甘肃省兰州市2015年初中毕业升学考试 数学试卷A卷及答案
兰州市2015年中考数学试卷(A卷)含答案
2015年兰州市初中毕业生学业考试数 学(A )满分150分,考试时间120分钟一、选择题(本题有15小题,每小题4分,共60分)1. 下列函数解析式中,一定为二次函数的是A. 13-=x yB. c bx ax y ++=2C. 1222+-=t t sD. xx y 12+= 2. 由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是A. 左视图与俯视图相同B. 左视图与主视图相同C. 主视图与俯视图相同D. 三种视图都相同3. 在下列二次函数中,其图象的对称轴为2-=x 的是A. 2)2(+=x yB. 222-=x yC. 222--=x yD. 2)2(2-=x y4. 如图,△ABC 中,∠B=90°,BC=2AB ,则cosA= A. 25 B. 21 C. 552 D. 55 5. 如图,线段CD 两个端点的坐标分别为C (1,2),D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 的坐标为(5,0),则点A 的坐标为A.(2,5)B.(2.5,5)C. (3,5)D.(3,6)6. 一元二次方程0182=--x x 配方后可变形为A. 17)4(2=+xB. 15)4(2=+xC. 17)4(2=-xD. 15)4(2=-x7. 下列命题错误..的是 A. 对角线互相垂直平分的四边形是菱形 B. 平行四边形的对角线互相平分C. 矩形的对角线相等D. 对角线相等的四边形是矩形8. 在同一直角坐标系中,一次函数k kx y -=与反比例函数)0(≠=k xk y 的图象大致是9. 如图,经过原点O 的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧上一点,则∠ACB=A. 80°B. 90°C. 100°D. 无法确定10. 如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连结EF ,则△AEF 的面积是 A. 34 B. 33 C. 32 D. 311. 股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
【精校】2015年甘肃省兰州市中考真题数学(a卷)
2015年甘肃省兰州市中考真题数学(a卷)一、选择题(共15小题,每小题4分,满分60分)1.(4分)下列函数解析式中,一定为二次函数的是( )A. y=3x-1B. y=ax2+bx+cC. s=2t2-2t+1D. y=x2+1 x解析:A、y=3x-1是一次函数,故A错误;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、s=2t2-2t+1是二次函数,故C正确;D、y=x2+1x不是二次函数,故D错误.答案:C.2.(4分)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A. 左视图与俯视图相同B. 左视图与主视图相同C. 主视图与俯视图相同D. 三种视图都相同解析:如图所示几何体的左视图与主视图都是两列,每列正方形的个数从左往右都是3,1,左视图与主视图相同;俯视图是两列,每列正方形的个数从左往右都是2,1.答案:B.3.(4分)在下列二次函数中,其图象对称轴为x=-2的是( ) A. y=(x+2)2 B. y=2x 2-2 C. y=-2x 2-2D.y=2(x-2)2解析:y=(x+2)2的对称轴为x=-2,A 正确; y=2x 2-2的对称轴为x=0,B 错误; y=-2x 2-2的对称轴为x=0,C 错误; y=2(x-2)2的对称轴为x=2,D 错误. 答案:A.4.(4分)如图,△ABC 中,∠B=90°,BC=2AB ,则cosA=( )A. 2B.12C. 5D.解析:∵∠B=90°,BC=2AB ,∴AC ===,∴cosA=AB AC =答案:D.5.(4分)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为( )A. (2,5)B. (2.5,5)C. (3,5)D. (3,6)解析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)答案:B.6.(4分)一元二次方程x2-8x-1=0配方后可变形为( )A. (x+4)2=17B. (x+4)2=15C. (x-4)2=17D. (x-4)2=15解析:方程变形得:x2-8x=1,配方得:x2-8x+16=17,即(x-4)2=17.答案:C7.(4分)下列命题错误的是( )A. 对角线互相垂直平分的四边形是菱形B. 平行四边形的对角线互相平分C. 矩形的对角线相等D. 对角线相等的四边形是矩形解析:A、对角线互相垂直平分的四边形是菱形,正确;B、平行四边形的对角线互相平分,正确;C、矩形的对角线相等,正确;D、对角线相等的平行四边形是矩形,故错误.答案:D.8.(4分)在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )A.B.C.D.解析:(1)当k>0时,一次函数y=kx-k 经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:答案:A.9.(4分)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A. 80°B. 90°C. 100°D. 无法确定解析:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.答案:B.10.(4分)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是( )A.B.C.D.