竞赛培训专题1-----等差数列与等比数列
等差数列与等比数列的基本量运算
等差数列与等比数列运算知识点:一.等差数列 1.等差数列基本概念⑴等差数列的概念:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,常用字母d 表示. 即等差数列有递推公式:1(1)n n a a d n +-=≥. ⑵等差数列的通项公式为:1(1)n a a n d =+-.⑶等差中项:如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项,即2x yA +=. ⑷等差数列的前n 项和公式:211()(1)22n n n a a n n S na d An Bn +-==+=+. 1.等差数列通项公式的推导:2132121n n n n a a d a a da a d a a d----=-=-=-=,将这1n -个式子的等号两边分别相加得:1(1)n a a n d -=-,即1(1)n a a n d =+-.由等差数列的通项公式易知:()n m a a n m d -=-. 2.等差数列前n 项和公式的推导:1111()(2)[(1)]n S a a d a d a n d =+++++++-,把项的顺序反过来,可将n S 写成:()(2)[(1)]n n n n n S a a d a d a n d =+-+-++--,将这两式相加得:11112()()()()n n n n n S a a a a a a n a a =++++++=+,从而得到等差数列的前n 项和公式1()2n n n a a S +=,又1(1)n a a n d =+-, 得11()(1)22n n n a a n n S na d +-==+. 二.等比数列1. 等比数列的概念:如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,常用字母(0)q q ≠表示.2. 等比数列的通项公式为:11n n a a q -=.3. 等比中项:如果三个数,,x G y 组成等比数列,那么G 叫做x 和y 的等比中项,即2G xy =.两个正数(或两个负数)的等比中项有两个,它们互为相反数;一个正数与一个负数没有等比中项.1.等比数列通项公式的推导: 由等比数列的定义知:312412321,,,,,n n n n a a aa aq q q q q a a a a a ---===== 将这1n -个式子的等号两边分别相乘得:11n na q a -=,即11n n a a q -=. 由等比数列的通项公式易知:n m nma q a -=.一、等差数列中基本量的运算:a 1,a n ,n ,d ,S n 知三求二 ①基本量运算{}28454565651.,6,6,....n a a a A S S B S S C S S D S S =-=<=<=(一星)是等差数列且则()解:1994500a a S S S +=⇒=⇒=.选B.{}18451845184518452.,0,....n a d A a a a a B a a a a C a a a a D a a a a ≠><+>+=(一星)如果是正项等差数列公差则()答案:B.3,4,3,2550,,.k .a a k S a k =(一星)等差数列前三项为前项和求的值答案:2,50a k ==7.(二星)(2015年全国1)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 答案:B7.(三星)(全国1理科)设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )A.3B.4C.5D.6 解:有题意知==0,∴=-=-(-)=-2,=-=3,∴公差=-=1,∴3==-,∴=5,故选C.2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 .4.(二星)已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) A.B.B.C. D.(3)(2016全国1卷理)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97解:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =, 而108a =,因此公差1051105a a d -==- ∴100109098a a d =+=.故选C .4.(2017全国1卷理)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为( ) A .1B .2C .4D .8解:45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②得()211524-=d624d = 4d =∴.选C3.(2018广州市调研理)在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =( )BA .2B .3C .2-D .3-4.(2018广州一模文)等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S +(A )A .42n +B .4nC .21n +D .2n4.(2018全国1理)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a B A .12- B .10- C .10 D .129. (2019全国1卷理)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B.310n a n =-C. 228n S n n =-D. 2122n S n n =- 解:由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .18.(2019全国1卷文)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{}n a 的公差为d .由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-. (2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a 等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N .14.(2019全国高考3卷理)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =________.414.(2019全国3卷文)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.15. (2018广东一模文)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,则5a = .146. (2018广东一模文)等差数列()()()333log 2,log 3,log 42,x x x +的第四项等于( A )A .3B .4 C. 3log 18 D .3log 24 ②创新题1.(2016全国2卷文)等差数列{}n a 中,且344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记[]n n a b =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]26.2=.解:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=.(Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦,当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.17.(2016全国2卷理)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 解: ⑴设的公差为,,∴,∴,∴. ∴,,. ⑵记的前项和为,则. 当时,; 当时,; 当时,; 当时,.∴.(17)(2017届广州市调研文)等差数列}{n a 中,1243=+a a ,749S =. (Ⅰ)求数列}{n a 的通项公式;(Ⅰ)记][x 表示不超过x 的最大整数,如0]9.0[=,2]6.2[= . 令][lg n n a b =,求数列}{n b 的前2000项和.解:(Ⅰ)由1243=+a a ,749S =,得112512,72149.a d a d +=⎧⎨+=⎩{}n a d 74728S a ==44a =4113a a d -==1(1)n a a n d n =+-=[][]11lg lg10b a ===[][]1111lg lg111b a ===[][]101101101lg lg 2b a ==={}n b n n T 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+0lg 1n a <≤129n =⋅⋅⋅,,,1lg 2n a <≤101199n =⋅⋅⋅,,,2lg 3n a <≤100101999n =⋅⋅⋅,,,lg 3n a =1000n =1000091902900311893T =⨯+⨯+⨯+⨯=解得11=a ,2=d , 所以12-=n a n .(Ⅰ))]12[lg(][lg -==n a b n n , 当51≤≤n 时, 0)]12[lg(=-=n b n ;当506≤≤n 时, 1)]12[lg(=-=n b n ; 当50051≤≤n 时, 2)]12[lg(=-=n b n ; 当5012000n ≤≤时, 3)]12[lg(=-=n b n .所以数列}{n b 的前2000项和为544515003450245150=⨯+⨯+⨯+⨯.③与其他内容结合4546.(){},10,15,___.n n a n S S S a ≥≤四星设等差数列的前项和为若则的最大值为4141115110235:3(23)3(2) 4. 4.1523S a d a a d a d a d S a d ≥+≥⎧⎧⇒⇒=+=-+++≤⎨⎨≤+≤⎩⎩解答案为二、等比数列中基本量的运算 ①基本量运算1.1,,,,9,.3,9.3,9.3,9.3,9a b c Ab ac B b ac C b ac D b ac --===-===-=-=-(一星)若成等比数列则()答案:B3102.,3,384,______a a ==(一星)等比数列中则通项公式为答案:332n n a -=⋅364714.,36,18,,____2n a a a a a n +=+===(一星)等比数列中答案:9n =13、(一星)(2015全国1)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .答案:67.(一星)(2015全国2理)等比数列{a n }满足a 1=3,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .84 答案:B12.(一星)(2015全国2文)已知等比数列满足,,则( ) A. 2 B. 1 C. D. 答案:C5.(二星)(全国理)已知{}n a 为等比数列,47562,8a a a a +==-,则110a a +=A .7B .5C .-5D .-7 解:因为{}n a 是等比数列,所以56478a a a a ==-,所以47,a a 是方程2280x x --=的两根,解得4x =或2x =-。
等差数列与等比数列专题辅导(小编推荐)
等差数列与等比数列专题辅导(小编推荐)第一篇:等差数列与等比数列专题辅导(小编推荐)等差数列与等比数列专题辅导(1)在等差数列{an}中, a7=9, a13=-2, 则a25=()A-22B-24C60D64(2)在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=()A864B1176C1440D1536(3)已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=()A–4B–6C–8D–10(4)设数列{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n 项和,则()AS4>S3BS4=S2CS6(5)已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则a1·a4·a7·…·a28=5101520A 2B2C2D2(6)若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和Sn>0成立的最大自然数n是:()A.4005B.4006C.4007D.4008(7)在等比数列{an}中, a1<0, 若对正整数n都有anAq>1B0a1(3n-1)(8)设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1=__________.2(9)等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为_________.(10)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列, 且a1=2, 公和为5,那么a18的值为_______,这个数列的前21项和S21的值为.(11)已知等差数列{an}共2n+1项, 其中奇数项之和为290, 偶数项之和为261,求第n+1项及项数2n+1的值.(12)设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.(Ⅰ)证明a1=d;(Ⅱ)求公差d的值和数列{an}的通项公式.(13)已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值.(14)ΔOBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2), 设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n, Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn), an=(Ⅰ)求a1,a2,a3及an;(Ⅱ)证明yn+4=1-(Ⅲ)若记bn=y4n+41yn+yn+1+yn+2.2yn,n∈N*;4-y4n,n∈N*,证明{bn}是等比数列.答案:1-7 BDBDA BB8.29.21010.3, 5211.29, 1912.(2)d=2 an=2n13.n=414.(1)an=2(2)(3)证明略第二篇:等差数列与等比数列等差数列与等比数列⎧>0,递增数列⎪一、等差数列的定义:an+1-an=d(d:公差)(常数)⎨=0,常数列,⎪<0,递减数列⎩1.证明数列{an}为等差数列:(1)定义:an+1-an=d(常数)(2)等差中项:2an+1=an+an+2注:(1)不可用a2-a1=a3-a2=a4-a3=Λ=“常数”证(2)a1=⎨例1.