弹簧的弹力等于F时,物块速度最大解析:设物块压缩弹簧后某瞬间的弹力为f,根据牛顿定律得,F-f=ma,开始时F比f大,a与运动方向相同,做加速运动,当F与f相等时,加速度为零,物块有初速度,继续向右运动而压缩弹簧,弹力增大,合力增大,加速度也增大,但加速度方向与运动方向相反,做减速运动,当弹簧的弹力等于F时,速度最大.答案:BCD三、非选择题(本大题5小题,共52分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(6分)在测定匀变速直线运动加速度的实验中.(1)请将以下步骤的代号按合理顺序填写在横线上__________.A.拉住纸带,将小车移至靠近打点计时器处,先接通电源,后放开纸带;B.将打点计时器固定在平板上,并接好电路;C.把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码;D.断开电源,取下纸带;E.将纸带固定在小车尾部,并穿过打点计时器的限位孔;F.换上新的纸带,再重复做两三次;G.将平板一端垫高,轻推小车,使小车带着纸带运动,调节平板高度,直至纸带上的点迹均匀.(2)某次实验中纸带的记录如图所示,图中前几个点模糊,因此从A点开始每打5个点取1个计数点,已知打点计时器的电源频率是50 Hz,则小车通过D点时的速度是________m/s,小车运动的加速度是________m/s2.(结果保留三位有效数字)解析:(1)在测定匀变速直线运动的加速度的实验中,具体的实验步骤为:将打点计时器固定在平板上并接好电路;将纸带固定在小车尾部,并穿过打点计时器的限位孔,然后平衡摩擦力,将平板一端抬高轻推小车,使小车恰能做匀速运动;用一条细绳拴住小车,细绳跨过定滑轮,下面吊适当的钩码;拉住纸带,将小车移到靠近打点计时器处,先接通电源,然后放开纸带;断开电源取下纸带,换上新的纸带,再重复做三次.所以合理顺序为:BEGCADF.(2)从A 点开始每打5个点取1个计数点,相邻的计数点之间的时间间隔是0.1 s 根据匀变速直线运动中时间中点的速度等于该过程中的平均速度,v D =0.774 0-0.278 72×0.1m/s =2.48 m/s根据匀变速直线运动的推论公式Δs =aT 2可以求出加速度的大小a =(0.774 0-0.278 7)-(0.278 7-0.030 7)4×0.01 m/s 2=6.18 m/s 2.答案:(1)BEGCADF (2)2.48 6.1814.(8分)用斜面、小车、砝码等器材探究a 、m 、F 三者关系的实验中,如图所示为实验中一条打点的纸带,相邻计数点的时间间隔为T ,且间距s 1、s 2、s 3、……、s 6已量出.(1)写出几种加速度的表达式.(2)图甲是A 同学根据测量数据画出的aF 图线,试简析实验中存在的问题;(3)B 、C 同学用同一实验装置进行探究实验,画出了各自得到的a-F 图象,如图乙所示.说明两位同学做实验时的哪一个物理量取值不同,并比较其大小.答案:(1)a =s 2-s 1T 2;a =s 4-s 13T2, a =(s 6+s 5+s 4)-(s 3+s 2+s 1)9T 2.(2)由图象可以看出,当F ≤F 0时,小车的加速度a =0,可能是没有平衡摩擦力或平衡摩擦力不够,当托盘及砝码的总质量比较小时,小车不动.(3)由图象可知,小车的质量不同,当F 相同时,a B >a C ,说明C 车的质量大于B 车的质量.15.(10分)飞机着陆后以6 m/s 2的加速度做匀减速直线运动,若其着陆时速度为60 m/s ,求它着陆后12 s 内滑行的距离.解析:飞机着陆后做匀减速运动,飞机最终会停下,此时速度为零,由加速度定义式可知,t =v 0a =606s =10 s.由位移公式得:s =v 0t -12at 2=60×10 m -12×6×102 m =300 m ;飞机运动10 s 已停下,所以12 s 的位移等于10 s 的位移,因此飞机12 s 的位移等于300 m.答案:300 m16. (14分)如图所示,升降机中的斜面和竖直墙壁之间放一个质量为10 kg 的光滑小球,斜面倾角θ=30°,当升降机以a =5 m/s 2的加速度加速竖直上升时(g =10 m/s 2),求:(1)小球对斜面的压力大小; (2)小球对竖直墙壁的压力大小. 解析:小球受力如图所示:水平方向上:F 2sin θ=F 1, 竖直方向上:F 2cos θ-mg =ma , 将数据代入以上两式求得:F 1=50 3 N ;F 2=100 3 N.由牛顿第三定律知,小球对斜面和竖直墙的压力大小分别为100 3 N ,50 3 N. 答案:(1)100 3 N (2)50 3 N17.(14分)如图所示,光滑水平桌面上的物体A 质量为m 1,系一根细绳,细绳跨过桌沿的定滑轮后悬挂质量为m 2的物体B ,先用手使A 静止(细绳质量及滑轮摩擦均不计).(1)求:放手后A 、B 一起运动中绳子的张力F T ;(2)若A 上再叠放一个与B 物体质量相等的物体C ,绳上的张力就增大到32F T ,求m 1m 2.解析:(1)对B :m 2g -F T =m 2a 1, 对A :F T =m 1a 1, 则F T =m 1m 2m 1+m 2g . (2)对B :m 2g -F T ′=m 2a 2, 对A :F T ′=(m 1+m 2)a 2, 解得F T ′=m 1+m 2m 1+2m 2m 2g ;又F T ′=32F T ,所以m 1+m 2m 1+2m 2m 2g =32m 1m 1+m 2m 2g ,解得m 1=(3-1)m 2,即m 1m 2=3-11. 答案:(1)m 1m 2m 1+m 2g (2)3-11。
人教高中物理必修2-- 模块综合测评--(附解析答案)

模块综合测评(用时:60分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,1~5小题只有一项符合题目要求,6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列关于力和运动的说法中,正确的是( )A.物体在变力作用下不可能做直线运动B.物体做曲线运动,其所受的外力不可能是恒力C.不管外力是恒力还是变力,物体都有可能做直线运动D.不管外力是恒力还是变力,物体都有可能做匀速圆周运动【解析】物体做曲线运动的条件是合力与速度不在同一条直线上,若受到的变力和速度方向相同,则做直线运动,A错误;平抛运动是曲线运动,过程中受到的合力恒定,等于重力大小,B错误;匀速圆周运动过程中,物体受到的加速度时时刻刻指向圆心,根据牛顿第二定律可知受到的合力时时刻刻指向圆心,为变力,D错误.【答案】 C2.在飞船进入圆形轨道环绕地球飞行时,它的线速度大小( )A.等于7.9 km/sB.介于7.9 km/s和11.2 km/s之间C.小于7.9 km/sD.介于7.9 km/s和16.7 km/s之间【解析】卫星在圆形轨道上运动的速度v=G Mr.由于r>R,所以v<G MR=7.9 km/s,C正确.【答案】 C3.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中( )A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J【解析】根据动能定理得韩晓鹏动能的变化ΔE=W G+W f=1 900 J-100 J=1 800 J>0,故其动能增加了1 800 J,选项A、B错误;根据重力做功与重力势能变化的关系W G=-ΔE p,所以ΔE p=-W G=-1 900 J<0,故韩晓鹏的重力势能减小了1 900 J,选项C正确,。
2017-2018学年教科版高中物理必修2 模块检测