解析:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,,过A作AM⊥EF,∴AM=AE·sin60°=3, ∴△AEF 的面积是:12EF·AM=12. 答案:B.11.(4分)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( ) A. (1+x)2=1110 B. (1+x)2=109C. 1+2x=1110D.1+2x=109解析:设平均每天涨x. 则90%(1+x)2=1, 即(1+x)2=109. 答案:B.12.(4分)若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y=kx(k >0)的图象上,且x 1=-x 2,则( ) A. y 1<y 2 B. y 1=y 2 C. y 1>y 2D.y 1=-y 2解析:∵点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y=kx(k >0)的图象上, ∴y 1=1k x ,y 2=2k x , ∵x 1=-x 2,∴y 1=1k x =-2k x ∴y 1=-y 2. 答案:D.13.(4分)二次函数y=ax 2+bx+c 的图象如图,点C 在y 轴的正半轴上,且OA=OC ,则( )A. ac+1=bB. ab+1=cC. bc+1=aD.以上都不是解析:当x=0时,y=ax 2+bx+c=c ,则C(0,c)(c >0), ∵OA=OC, ∴A(-c ,0),∴a·(-c)2+b·(-c)+c=0, ∴ac -b+1=0, 即ac+1=b. 答案:A.14.(4分)二次函数y=x 2+x+c 的图象与x 轴的两个交点A(x 1,0),B(x 2,0),且x 1<x 2,点P(m ,n)是图象上一点,那么下列判断正确的是( ) A. 当n <0时,m <0 B. 当n >0时,m >x 2 C. 当n <0时,x 1<m <x 2 D.当n >0时,m <x 1解析:∵a=1>0,∴开口向上,∵抛物线的对称轴为:112212bxa=-=-=-⨯,二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,无法确定x1与x2的正负情况,∴当n<0时,x1<m<x2,但m的正负无法确定,故A错误,C正确;当n>0时,m<x1或m>x2,故B,D错误.答案:C.15.(4分)如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.4πB.2πC.6πD.3π 解析:∵PM⊥y 轴于点M ,PN⊥x 轴于点N , ∴四边形ONPM 是矩形, 又∵点Q 为MN 的中点, ∴点Q 为OP 的中点, 则OQ=1, 点Q 走过的路径长=4511804ππ⨯=. 答案:A.二、填空题(共5小题,每小题4分,满分20分)16.(4分)若一元二次方程ax 2-bx-2015=0有一根为x=-1,则a+b=_____. 解析:把x=-1代入一元二次方程ax 2-bx-2015=0得:a+b-2015=0, 即a+b=2015. 答案:2015.17.(4分)如果a c ek b d f===(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____. 解析:由等比性质,得3a a c e k b b d f++===++. 答案:3.18.(4分)在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n 的值是_____.解析:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴5n=0.5,解得:n=10. 答案:10.19.(4分)如图,点P、Q是反比例函数y=kx图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN 的面积记为S2,则S1_____S2.(填“>”或“<”或“=”)解析:设p(a,b),Q(m,n),则S△ABP=12AP·AB=12a(b-n)=12ab-12an,S△QMN=12MN·QN=12(m-a)n=12mn-12,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.答案:=20.(4分)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是_____.解析:如图:连接BO,CO,∵△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,∴△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°.若点A 在劣弧BC 上时,∠A=150°.∴∠A=30°或150°.答案:30°或150°.三、解答题(共8小题,满分70分)21.(10分)(1)计算:2-1tan60°+(π-2015)0+|-12|; (2)解方程:x 2-1=2(x+1).解析:(1)原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程整理后,利用因式分解法求出解即可.答案:(1)原式=12+1+12=-1; (2)方程整理得:x 2-2x-3=0,即(x-3)(x+1)=0,解得:x 1=-1,x 2=3.22.(5分)如图,在图中求作⊙P,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解析:作∠AOB 的角平分线,作MN 的垂直平分线,以角平分线与垂直平分线的交点为圆心,以圆心到M 点(或N 点)的距离为半径作圆.答案:如图所示.圆P即为所作的圆.23.(6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?