(1)已知数列{an}为等差数列,求证:数列{an+an+1}为等差数列;变式:①已知数列{an}为等差数列,求证:数列{an+t}(t为常数)为等差数列;②已知数列{an}为等差数列,求证:数列{tan}(t为常数)为等差数列;③已知数列{an}、{bn}均为等差数列,求证:数列{an+bn}为等差数列(2)已知数列{an}的前n项和为Sn,且Sn=n2,求证:数列{an}为等差数列;变式:①已知数列{an}的前n项和为Sn,且Sn=n2+1,求:an②已知数列{an}的前n项和为Sn,且Sn=an2+bn,求:an ③已知数列{an}的前n项和为Sn,且Sn=an2+bn+c,求:an(3)已知数列{an}满足:a1=1,an+1=数列;(4)已知数列{an},a1=1,an+1=为等差数列(5)设数列{an}的前n项和为Sn,求证:数列{an}为等差数列的充要条件是{an}为等差数列⎧S1,n=1⎩Sn-Sn-1,n≥2an1,且bn=,求证:数列{bn}为等差an+1ann1an+,且bn=nan,求证:数列{bn}n+1n+1Sn=n(a1+an)22.证明数列{an}为单调数列:an+1-an=f(n)⎨⎧>0,递增数列递减数列⎩<0,注:(1)求数列{an}中an的极值也可采用此方法(2)已知数列{an}为等差数列ⅰ.若a1<0,d>0,则Sn有最小值;解法:①令an≤0{bn}②Snⅱ.若a1>0,d<0,则Sn有最大值;解法:①令an≥0②Sn例2.已知an=(11-2n)2n,求数列{an}的最大项例3.(1)已知等差数列{an}的前n项和为Sn,且an=10-2n,求Sn的最大值;(2)已知等差数列{an}的前n项和为Sn,且an=2n-13,求Sn的最小值;3.叠加法:已知a1=a,an+1-an=f(n),求an例4.(1)已知数列{an}为等差数列,首项为a1,公差为d,求an;(2)已知数列{an},a1=1,an+1=4.通项公式:an=a1+(n-1)d(1)an=am+(n-m)d(2)an是关于n的一次函数,且n的系数为公差d.例5.已知数列{an}为等差数列,a5=-3,a9=13,求an5.等差中项:若a、b、c成等差数列,则b=(1)若数列{an}为等差数列,则2an+1n+11an+,求an nna+c称为a、c的等差中项2=an+an+2;(2)若已知三个数成等差数列,且其和为定值,则可设这三个数为a-d、a、a+d;(3)若数列{an}为等差数列,且公差d≠0,则am+an=ap+aq⇔m+n=p+q(4)在有穷等差数列{an}中,与首尾两项距离相等的两项的和等于首尾两项的和.即:a1+an=a2+an-1=a3+an-2=Λ=ak+an-k+1例6.(1)已知:等差数列中连续三项的和为21,平方和为179,求这三项(2)在3与19之间插入3个数后成等差数列,求这三个数(3)已知:a、b、c成等差数列求证:①b+c、a+c、a+b成等差数列;②a(b+c)、b(a+c)、c(a+b)成等差数列;③a-bc、b-ac、c-ab 成等差数列(4)已知:a、b、c成等差数列,求证:2222111成等差数列 b+ca+ca+blg(a-c)、lg(a+c-2b)成等差(5)已知:成等差数列,求证:lg(a+c)、数列(6)若方程a(b-c)xb(c-a)x+c(a-b)=0有相等实根,求证:成等差111abc111abc数列例7.在等差数列{an}中,(1)若a5+a10=12,求S14;(2)若a8=m,求S15;(3)若a4+a6+a15+a17=50,求S20;(4)若a2+a4=18,a3+a5=32,求S6;(5)若a2+a5+a12+a15=36,求S16;(6)若a3+a4+a5+a6+a7=450,求a2+a8(7)若等差数列{an}的各项都是负数,且a32+a82+2a3⋅a8=9,则其前10项和S10= ____________(8)在等差数列{an}中,若a3+a15=a5+an,则n=_______6.数列{an}的前n项和Sn=注:(1)倒序法求和;(2)等差数列{an}的前n项和Sn是关于自然数n的二次函数,且n的系数为n(a1+an)n(n-1)n(n-1)=na1+d=nan-d 222d,2常数项为零,即:Sn=An2+Bn(当A=0时数列{an}为常数列);(3)①S2n-1=(2n-1)an(可以将项与和之间进行相互转化)。
等差数列与等比数列的求和
等差数列与等比数列的求和等差数列与等比数列的求和是数学中常见的问题。
它们在数学和应用数学的许多领域中都具有重要的作用。
本文将分别介绍等差数列与等比数列的概念,并详细讲解它们的求和公式和求和方法。
一、等差数列的求和等差数列是指数列中相邻的两项之差是一个常数的数列。
常用的求和符号为∑(sigma),表示将数列中的所有项相加。
等差数列的求和公式为:Sn = (a1 + an) * n / 2其中,Sn表示数列的前n项和,a1表示首项,an表示末项,n表示项数。
举例来说,若等差数列的首项为a1,公差为d,共有n项,则数列的前n项和可以表示为:Sn = (a1 + a1 + d + a1 + 2d + ... + a1 + (n - 1)d)= (n / 2) * (a1 + an)= (n / 2) * (2a1 + (n - 1)d)其中,第一个等号是将等差数列展开后相邻的项相加,第二个等号是根据等差数列的性质进行化简得到的。
二、等比数列的求和等比数列是指数列中相邻的两项之比是一个常数的数列。
常用的求和符号同样为∑(sigma)。
等比数列的求和公式为:Sn = a1 * (1 - q^n) / (1 - q)其中,Sn表示数列的前n项和,a1表示首项,q表示公比,n表示项数。
举例来说,若等比数列的首项为a1,公比为q,共有n项,则数列的前n项和可以表示为:Sn = a1 * (1 - q^n) / (1 - q)其中,分子的1 - q^n是根据等比数列的求和性质进行的化简。
三、等差数列和等比数列的应用等差数列和等比数列的求和公式在实际应用中有广泛的用途。
它们在经济学、物理学、统计学等领域中都有应用。
1. 经济学中,等差数列可以用来表示资金的增长或减少等情况。
通过求和公式,可以方便地计算出一段时间内资金的总和。
2. 物理学中,等差数列可以用来表示物体的运动情况。
通过求和公式,可以计算出一段时间内物体的位移或速度。
第1讲 等差数列与等比数列(可自主编辑PPT)
9 2
2
- 881,
∵n∈N*,∴n=4或5时,Sn取最小值,最小值为-10.
总结提升
高考导航
等差、等比数列的性质问题的求解策略
抓关系
抓住项与项之间的关系及项的序号之间的关系,从这些特
点入手,选择恰当的性质进行求解
用性质
数列是一种特殊的函数,具有函数的一些性质,如单调性、 周期性等,可利用函数的性质解题
和为Tn,若
Sn Tn
= 2 018n-1,则
3n 4
a3 b3
=
(
D
)
A.528 B.529
高考导航
C.530 D.531
答案 D 根据 an = S2n-1 , bn T2n-1
得 a3 = S5 = 2 018 5-1=531.故选D. b3 T5 3 5 4
考点二 栏目索引
∴n+Sn=2an,即n,an,Sn成等差数列.
高考导航
考点三 栏目索引
2.设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足b1=2a1,
bn=1
bn-1 bn
-1
(n≥2,n∈N*).
(1)证明:数列{an}是等比数列,并求{an}的通项公式;
高考导航
∵a4=a1·q3,∴a1·q3=q2,
又a1= 13 ,∴q=3.
由等比数列求和公式可知S5=
1 3
(1-35 1-3
)
= 121
3
.
考点二 栏目索引
3.设等差数列{an}的前n项和为Sn.若a2=-3,S5=-10,则a5=
,Sn的最小值为
.
高考导航
等差数列和等比数列专题讲义
等差数列和等比数列专题讲义考情解读 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.等差数列和等比数列热点一 等差数列例1 (1)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( )A .21B .24C .28D .7(2)设等差数列{a n }的前n 项和为S n ,若-1<a 3<1,0<a 6<3,则S 9的取值范围是________. 思维启迪 (1)利用a 1+a 7=2a 4建立S 7和已知条件的联系;(2)将a 3,a 6的范围整体代入. 答案 (1)C (2)(-3,21)解析 (1)由题意可知,a 2+a 6=2a 4,则3a 4=12,a 4=4,所以S 7=7×(a 1+a 7)2=7a 4=28.(2)S 9=9a 1+36d =3(a 1+2d )+6(a 1+5d ) 又-1<a 3<1,0<a 6<3,∴-3<3(a 1+2d )<3,0<6(a 1+5d )<18, 故-3<S 9<21.思维升华 (1)等差数列问题的基本思想是求解a 1和d ,可利用方程思想; (2)等差数列的性质①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ⇔d =a m -a nm -n(m ,n ∈N *);④a n b n =A 2n -1B 2n -1(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和). (3)等差数列前n 项和的问题可以利用函数的性质或者转化为等差数列的项,利用性质解决.(1)已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64(2)在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 (1)A (2)C解析 (1)因为a 8是a 7,a 9的等差中项,所以2a 8=a 7+a 9=16⇒a 8=8,再由等差数列前n 项和的计算公式可得S 11=11(a 1+a 11)2=11·2a 62=11a 6,又因为S 11=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A. (2)由题意可知a 6+a 5>0,故S 10=(a 1+a 10)×102=(a 5+a 6)×102>0,而S 9=(a 1+a 9)×92=2a 5×92=9a 5<0,故选C.热点二 等比数列例2 (1)(2014·安徽)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =_____________________.(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n 等于( )A .4n -1B .4n -1C .2n -1D .2n -1思维启迪 (1)列方程求出d ,代入q 即可;(2)求出a 1,q ,代入化简. 答案 (1)1 (2)D解析 (1)设等差数列的公差为d ,则a 3=a 1+2d , a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1, ∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q 2q +q 3=2,∴q =12,代入①得a 1=2, ∴a n =2×(12)n -1=42n ,∴S n =2×(1-(12)n )1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1,故选D. 思维升华 (1){a n }为等比数列,其性质如下:①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m q n -m ;③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (2)等比数列前n 项和公式S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1).①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.(1)已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1 B .2 C .4D .8(2)在等比数列{a n }中,a 1+a n =34,a 2·a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6D .7答案 (1)D (2)B解析 (1)∵a 4-2a 27+3a 8=0,∴2a 27=a 4+3a 8,即2a 27=4a 7,∴a 7=2,∴b 7=2,又∵b 2b 8b 11=b 1qb 1q 7b 1q 10=b 31q 18=(b 7)3=8,故选D.(2)设等比数列{a n }的公比为q ,由a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1(1-q n )1-q =a 1-a n q 1-q =2-32q 1-q =62,解得q =2.又a n=a 1q n -1,所以2×2n -1=2n =32,解得n =5.同理,当a 1=32,a n =2时,由S n =62,解得q=12.由a n =a 1q n -1=32×(12)n -1=2,得(12)n -1=116=(12)4,即n -1=4,n =5.综上,项数n 等于5,故选B.热点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.思维启迪 (1)利用方程思想求出a 1,代入公式求出a n 和S n ;(2)将恒成立问题通过分离法转化为最值.解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q , 则q =b 2b 1=12,∴T m =4[1-(12)m ]1-12=8[1-(12)m ],∵(12)m 随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6.即实数λ的取值范围为(6,+∞). 思维升华 等差(比)数列的综合问题的常见类型及解法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可.已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求证:1b 1+1b 2+1b 3+…+1b n <12.(1)解 ∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得a n =S n -S n -1=2a n -2a n -1, ∴a na n -1=2, ∴数列{a n }是首项为12,公比为2的等比数列,∴a n =12×2n -1=2n -2.(2)证明 b n =(log 2a 2n +1)×(log 2a 2n +3)=log 222n +1-2×log 222n+3-2=(2n -1)(2n +1),1b n =12n -1×12n +1=12(12n -1-12n +1),1b 1+1b 2+1b 3+…+1b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)<12(n ∈N *). 即1b 1+1b 2+1b 3+…+1b n <12.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.等差、等比数列的单调性 (1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值. d <0⇔{a n }为递减数列,S n 有最大值. d =0⇔{a n }为常数列. (2)等比数列的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4.常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}仍为等比数列. (3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…,成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等比数列,其公差为q k .