模块检测(时间:60分钟满分:100分)(教师备用)【测控导航】一、选择题(共9小题,第1~4题为单项选择题,第5~9题为多项选择题,每小题6分,共54分)1.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法中正确的是( B )A.日心说的代表人物是托勒密B.英国物理学家卡文迪许利用“扭秤”首先较准确地测定了引力常量C.伽利略用“月—地检验”证实了万有引力定律的正确性D.第谷得出了行星运动定律解析:日心说的代表人物是哥白尼,A错;根据物理学史可知B正确;伽利略年代还没有出现万有引力定律,C错;开普勒得出了行星运动定律,D错误.2.斜面上有P,R,S,T四个点,如图所示,PR=RS=ST,从P点正上方的Q 点以速度v水平抛出一个物体,物体落于R点,若从Q点以速度2v水平抛出一个物体,不计空气阻力,则物体落在斜面上的( A )A.R与S间的某一点B.S点C.S与T间某一点D.T点解析:平抛运动的时间由下落的高度决定,下落的高度越高,运动时间越长.如果没有斜面,增加速度后物体下落至与R等高时,其位置恰位于S点的正下方的一点,但实际当中斜面阻碍了物体的下落,物体会落在R与S点之间斜面上的某个位置,A项正确.3.竖直向上的恒力F作用在质量为m的物体上,使物体从静止开始运动升高h,速度达到v,在这个过程中,设阻力恒为f,则下列表述正确的是( D )A.F对物体做的功等于物体动能的增量,即2B.F对物体做的功等于物体机械能的增量,即2+mghC.F与f对物体做的功等于物体动能的增量,即2D.物体所受合力的功等于物体动能的增量,即2解析:加速运动过程终结时,物体的动能、重力势能均得到增加.除此之外,在所述过程中,因为有阻力的存在,还将有内能产生,其值为fh,可见2,同时22+fh,经变形后,可得A,B,C错误,D正确.4.一物体静置在平均密度为ρ的球形天体表面的赤道上.已知引力常量G,若由于天体自转使物体对天体表面的压力恰好为零,则天体自转周期为( D )解析:由万有引力提供向心力得2,而M=ρR3,r=R,解得故D正确.5.已知月球上没有空气,假如你登上月球,你能够实现的愿望是( AC )A.轻易将100 kg物体举过头顶B.放飞风筝C.做一个同地面上一样的标准篮球场,在此打球,发现自己成为扣篮高手D.推铅球的水平距离变为原来的6倍解析:因为g月地,所以在月球上举100 kg的物体,相当于在地球上举16.7 kg的物体,故A正确;在月球上弹跳高度是地球上的6倍,故C正确;根据平抛运动x=v0知D错;月球上没有空气,故不能放飞风筝,B错.6.物体在运动过程中,克服重力做功50 J,则以下说法中正确的是( BD )A.物体的高度一定降低了B.物体的高度一定升高了C.物体的重力势能一定是50 JD.物体的重力势能一定增加50 J解析:克服重力做功,即重力做负功,重力势能增加,高度升高,克服重力做多少功,重力势能就增加多少,但重力势能的大小是相对的,对不同参考平面,重力势能的大小不确定.故选项A,C错误,B,D正确. 7.如图所示,恒力F通过光滑定滑轮将质量为m的物体P提升,物体P 向上的加速度为a,在P上升h的过程中,力F做功为( BD )A.mghB.FhC.(F+ma)hD.m(g+a)h解析:根据牛顿第二定律有F-mg=ma,所以F=m(g+a),则恒力F做功为W=Fh=m(g+a)h,故B,D正确.8.如图所示,M,N是两块挡板,挡板M高h′=10 m,挡板N的下边缘高h=11.8 m.从高H=15 m的A点以速度v0水平抛出一小球,A点与两挡板的水平距离分别为d1=10 m,d2=20 m.N板的上边缘高于A点,若能使小球直接进入挡板M的右边区域,则小球水平抛出的初速度v0的大小是下列给出数据中的哪个(g取10 m/s2)( BC )A.8 m/sB.14 m/sC.20 m/sD.26 m/s解析:要让小球落到挡板M的右边区域,下落的最大高度为Δh1=5 m,由t1t1=1 s,由d1=v01t1,得出v01=10 m/s;要让小球落到挡板M的右边区域,下落的最小高度为Δh2=3.2 m,由t2t2=0.8 s,由d2=v02t2,得出v02=25 m/s.所以v0的范围为10 m/s≤v0≤25 m/s,故B,C正确.9.如图所示是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若小车在平直的公路上以初速度v0开始加速行驶,经过时间t,前进了距离l,达到最大速度v max,设此过程中电动机功率恒为额定功率P,受到的阻力恒为f,则此过程中电动机所做的功为( ABD )A.fv max tB.Pt+fl-解析:由于功率恒定,则W=Pt,故B对;又由于达到最大速度时,P=Fv max=fv max,则W=Pt=fv max t,故A对,C错;又由动能定理则故D对.二、非选择题(共46分)10.(8分)某同学用如图(甲)所示的装置验证动能定理.为了提高实验精度,该同学多次改变小滑块下落高度H的值,测出对应的平抛运动水平位移x,并算出x2如下表所示,进而画出x2H图线如图(乙)所示.(1)原理分析:若滑块在下滑过程中所受阻力很小,则只要满足 ,便可验证动能定理.(2)实验结果分析:实验中获得的图线未过坐标原点,而交在了大约(0.2h,0)处,原因是 . 解析:(1)若滑块在下滑过程中所受阻力很小,由动能定理根据平抛运动规律,x=v 0t,H=2,显然x 2与H 成正比,即只要满足x 2与H 成正比,便可验证动能定理.(2)实验中获得的图线未过坐标原点,而交在了大约(0.2h,0)处,原因是滑块需要克服阻力做功. 答案:(1)x 2与H 成正比 (2)滑块需要克服阻力做功11.(11分)某同学利用重物自由下落来“验证机械能守恒定律”的实验装置如图(甲)所示.(1)请指出实验装置中存在的明显错误.(2)进行实验时,为保证重物下落时初速度为零,应(选填“A”或“B”).A.先接通电源,再释放纸带B.先释放纸带,再接通电源(3)根据打出的纸带,选取纸带上连续打出的1,2,3,4四个点如图(乙)所示.已测出1,2,3,4到打出的第一个点O的距离分别为h1,h2,h3,h4,打点计时器的打点周期为T.若代入所测数据能满足表达式gh3= (用题目中已测出的物理量表示),则可验证重物下落过程机械能守恒.解析:(1)从题图(甲)中的实验装置中发现,打点计时器接在了“直流电源”上,打点计时器的工作电源是“交流电源”.因此,明显的错误是打点计时器接在“直流电源”上.(2)为了使纸带上打下的第1个点是速度为零的初始点,应该先接通电源,让打点计时器正常工作后,再释放纸带.若先释放纸带,再接通电源,当打点计时器打点时,纸带已经下落,打下的第1个点的速度不为零.因此,为保证重物下落的初速度为零,应先接通电源,再释放纸带.(3)根据实验原理,只要验证gh n.因此需求解v3.根据匀变速直线运动规律关系式可得,v3则有故只要在误差允许范围内验证gh3,就可验证重物下落过程中机械能守恒.答案:(1)打点计时器接“直流电源”(或打点计时器应接“交流电源”)(2)A12.(12分)不可伸长的轻绳长l=1.2 m,一端固定在O点,另一端系一质量为m=2 kg的小球.开始时,将小球拉至绳与竖直方向夹角θ=37°的A处,无初速度释放,如图所示,取cos 37°=0.8,g=10 m/s2.求:(1)小球运动到最低点B时绳对球的拉力大小;(2)若小球运动到B点时,对小球施加一沿速度方向的瞬时作用力F,让小球在竖直面内做完整的圆周运动,F做功的最小值.解析:(1)小球从A到B过程中,有mgl(1-cos 37°2在B点,有F T解得F T=28 N.(2)小球通过最高点的速度为v C,由牛顿第二定律得从A到C的过程W-mgl(1+cos 37°解得W=55.2 J.答案:(1)28 N (2)55.2 J13.(15分)如图所示,长为l的绳子下端连着质量为m的小球,上端悬于天花板上,当把绳子拉直时,绳子与竖直方向的夹角为60°,此时小球静止于光滑水平桌面上.重力加速度为g.(1)当小球以角速度ω1,桌面对小球的支持力为多大?(2)当小球以角速度ω2,绳子的张力为多大?解析:当支持力N恰好为0时,有2017-2018学年教科版高中物理必修2 模块检测11 / 11 mgtan 60°° 解得ω0(1)因为ω0所以桌面对小球有支持力,设N 1为桌面对小球的支持力,F 1为绳的张力,则N 1+F 1cos 60°=mgF 1sin 60°°解得N 1(2)ω0,所以小球离开桌面,设此时绳的张力为F 2,则 F 2sin θ=m θ 解得F 2=4mg.答案(2)4mg。
2017-2018学年高中物理必修二学业分层测评:章末综合