解析:(1)画出树状图,(2)根据(1)的树形图,利用概率公式列式进行计算即可得解;(3)分别求出球回到甲脚下的概率和传到乙脚下的概率,比较大小即可.答案:(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;(2)由(1)可知三次传球后,球回到甲脚下的概率=21 84 ;(3)由(1)可知球回到甲脚下的概率=14,传到乙脚下的概率=38,所以球回到乙脚下的概率大.24.(8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是_____投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.解析:(1)这是利用了平行投影的有关知识;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.利用矩形的性质和平行投影的知识可以得到比例式:AM CNME NG=,即83105CD-=,由此求得CD即电线杆的高度即可.答案:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以AM=10-2=8,由平行投影可知,AM CNME NG=,即83105CD-=,解得CD=7,即电线杆的高度为7米.25.(9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC ;(2)若E 、F 、G 、H 分别是AB 、CD 、AC 、BD 的中点,求证:线段EF 与线段GH 互相垂直平分.解析:(1)由平行四边形的性质易得AC=BM=BD ,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;(2)连接EH ,HF ,FG ,GE ,E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,易得四边形HFGE 为平行四边形,由平行四边形的性质及(1)结论得▱HFGE 为菱形,易得EF 与GH 互相垂直平分.答案:(1)过点B 作BM∥AC 交DC 的延长线于点M ,如图1,∵AB∥CD∴四边形ABMC 为平行四边形,∴AC=BM=BD,∠BDC=∠M=∠ACD,在△ACD 和△BDC 中,AC BD ACD BDC CD DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BDC(SAS),∴AD=BC;(2)连接EH ,HF ,FG ,GE ,如图2,∵E,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE∥AD,且HE=12AD ,FG∥AD,且FG=12AD , ∴四边形HFGE 为平行四边形,由(1)知,AD=BC ,∴HE=EG,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.26.(10分)如图,A(-4,12),B(-1,2)是一次函数y 1=ax+b 与反比例函数y 2=xπ图象的两个交点,AC⊥x 轴于点C ,BD⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,y 1-y 2>0?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.解析:(1)观察函数图象得到当-4<x <-1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B 点坐标代入y=xπ可计算出m 的值; (3)设P 点坐标为(m ,12m+52),利用三角形面积公式可得到12·12·(m+4)= 12·1·(2-12m-52),解方程得到m=-52,从而可确定P 点坐标.答案:(1)当y 1-y 2>0,即:y 1>y 2,∴一次函数y 1=ax+b 的图象在反比例函数y 2=x π图象的上面, ∵A(-4,12),B(-1,2) ∴当-4<x <-1时,y 1-y 2>0;(2)∵y 2=xπ图象过B(-1,2), ∴m=-1×2=-2, ∵y 1=ax+b 过A(-4,12),B(-1,2), ∴1422a b a b ⎧-+=⎪⎨⎪-+=⎩,解得1252a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为;y=12x+52, (3)设P(m ,12m+52),过P 作PM⊥x 轴于M ,PN⊥y 轴于N , ∴PM=12m+52,PN=-m , ∵△PCA 和△PDB 面积相等, ∴1122AC CM BD DN •=•, 即;()1111541222222m m ⎛⎫⨯+=⨯⨯-- ⎪⎝⎭, 解得m=-52, ∴P(-52,54).27.(10分)如图,在Rt△ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D.以AB 上某一点O 为圆心作⊙O,使⊙O 经过点A 和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)解析:(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)①根据含有30°角的直角三角形的性质得出OB=2OD=2r,AB=2AC=3r,从而求得半径r的值;②根据S阴影=S△BOD-S扇形DOE求得即可.答案:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.(2)设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.(3)在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴260223603ODESππ•==扇形.∴所求图形面积为23 BOD ODES Sπ=-△扇形.28.