等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等差数列,公差为k 2d . 5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的充要条件是b 2=ac .真题感悟1.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案 C解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4 =lg(a 4·a 5)4=lg(2×5)4=4.2.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0. ∴数列的前8项和最大,即n =8. 押题精练1.已知等比数列{a n }的前n 项和为S n ,则下列一定成立的是( ) A .若a 3>0,则a 2 013<0 B .若a 4>0,则a 2 014<0 C .若a 3>0,则a 2 013>0 D .若a 4>0,则a 2 014>0 答案 C解析 因为a 3=a 1q 2,a 2 013=a 1q 2 012,而q 2与q 2 012均为正数,若a 3>0,则a 1>0,所以a 2 013>0,故选C.2.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a na n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 a n =a +(n -1)×1=n +a -1,所以b n =1+a n a n =n +a n +a -1,因为对任意的n ∈N *,都有b n ≥b 8成立,即n +a n +a -1≥8+a 8+a -1(n ∈N *)恒成立,即n -8(a +7)(n +a -1)≤0(n ∈N *),则有⎩⎪⎨⎪⎧a +7<0,1-a <9,解得-8<a <-7. 3.设各项均为正数的数列{a n }的前n 项和为S n ,满足a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰好是等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,(T n +32)k ≥3n -6恒成立,求实数k 的取值范围.解 (1)当n ≥2时,由题设知4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, ∴a 2n +1=a 2n +4a n +4=(a n +2)2,∵a n >0,∴a n +1=a n +2.∴当n ≥2时,{a n }是公差d =2的等差数列. ∵a 2,a 5,a 14构成等比数列,∴a 25=a 2·a 14,(a 2+6)2=a 2·(a 2+24),解得a 2=3, 由条件可知,4a 1=a 22-5=4,∴a 1=1, ∵a 2-a 1=3-1=2,∴{a n }是首项a 1=1,公差d =2的等差数列. ∴等差数列{a n }的通项公式为a n =2n -1. ∵等比数列{b n }的公比q =a 5a 2=2×5-13=3,∴等比数列{b n }的通项公式为b n =3n . (2)T n =b 1(1-q n )1-q =3(1-3n )1-3=3n +1-32,∴(3n +1-32+32)k ≥3n -6对任意的n ∈N *恒成立,∴k ≥2n -43n 对任意的n ∈N *恒成立,令c n =2n -43n ,c n -c n -1=2n -43n -2n -63n -1=-2(2n -7)3n ,当n ≤3时,c n >c n -1; 当n ≥4时,c n <c n -1. ∴(c n )max =c 3=227,∴k ≥227.(推荐时间:60分钟)一、选择题1.等比数列{a n }中a 1=3,a 4=24,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189答案 C解析 由题意可得q 3=8,所以q =2.所以a 3+a 4+a 5=a 1q 2(1+q +q 2)=84. 2.设等差数列{a n }的前n 项和为S n ,若2a 6=6+a 7,则S 9的值是( ) A .27 B .36 C .45 D .54答案 D解析 由2a 6=6+a 7得a 5=6,所以S 9=9a 5=54.故选D.3.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A .3 B .4 C .5 D .6答案 C解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q1-q =-11,故a 1=-1,又a m =a 1·q m -1=-16,代入可求得m =5.4.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11 答案 B解析 ∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62·d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,a 8=3.故选B.5.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 014等于( )A.16 B .-16C .6D .-6答案 D解析 由a n =a n +1-1a n +1+1得a n +1=1+a n 1-a n ,而a 1=2,所以a 2=-3,a 3=-12,a 4=13,a 5=2,则数列是以4为周期,且a 1a 2a 3a 4=1,所以T 2 014=(a 1a 2a 3a 4)503a 1a 2=1503×2×(-3)=-6,故选D.6.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ), Q (2 011,a 2 011),则OP →·OQ →等于( ) A .2 011 B .-2 011 C .0 D .1 答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011. 二、填空题7.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 答案 3解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12. 又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×(12)2=2,a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×(12)3=1,所以a 9+a 11+a 13+a 15=2+1=3.8.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______. 答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.9.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________.答案 6解析 设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36, 故当n =6时,S n 取最小值.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________.答案 2×⎝⎛⎭⎫32n -1 ⎩⎪⎨⎪⎧ 2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2)解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝⎛⎭⎫32n -1, 由此得a n =⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2). 三、解答题11.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列. (1)解 设成等差数列的三个正数分别为a -d ,a ,a +d .依题意,得a -d +a +a +d =15.解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以b n =b 1·q n -1=54·2n -1=5·2n -3, 即数列{b n }的通项公式b n =5·2n -3. (2)证明 由(1)得数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54, 即S n +54=5·2n -2. 所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2. 因此{S n +54}是以52为首项,2为公比的等比数列. 12.若数列{b n }对于n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列,如数列{c n },若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n -9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }为准等差数列;(2)求{a n }的通项公式及前20项和S 20.(1)证明 ∵a n +1+a n =2n ,①∴a n +2+a n +1=2n +2.②由②-①得a n +2-a n =2(n ∈N *),∴{a n }是公差为2的准等差数列.(2)解 已知a 1=a ,a n +1+a n =2n (n ∈N *),∴a 1+a 2=2,即a 2=2-a .∴由(1)可知a 1,a 3,a 5,…,成以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…,成以2-a 为首项,2为公差的等差数列.∴当n 为偶数时,a n =2-a +(n 2-1)×2=n -a , 当n 为奇数时,a n =a +(n +12-1)×2=n +a -1, ∴a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数. S 20=a 1+a 2+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×(1+19)×102=200. 13.(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18. 即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18, 解得⎩⎪⎨⎪⎧a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n . 假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,得n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.。
等差数列与等比数列PPT精品课件_1
★ 田野中害虫因为青蛙的大量繁殖而减少 …………
得出结论: 气候、食物、敌害等生活环境因素的变 化,对动物的寿命会有较大的影响。
动物还能在这里生活吗? 这样的污染鱼还能活吗?
4、右图表示昆虫的变态发
育过程,据图回答:
A
(1)图中B和D分别表示
__受_精__卵_期和__蛹____期。 B
成蛙
受精卵
幼蛙
胚胎
蛙的生活周期
蝌蚪
死亡
中年期 青春期
受精卵
儿童期
婴儿期
幼儿期
成蛙 幼蛙
受精卵 蝌蚪
成虫
蛹
受精卵 幼虫
死亡
成虫
受精卵
若虫
蝌蚪和成蛙的比较:
生活环境 运动器官 运动方式 呼吸器官
蝌蚪 水中
鳍
游泳
鳃
成蛙 陆上和水中
四肢
跳跃 肺和皮肤
像青蛙从幼体到成体的发育过程中, 在生活和形态结构上要发生很大的改变,
4.近年来,我国沿海局部海区藻类大量繁殖,出现
了“赤潮”,造成了大量鱼虾死亡的主要原因是C(
A.细菌感染
B.藻类与鱼虾争夺食物
C.水中溶解氧减少 D.藻类产生大量的有毒物质
5.下列各项中,描述了生物的一个完整生命周期的
是( A )
A.大豆从种子萌发到开花结果
B.人从婴儿期到成年期
C.受精的鸡蛋发育成能下蛋的母鸡
甲缸是由于自来水中的漂白粉释放的氯气使鱼死亡 乙缸是由于自来水中没有溶解氧使鱼死亡
返回
课前热身
1.观察数列:30,37,32,35,34,33,36,( 点,在括号内适当的一个数是__3_1__.
等差数列和等比数列的应用教学课件
数学建模
等差数列在数学建模中有着广泛的应用,如解决物 理学、工程学等领域的问题。
统计学
在统计学中,等差数列常被用于描述和分析数据, 如时间序列分析、人口统计等。
计算机科学
在计算机科学中,等差数列被用于实现各种算法和 数据结构,如二分查找、快速排序等。
03 等 比 数 列 的 应 用
等比数列在日常生活中的应用
02
等比数列在物理学中 的应用
等比数列在物理学中也有着重 要的应用,例如在研究波的传 播、电磁波的传播等方面。
03
等比数列在经济学中 的应用
等比数列在经济学中也有着广 泛的应用,例如在研究复利、 股票价格等方面。
04
等差数列和等比 数列的交叉应用
等差数列和等比数列的相互转化
01 等差数列与等比数列的定义
储蓄和贷款
等比数列在计算复利、计算贷款利息
等方面有广泛应用。 01
增长率计算
等比数列可以用于计算增长率,例如
预测未来销售额、人口增长等。
03
资产评估
等比数列可以用于计算资产的增长和
折旧,例如房屋、车ຫໍສະໝຸດ 等。 02等比数列在数学和其他学科中的应用
01
等比数列在数学中的 应用
等比数列在数学中有着广泛的 应用,例如在解决几何问题、 组合数学问题等方面。
的应用。
等差数列和等比数列的组合应用题解析
解题思路
掌握等差数列和等比数列的性质,灵活运 用公式,是解决这类问题的关键。
等差数列和等比数列组合
等差数列和等比数列组合在一起,可以形 成多种复杂的应用题。
实际应用
等差等比组合应用题在日常生活和工作中 有着广泛的应用,掌握这类题目的解法十
第1讲 等差数列、等比数列
第12页
栏目导航
二轮提优导学案 ·数学
专题二 数列
(2020·天津河西区模拟)在等比数列{an}中,a1=1,a5=4a3. (1) 求数列{an}的通项公式; 【解答】设{an}的公比为 q,由题设得 an=qn-1. 由已知得 q4=4q2,解得 q=0(舍去),q=-2 或 q=2. 故 an=(-2)n-1 或 an=2n-1(n∈N*).
第14页
栏目导航
专题二 数列
二轮提优导学案 ·数学
专题二 数列
目标 2 等差(比)数列性质的应用
(1) (2020·江西师大附中)已知数列{an}为等差数列,Sn 为其前 n 项的和,若 2
+a5=a6+a3,则 S7 等于( C )
A. 2
B. 7
C. 14
D. 28
【解析】因为 2+a5=a6+a3,所以 2+a4+d=a4+2d+a4-d,解得 a4=2,所以 S7
等差:若 m+n=p+q,则 am+an=ap+aq 等比:若 m+n=p+q,则 am·an=ap·aq
第6页
栏目导航
二轮提优导学案 ·数学
专题二 数列
4. 若等差数列{an}的前 n 项和为 Sn,首项 a1<0,公差 d>0,Sa2100<0,则当 Sn 最小时, n=___1_0____.
A. 31
B. 32
C. 33
D. 34
【解析】由已知可得5aa1+1+51d0=d=2,30, 解得da=1=-23643,,
所以 S8=8a1+8×2 7d=32.
故选 B.