章末综合测评(二)(用时:60分钟满分:100分)一、选择题(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,1~7小题只有一项符合题目要求,8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法中错误的是( )A.德国天文学家开普勒对他的导师——第谷观测的行星数据进行了多年研究,得出了开普勒三大行星运动定律B.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了万有引力常量C.伽利略用“月—地检验”证实了万有引力定律的正确性D.牛顿认为在足够高的高山上以足够大的水平速度抛出一物体,物体就不会再落在地球上【解析】根据物理学史可知C错,A、B、D正确.【答案】 C2.中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图1所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗卫星均做圆周运动,a是地球同步卫星,则( )【导学号:50152089】图1A.卫星a的角速度小于c的角速度B.卫星a的加速度小于b的加速度C.卫星a的运行速度大于第一宇宙速度D.卫星b的周期大于24 h【解析】由万有引力提供向心力,得ω=GMr3,则半径大的角速度小,则A正确;由万有引力提供向心力,a=GMr2,则半径相同加速度大小相等,则B错误;第一宇宙速度为近地卫星的运行速度,其值最大,所有卫星的运行速度都小于或等于它,则C错误;b与a的周期相同,为24 h ,则D 错误.【答案】 A3.假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的周期公转B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度【解析】 根据G Mm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r =m v 2r =ma n =m ω2r 得,公转周期T =2πr 3GM,故地球公转的周期较小,选项A 错误;公转线速度v =GMr,故地球公转的线速度较大,选项B 错误;公转加速度a n =GMr2,故地球公转的加速度较大,选项C 错误;公转角速度ω=GM r 3,故地球公转的角速度较大,选项D 正确.【答案】 D4.如图2所示,A 为静止于地球赤道上的物体,B 为绕地球沿椭圆轨道运行的卫星,C 为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A 、B 、C 绕地心运动的周期相同,相对于地心,下列说法中正确的是( )【导学号:50152090】图2A .物体A 和卫星C 具有相同大小的线速度B .物体A 和卫星C 具有相同大小的加速度C .卫星B 在P 点的加速度与卫星C 在该点的加速度一定不相同D .可能出现在每天的某一时刻卫星B 在A 的正上方【解析】 物体A 和卫星B 、C 周期相同,故物体A 和卫星C 角速度相同,但半径不同,根据v =ωR 可知二者线速度不同,A 项错误;根据a =R ω2可知,物体A 和卫星C 向心加速度不同,B 项错误;根据牛顿第二定律,卫星B 和卫星C 在P 点的加速度a =GMr 2,故两卫星在P 点的加速度相同,C 项错误;对于D 选项,物体A 是匀速圆周运动,线速度大小不变,角速度不变,而卫星B 的线速度是变化的,近地点最大,远地点最小,即角速度发生变化,而周期相等,所以如图所示开始转动一周的过程中,会出现A 先追上B ,后又被B 落下,一个周期后A 和B 都回到自己的起点.所以可能出现:在每天的某一时刻卫星B 在A 的正上方,则D 正确.【答案】 D5.同步卫星位于赤道上方,相对地面静止不动.如果地球半径为R ,自转角速度为ω,地球表面的重力加速度为g .那么,同步卫星绕地球的运行速度为( )A.RgB.R ωgC.R 2ωgD.3R 2ωg【解析】 同步卫星的向心力等于地球对它的万有引力G Mmr2=m ω2r ,故卫星的轨道半径r =3GM ω2.物体在地球表面的重力约等于所受地球的万有引力G Mm R 2=mg ,即GM =gR 2.所以同步卫星的运行速度v =r ω=ω·3gR 2ω2=3gR 2ω,D 正确. 【答案】 D6.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕两星球球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是 ( )A .双星相互间的万有引力增大B .双星做圆周运动的角速度不变C .双星做圆周运动的周期增大D .双星做圆周运动的速度增大【解析】 双星间的距离在不断缓慢增加,根据万有引力定律,F =G m 1m 2L 2,知万有引力减小,故A 错误.根据Gm 1m 2L 2=m 1r 1ω2,G m 1m 2L2=m 2r 2ω2,知m 1r 1=m 2r 2,v 1=ωr 1,v 2=ωr 2,轨道半径之比等于质量的反比,双星间的距离变大,则双星的轨道半径都变大,根据万有引力提供向心力,知角速度变小,周期变大,线速度变小,故B 、D 错误,C 正确.【答案】 C7.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动,b 是近地轨道卫星,c 是地球同步卫星,d 是高空探测卫星,它们均做匀速圆周运动,各卫星排列位置如图3所示,则( )【导学号:50152091】图3A .a 的向心加速度等于重力加速度gB .在相同时间内b 转过的弧长最长C .c 在4小时内转过的圆心角是π/6D .d 的运动周期有可能是20小时【解析】 地球同步卫星的角速度与地球自转的角速度相同,则知a 与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大.由G Mmr 2=mg ,得g =GM r2,可知卫星的轨道半径越大,向心加速度越小,则地球同步卫星c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故a 的向心加速度小于重力加速度g ,故A 错误;由G Mm r 2=m v 2r ,得v =GMr,则知卫星的轨道半径越大,线速度越小,所以b 的线速度最大,在相同时间内转过的弧长最长,故B 正确;c 是地球同步卫星,周期是24 h ,则c 在4 h 内转过的圆心角是4 h 24 h ×2π=π3,故C 错误;由开普勒第三定律R 3T2=k 知,卫星的轨道半径越大,周期越大,所以d 的运动周期大于c 的周期24 h ,故D 错误.【答案】 B8.北京时间2005年7月4日下午1时52分(美国东部时间7月4日凌晨1时52分)探测器成功撞击“坦普尔一号”彗星,投入彗星的怀抱,实现了人类历史上第一次对彗星的“大对撞”,如图4所示.假设“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为5.74年,则关于“坦普尔一号”彗星的下列说法中正确的是( )图4A .绕太阳运动的角速度不变B .近日点处线速度大于远日点处线速度C .近日点处加速度大于远日点处加速度D .其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数 【解析】 由开普勒第二定律知近日点处线速度大于远日点处线速度,B 正确;由开普勒第三定律可知D 正确;由万有引力提供向心力得C 正确.【答案】 BCD9.若宇航员测出自己绕地球做匀速圆周运动的周期为T ,离地高度为H ,地球半径为R ,则根据T 、H 、R 和引力常量G ,能计算出的物理量是( )图5A .地球的质量B .地球的平均密度C .飞船所需的向心力D .飞船线速度的大小【解析】 由GMm R +H2=m4π2T 2(R +H ),可得:M =4π2R +H 3GT 2,选项A 可求出;又根据ρ=M 43πR 3,选项B 可求出;根据v =2πR +HT,选项D 可求出;由于飞船的质量未知,所以无法确定飞船的向心力.【答案】 ABD10.迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1-581c”却很值得我们期待.该行星的温度在0 ℃到40 ℃之间,质量是地球的6倍、直径是地球的1.5倍,公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则( )A .