(12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=32时(图①),求证:△AOB为直角三角形;②试判断当m≠32时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)解析:(1)把点(2,1)代入可求得a的值,可求得抛物线的解析式;(2)①可先求得A、B两点的坐标,过A、B两点作x轴的垂线,结合条件可证明△ACO∽△ODB,可证明∠AOB=90°,可判定△AOB为直角三角形;②可用m分别表示出A、B两点的坐标,过A、B两点作x轴的垂线,表示出AC、BD的长,可证明△ACO∽△ODB,结合条件可得到∠AOB=90°,可判定△AOB为直角三角形;(3)结合(2)的过程可得到△AOB恒为直角三角形等结论. 答案:(1)解:∵y=ax2过点(2,1),∴1=4a,解得a=14,∴抛物线解析式为y=14x2;(2)①证明:当m=32时,联立直线和抛物线解析式可得234214y xy x⎧=+⎪⎪⎨⎪=⎪⎩,解得21xy=-⎧⎨=⎩或816xy=⎧⎨=⎩,∴A(-2,1),B(8,16),分别过A、B作AC⊥x轴,BD⊥x轴,垂足分别为C、D,如图1,∴AC=1,OC=2,OD=8,BD=16,∴12AC ODOC BD==,且∠ACO=∠ODB,∴△ACO∽△ODB,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;②解:△AOB为直角三角形.证明如下:当m≠32时,联立直线和抛物线解析式可得2414y mx y x =+⎧⎪⎨=⎪⎩,解得(22x m y m ⎧=-⎪⎨=⎪⎩或(22x m y m ⎧=+⎪⎨=⎪⎩, ∴A(2m2),2), 分别过A 、B 作AC⊥x 轴,BD⊥x 轴,如图2,∴AC=(m2,,2,∴2AC OD m OC BD ==,且∠ACO=∠ODB, ∴△ACO∽△OBD,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB 为直角三角形;(3)解:由(2)可知,一次函数y=mx+4的图象与二次函数y=ax 2的交点为A 、B ,则△AOB 恒为直角三角形.(答案不唯一).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
甘肃省兰州市初中毕业生学业考试数学(A)试卷(word版)
2013 年兰州市初中毕业生学业考试数学( A )注意事项:1.全卷共 150 分,考试时间120 分钟.2.考生一定将姓名、准考据号、考场、座位号等个人信息填(涂)写在答题卡上.3.考生务势必答案直接填(涂)写在答题卡的相应地点上.参照公式:二次函数极点坐标公式:(b, 4ac b2)2a4a一、选择题:本大题共 15 小题,每题 4 分,共60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.以下图是由八个相同的小正方体组合而成的几何体,其左视图是正面A B C D第 1 题图2.“兰州市明日降水概率是30%”,对此信息以下说法中正确的选项是A .兰州市明日将有 30%的地域降水B.兰州市明日将有30%的时间降水C.兰州市明日降水的可能性较小D.兰州市明日一定不降水23.二次函数y(2 x1) 3 的图象的极点坐标是A .( 1, 3)B.(1,3)C.(1, 3 )D.(1, 3 )4.⊙ O1的半径为 1cm,⊙ O2的半径为4cm,圆心距 O1O2=3cm,这两圆的地点关系是A .订交B.内切C.外切D.内含5.当 x 0 时,函数 y5的图象在xA .第四象限B.第三象限C.第二象限D.第一象限6.以下命题中是假命题的是A .平行四边形的对边相等B .菱形的四条边相等C.矩形的对边平行且相等D.等腰梯形的对边相等7.某校九年级睁开“光盘行动”宣传活动,各班级参加该活动的人数统计结果以下表,对于这组统计数据,以下说法中正确的选项是班级 1 班 2 班 3 班 4 班5 班6 班人数526062545862A .均匀数是 58B .中位数是 58C .极差是 40D .众数是 608.用配方法解方程x 22x 1 0 时,配方后所得的方程为2A .( x 1)9. △ABC 中,正确的选项是22( x2(x 1) 0( x 1) 21) 2B .C .D .a 、b 、c 分别是∠ A 、∠ B 、∠ C 的对边,假如 a 2 b 2 c 2 ,那么以下结论A . c sinA= aB . b cosB= cC . a tanA= bD . c tanB= b10.据检查, 2011 年 5 月兰州市的房价均价为7600 元 /m 2,2013 年同期将达到 8200 元/m 2,假定这两年兰州市房价的均匀增加率为 x ,依据题意,所列方程为A . 7600(1 x%) 2 8200B . 7600 (1 x%) 2 8200C . 7600(1 x) 28200D . 7600(1 x) 2 820011.已知 A (1, y 1 ),B ( 2, y 2 )两点在双曲线 y3 2m上,且 y 1 y 2 ,则 m 的取值x范围是A . m 0B . m 033C . mD . m2212.如图是一圆柱形输水管的横截面,暗影部分为有水部分,假如水面AB 宽为 8cm ,水的最大深度为 2cm ,则该输水管的半径为A .3cmB .4cm A BC .5cm第 12 题图D .6cm13.二次函数 yax 2 bx c(a 0) 的图象以下图.以下说法中 y不正确的选项是A . b 2 4ac 0B . a 0xC . c 0D .b 0O2a第 13 题图14.圆锥底面圆的半径为3cm ,其侧面睁开图是半圆,则圆锥母线长为 A .3cmB .6cmC .9cmD . 12cm15.如图,动点 P 从点 A 出发,沿线段 AB 运动至点B 后,立刻按原路返回,点P 在运动SSSSAPBOt Ot第 15 题图A B C DO t O t程中速度不,以点B 心,段 BP 半径的的面 S 与点 P 的运 t 的函数象大概二、填空:本大共 5 小,每小 4 分,共 20 分.16.