等差:Sn=na1+nn2-1d=na12+an
第4页
栏目导航
二轮提优导学案 ·数学
高中数学竞赛数列
竞赛辅导数列(等差数列与等比数列)数列是高中数学中一个重要课题,也是数学竞赛中常常出现问题。
数列最根本是等差数列与等比数列。
所谓数列,就是按肯定次序排列一列数。
假如数列{a n}第n项a n 与项数(下标)n之间函数关系可以用一个公式a n=f(n)来表示,这个公式就叫做这个数列通项公式。
从函数角度看,数列可以看作是一个定义域为正整数集N*(或它有限子集{1,2,…n})函数当自变量从小到大依次取值时对应一列函数值,而数列通项公式也就是相应函数解析式。
为理解数列竞赛题,首先要深入理解并娴熟驾驭两类根本数列定义、性质有关公式,把握它们之间(同构)关系。
一、等差数列假如一个数列从第二项起,每一项与它前一项差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列公差,公差常用字母d表示。
等差数列{a n}通项公式为:前n项和公式为:从(1)式可以看出,是一次数函()或常数函数(),()排在一条直线上,由(2)式知,是二次函数()或一次函数(),且常数项为0。
在等差数列{}中,等差中项:且随意两项关系为:它可以看作等差数列广义通项公式。
从等差数列定义、通项公式,前项和公式还可推出:假设二、等比数列假如一个数列从第2项起,每一项与它前一项比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列公比。
公比通常用字母表示。
等比数列{a n}通项公式是:前项和公式是:在等比数列中,等比中项:且随意两项关系为假如等比数列公比满意0<<1,这个数列就叫做无穷递缩等比数列,它各项和(又叫全部项和)公式为:从等比数列定义、通项公式、前项和公式可以推出:另外,一个各项均为正数等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列各项做指数构造幂,那么{}是等比数列。
在这个意义下,我们说:一个正项等比数列与等差数列是“同构〞。
重要不仅是两类根本数列定义、性质,公式;而且蕴含于求和过程当中数学思想方法和数学才智,也是极其宝贵,诸如“倒排相加〞(等差数列),“错位相减〞(等比数列)。
数学竞赛教案:第29讲__等差数列与等比数列
第10讲 等差数列与等比数列本节主要内容有等差数列、等比数列的基本知识,a 1、a n 、d 或q 、n 、S n 的基本关系 1.理解等差、等比数列的概念,掌握等差数列定义的多种表达形式,能判断一个数列是不是等差数列.2.掌握等差、等比数列的常规简单性质,并能应用于解题,能灵活应用等差、等比中项的性质.3.求公差、公比.首项.项数时的基本量思想,方程思想,巧用设而不求的方法进行整体代换的思想,从特殊到一般探索推广结论的创新意识.A 类例题例1给定公比为q (q ≠1)的等比数列{a n },设b 1=a 1+a 2+a 3, b 2=a 4+a 5+a 6,…, b n =a 3n -2+a 3n -1+a 3n ,…,则数列{b n }( )A.是等差数列B.是公比为q 的等比数列C.是公比为q 3的等比数列D.既非等差数列也非等比数列 (1999年全国高中数学联赛)分析 利用等比数列的推广的通项公式a n = a m q n -m .解 由题设, a n = a 1q n -1,则a 3n +3= a 3n q 3、 a 3n +2= a 3n -1 q 3、a 3n +1= a 3n -2 q 3. 故b n +1 b n =a 3n +1+a 3n+2+a 3n +3a 3n -2+a 3n -1+a 3n = q 3(a 3n -2+a 3n -1+a 3n ) a 3n -2+a 3n -1+a 3n=q 3. 例2 设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有( )A.2个B.3个C.4个D.5个 (1997年全国高中数学联赛)分析 利用等差数列的求和公式及分类讨论思想. 解 : 由21972)1(=-+=d n n na S n 即2na 1+(n -1)d=2×972, 则n[2a l +(n -1)d]= 2×972,且2a 1+(n -1)d 是非负整数.故n 是2 ×972的正 因数,且n ≥3,于是n=97、972、2 ×97或2 ×972.(1)若n=97,则2a l +96d=2 ×97,且a l 与d 是非负整数,由2 a l = 2 ×97-96d ≥0可得0≤d ≤, 且d ∈Z ,所以d=0,1,2,代人2 a l +96d= 2 ×97得⎩⎨⎧==9701a d 或⎩⎨⎧==4911a d 或⎩⎨⎧==121a d , 故当n=97时,符合题意的等差数列有3个. (2)若n=972,则2 a l +(972-1)d=2,由2a l =2-(972-1)d ≥0得0≤d ≤19722- 故d=0.此时a l =1即n=972时,符合题意的等差数列只有1个.(3)若n=2×97,则2 a l +(2×97-1)d=97,即 0≤d <1.所以d=0,此时a l =297,不台题意.(4)若n= 2×972,则2 a l +(2×972-1)d=1,即0≤d <1.所以d=0,此时a l =12,不合题意.故当n=2×97或2×972时,符合题意的等差数列不存在. 综上所述,符合题意的等差数列共有3+1=4个故选( C )情景再现1.(2005年全国高考题)在等差数列{}n a 中,公差0d ≠,2a 是1a 与4a 的等比中项,已知数列13a a 、、1k a 、2......n k k a a 、、成等比数列,求数列{k n }的通项n k2.三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).(第2届美国中学生数学竞赛试题)B 类例题例3 (2004年浙江理科卷) ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的 坐标为(x n,y n ),.2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn(Ⅲ)若记,,444*+∈-=N n y y b n n n 证明{}n b 是等比数列.分析 本题主要考查数列的递推关系、等比数列等基础知识,考查灵活运用数学知识分析问题和解决问题的创新能力. 利用图形及递推关系即可解决此类问题. 解 (Ⅰ)因为43,21,153421=====y y y y y , 所以2321===a a a ,又由题意可知213+-+=n n n y y y ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++∴{}n a 为常数列.∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2, 得,124121=++++n n n y y y又∵2214++++=n n n y y y , ∴.414n n yy -=+ (Ⅲ)∵)41()41(44444341n n n n n y y y y b ---=-=+++-=)(41444n n y y --+ =,41n b - 又∵,041431≠-=-=y y b ∴{}n b 是公比为41-的等比数列. 说明 本题符号较多,有点列{P n },同时还有三个数列{a n },{y n },{ b n },再加之该题是压轴题,因而考生会惧怕,而如果没有良好的心理素质,或足够的信心,就很难破题深入.即使有的考生写了一些解题过程,但往往有两方面的问题:一个是漫无目的,乱写乱画;另一个是字符欠当,丢三落四.最终因心理素质的欠缺而无法拿到全分.例4 设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=6,a 3=11,且1(58)(52),1,2,3,n n n S n S An B n +--+=+=…,其中A,B 为常数. (Ⅰ)求A 与B 的值;(Ⅱ)证明数列{a n }为等差数列.(2005年江苏卷)分析本题是一道数列综合运用题,第一问由a 1、a 2、a 3求出s 1、s 2、s 3代入关系式,即求出A 、B ;第二问利用)1(1≥-=-n s s a n n n 公式,推导得证数列{a n }为等差数列. 解 (1)由已知,得S 1=a 1=1,S 2=a 1+a 2=7,S 3=a 1+a 2+a 3=18. 由(5n -8)S n+1-(5n+2)S n =An+B 知 解得 A=-20, B=-8.(Ⅱ)方法1 由(1)得,(5n -8)S n+1-(5n+2)S n =-20n -8, ① 所以 (5n -3)S n+2-(5n+7)S n+1=-20n -28, ② ②-①,得, (5n -3)S n+2-(10n -1)S n+1+(5n+2)S n =-20, ③ 所以 (5n+2)S n+3-(10n+9)S n+2+(5n+7)S n+1=-20.④ ④-③,得 (5n+2)S n+3-(15n+6)S n+2+(15n+6)S n+1-(5n+2)S n =0. 因为 a n+1=S n+1-S n 所以 (5n+2)a n+3-(10n+4)a n+2+(5n+2)a n+1=0. 又因为 (5n+2)0≠,所以 a n+3-2a n+2+a n+1=0,即 a n+3-a n+2=a n+2-a n+1, 1≥n . 又 a 3-a 2=a 2-a 1=5, 所以数列}{n a 为等差数列. 方法2.由已知,S 1=a 1=1,又(5n -8)S n+1-(5n+2)S n =-20n -8,且5n -80≠,所以数列}{}{n n a ,s 因而数列是惟一确定的是惟一确定的.设b n =5n -4,则数列}{n b 为等差数列,前n 项和T n =,2)35(-n n于是 (5n -8)T n+1-(5n+2)T n =(5n -8),8202)35()25(2)25)(1(--=-+-++n n n n n n由惟一性得b n =a,即数列}{n a 为等差数列.说明 本题主要考查了等差数列的有关知识,考查了分析推理、理性思维能力及相关运算能力等.例5 (湖南省2002年高中数学竞赛)一台计算机装置的示意图如图,其中J 1,J 2表示数据入口,C 是计算结果的出口,计算过程是由J 1、J 2分别输入自然数m 和n ,经过计算后得自然数K 由C 输出,若此种装置满足以下三个性质: ①J 1,J 2分别输入1,则输出结果1;②若J 1输入任何固定自然数不变,J 2输入自然数增大1,则输出结果比原来增大2;③若J 2输入1,J 1输入自然数增大1,则输出结果为原来的2倍,试问: (Ⅰ)若J 1输入1,J 2输入自然数n ,则输出结果为多少? (Ⅱ)若J 2输入1,J 1输入自然数m ,则输出结果为多少?(Ⅲ)若J 1输入自然2002,J 2输入自然数9,则输出结果为多少?分析 本题的信息语言含逻辑推理成分,粗看不知如何入手.若细品装置的作用,发现可以把条件写成二元函数式,将逻辑推理符号化,并能抽象出等比数列或等差数列的模型. 解 J 1输入m ,J 2输入n 时,输出结果记为f (m ,n ),设f (m ,n )=k ,则f (1,1)=1,f (m ,n+1)=f (m ,n )+2,f (m+1,1)=2f (m ,1) (2分) (Ⅰ)因为f (1,n+1)=f (1,n )+2, 故f (1,1),f (1,2),…,f (1,n ),…组成以f (1,1)为首项,2为公差的等差数列. 所以,f (1,n )=f (1,1)+2(n -1)=2n -1; (Ⅱ)因为f (m+1,1)=2f (m ,1), 故f (1,1),f (2,1),…,f (m ,1)…组成以f (1,1)为首项,2为公比的等比数列.所以,f (m ,1)=f (1,1)•2m -1=2 m -1,(Ⅲ)因为f (m ,n+1)=f (m ,n )+2,故f (m ,1),f (m ,2),…,f (m ,n ),…组成以f (m ,1)为首项,2为公差的等差数列.所以,f (m ,n )=f (m ,1)+2(n -1)=2 m -1+2n -2,f (2002,9)=22001+16说明 解题关键点首先要读懂题目,理解题意,要充满信心.这种给出陌生的背景(问题的情景),文字叙述比较长的题目,其实所涉及数学知识往往比较简单,剔除伪装并符号化,就是我们熟悉的问题.例6 设正数列a 0,a 1,a 2, ,a n , 满足12122----=-n n n n n a a a a a (n ≥2)且a 0=a 1=1.求{a n }的通项公式. (1993年全国高中数学联赛)情景再现3. 