在该行星和地球上发射卫星的第一宇宙速度相同B .如果人到了该行星,其体重是地球上的223倍C .该行星与“Gliese581”的距离是日地距离的13365倍 D .由于该行星公转速度比地球大,地球上的物体如果被带上该行星,其质量会稍有变化【解析】 对行星的卫星有G Mm r 2=m v 2r,得v =GMr,将质量关系和半径关系代入得第一宇宙速度关系为v 行v 地=2,选项A 错误;由G Mm r 2=mg 得,人在该行星上的体重是地球上的223倍,选项B 正确;对行星应用万有引力定律G Mm r 2=mr 4π2T 2,得r =3GMT 24π2,r 1r 2=3M 1M 2·T 21T 22=30.31×1323652,选项C 错误.根据爱因斯坦的狭义相对论可判D 选项正确. 【答案】 BD二、非选择题(共3小题,共40分,按题目要求作答)11. (12分) 已知太阳的质量为M ,地球的质量为m 1,月球的质量为m 2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如图6所示.设月球到太阳的距离为a ,地球到月球的距离为b ,则太阳对地球的引力F 1和对月球的吸引力F 2的大小之比为多少?【导学号:50152092】图6【解析】 由太阳对行星的引力满足F ∝m r2知 太阳对地球的引力F 1=GMm 1a +b2太阳对月球的引力F 2=G Mm 2a2故F 1/F 2=m 1a 2m 2a +b 2. 【答案】m 1a 2m 2a +b212.(12分)设嫦娥三号卫星绕月球做圆周运动,月球绕地球也做圆周运动,且轨道都在同一平面内.已知卫星绕月球运动的周期T 0,地球表面处的重力加速度g ,地球半径R 0,月心与地心间的距离r ,万有引力常量为G ,试求:(1)月球的平均密度ρ; (2)月球绕地球运动的周期T .【导学号:50152093】【解析】 (1)设月球质量为m ,卫星质量为m ′,月球的半径为R m ,对于绕月球表面飞行的卫星,由万有引力提供向心力有Gmm ′R 2m =m ′4π2T 20R m ,解得m =4π2R 3mGT 20又根据ρ=m 43πR 3m ,解得ρ=3πGT 20.(2)设地球的质量为M ,对于在地球表面的物体m 表有GMm 表R 20=m 表g ,即GM =R 20g 月球绕地球做圆周运动的向心力来自地球引力即GMm r 2=mr 4π2T 2,解得T =2πr R 0r g . 【答案】 (1)3πGT 20 (2)2πrR 0r g13.(16分)如图7所示是月亮女神、嫦娥1号绕月做圆周运行时某时刻的图片,用R 1、R 2、T 1、T 2、分别表示月亮女神和嫦娥1号的轨道半径及周期,用R 表示月亮的半径.图7(1)请用万有引力知识证明:它们遵循R 31T 21=R 32T 22=k ,其中k 是只与月球质量有关而与卫星无关的常量;(2)经多少时间两卫星第一次相距最远;(3)请用所给嫦娥1号的已知量,估测月球的平均密度.【导学号:50152094】【解析】 (1)设月球的质量为M ,对任一卫星均有G Mm R 2=m 4π2T 2R得R 31T 21=R 32T 22=GM 4π2=k 常量. (2)两卫星第一次相距最远时有2πt T 1-2πtT 2=πt =T 1T 22T 2-2T 1.(3)对嫦娥1号有G Mm R 22=m 4π2T 22R 2M =43πR 3ρρ=3πR 32GR 3T 22.T1T2 2T2-2T1(3)3πR32GR3T22【答案】(1)见解析(2)。
2017-2018学年高中物理粤教版必修2:综合检测 含解析

综合检测(时间:90分钟 满分:100分)一、单项选择题(本题共5小题,每小题4分,共20分)1.一只小船在静水中的速度为3 m/s ,它要渡过一条宽为30 m 的河,河水流速为5 m/s ,则以下说法正确的是( )A .该船可以沿垂直于河岸方向的航线过河B .水流的速度越大,船渡河的时间就越长C .船头正指对岸渡河,渡河时间最短D .船头方向斜向上游,船渡河的时间才会最短 答案 C2.如图1所示,A 、B 两小球从相同高度同时水平抛出,经过时间t 在空中相遇。
若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为( )图1A .tB .22t C .t 2D .t 4答案 C解析 设A 、B 两小球的抛出点间的水平距离为L ,分别以水平速度v 1、v 2抛出,经过时间t 的水平位移分别为x 1、x 2,根据平抛运动规律有x 1=v 1t ,x 2=v 2t ,又x 1+x 2=L ,则t =Lv 1+v 2;若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为t ′=L 2(v 1+v 2)=t2,故选项C 正确.3.如图2所示,小球A 质量为m ,固定在长为L 的轻细直杆一端,并随杆一起绕杆的另一端O 点在竖直平面内做圆周运动,如果小球经过最高位置时速度为 34gL ,则此时杆对球的作用力为( )图2A .支持力,14mgB .支持力,34mgC .拉力,14mgD .拉力,34mg答案 A4.物体做自由落体运动,E p 表示重力势能,h 表示下落的距离,以水平地面为零势能面,下列所示图象中,能正确反映E p 和h 之间关系的是( )答案 B5.如图3所示,把小车放在光滑的水平桌面上,用轻绳跨过定滑轮使之与盛有砂子的小桶相连,已知小车的质量为M ,小桶与砂子的总质量为m ,把小车从静止状态释放后,在小桶下落竖直高度为h 的过程中,若不计滑轮及空气的阻力,下列说法中正确的是( )图3A .绳拉车的力始终为mgB .当M 远远大于m 时,才可以认为绳拉车的力为mgC .小车获得的动能为mghD .小桶和砂子获得的动能为mgh 答案 B解析 砂桶的重力为整体所受合力,F 合=mg ,据牛顿第二定律mg =(M +m )a .以砂桶为研究对象,据牛顿第二定律有mg -T =ma ,则T =Mm M +m g ;当M 远远大于m 时,绳的拉力等于mg ,故A 错误,B 正确;小桶下落竖直高度为h 时系统的重力势能减少mgh ,根据机械能守恒定律,系统(即小车、小桶和砂子)的动能增加量为mgh ,故C 、D 错误.6.据英国《每日邮报》2015年3月6日报道,“格利泽581d ”行星大小约为地球的3倍,是人类在太阳系之外发现的第一个位于宜居带中的行星,被称为“超级地球”.若这颗行星围绕某恒星Q 做匀速圆周运动.测得行星的公转周期为T ,公转轨道半径为r ,已知引力常量为G .则( )A .恒星的质量约为4π2r 3GT2B .行星的质量约为4π2r 3GT2C .以7.9 km/s 的速度从地球发射的探测器可以到达该行星表面D .以16.7 km/s 的速度从地球发射的探测器可以到达该行星表面 答案 AD解析 由于万有引力提供向心力,以行星为研究对象,有G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,选项A 正确;根据万有引力提供向心力,只能求得中心天体的质量,因此根据题目所给信息不能求出行星的质量,选项B 错误;如果发射探测器到达该系外行星,需要克服太阳对探测器的万有引力,脱离太阳系的束缚,所以需要发射速度大于第三宇宙速度,选项C 错误,D 正确.二、多项选择题(本题共5小题,每小题6分,共30分)7.如图4所示,一质点从倾角为θ的斜面顶点以水平速度v 0抛出,重力加速度为g ,则下列说法正确的是( )图4A .质点抛出后,经时间为v 0tan θg离斜面最远 B .质点抛出后,当离斜面最远时速度大小为v 0sin θC .质点抛出后,当离斜面最远时速度大小为v 0cos θD .质点抛出后,经时间为v 0g tan θ离斜面最远 答案 AC解析 设质点到达距离斜面最远所需时间为t ,则:tan θ=v y v 0=gt v 0,故t =v 0tan θg,A 对,D 错;质点离斜面最远时速度大小:v =v 20+v 2y =v 20+g 2t 2=v 0cos θ,B 错,C 对. 8.如图5所示的传动装置中,右轮半径为2r ,a 为它边缘上的一点,b 为轮上的一点,b 距轴为r .