某校决定从两名男生和三名女生中出两名同学作州国拉松的志愿者,出一男一女的概率是.17.若 b 1 a 4 0 ,且一元二次方程kx2ax b 0 有数根,k 的取范是.18.如,量角器的直径与直角三角板ABC 的斜 AB 重合,此中量角器0 刻度的端点N 与点 A 重合,射CP 从P90°120°150°60° B ECA 出沿方向以每秒 3 度的速度旋,CP 与量角器的半弧交于点E,第 24 秒,点 E 在量角器上O 30°的数是度.A(N)C第 18 题图19.如,在直角坐系中,已知点A( 3 ,0)、B( 0,4),△OAB 作旋,挨次获得△ 1、△ 2、△ 3、△4 ⋯,△ 2013 的直角点的坐.yB△ 1△ 2△ 3A O第 19 题图20.如,以扇形OAB 的点 O 原点,半径 OB 所在的直x ,成立平面直角坐系,点 B 的坐( 2, 0),若抛物 y 1 x2k 与扇形 OAB 的界有两个公共点,2数 k 的取范是.三、解答:本大共8 小,共 70 分.解答写出必需的文字明、明程或演算步.21.(本小分10 分)( 1)算:(201321sin 30(0 1))( 2)解方程:x 2310x△4xy A45°BO 2 x第20 题图22.(本小题满分5 分)如图,两条公路 OA 和 OB 订交于 O 点,在∠ AOB 的内部有工厂 C 和D ,现要修筑一个货站 P,使货站 P 到两条公路 OA、OB 的距离相等,且到两工厂C、D 的距离相等,用尺规作出货站 P 的地点.(要求:不写作法,保存作图印迹,写出结论 .)ACDO B第 22 题图23.(本小题满分 6 分)在兰州市睁开的“体育、艺术2+1”活动中,某校依据实质状况,决定主要开设A:乒乓球, B:篮球, C:跑步, D :跳绳这四种运动项目.为认识学生喜爱哪一种项目,随机抽取了部分学生进行检查,并将检查结果绘制成以下的条形统计图和扇形统计图.请你联合图中信息解答以下问题:( 1)样本中喜爱 B 项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图增补完好;(3)已知该校有 1000 人,依据样本预计全校喜爱乒乓球的人数是多少?人数(单位:人)5044A 4044% 302820B8D10C28%8%A B C D 项目第 23 题图24.(本小题满分8 分)如图,在活动课上,小明和小红合作用一副三角板来丈量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是,他调整自己的地点,想法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为 45°;小红的眼睛与地面的距离(CD)是,用相同的方法测得旗杆顶端M 的仰角为30°.两人相距 28 米且位于旗杆双侧(点B、 N、 D 在同一条直线上).求出旗杆 MN 的高度.(参照数据: 2 1.4 ,3 1.7 ,结果保存整数.)MA C小明小红B N D第24 题图25.(本小题满分 9 分)已知反比率函数 y1k 的图象与一次函数y2 ax b 的图象交于点xA( 1, 4)和点 B(m,2).(1)求这两个函数的表达式;(2)察看图象,当x >0 时,直接写出 y1 > y2时自变量x的取值范围;(3)假如点 C 与点 A 对于x轴对称,求△ ABC 的面积.yAO xB第 25 题图26.(本小题满分10 分)如图 1,在△ OAB 中,∠ OAB=90 °,∠ AOB=30 °, OB=8.以 OB 为边,在△ OAB 外作等边△ OBC,D 是 OB 的中点,连结 AD 并延伸交 OC 于 E.(1)求证:四边形 ABCE 是平行四边形;(2)如图 2,将图 1 中的四边形 ABCO 折叠,使点 C 与点 A 重合,折痕为 FG,求 OG 的长.C CFE B BDGO A O图 2A图 1C第26 题图27.(本小题满分 10 分)如图,直线MN 交⊙ O 于 A、 B 两D OM E A B N第27 题图点, AC 是直径, AD 均分∠ CAM 交⊙ O 于 D ,过 D 作 DE ⊥MN 于 E .( 1)求证: DE 是⊙ O 的切线;( 2)若 DE=6cm , AE=3cm ,求⊙ O 的半径.28.(本小题满分 12 分)如图,在平面直角坐标系xOy 中, A 、 B 为 x 轴上两点, C 、D 为y 轴上的两点, 经过点 A 、C 、B 的抛物线的一部分 C 1 与经过点 A 、D 、 B 的抛物线的一部分C 2 组合成一条关闭曲线,我yM“蛋线 ”.已知点 C 的坐标为( 0, 3们把这条关闭曲线称为),mx 22 D点 M 是抛物线 C 2 : y 2mx 3m ( m <0)的极点.( 1)求 A 、B 两点的坐标;( 2)“蛋线”在第四象限上能否存在一点 P ,使得 △ PBC 的面积最大?若存在,求出 △PBC 面积的最大值;若不存 在,请说明原因;( 3)当 △ BDM 为直角三角形时,求m 的值.A OB xC第 28 题图2013 年兰州市初中毕业生学业考试数学( A )参照答案及评分参照本答案仅供参照,阅卷时会拟订详细的评分细则和评分标准。
2015年初中毕业升学考试试卷数学含答案(真卷出击)