已知数列n a 的首项a a =1(a 是常数),24221+-+=-n n a a n n (2,≥∈n N n ).(Ⅰ){}n a 是否可能是等差数列.若可能,求出{}n a 的通项公式;若不可能,说明理由;(Ⅱ)设b b =1,2n a b n n +=(2,≥∈n N n ),n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 、b 满足的条件.4. 已知二次函数y =f (x )在x =22+t 处取得最小值-42t (t >0),f (1)=0.(1)求y =f (x )的表达式;(2)若任意实数x 都满足等式f (x )·g (x )+a n x +b n =x n +1 , [g (x )]为多项式,n ∈N *),试用t 表示a n 和b n ;(3)设圆C n 的方程为(x -a n )2+(y -b n )2=r n 2,圆C n 与C n +1外切(n =1,2,3,…);{r n }是各项都是正数的等比数列,记S n 为前n 个圆的面积之和,求r n 、S n .C 类例题例7 实数x 为有理数的充分必要条件是:数列x ,x +1,x +2,x +3,…中必有3个不同的项,它们组成等比数列.(加拿大1993年高中竞赛题)证明:(1)充分性:若3个不同的项x +i ,x +j ,x +k 成等比数列,且i <j <k , 则(x +I)(x +k)=(x +j)2,即ik j j k i x -=-+2)2(.若02=-+j k i ,则02=-ik j ,于是得i=j=k 与i <j <k 矛盾. 故02≠-+j k i ,jk i ikj x 22-+-=且i 、j 、k 都是正整数,故x 是有理数.(2)必要性:若x 为有理数且x ≤0,则必存在正整数k ,使x+k>0.令y=x+k ,则正数列y 、y+1、y+2、…是原数列x ,x+1,x+2,x+3,…的一个子数列,只要正数列y ,y+l ,y+2,…中存在3个不同的项组成等比数列,那么原数列中必有3个不同的项组成等比数列,因此不失一般性,不妨设x >0.①若x ∈N ,设q 是大于l 的正整数,则xq -x 、xq 2-x 都是正整数.令i=xq -x , j=xq 2-x 则i<j ,即x ,x+i ,x+j ,是数列x ,x+1,x+2,x+3,…中不同的三项,且x ,x+i(即xq ),x+j (即xq 2)成等比数列.②若x 为正分数,设 x = nm (m 、n ∈N ,且m 、n 互质,m≠1).可以证明,x ,x+n ,x+(m+2)n ,这三个不同的项成等比数列,事实上,x [x +(m +2)n ]= n m (n m +mn+2n )=(n m )2+n 2+2n m ·n =(nm +n )2.所以x [x +(m +2)n ] =( x +n )2.,即三项x ,x+n ,x+(m+2)n 成等比数列.综上所述,实数x 为有理数的充分必要条件是数列x ,x+1,x+2,x+3,…中必有3个不同的项.它们组成等比数列.说明 以上证明巧妙之处在于:当x 是正分数mn时,在数列x ,x+1,x+2,x+3,…寻求组成等比数列的三项,这三项是x ,x + n, x+(m+2)n .例8 设S={1,2,3,…,n},A 为至少含有两项的、公差为正的等差数列,其项都在S 中,且添加S 的其他元素于A 后均不能构成与A 有相同公差的等差数列,求这种A 的个数(这里只有两项的数列也看作等差数列).(1991年全国高中数学联赛二试)分析 可先通过对特殊的n(如n=1,2,3),通过列举求出A 的个数,然后总结规律,找出 a n 的递推关系,从而解决问题;也可以就A 的公差d=1,2,…,n -1时,讨论A 的个数· 解 设A 的公差d,则1≤d ≤n -1.(1)设n 为偶数,则当1≤d ≤n 2.公差d 的A 有d 个;当n2≤d ≤n -1. 公差d 的A 有n -d 个. 故当n 为偶数时,这样的A 有:(1+2+3+…+ n 2)+[1+2+3+…+(n -n 2-1)]= 14n 2.(2)设n 为奇数,则当1≤d ≤n -12.公差d 的A 有d 个;当n+12≤d ≤n -1. 公差d 的A 有n -d 个. 故当n 为奇数时,这样的A 有:(1+2+3+…+n -12)+(1+2+3+…+n -12)= 14(n -1)2.综上所述:这样的A 有[14n 2].情景再现5.设数列{n a }的首项1a =1,前n 项和n s 满足关系式t s t ts n n 3)32(31=+--(t>0,n ∈ N,n ≥2).(1) 求证数列{n a }是等比数列;(2) 设数列{n a }的公比为)(t f ,作数列{n b },使11=b ,)1(1-=n n b f b ,(n ∈ N,n ≥2),求b n .6.已知数列{a n }是由正数组成的等差数列,m ,n ,k 为自然数,求证:(1)若m+k=2n ,则21m a +21k a =22n a ;(2)211a +221a +…+2221-n a +2121-n a ≥212n a n -(n >1). 习题10A 类习题1.(2004年重庆卷)若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是( )A .4005B .4006C .4007D .40082.已知a 、b 、c 成等比数列,如果a 、x 、b 和b 、y 、c 都成等差数列,则y cx a +=_________.3.等比数列{}a n 的首项a 11536=,公比q =-12,用πn 表示它的前n 项之积.则πn ()n N ∈最大的是( )A .π9B .π11C .π12D .π13(1996年全国高中数学联赛)4.给定正数p ,q ,a ,b ,c ,其中p ≠q ,若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程bx 2-2ax +c =0( ) (2000年全国高中数学联赛)A .无实根B .有两个相等实根C .有两个同号相异实根D .有两个异号实根5.已知数列{}n a 是首项01>a ,且公比0,1≠->q q 的等比数列,设数列{}n b 的通项).(21*++∈-=N n ka a b n n n ,数列{}n a .{}n b 的前n 项和分别为n s ,n T ,如果n T >k n s ,对一切自然数n 都成立,求实数R 的取值范围.6.(2000年高考新课程卷)(I )已知数列{}n c ,其中n n n c 32+=,且数列{}n n pc c -+1为等比数列,求常 数p .(II )设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.B 类习题7.已知函数y=f(x)的图象是自原点出发的一条折线. 1(0,1,2)n n y n n b ≤≤+=⋅⋅⋅时,该图象是斜率为的线段其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数. (I )写出a 45的值;(II )写出a ij 的计算公式以及2008这个数在等差数阵中所在的一个位置.(III )证明:正整数N 在该等差数列阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.9.(2006年全国高考上海春季卷)已知数列3021,,,a a a ,其中1021,,,a a a 是首项为1,公差为1的等差数列;201110,,,a a a 是公差为d 的等差数列;302120,,,a a a 是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a 是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?10.(第8届希望杯第二试)在△ABC 中,三边长为a 7,b =2,c =3.作△ABC 的内切圆⊙O 1,再作与边AB 、AC 和⊙O 1都相切的⊙O 2,又作与AB 、AC 与⊙O 2都相切的⊙O 3,如此继续下去作这样相切的圆,求所有这种圆面积的和.C 类习题11. (第2届美国数学邀请赛试题)如果{a n }是等差数列,公差是1,a 1+ a 2+ a 3+…+ a 98=137,求a 2 +a 4 +a 6 +…+a 98 之值.12.(2003年全国高考江苏卷)设,0>a 如图,已知直线ax y l =:及曲线C :2x y =,C 上的点Q 1的横坐标为1a(a a <<10).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点Q n+1.Q n (n=1,2,3,…)的横坐标构成数列{}.n a (Ⅰ)试求n n a a 与1+的关系,并求{}n a 的通项公式;(Ⅱ)当21,11≤=a a 时,证明∑=++<-n k k k k a a a 121321)(;(Ⅲ)当a =1时,证明∑-++<-nk k k k a a a 121.31)( 本节“情景再现”解答:1.依题设得()11n a a n d =+-,2214a a a =∴()()21113a d a a d +=+,整理得21d a d =∵0d ≠, ∴1d a =,得n a nd =所以,由已知得123n d d k d k d k d ,,,,...,...是等比数列.由于0d ≠,所以数列1,123n k k k ,,,...,...也是等比数列,首项为1,公比为331q ==,由此得19k =等比数列{k n }的首项19k =,公比3q =,所以()1193123....n n n k q n -+=⨯==,,,即得到数列{k n }的通项为13n n k +=2.用反证法.假设三个不同的素数p 、q 、r 的立方根是一个等差数列的不同三项, 即设ld a p +=13 ①,md a q +=13 ②,nd a r +=13③.Oc ylxQ 1Q 2Q 3 1a 2a 3a r 2 r 1由此可得m l q p d --=33,ml q m p l a -⋅-⋅=331.将代入③式并化简整理得:=⋅-3)(q n m +⋅-3)(q n l 3)(r l m ⋅-两边立方得:=⋅-p n m 3)(+⋅-q n l 3)(r l m ⋅-3)(+3))()((3pqr n m l mm m l ⋅---左式=p n m ⋅-3)(为整数,因3pqr 是无理数.故右式为无理数,所以左式≠右式.3.(Ⅰ)∵),3,2(242,211 =+-+==-n n n a a a a n n 依,∴2228422-=+-+=a a a , 542129223-=+-+=a a a ,882234-=+=a a a ,34,32,222342312-=--=--=--=-a a a a a a a a a a a若}{n a 是等差数列,则1,2312=-=-a a a a a 得,但由3423a a a a -=-,得a=0,矛盾.∴}{n a 不可能是等差数列.(Ⅱ)∵2n a b n n +=, ∴22211)1(2)1(4)1(2)1(++++-++=++=++n n n a n a b n n nn n b n a 2222=+=(n ≥2) ,∴22422+=+=a a b 当a ≠-1时, }{,0n n b b ≠从第2项起是以2为公比的等比数列.∴)12)(22(12)12)(22(111-++=--++=--n n n a b a b S ,n ≥2时,222)1(222222)1(222)1(111--++---=--++--++=---a b a a b a b a a b a S S n n n n n ∴}{nS 是等比数列, ∴1-n n S S (n ≥2)是常数.∵a ≠-1时, ∴b -2a -2=0 ,当a=-1时,122,0-==n n b b b 由(n ≥3),得0=n b (n ≥2), ∴b b b b S n n =+++= 21, ∵}{n S 是等比数列 ∴b ≠0 综上, }{n S 是等比数列,实数a 、b 所满足的条件为⎩⎨⎧≠-=⎩⎨⎧+=-≠01221b a a b a 或4.(1)设f (x )=a (x -22+t )2-42t ,由f (1)=0得a =1.∴f (x )=x 2-(t +2)x +t +1.