左侧为一轮轴,大轮的半径为4r ,d 为它边缘上的一点,小轮的半径为r ,c 为它边缘上的一点.若传动中轮不打滑,则( )图5A .a 点与c 点的线速度大小相等B .b 点与d 点的线速度大小相等C .a 点与d 点的向心加速度大小之比为1∶8D .a 点与b 点的角速度大小相等 答案 ACD解析 右轮与小轮是摩擦传动,a 、c 为其边缘上的两点,所以a 、c 两点的线速度大小相等,A 正确;c 、d 同轴转动,所以c 、d 两点的角速度相同,同理a 、b 两点的角速度也相同,D 正确;由v =ωr ,可知,v b v d =ωb r 4ωd r =ωa r 4ωc r =18,B 错误;由a =v 2r 可知,a a ∶a d =v 2a2r ∶v 2d4r=1∶8,C 正确. 9.足够长的粗糙斜面上,用力推着一物体m 沿斜面向上运动,t =0时撤去推力,0~6 s 内速度随时间的变化情况如图6所示,由图象可知( )图6A .0~1 s 内重力的平均功率大小与1~6 s 内重力平均功率大小之比为5∶1B .0~1 s 内摩擦力的平均功率与1~6 s 内摩擦力平均功率之比为1∶1C .0~1 s 内机械能变化量大小与1~6 s 内机械能变化量大小之比为1∶5D .1~6 s 内动能变化量大小与机械能变化量大小之比为1∶3 答案 BC解析 由图象可知,0~1 s 内和1~6 s 内的平均速度都是5 m/s ,根据功率公式P =F v 可知两段时间内重力平均功率之比为1∶1,选项A 错误;物体在两个运动过程中所受摩擦力大小相等,故平均功率之比为1∶1,B 正确;机械能的变化量可由除重力之外其他力做功判断,为摩擦力做功,由图象知0~1 s 内与1~6 s 内位移之比为1∶5,则两段时间内机械能变化量之比为1∶5,选项C 正确;1~6 s 内动能变化量ΔE k =12m v 2=50m ,上升段由牛顿第二定律有mg sin θ+f =ma 1,下降段有mg sin θ-f =ma 2,联立得f =4m ,则1~6 s 下降段中摩擦力做功W f =ΔE =4m ·102×5=100m ,则动能变化量ΔE k 与机械能变化量ΔE 之比为1∶2,D 错误.10.如图7所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中( )图7A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差 答案 BCD解析 在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2,则小球在M 点时弹簧处于压缩状态,在N 点时弹簧处于拉伸状态,小球从M 点运动到N 点的过程中,弹簧长度先缩短,当弹簧与竖直杆垂直时弹簧达到最短,这个过程中弹力对小球做负功,然后弹簧再伸长,弹力对小球开始做正功,当弹簧达到自然伸长状态时,弹力为零,再随着弹簧的伸长弹力对小球做负功,故整个过程中,弹力对小球先做负功,再做正功,后再做负功,选项A 错误;在弹簧与杆垂直时及弹簧处于自然伸长状态时,小球加速度等于重力加速度,选项B 正确;弹簧与杆垂直时,弹力方向与小球的速度方向垂直,则弹力对小球做功的功率为零,选项C 正确;由机械能守恒定律知,在M 、N 两点弹簧弹性势能相等,在N 点动能等于从M 点到N 点重力势能的减少值,选项D 正确.三、实验题(本题共2小题,共10分)11.(5分)某同学把附有滑轮的长木板平放在实验桌面上,将细绳一端拴在小车上,另一端绕过定滑轮挂上适当的钩码使小车在钩码的牵引下运动,以此定量研究绳拉力做功与小车动能变化的关系.此外还准备了打点计时器及配套的电源、导线、复写纸、纸带、小木块等.组装的实验装置如图8所示.图8(1)若要完成该实验,必须的实验器材还有________________________;(2)(多选)实验开始前,他先通过调节长木板的倾斜程度来平衡小车所受摩擦力,再调节木板一端定滑轮的高度,使牵引小车的细绳与木板平行.实验中将钩码重力做的功当作细绳拉力做的功.经多次实验发现拉力做的功总是要比小车动能增量大一些,这一情况可能是下列哪些原因造成的__________(填字母代号).A.释放小车的位置离打点计时器太近B.小车的质量比钩码的质量大了许多C.摩擦阻力未完全被小车重力沿木板方向的分力平衡掉D.钩码做匀加速运动,钩码重力大于细绳拉力答案(1)刻度尺、天平(2)CD12.(5分)如图9所示,在“验证机械能守恒定律”的实验中,电火花计时器接在220 V、50 Hz的交流电源上,自由下落的重物质量为1 kg,打下一条理想的纸带如图10所示,取g =9.8 m/s2,O为下落起始点,A、B、C为纸带上打出的连续点迹,则:图9图10(1)打点计时器打B点时,重物下落的速度v B=______m/s;从起始点O到打B点的过程中,重物的重力势能减少量ΔE p=_________J,动能的增加量ΔE k=_________J.(结果均保留3位有效数字)(2)分析ΔE k E p的原因是______________.答案(1)0.7750.3080.300(2)由于纸带和打点计时器限位孔之间有摩擦阻力以及重物受到空气阻力四、计算题(本题共4小题,共40分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)13.(8分)宇航员站在某星球表面,从高h处以初速度v0水平抛出一个小球,小球落到星球表面时,与抛出点的水平距离是x,已知该星球的半径为R,引力常数为G,求:(1)该星球的质量M;(2)该星球的第一宇宙速度.答案 (1)2h v 20R2Gx 2 (2)v 0x2hR 解析 (1)设星球表面的重力加速度为g ,则由平抛运动规律:x =v 0t ,h =12gt 2再由mg =G MmR2解得:M =2h v 20R2Gx 2(2)设该星球的近地卫星质量为m 0, 则 m 0g =m 0v 2R解得v =v 0x2hR14.(10分)如图11所示是离心轨道演示仪结构示意图.光滑弧形轨道下端与半径为R 的光滑圆轨道相接,整个轨道位于竖直平面内.质量为m 的小球从弧形轨道上的A 点由静止滑下,进入圆轨道后沿圆轨道运动,最后离开圆轨道.小球运动到圆轨道的最高点时,对轨道的压力恰好与它所受到的重力大小相等.重力加速度为g ,不计空气阻力,求:图11(1)小球运动到圆轨道的最高点时速度的大小;(2)小球开始下滑的初始位置A 点距水平面的竖直高度h . 答案 (1)2gR (2)3R解析 (1)小球经过最高点时对轨道的压力N =mg , 依据牛顿第三定律有轨道对小球的作用力 N ′=N =mg设小球通过最高点的速度为v , 依据牛顿第二定律有 N ′+mg =m v 2R ,解得v =2gR .(2)小球自A 点下滑至圆轨道最高点的过程中机械能守恒,由机械能守恒定律有mgh =12m v 2+2mgR解得h =3R .15.(10分)如图12所示,半径为R 的光滑半圆弧轨道与高为10R 的光滑斜轨道放在同一竖直平面内,两轨道之间由一条光滑水平轨道CD 相连,水平轨道与斜轨道间有一段圆弧过渡.在水平轨道上,轻质弹簧被a 、b 两小球挤压,处于静止状态.同时释放两个小球,a 球恰好能通过圆弧轨道的最高点A ,b 球恰好能到达斜轨道的最高点B .已知a 球质量为m 1,b 球质量为m 2,重力加速度为g .求:图12(1)a 球离开弹簧时的速度大小v a ; (2)b 球离开弹簧时的速度大小v b ; (3)释放小球前弹簧的弹性势能E p .答案 (1)5gR (2)20gR (3)⎝⎛⎭⎫52m 1+10m 2gR 解析 (1)由a 球恰好能到达A 点知m 1g =m 1v 2AR ,由机械能守恒定律得12m 1v 2a -12m 1v 2A =m 1g ·2R ,得v a =5gR . (2)对于b 球由机械能守恒定律得:12m 2v 2b =m 2g ·10R ,得v b =20gR . (3)由机械能守恒定律得E p =12m 1v 2a +12m 2v 2b , 得E p =⎝⎛⎭⎫52m 1+10m 2gR . 16.(12分)如图13所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳子的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图13(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.答案(1)5 m/s(2)3 s(3)360 J解析(1)设选手放开抓手时的速度为v1,由动能定理得-mg(L-L cos θ)=12m v21-12m v2,代入数据解得:v1=5 m/s.(2)设选手放开抓手时的水平速度为v2,则v2=v1cos θ①选手在传送带上减速过程中a=-μg②v=v2+at1③x1=v+v22t1④设匀速运动的时间为t2,则s-x1=v t2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥解得t=3 s.(3)由动能定理得W f=12m v2-12m v22,解得:W f=-360 J,故克服摩擦力做功为360 J.。