2015年初中毕业升学考试试卷数学(考试时间共120分钟,全卷满分120分)第Ⅰ卷(选择题,共36分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅰ卷为第1页至第2页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦干净后,再填涂其它答案. 在第Ⅰ卷上答题无效.一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,错选、不选或多选均得零分) 1.AB.C.5-D.52.如图1,点A B C 、、是直线l 上的三个点,图中共有线段条数是A .1条 B.2条 C.3条 D.4条3.三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定 4.图2的几何体中,主视图、左视图、俯视图均相同的是5.若分式23x-有意义,则x 的取值范围是 A .3x ≠ B.3x = C.3x < D.3x > 6.不等式5x +≥8的解集在数轴上表示为A . B. C. D.7.一个正多边形的一个内角为120度,则这个正多边形的边数为 A .9 B.8 C.7 D.6图 1图28.如图3,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB 的距离DE 是A .5cm B.4cm C.3cm D.2cm9.如图4,在正方形ABCD 的外侧作等边ADE △,则AEB ∠的度数为 A .10° B.12.5° C.15° D.20°10.上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是 A .19岁 B.20岁 C.21岁 D.22岁11.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法正确的个数是①抛物线与x 轴的一个交点为(20)-,②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大A .1 B.2 C.3 D.4 12.如图6,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B '处,点A 对应点为A ',且3B C '=,则AM 的长是A .1.5 B.2 C.2.25 D.2.52015年初中毕业升学考试试卷第Ⅱ卷(非选择题,共84分)注意事项:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第Ⅱ卷为第3页至第10页.答题时,用蓝黑色墨水笔或圆珠笔直接将答案写在试卷上.图3 图4 图5 图6二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在题中横线上的空白处)13= . 14.因式分解:29x -= .15.写出一个经过点(11),的一次函数解析式 . 16.2010年广州亚运会吉祥物取名“乐羊羊”.图7中各图是按照一定规律排列的羊的组图,图①有1只羊,图②有3只羊,……,则图⑩有 只羊.17.关于x 的一元二次方程(3)(1)0x x +-=的根是 . 18.如图8,AB 是O ⊙的直径,弦2cm BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当t 值为 s时,BEF △是直角三角形. 三、解答题(本大题8分,满分66分.解答应写出必要的文字说明、演算步骤或推理过程) 19.(本题满分6分)计算:30(2)(2010tan 45-+-°.20.(本题满分6分)如图9,在88⨯的正方形网格中,ABC △的顶点和线段EF 的端点都在边长为1的小正方形的顶点上.A B图8 图7(1)填空:ABC ∠= .BC = ; (2)请你在图中找出一点D ,再连接DE DF 、,使以D E F 、、为顶点的三角形与ABC △全等,并加以证明. 21.(本题满分6分)桌面上有4张背面相同的卡片,正面分别写着数字“1”、“2”、“3”“4”.先将卡片背面朝上洗匀.(1)如果让小唐从中任意抽取一张,抽到奇数的概率是 ;(2)如果让小唐从中同时抽取两张.游戏规则规定:抽到的两张卡片上的数字之和为奇数,则小唐胜,否则小谢胜.你认为这个游戏公平吗?说出你的理由. 22.(本题满分8分) 如图10,从热气球P 上测得两建筑物A B 、的底部的俯角分别为45°和30°,如果A B 、两建筑物的距离为90m ,P 点在地面上的正投影恰好落在线段AB 上,求热气球P 的高度.(结果精确到0.01m1.7321.414)图9 45°30°图10目前,“低碳”已成为保护地球环境的热门话题.风能是一种清洁能源,近几年我国风电装机容量迅速增长.图11是我国2003年-2009年部分年份的内力发电装机容量统计图(单位:万千瓦),观察统计图解答下列问题.(1)2007年,我国风力发电装机容量已达万千瓦;从2003年到2009年,我国风力发电装机容量平均每年增长......万千瓦;(2)求2007~2009这两年装机容量的年平均增长率......;(参考数据: 2.24,1.123.74)(3)按(2)的增长率,请你预测2010年我国风力发电装机容量.(结果保留到0.1万千瓦)24.(本题满分10分)某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低?图11如图12,AB 为O ⊙直径,且弦CD AB ⊥于E ,过点B 的切线与AD 的延长线交于点F . (1)若M 是AD 的中点,连接ME 并延长ME 交BC 于N .求证:MN BC ⊥. (2)若4cos 35C DF ∠==,,求O ⊙的半径. 26.(本题满分12分)如图13,过点(43)P -,作x 轴、y 轴的垂线,分别交x 轴、y 轴于A B 、两点,交双曲线(2)ky k x=≥于E F 、两点. (1)点E 的坐标是 ,点F 的坐标是 ;(均用含k 的式子表示) (2)判断EF 与AB 的位置关系,并证明你的结论; (3)记PEF OEF S S S =-△△,S 是否有最小值?若有,求出其最小值;若没有,请说明理由.2015年初中毕业升学考试 数学参考答案及评分标准图12图13(说明:第17题只写对一个结果给2分,两个结果都写对给3分;第18题每写对一个结果给1分) 三、解答题: 19.本题满分6分.