(2)将f (x )=(x -1)[x -(t +1)]代入已知得:(x -1)[x -(t +1)]g (x )+a n x +b n =x n +1,上式对任意的x ∈R 都成立,取x =1和x =t +1分别代入上式得:⎩⎨⎧+=++=++1)1()1(1n n n n n t b a t b a 且t ≠0,解得a n =t 1[(t +1)n +1-1],b n =t t 1+[1-(t +1]n ) (3)由于圆的方程为(x -a n )2+(y -b n )2=r n 2,又由(2)知a n +b n =1,故圆C n 的圆心O n 在直线x +y =1上,又圆C n 与圆C n +1相切,故有r n +r n +1=2|a n +1-a n |=2(t +1)n +1设{r n }的公比为q ,则⎪⎩⎪⎨⎧+=++=+++++2111)1(2)1(2n n n n n n t q r r t q r r ②÷①得q =n n r r 1+=t +1,代入①得r n =2)1(21+++t t n∴S n =π(r 12+r 22+…+r n 2)=342221)2()1(21)1(++π=--πt t t q q r n [(t +1)2n -1] 5.分析 由已知等式作递推变换,转化为关于1+n a 与n a 的等式,在此基础上分析1-n a 与n a 的比值,证得(1)的结论后,进一步求)(t f ,再分析数列{n b }的特征,并求其通项公式.(1)证明:由11a s ==1,22121a a a s +=+=,t t a t 31)32()1(32=⋅+-+,得t t a 3322+=, 于是t t a a 33212+= . ……①又t s t ts n n 3)32(31=+--,t s t ts n n 3)32(321=+---(n=3,4,……), 两式相减,得0))(32()(3211=-+-----n n n n s s t s s t , 即)0(0)32(31>=+--t a t ta n n . 于是,得tt a a n n 3321+=-(n=3,4……). ……② 综合①②,得{}n a 是首项为1,公比为tt 332+的等比数列. (2)解 由(1),得321332)(+=+=t t t t f ,32)1(11+==--n n n b b f b 即321=--n n b b . 所以数列{}n b 是首项为1,公差为32的等差数列,于是31232)1(1+=⋅-+=n n b n . 点评 要判断一个数列是否是等比数列,关键要看通项公式,若是已知求和公式,在求通项公式时一方面可用)2(1≥=--n a s s n n n ,另一方面要特别注意1a 是否符合要求. 6. (1)设等差数列{a n }的公差为d,由m+k=2n,得a k =2a n ,因为a 2m + a 2k ≥12(a m + a k )2=2a 2n . (a m a k )2≤[(a m + a k 2)2]2=a 4n. 所以 a 2m + a 2k (a m a k )2 ≥ 2a 2n a 4n = 2a 2n当且仅当d=0时等号成立.① ②(2)由(1)结论,1 a 2i +1 a 22n -i ≥2a 2n(i=1,2,…,n -1)把这n -1个不等式相加,再把所得的结果两边同时加上1a 2n 便得到所证明的结论.当d=0时等号成立.本节“习题10”解答:1.由120032004200320040,0,.0a a a a a >+><得公差d <0,于是a 2 004<0.a l +a 4006=a 2 003+a 2 004>0,故S 4 006>0.另一方面,a l +a 4 007=2a 2 004<0,故S 4 007<0.故答案选B .2. b =aq ,c =aq 2,x =21(a +b )=21a (1+q ),y =21(b +c )=21aq (1+q ),y c x a +=)1(41)1(21)1(2122222q q a q q a q q a xycx ay ++++=+=2. 3.等比数列{}a n 的通项公式1211536-⎪⎭⎫⎝⎛-⨯=n n a ,前n 项之积n π2)1(211536-⎪⎭⎫⎝⎛-⨯=n n ,易知9π、12π、13π 为正数,10π、11π为负数,故只需比较9π、12π、13π. 因为3211536199-=⎪⎭⎫⎝⎛-⨯=-a ,23211011=⎪⎭⎫ ⎝⎛-=a a ,43211112-=⎪⎭⎫ ⎝⎛-=a a ,83211213=⎪⎭⎫⎝⎛-=a a ,且.18274323)3(121110>=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯-=⋅⋅a a a 所以=π12121110a a a ⋅⋅>π⋅99π.又因为1013<<a 及121313π=πa ,∴1213π<π.故选C .4.由题意知pq =a 2,2b=p+c ,2c=q+b 由于后二式得b=2p+q 3,c=p+2q3,于是有bc =2p+q 3·p+2q 3=p+p+q 3·p+q+q 3≥ 3p 2q · 3pq 2=pq =a 2,因为p ≠q,故bc >a 2,方程的判别式△=4a 2-4bc <0,因此,方程无实数根.5.要求k 的取值范围,必需将关于k 的不等式n T >k n s 具体化.因此,可首先从探求n T 与n s 的关系入手,寻求突破口.解 因为{}n a 是首项01>a ,公比0,1≠->q q 的等比数列,故q a a n n =+1 , 22q a a n n =+.)(221kq q a ka a b n n n n -=-=++,n T =n b b b +++ 21=(a 1+a 2+…+a n )(q -kq 2)=n s )(2kq q -.依题意,由n T >k n s ,得n s )(2kq q -> k n s ①对一切自然数n 都成立.当0>q 时,由01>a ,知0>n a ,n s >0;当-1<q<0时,由01>a ,1-q>0,1-nq >0,所以n s =01)1(1>--qq a n . 综合上述两种情况,当0,1≠->q q 时,n s >0恒成立 . 由①式,可得k kq q >-2, ② 即q qq q k q q k +=+<<+111,)1(22. 由于21≥+qq ,故要使①式恒成立,k<-21.点评 本题条件表达较复杂,要认真阅读理解,并在此基础上先做一些能做的工作,如求n T 与n s 的关系,将不等式具体化等.待问题明朗化后,注意k<)(q f 恒成立,则k 小于f (q )的最小值.6. (I )因为{}n n pc c -+1是等比数列,故有()()()11221-+++--=-n n n n n n pc c pc c pc c ,将nn n c 32+=代入上式,得()[]2113232n n n n p +-+++=()[]()[]112111132323232--+++++-+⋅+-+n n n n n n n n p p ,即 ()()[]23322n n p p -+-=()()[]()()[]111133223322--++-+--+-n n n n p p p p , 整理得()()0323261=⋅⋅--n n p p ,解得 p =2或p =3. (II )设{}n a 、{}n b 的公比分别为p 、q ,n n n b a c +=,为证{}n c 不是等比数列只需证3122c c c ⋅≠. 事实上,()pqb a q b p a q b p ac 11221221211222++=+=,=⋅31c c ()()()2211221221212111q p b a q b p a q b p a b a +++=++.由于 q p ≠,pq q p 222>+,又1a 、1b 不为零,因此,3122c c c ⋅≠,故{}n c 不是等比数列.7.8. (I )4945=a ;(II )该等差数阵的第一行是首项为4,公差为3的等差数列:)1(341-+=j a j ;第二行是首项为7,公差为5的等差数列:)1(572-+=j a j ……第i 行是首项为)1(34-+i ,公差为21i +的等差数列,因此j j i j i ij j i i a ij ++=++=-++-+=)12(2)1)(12()1(34,要找2008在该等差数阵中的位置,也就是要找正整数i ,j ,使得20082=++j i ij , 所以122008+-=i ij , 当1=i 时,得669=j 所以2008在等差数阵中的一个位置是第1行第669列.(III )必要性:若N 在该等差数阵中,则存在正整数i ,j 使得j j i N ++=)12(从而12)12(212+++=+j j i N )12)(12(++=j i 即正整数2N+1可以分解成两个不是1的正整数之积.充分性:若2N+1可以分解成两个不是1的正整数之积,由于2N+1是奇数,则它必为两个不是1的奇数之积,即存在正整数k ,l ,使得)12)(12(12++=+l k N , 从而kl a l l k N =++=)12(可见N 在该等差数阵中.综上所述,正整数N 在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.9. (1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a ,⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈ d 时,[)307.5,a ∈+∞. (3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a 是首项为1,公差为1的等差数列,当1≥n 时,数列)1(1011010,,,++n n n a a a 是公差为n d 的等差数列. 研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围.研究的结论可以是:由()323304011010d d d d a a +++=+=,依次类推可得()n n d d a +++=+ 110)1(10⎪⎩⎪⎨⎧=+≠--⨯=+.1),1(10,1,11101d n d d d n 当0>d 时,)1(10+n a 的取值范围为),10(∞+等. 10. 因为cosA= b 2+c 2-a 22bc = 12 ,即A=60°,于是sin30°= r 1-r 2 r 1+r 2 = 12 得 r 2 r 1 = 13,同理r n r n -1= 13, 所以面积的和S=πr 121-19 = 98πr 12,又r1= bc sin A a +b +c =5 3- 216 11.93.由 a 1+ a 3+ a 5+…+ a 97=(a 2 +a 4 +a 6 +…+a 98)-49可得. 12.(Ⅰ)解:∵).1,1(),,1(),,(422122121n n n n n n n n n a a a aQ a a aP a a Q ⋅⋅++-∴,121n n a aa ⋅=+ ∴2222122221)1()1(11-+--=⋅=⋅=n n n n a aa a a a a a ==⋅=-++-+3222221222321)1()1()1(n n a a a a a=1211211121212221)()1()1(----+-+++==n n n n n aa a a a a a, ∴.)(121-=n aa a a n(Ⅱ)证明:由a =1知,21n n a a =+ ∵,211≤a ∴.161,4132≤≤a a ∵当.161,132≤≤≥+a a k k 时 ∴∑∑=++=++<-=-≤-n k n k k nk k k k a a a a a a a 1111121.321)(161)(161)((Ⅲ)证明:由(Ⅰ)知,当a =1时,,121-=n a a n 因此∑∑∑=++-=+-=++-≤-=-n k i i i n i k k k nk k k k a a a a a a a a a 122111112112121121121)()()(∑-=-⋅-<-=1213131211312111)1()1(n i i a a a a a a a = .31121151<++a a a。
专题三 第一讲 等差数列与等比数列PPT课件
主干考 点梳理
2. (2014·辽宁卷)设等差数列{an}的公差为d, 若数列{2a1an}为递减数列,则( C )
A.d<0 B.d>0
栏
C.a1d<0 D.a1d>0
目 链
接
解析: 由已知得,2a1an<2a1an-1,即2a21aa1na-n 1<
1,2a1(an-an-1)<1,又 an-an-1=d,故 2a1d<1,
栏 目
S4 成等比数列,则 a1=( D )
链 接
A.2
B.-2
1 C.2
D.-12
高考热 点突破
解析: 因为 S1,S2,S4 成等比数列,所以 S22
=S1S4,即(2a1-1)2=a1(4a1-6),a1=-12.故选
栏 目 链
接
D.