2017-2018学年高中物理必修2:第2章 阶段验收评估二

第2章 能的转化与守恒(时间:50分钟 满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
第1~5小题只有一个选项正确,第6~8小题有多个选项正确,全选对的得6分,选对但不全的得3分,有选错的得0分)1.自由摆动的秋千,摆动的幅度越来越小,下列说法中正确的是( ) A .机械能守恒 B .能量正在消失C .总能量守恒,正在减少的机械能转化为内能D .只有动能和势能的相互转化解析:选C 秋千摆动的幅度越来越小,即重力势能的最大值越来越小,机械能减小,减小的机械能转化为内能,C 正确。
2.一辆汽车以v 1=6 m/s 的速度沿水平面行驶,急刹车后能滑行l 1=3.6 m 。
如果汽车以v 2=8 m/s 的速度行驶,在同样的路面上急刹车后滑行的距离l 2应为( )A .6.4 mB .5.6 mC .7.2 mD .10.8 m解析:选A 设摩擦力为f ,由动能定理得-fs 1=0-12m v 12①-fs 2=0-12m v 22②由①②两式得s 2s 1=v 22v 12,故汽车滑行距离s 2=v 22v 12·s 1=⎝⎛⎭⎫862×3.6 m =6.4 m 。
3.如图1所示在足球赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角贴着球门射入,球门高度为h ,足球飞入球门的速度为v ,足球质量为m ,则红队球员将足球踢出时对足球做的功W 为(不计空气阻力、足球可视为质点)( )图1A.12m v 2 B .mgh C.12m v 2+mgh D.12m v 2-mgh解析:选C 根据动能定理可得:W -mgh =12m v 2-0,所以W =12m v 2+mgh ,C 正确。
4.如图2所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R 。
一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( )图2A.μmgR 2B.mgR 2C .mgRD.(1-μ)mgR解析:选D 设物体在AB 段克服摩擦力所做的功为W AB ,BC 段摩擦力做功-μmgR 。
2017-2018学年高中物理(二)模块综合测评含答案

模块综合测评(用时:60分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,1~5小题只有一项符合题目要求,6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列关于力和运动的说法中,正确的是( )A.物体在变力作用下不可能做直线运动B.物体做曲线运动,其所受的外力不可能是恒力C.不管外力是恒力还是变力,物体都有可能做直线运动D.不管外力是恒力还是变力,物体都有可能做匀速圆周运动【解析】物体做曲线运动的条件是合力与速度不在同一条直线上,若受到的变力和速度方向相同,则做直线运动,A错误;平抛运动是曲线运动,过程中受到的合力恒定,等于重力大小,B错误;匀速圆周运动过程中,物体受到的加速度时时刻刻指向圆心,根据牛顿第二定律可知受到的合力时时刻刻指向圆心,为变力,D错误.【答案】C2.在飞船进入圆形轨道环绕地球飞行时,它的线速度大小( ) A.等于7.9 km/sB.介于7。
9 km/s和11.2 km/s之间C.小于7.9 km/sD.介于7。
9 km/s和16。
7 km/s之间【解析】卫星在圆形轨道上运动的速度v=错误!。
由于r>R,所以v<G MR=7.9 km/s,C正确.【答案】C3.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J【解析】根据动能定理得韩晓鹏动能的变化ΔE=W G+W f=1 900 J-100 J=1 800 J〉0,故其动能增加了1 800 J,选项A、B错误;根据重力做功与重力势能变化的关系W G=-ΔE p,所以ΔE p=-W G =-1 900 J〈0,故韩晓鹏的重力势能减小了1 900 J,选项C正确,选项D错误.【答案】C4.如图1所示,一个电影替身演员准备跑过一个屋顶,然后水平跳跃并离开屋顶,在下一个建筑物的屋顶上着地.如果他在屋顶跑动的最大速度是4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示为质点做匀变速曲线运动轨迹的示意图,且质点运动到D点时速度方向与加速度方向恰好互相垂直,则质点从A点运动到E点的过程中,下列说法中正确的是()A.质点经过C点的速率比D点的大B.质点经过A点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小解析:小球做匀变速曲线运动,所以加速度不变,故选项C错误.由于在D点速度方向与加速度方向垂直,则在C点时速度方向与加速度方向的夹角为钝角,所以质点由C到D速率减小,即C点速率比D点大,故选项A正确.在A点速度方向与加速度方向的夹角也为钝角,故选项B错误.而从B到E的过程中速度方向与加速度的方向间的夹角越来越小,故选项D错误.答案:A2.如图所示,两个相对的斜面,倾角分别为37°和53°.在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上. 若不计空气阻力,则A 、B 两个小球的运动时间之比为()A .1∶1B .4∶3C .16∶9D .9∶16解析:两小球均做平抛运动,且均落在斜面上,则对于A 球有tan 37°=y x =12gt 2A 0t A =gt A 2v 0,解得t A =2v 0tan 37°g,同理对于B 球有t B =2v 0tan 53°g ,则t A t B =tan 37°tan 53°=916,故D 正确. 答案:D3.如图所示,河水流动的速度为v ,且处处相同,河宽度为a ,在船下水点A 的下游距离为b 处是瀑布,为了使小船安全渡河(不掉到瀑布里去),本题中小船速度均指静水中的速度,则下列说法正确的是()A .小船船头垂直于河岸渡河时间最短,最短时间为t =b v ,此时小船速度最大,最大速度为v max =a v bB .小船沿y 轴方向渡河,位移最小,速度最大,最大速度为v max=a v bC .小船沿轨迹AB 运动,位移最大,时间最长,速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动,位移最大,速度最小,最小速度v min =a v a 2+b 2 解析:小船船头垂直于河岸渡河时间最短,最短时间t =a v 船,A 错误;小船沿y 轴方向渡河,位移最小,此时船头与河岸有一定夹角,指向上游,即小船的两个分速度夹角为钝角,合速度比两分速度夹角为锐角时小,故不是最大速度,B 错误;小船沿轨迹AB 运动位移最大,但渡河的时间由船速的大小和方向共同决定,此时船速有最小值,即当船速方向与AB 垂直时,船速最小,由相似三角形,得a v min =a 2+b 2v,解得v min =a v a 2+b 2,C 错误,D 正确.答案:D4.汽车在平直公路上行驶,前一段时间内发动机的功率为P 1,后一段时间内的功率为P 2,已知在两段时间内发动机做的功相等,则在全部时间内发动机的平均功率为( )A.P 1+P 22B.P 1P 2C.P 1P 2P 1+P 2D.2P 1P 2P 1+P 2解析:平均功率P=2Wt1+t2,又t1=WP1,t2=WP2,故P=2P1P2P1+P2,故选项D正确.答案:D5.以一定速度竖直上抛一个小球,小球上升的最大高度为h,空气阻力的大小恒为F f,则从抛出至落回到原出发点的过程中,空气阻力对小球做的功为()A.0 B.-F f hC.-2F f h D.-4F f h解析:上升阶段,空气阻力做功W1=-F f h.下落阶段空气阻力做功W2=-F f h,整个过程中空气阻力做功W=W1+W2=-2F f h,故C选项正确.答案:C6.质量为2×103kg、发动机的额定功率为80 kW的汽车在平直公路上行驶.若该汽车所受阻力大小恒为4×103 N,则下列判断中正确的有()A.汽车的最大速度是10 m/sB.汽车以2 m/s2的加速度匀加速启动,启动后第2 s末时发动机的实际功率是32 kWC.汽车以2 m/s2的加速度匀加速启动,匀加速运动所能维持的时间为10 sD.若汽车保持额定功率启动,则当其速度为5 m/s时,加速度为8 m/s2解析:当牵引力大小等于阻力时速度最大,根据P=f v m得,汽车的最大速度v m =P f =80 0004 000m/s =20 m/s ,故A 错误;根据牛顿第二定律,得F -f =ma ,解得F =f +ma =4 000 N +2 000×2 N =8 000 N ,第2 s 末的速度v =at =2×2 m/s =4 m/s ,第2 s 末发动机的实际功率P =F v =8 000×4 W =32 kW ,故B 正确;匀加速直线运动的末速度v =P F =80 0008 000 m/s =10 m/s ,做匀加速直线运动的时间t =v a =102s =5 s ,故C 错误;当汽车速度为5 m/s 时,牵引力F =P v =80 0005N =16 000 N ,根据牛顿第二定律,得汽车的加速度a =F -f m=16 000-4 0002 000m/s 2=6 m/s 2,故D 错误.选B. 答案:B7.质量为m 的滑块从半径为R 的半球形碗的边缘滑向碗底,过碗底时速度为v ,若滑块与碗间的动摩擦因数为μ,则在过碗底时滑块受到摩擦力的大小为( )A .μmgB .μm v 2RC .μm ⎝ ⎛⎭⎪⎫g +v 2RD .μm ⎝ ⎛⎭⎪⎫v 2R -g 解析:滑块经过碗底时,由重力和支持力的合力提供向心力.根据牛顿第二定律得F N -mg =m v 2R ,则碗底对球支持力F N =mg +m v 2R.所以在过碗底时滑块受到摩擦力的大小f =μF N =μ⎝ ⎛⎭⎪⎫mg +m v 2R =μm ⎝ ⎛⎭⎪⎫g +v 2R ,故选C. 答案:C8.一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图所示.下列判断正确的是( )A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶5解析:0~1 s 内,质点的加速度a 1=F 1m =31m/s 2=3 m/s 2,则质点在0~1 s 内的位移x 1=12a 1t 21=12×3×1 m =1.5 m ,1 s 末的速度v 1=a 1t 1=3×1 m/s =3 m/s ,第2 s 内质点的加速度a 2=F 2m =11m/s 2=1 m/s 2,第2 s 内的位移x 2=v 1t 2+12a 2t 22=3×1 m +12×1×1 m =3.5 m ,在0~2 s 内外力F 做功的大小W =F 1x 1+F 2x 2=3×1.5 J +1×3.5 J=8 J ,可知0~2 s 内外力的平均功率P =W t =82W =4 W ,故A 正确;第2 s 内外力做功W 2=F 2x 2=1×3.5 J =3.5 J ,故B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W =9 W ,第2 s 末的速度v 2=v 1+a 2t 2=3 m/s +1×1 m/s =4 m/s ,则外力的瞬时功率P 2=F 2v 2=1×4 W=4 W ,可知第2 s 末外力的瞬时功率不是最大,第1 s 末和第2 s 末外力的瞬时功率之比为9∶4,故C 、D 错误.答案:A9.长为0.5 m 的轻杆,其一端固定于O 点,另一端连有质量m =2 kg 的小球,它绕O 点在竖直平面内做圆周运动,如图所示,当通过最高点时,v =1 m/s ,小球受到杆的力是(g 取10 m/s 2)( )A .16 N 推力B .16 N 拉力C .4 N 推力D .4 N 拉力解析:小球受重力和杆的弹力作用,设杆的弹力竖直向上.由牛顿第二定律得mg -F N =m v 2L ,解得F N =mg -m v 2L =2×10 N -2×120.5N =16 N ,故球受到杆竖直向上的推力作用,大小为16 N ,选项A 正确.答案:A10.如图所示,两颗星组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A .m 1、m 2做圆周运动的线速度之比为3∶2B .m 1、m 2做圆周运动的角速度之比为3∶2C .m 1做圆周运动的半径为25L D .m 2做圆周运动的半径为25L 解析:根据F 万=F 向,对m 1得G m 1m 2L 2=m 1v 21r 1=m 1r 1ω2,对m 2得G m 1m 2L 2=m 2v 22r 2=m 2r 2ω2,又r 1+r 2=L ,由以上各式得v 1v 2=r 1r 2=m 2m 1=23,A 错误.由于T 1=T 2,故ω=2πT 相同,B 错误.r 1=25L ,r 2=35L ,C 正确,D 错误.答案:C二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.我国已发射了“嫦娥三号”卫星,该卫星在距月球表面H 处的环月轨道Ⅰ上做匀速圆周运动,其运行的周期为T ,随后“嫦娥三号”在该轨道上A 点采取措施,降至近月点高度为h 的椭圆轨道Ⅱ上,如图所示.若以R 表示月球的半径,忽略月球自转及地球对卫星的影响.则下述判断正确的是( )A .“嫦娥三号”在环月轨道Ⅰ上需加速才能降至椭圆轨道ⅡB .“嫦娥三号”在图中椭圆轨道Ⅱ上的周期为(2R +H +h )38(R +H )3T C .月球的质量为4π2(R +H )3GT 2 D .月球的第一宇宙速度为 2πR (R +H )3TR解析:“嫦娥三号”在轨道Ⅰ上运动,要使其沿椭圆轨道运动,“嫦娥三号”需做近心运动,故在轨道Ⅰ上需要对“嫦娥三号”减速,“嫦娥三号”才可以沿轨道Ⅱ运动,故A 错误;根据开普勒第三定律a 3T 2=k ,得“嫦娥三号”在轨道Ⅰ和轨道Ⅱ上的周期应满足T ⅠT Ⅱ=(R +H )3⎣⎢⎡⎦⎥⎤12(2R +H +h )3,T Ⅰ=T ,解得T Ⅱ=(2R +H +h )38(R +H )3T ,故B 正确;“嫦娥三号”在图中轨道Ⅰ上运动时,根据万有引力提供它做圆周运动的向心力,有G Mm (R +H )2=m 4π2T 2(R +H ),解得月球的质量为M =4π2(R +H )3GT 2,故C 正确;据G Mm R2=m v 2R ,得月球的第一宇宙速度为v =GM R =2πR (R +H )3TR,故D 正确. 答案:BCD12.如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab 为水平直径,cd 为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则()A.物块始终受到三个力作用B.只有在a、b、c、d四点,物块受到合外力才指向圆心C.从a到b,物体所受的摩擦力先减小后增大D.从b到a,物块处于超重状态解析:在cd两点处,只受重力和支持力,在其他位置处物体受到重力,支持力、静摩擦力三个作用,故A错误;物体作匀速圆周运动,合外力提供向心力,所以合外力始终指向圆心,故B错误;从a运动到b,物体的加速度的方向始终指向圆心,水平方向的加速度先减小后反向增大,根据牛顿第二定律可得,物体所受木板的摩擦力先减小后增大.故C正确.从b运动到a,向心加速度有向上的分量,所以物体处于超重状态,故D正确.答案:CD13.