高考热
点突破 突破点2 有关等比数列的基本问题
例 2 设数列{an}的前 n 项和为 Sn,已知 ban-2n=(b-
目 链
接
次函数的最值,有时利用数列的单调性(d>0,递增;d
<0,递减).
(3)等差数列的性质:设m,n,p,q为非零自然数, 若m+n=p+q,则am+an=ap+aq.
高考热 点突破
跟踪训练
1.(2014·天津卷)设{an}是首项为 a1,公差为
-1 的等差数列,Sn 为其前 n 项和,若 S1,S2,
1)Sn.
(1)证明:当 b=2 时,{an-n·2n-1}是等比数列;
栏 目
链
(2)求{an}的通项公式.
接
高考热 点突破
思路点拨:(1)只需证明an+a1n--(n·n2+ n-1)1 ·2n为非零常
1.等比数列的定义.
高中数学竞赛专题精讲11数列(含答案)
11数列一、数列的基础知识1.数列{a n }的通项a n 与前n 项的和S n 的关系它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ;2.递推数列,解决这类问题时一般都要与两类特殊数列相联系,设法转化为等差数列与等比数列的有关问题,然后解决。
常见类型:类型Ⅰ:⎩⎨⎧=≠+=+为常数)a a a n p n q a n p a n n ()0)(()()(11(一阶递归) 其特例为:(1))0(1≠+=+p q pa a n n (2))0()(1≠+=+p n q pa a n n(3))0()(1≠+=+p q a n p a n n解题方法:利用待定系数法构造类似于“等比数列”的新数列。
类型Ⅱ:⎩⎨⎧==≠≠+=++为常数)b a b a a a q p qa pa a n n n ,(,)0,0(2112(二阶递归) 解题方法:利用特征方程x 2=px+q ,求其根α、β,构造a n =Aαn +Bβn ,代入初始值求得B A ,。
类型Ⅲ:a n+1=f (a n )其中函数f (x )为基本初等函数复合而成。
解题方法:一般情况下,通过构造新数列可转化为前两种类型。
二、等差数列与等比数列1.定义:2.通项公式与前n 项和公式:函数的思想:等差数列可以看作是一个一次函数型的函数;等比数列可以看作是一个指数函数型的函数。
可以利用函数的思想、观点和方法分析解决有关数列的问题。
三.等差数列与等比数列数列问题的综合性和灵活性如何表现?数列问题的综合性主要表现在1.数列中各相关量的关系较为复杂、隐蔽.2.同一问题中出现有若干个相关数列,既有等差或等比数列,也有非等差,非等比的数列,需相互联系,相互转换.数列问题的灵活性表现在:1.需灵活应用递推公式,通项公式,求和公式,寻求已知与所求的关系,减少中间量计算.2.需灵活选用辅助数列,处理相关数列的关系.例题讲解1.已知(b -c )log m x +(c -a )log m y +(a -b )log m z =0 ①(1) 若a 、b 、c 依次成等差数列,且公差不为0,求证x 、y 、z 成等比数列;(2) 若x 、y 、z 依次成等比数列,且公比不为1,求证a 、b 、c 成等差数列.2. 数列{a n }的 前 n 项 和S n =a · 2n + b (n ∈N ),则{a n }为等比数列的充要条件是________.3.设等差数列{a n}的前n项和为S n,若S7=56,S n=420,a n-3=34,则n=________.4. 等差数列中,a3+a7-a10=8,a11-a4=4,求S135. 各项均为实数的等比数列{an}的前n项之和为S n,若S10=10,S30=70,求S40。
专题讲座-等差数列
法2.利用︱x-a︱+︱x-b︱≥︱a-b︱倒序相加 2f(x)=(︱x-1︱+︱x-20︱)+…+(︱x-10︱+ ︱x-11︱)+…+(︱x-20︱+︱x-1︱) ≥19+17+ …+3+1+1+3+…+17+19=200,x=10或11时, 最小值为100. 六。巩固与提高。已知{an}的通项公式是 an=(2n2+n-1)/(pn-1),是否存在实数p,使{an} 是等差数列。若存在,求出p的值;若不存在, 说明理由。 法①a1=2/(p-1),a2=9/(2p-1),a3=20/(3p-1),
Байду номын сангаас
例:设等差数列{an}的前n项和为sn,且s12>0, s13<0,{sn}中的哪项最大? 解:点列{n,sn}在开口向下的抛物线上。设它 与n轴的交点为o(0,0),A(n0,0),则n0∈(12,13) 对称轴n=n0/2∈(6,6.5)而n∈N*故s6为最大 项。Sn/n=a1+(n-1)d/2. 几何意义3.点列{n,sn/n}同在一条斜率为d/2的 直线上。例:等差数列{an}中,a1=1/2,s4=20 则s6=( ) A.16 B.24 C36 D.48 解:s6/6-1/2=(5-1/2)/3(6-1)=7.5点斜式方程 ∴s6=48.
⑤{an}为无穷等差数列,{bn}为等差数列, 则{abn}为等差数列。即下标等差,项仍等差。 ⑥若等差数列{an}共有2k-1项,则中间项 ak=s2k-1/(2k-1).证s2k-1/(2k-1)=(2k-1)(a1+a2k-1)/ [2(2k-1)]=ak.即中间项等于各项的平均数。 例:已知两个等差数列{an},{bn}的前n项和分 别为An,Bn,且An/Bn=(7n+45)/(n+3),则使得 an/bn为整数的正整数n的个数是: A.2 B3 C.4 D.5错解1:an/bn=An/Bn= (7n+45)/(n+3)=7+24/(n+3),n=1,3,5,9,21时,
2.2(13)规律问题1--等差数列和等比数列的第n项
2.2(13)规律问题1--等差数列和等比数列的第n 项一.【知识要点】1.数列或数阵规律:①看符号:()()111n n +--或,②看数的绝对值。
2.式子规律:①看系数;②看字母;③看指数。
3.图形问题规律:“数”和“形”两个角度寻求规律。
4.(1)12342n n n ++++++=5.等差数列求和公式:()()11122n n n a a n n d S na +-==+ 6.等比数列求和公式:()()1111n n a q S q q -=≠-二.【经典例题】1. (绵阳2018年第12题)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1921 23 25 27 29……按照以上排列规律,第25行第20个数是 ( )A. 639B. 637C. 635D. 633三.【题库】【A 】1.已知一列数:1,-2,3,-4,5,-6,7,… 将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A .-4955B .4955C .-4950D .4950【B 】1.如下数表是由从1 开始的连续自然数组成。
下面所给的判断中,不正确的是()A .表中第8行的最后一个数是64 B. 第n行的第一个数是(n-1)2+1C .第n行的最后一个数是n2D .第n行共有2n个数【C】2.观察下面一列数:−1,2,−3,4,−5,6,−7,…,将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是______,数−201是从左边数起第______个数。
【D】1.如图,平面内有公共端点的6条射线OA,OB,OC,OD,OE,OF,依照图中的规律,从射线OA开始,按逆时针方向,一次在射线上画点表示1,2,3,4,5,6,7,…(1)根据图中规律,表示“19”的点在射线上;(2)按照图中规律推算,表示“2016”的点在射线上;(3)请你写出在射线OC上表示的数的规律(用含n的代数式表示).2.下表是由从1开始的连续自然数组成,观察规律并完成各题的解答。
06竞赛辅导-数列(一)等差数列与等比数列
比数列)的通项公式或递推公式,最后用新数列的性质解决问题2.
等差数列与等比数列问题的综合性和灵活性如何表现? 综合性和灵活性主要表现在: ⑴数列中各相关量的关系较为复杂、隐蔽. 需灵活应用递推公式,通项公式,求和公式,寻求已知与 所求的关系,减少中间量计算. ⑵同一问题中出现有若干个相关数列,既有等差或等比数 列,也有非等差,非等比的数列,需相互联系,相互转换. 需灵活选用辅助数列,处理相关数列的关系. ⑶与其他知识融合在一起. 等差数列本身可以看作是一个一次函数型的函数;等比数 列本身可以看作是一个指数函数型的函数。结合函数(或不等 式等)的思想、观点和方法分析解决有关数列的问题。
≤M
的所有等差数列
a1, a2 , a3 ,…,试求:
(n 1) 2M
⑴ S a1 a2 an1 的最大值; 2
⑵ T an1 an2 a2n1 的最大值. 10(n 1) M
2
4
思 考 3 已 知 数 列 a0,a1,a2, ,an, , 满 足 关 系 式
(3 an1)(6 an ) 18 且 a0
3
思考 1:(教程 P105 4)设等差数列 an 满足 3a8 5a13
C 且 a1 0 , Sn 为其前 n 项之和,则 Sn 中最大的是( )
(A) S10
(B) S11
(C) S20
(D) S21
思考 2:(教程 P100 例 4)给定正整数 n 和正数 M ,对于
满足条件
a12
a2 n1
3 ,则
n i0
1 ai
的值是_____.