如图所示,在“嫦娥”探月工程中,设月球半径为R,月球表面的重力加速度为g.飞船在半径为4R的圆形轨道Ⅰ上运动,到达轨道的A点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B时,再次点火进入半径约为R的近月轨道Ⅲ绕月做圆周运动,则()A .飞船在轨道Ⅰ上的运行速率等于12g 0R B .飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率C .飞船在轨道Ⅰ上的加速度大于在轨道Ⅱ上B 处的加速度D .飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶1解析:根据G Mm (4R )2=m v 214R ,得飞船在轨道Ⅰ上的运行速率v 1=GM 4R ,又GM =g 0R 2,解得v 1= g 0R 4=12g 0R ,故A 正确;根据G Mm r 2=m v 2r ,解得v = GM r,飞船在轨道Ⅰ和轨道Ⅲ上的速率关系为v Ⅲ>v Ⅰ,飞船在轨道Ⅱ上的B 处减速进入轨道Ⅲ,则飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的速率,故B 正确;根据牛顿第二定律,得a =G Mm r 2m =GM r2,飞船在轨道Ⅰ上的加速度小于在轨道Ⅱ上B 处的加速度,故C 错误;根据G Mm r 2=mr 4π2T2,得T =4π2r 3GM,飞船在轨道Ⅰ、轨道Ⅲ上运行的轨道半径之比为4∶1,则周期之比为8∶1,故D 错误.答案:AB14.将一物体从地面以一定的初速度竖直上抛,从抛出到落回原地的过程中,空气阻力恒定.以地面为零势能面,则下列反映物体的机械能E、动能E k、重力势能E p及克服阻力所做的功W随距地面高度h变化的四个图象中,可能正确的是()解析:物体运动过程中受重力和阻力,除重力外其余力做的功等于机械能的变化量,上升过程和下降过程中物体一直克服阻力做功,故机械能不断减小,但落回原地时有速度,机械能不可能为零,故A 错误;物体运动过程中受重力和阻力,合力做功等于动能的变化量,上升过程动能不断减小,表达式为-(mg+f)h=E k-E k0,下降过程动能不断增大,表达式为(mg-f)(H-h)=E k,故B正确;重力做功等于重力势能的减少量,以地面为零势能面,故E p=mgh,故C正确;上升过程中克服阻力所做的功W=fh,下降过程中克服阻力做的功为W=f(H-h)=fH-fh,故D正确.答案:BCD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)在做“研究平抛运动”的实验中,为了确定小球不同时刻在空中所通过的位置,实验时用了如图所示的装置.先将斜槽轨道的末端调整水平,在一块平整的木板表面钉上白纸和复写纸.将该木板竖直立于水平地面上,使小球从斜槽上紧靠挡板处由静止释放,小球撞到木板并在白纸上留下痕迹A;将木板向远离槽口的方向平移距离x,再使小球从斜槽上紧靠挡板处由静止释放,小球撞在木板上得到痕迹B;将木板再向远离槽口的方向平移距离x,小球再从斜槽上紧靠挡板处由静止释放,再得到痕迹C.若测得木板每次移动距离x=10.00 cm.A、B间距离y1=5.02 cm,B、C间距离y2=14.82 cm(g=9.80 m/s2).(1)为什么每次都要使小球从斜槽上紧靠挡板处由静止释放?______________________________________________________.(2)根据以上直接测量的物理量来求得小球初速度的表达式为v0=________________(用题中所给字母表示).(3)小球初速度的值为v0=________ m/s.解析:(1)每次从斜槽上紧靠挡板处由静止释放小球,是为了使小球离开斜槽末端时有相同的初速度.(2)根据平抛运动在水平方向上为匀速直线运动,则小球从A到B 和从B到C运动时间相等,设为T;竖直方向由匀变速直线运动推论有y2-y1=gT2,且v0T=x.解以上两式得:v0=xgy2-y1.(3)代入数据解得v0=1.00 m/s.答案:(1)为了保证小球每次做平抛运动的初速度相同(2)xgy2-y1(3)1.0016.(8分)如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为45°.已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为f=24mg.(1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的最大值和最小值.解析:(1)当小物块受到的摩擦力为零,支持力和重力的合力提供向心力,有mg tan θ=mω20R sin θ,解得ω0=2g R.(2)当ω>ω0时,重力和支持力的合力不够提供向心力,当角速度最大时,摩擦力方向沿罐壁切线向下时摩擦力达到最大值,设此时最大角速度为ω1,由牛顿第二定律,得f cos θ+F N sin θ=mω21R sin θ,f sin θ+mg=F N cos θ,联立以上三式,解得ω1=32g 2R.当ω<ω0时,重力和支持力的合力大于所需向心力,摩擦力方向沿罐壁切线向上,当角速度最小时,摩擦力向上达到最大值,设此最小角速度为ω2,由牛顿第二定律,得F N sin θ-f cos θ=mω22R sin θ,mg=F N cos θ+f sin θ,联立解得ω2=2g 2R.答案:(1) 2gR(2)32g2R2g2R17.(14分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B 与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1 530 J,取g=10 m/s2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大.解析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v 2B =2ax ,①由牛顿第二定律,有mg H x-F f =ma ,② 联立①②式,代入数据,解得F f =144 N .③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理,有mgh +W =12m v 2C -12m v 2B ,④ 设运动员在C 点所受的支持力为F N ,由牛顿第二定律,有F N -mg =m v 2C R,⑤ 由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R =12.5 m.答案:(1)144 N (2)12.5 m18.(16分)如图所示,一轻质弹簧左端固定在足够长的水平轨道左侧,水平轨道的PQ 段粗糙,调节其初始长度为l 0=1.5 m ,水平轨道右侧连接半径为R =0.4 m 的竖直圆形光滑轨道,可视为质点的滑块将弹簧压缩至A 点后由静止释放,经过水平轨道PQ 后,恰好能通过圆形轨道的最高点B .已知滑块质量m =1 kg ,与PQ 段间的动摩擦因数μ=0.4,轨道其他部分摩擦不计.g 取10 m/s 2,求:(1)弹簧压缩至A 点时弹簧的弹性势能E p ;(2)若每次均从A 点由静止释放滑块,同时调节PQ 段的长度,为使滑块在进入圆形轨道后能够不脱离轨道而运动,PQ 段的长度l 应满足什么条件?解析:(1)设滑块冲上圆形轨道最高点B 时速度为v ,由能量守恒定律,得E p =12m v 2+2mgR +μmgl 0,① 滑块在B 点时,重力提供向心力,由牛顿第二定律,得mg =m v 2R,② 联立①②式并代入数据,解得E p =16 J.(2)若要使滑块不脱离轨道,分两种情况讨论:①滑块能够通过B 点而不脱离轨道,则应满足l ≤1.5 m ,③ ②滑块能够到达圆形轨道,则应满足E p ≥μmgl ,解得l ≤4 m ,④滑块到达圆形轨道而又不超过与圆心等高的C 点时,如图所示,临界条件取到达C点时速度恰好为零,则有E p≤mgR+μmgl,解得l≥3 m,⑤联立③④⑤式,可得PQ段长度l应满足的条件是:l≤1.5 m或3 m≤l≤4 m.答案:(1)16 J(2)l≤1.5 m或3 m≤l≤4 m。