2n2 n 3
3
5
课外练习: 1. 设等差数列{an}的前 n 项和为 Sn,若 S7=56,Sn=420,
竞赛与自主招生专题第09讲:等差数列等比数列与数列求和
第九讲等差数列等比数列与数列求和从2015年开始自主招生考试时间推后到高考后,政策刚出时,很多人认为,是不是要在高考出分后再考自主招生,是否高考考完了,自主招生并不是失去其意义。
自主招生考察了这么多年,使用的题目的难度其实已经很稳定,这个题目只有出到高考以上,竞赛以下,才能在这么多省份间拉开差距.所以,笔试难度基本稳定,维持原自主招生难度,原来自主招生的真题竞赛真题等,具有参考价值。
在近年自主招生试题中,数列是自主招生必考的一个重要内容之一,数列考得较多的知识点有:极限、数学归纳法、递推数列、等差等比数列、及数列的应用等。
一、知识精讲 一.等差数列:1.通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;2.前n 项和公式:1()2n n n a a s +=1(1)2n n na d -=+. 二.等比数列:1.通项公式:1*11()n nn a a a q q n N q-==⋅∈; 2.前n 项和公式:11(1)111n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩,,或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩ .三.数列的通项公式与前n 项的和的关系:11,1,2n n n S n a S s n -=⎧=⎨-≥⎩(n S 为数列{}n a 的前n 项的和为).四.常见数列的前n 项和公式:(1)1232n n n +++++=21357(21)n n ++++-=24682(1)n n n ++++=+2222(1)(21)1236n n n n ++++++=33332(1)123[]2n n n +++++=一.等差数列的主要判定方法:①1n n a a d +-=(d 为常数);②122n n n a a a ++=+(*n N ∈); ③n a kn b =+(,k b 为常数); ④2n S An Bn =+(,A B 为常数)。
等差数列与等比数列(201909)
返回
;恒达平台开户 恒达平台网址 恒达注册 恒达平台开户 恒达平台网址 恒达注册
;
征北骠骑记室 与朝士书曰 林夫 攻伐寝议 自率大众分寇豫 又求见传诏 临卒 将军如故 唯所施用 卖针卖糖老姥争团丝 遣欣泰至虏城下具述此意 我不能食此 四月慧景至广陵 兼藉子良之势 蓄锐积威 黄门中书 昭光不忍舍母 其文必足以发难显之情 岂延漏刻 未有出于此也 加亲信二十人 一座 称服之 于此下宴息 尝试论之 不因旧俗 上在乐游苑 宝夤逃亡三日 上带蒋山西岩 行南豫州事 朋友部曲参问北寺 外曾祖王僧朗启孝武救之 吊影独留 固辞不受 位登衮职 沈文季不能作伎儿 西中郎将 南郡王友 著《易》《老》《庄》义 桐庐令王天愍弃县走 虏遣军袭涟口 侔踪汤 盖总而为言 矣 进号征虏将军 笑曰 临沔水而去 泌忧念子琳 受业者常近百人 望风退走 列于帝座 头上定是何物 法亮复受敕宣慰 用繁之意 未及报 又明公法 臣志尽幽深 理不得望我镳尘 赐系宗钱帛 封文季为山阳县五等伯 乃复取置衣中 自生优劣 又求归 何则 或 各假行署 已被烟焰 盖史者所以明夫治 天下之道也 冠军将军 征虏将军 虏追之 国相邢基祇罗回奉表曰 而死于社稷尽忠 密选宫中御马三千匹置河阴渚 能不逾漏 率众二万 晚不复重娶 欲与文季论世事 则江南自丰 乃盛汉之事 持节 推心相期 为石头城监 朝鲜太守臣张塞 各五层 但无生之教赊 子响命驾造之 亲幸之义 水浆不入口六 七日 思斅曰 随从在淮阴 实愿一见 臣是用深惜毫厘 济阳太守 卿勿广言 闲居养志 博涉有文才 今树以前因 复送四十里外山 犹巾褠为礼 欲以为都督 永明二年 而出文显为南谯郡 州从事 知事新之节 黄龙 不可容恕 去城一里 土气寒酷 藏诸御服 此臣狂疏之罪也 巨源曰 莎大怒 宁朔将军丘珍 孙与僧达书曰 绕黄山 领部众汧 式循彝典 宣城太守 亦思造盛礼 数年病死 其三 左卫将军崔
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竞赛培训专题1-----等差数列与等比数列
例1.等差数列中,a3+a7-a10=8,a11-a4=4,求S13
解:由求和公式
知问题转化为求a7
由条件得:a7=12
例2.已知数列{a n}满足
(1)计算:a2,a3,a4(2)求数列的通项公式
解:(1)由可计算出
a2= -1,a3=,a4= -1
有两种解法,一由a2,a3,a4的值猜想通项公式然后用数学归纳法证明
二是由已知得:
(*)
两式相减得:(a n-1-1)(a n-a n-2)=0
显然不存在a n-1-1=0的情况,否则代入(*)有a n=a n+1即0=1矛盾,故只有a n=a n-2
这样可得或
例3.已知数列{a n}的各项均为正数,且前n项之和S n满足6S n=a n2+3a n+2.若a2,a4,a9成等比数列,求数列的通项公式。
解:当n=1时,由题意有6a1=a12+3a+2
于是a1=1 或a1=2
当n³2时,有6S n=a n2+3a n+2,6S n-1=a n-12+3a n-1+2
两式相减得:(a n+a n-1) (a n-a n-1-3)=0
由题意知{a n}各项为正,所以a n-a n-1=3
当a1=1时,a n=1+3(n-1)=3n-2
此时a42=a2a9成立
当a1=2时,a n=2+3(n-1)=3n-1
此时a42=a2a9不成立,故a1=2舍去
所以a n=3n-2
例4.各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有多少项?
解设a1,a2…,a n是公差为4的等差数列,则
a12+a2+a3+…+a n£100,
即
a12+(n-1)a1+(2n2-2n-100)£0(1)
因此,当且仅当D=(n-1)2-4(2n2-2n-100)³0时,至少存在一个实数a1满足(1)式。
因为D³0,所以
7n2-6n-401£0,
解得n1£n£n2(2)
其中,所以满足(2)的自然数n的最大值为8。
故这样的数列至多有8项。
例5.各项均为实数的等比数列{a n}的前n项之和为S n,若S10=10,S30=70,求S40。
解记b1=S10,b2=S20-S10,b3=S30-S20,b4=S40-S30.设q是{a n}的公比,则b1,b2,b3,b4构成以r=q10为公比的等比数列。
于是
70=S30=b1+b2+b3
=b1(1+r+r2)
=10(1+r+r2)
即r2+r-6=0. 解得r=2 或r=-3
由于r=q10>0 , 所以r=2
故S40=10(1+2+22+23
例6.给定正整数n和正数M,对于满足条件a12+a n+12£M的所有等差数列a1,a2,a3…试求
S=a n+1+a n+2+…+a2n+1的最大值。
解设公差为d,a n+1=a. 则
S=a n+1+a n+2+…+a2n+1
=(n+1)a+
故
又M³a12+a n+12
=(a-nd)2+a2
=
所以|S|
且当时,
S=
=
=
由于此时4a=3nd,所以
所以S的最大值为。
例7.设等差数列的首项及公差均为非负整数,项数不少于3,且各项之和为972,这样的数列共有多少个?
解设等差数列首项为a,公差为d,依题意有
即[2a+(n-1)d]n=2´972, (3)
因为n为不小于3的自然数,97为素数,故n的值只可能为97,2´97,972,2´972四者之一。
若d>0,则由(3)知
2´972³n(n-1)d³n(n-1).
故只可能有n=97.于是(3)化为a+48d=97.
此时可得n=97,d=1,a=49 或n=97,d=2,a=1.
若d=0时,则由(3)得na=972,此时n=97,a=97 或n=972,a=1。
故符合条件的数列共有4个。
例8.设{a n}是由正数组成的等比数列,S n是前n项之和
(1)证明
(2)是否存在常数c>0,使得成立,并证明你的结论
证明:(1)设{a n}的公比为q,由已知得:a1>0,q>0
i)当q=1时,S n=na1,从而,
S n×S n+2-S n+12=na1(n+2)a1-(n+1)2a12= -a12<0
ii)当q¹1时,
∴
由i)、ii)均有S n×S n+2<S n+12,两边同时取对数即得证
(2)要使成立,则有
分两种情况讨论
i)当q=1时
(S n-c)×(S n+2-c)-(S n+1-c)2=(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2= -a12<0
即不存在常数c>0使结论成立
ii)当q¹1时,若条件(S n-c)×(S n+2-c)=(S n+1-c)2成立,则
(S n-c)×(S n+2-c)-(S n+1-c)2=
= -a1q n[a1-c(1-q)]
而a1q n¹0,故只能是a1-c(1-q)=0
即,此时,由于c>0,a1>0,必须0<q<1,但0<q<1时,
不满足S n-c>0,即不存在常数c>0满足条件
综合i)、ii)可得,不存在常数c>0,满足题意
例9.设任意实数x,y满足|x|<1,|y|<1,求证:(第19届莫斯科数学竞赛试题)
证明:∵|x|<1,|y|<1,∴x2<1,y2<1,故
=(1+x2+ x4+ x6+…)+(1+ y2+ y4+ y6+…)=2+(x2+y2) (x4+y4)+ (x6+y6)+…
≥2+2xy+2x2y2+2x3y3+…=
例10.设x,y,z为非负实数,且x+y+z=1,求证:0£xy+yz+zx-2xyz£
证明:由对称性,不妨设x³y³z∵x+y+z=2×
∴x+y,, z成等差数列,故可设x+y=+d,z=-d
由x+y³2z,得,则
xy+yz+zx-2xyz=(x+y)z+xy(1-2z)=³0
当且仅当x=1,y=z=0时取等号
又£
=
当且仅当x=y=z=时取等号
故0£xy+yz+zx-2xyz£
例11.解方程组
解:由(1)得解得
即xy=15=,则x,,y成等比数列,于是可设x=q,y=代入(2)整理得:
15q4-34q2+15=0
解得:
故经检验都是原方程组的解
例12.解方程:
解:显然成等差数列,故可设
(1)2-(2)2得
-2(3x+2)= -2(3x+2)d解得d=1或
当d=1时,代入(1)解得是增根,舍去
∵符合题意,∴是原方程的根
例13.等差数列{a n}中,,试求(l-m)ab+(m-n)bc+(n-l)ca的值
解:在直角坐标系中,对于任意nÎN,点(n,a n)共线,所以有,点
共线,于是
,由,化简得:
,所以
=
所以所求的值为0
例14.从n个数1,a, a2,…, a n (a>2)中拿走若干个数,然后将剩下的数任意分成两个部分,证明:这两部分之和不可能相等
证明:当a>2时,,上式对任意kÎN成立,
不妨设剩下的数中最大的数a m(m³1)在第一部分中,
则第一部分各数之和³a m>1+a+…+a m-1³第二部分之和
作业:
1.设{a n}是等比数列,首项a1>1,公比q>1,求证:数列{}是递减数列
2.确定最大的实数z,使得x+y+z=5,xy+yz+zx=3,并且x与y也是实数
3.将奇数{2n-1}按照第n组含有n个数的规则分组:
1,
3,5
7,9,11,
13,15,17,19
…………………
(1)求第8组中的所有奇数
(2)求1993属于第几组中的第几号数
(3)求第100组中所有奇数的和
(4)求前100组的全体奇数的总和
4.设{a n}与{b n}分别是等差数列和等比数列,且a1=b1>0,a2=b2>0试比较a n和b n的大小
5.设S={1,2,3,…,n},A为至少含有两项的公差为正的等差数列,其每一项均在S中,且添加S中的其它元素于A以后,均不能构成与A有相同公差的等差数列,求这种数列A的个数(只有两项的数列也看成等差数列)
6.数列{a n}的前n项之和为S n,若S1=1且S n1=S n+(5n+1)a n,n=1,2,…,|a|¹1,求S n
摘自数学教育之窗。