解:原式=811-+- ························································································ 3分=8- ································································································ 6分20.本题满分6分.(1)135ABC ∠=°,BC = ·········································· 2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示. ········································· 3分证明:FD BC === ··············································· 4分9045135EFD ABC ∠=∠==°+?° ·································································· 5分 2EF AB ==EFD ABC ∴△≌△ ······················································································· 6分(说明:其他证法参照此法给分) 21.本题满分6分. 解:(1)12··································································································· 2分 (2)(方法一)这个游戏不公平. ··························································································· 3分 理由如下:任意抽取两个数,共有6种不同的抽法,其中和为奇数的抽法共有4种.P ∴(和为奇数)=4263= ················································································ 4分 P (和为偶数)=13························································································ 5分(方法二)设2008年的风力发电装机容量为a 万千瓦.5002520500a aa--= ······················································································· 4分 21260000a = ························································································· 0a >1122a ∴≈ ····························································································· 5分经检验,1122a ≈是所列方程的根. 则2007到2009这两年装机容量的年增长率为11225001.24124%500-=≈ ················· 6分答:2007到2009这两年装机容量的年平均增长率约为124%. (3)(1 1.24)25205644.8+⨯= ····································································· 7分∴2010年我国风力发电装机容量约为5644.8万千瓦. ··········································· 8分 24.本题满分10分.解:(1)设甲种树苗买x 株,则乙种树苗买(300)x -株. ······································ 1分6090(300)21000x x +-= ·············································································· 3分200x = ·················································································· 4分300200100-= ················································································ 5分答:甲种树苗买200株,乙种树苗买100株.(2)设买x 株甲种树苗,(300)x -株乙种树苗时该小区的空气净化指数之和不低于90.0.20.6(300)90x x +-≥ ················································································ 6分 0.21800.690x x +-≥0.490x --≥225x ≤ ·············································································· 7分此时费用6090(300)y x x =+-3027000y x =-+ ············································································· 8分y 是x 的一次函数,y 随x 的增大而减少∴当225x =最大时,302252700020250y =-⨯+=最小(元) ······························ 9分 即应买225株甲种树苗,75株乙种树苗时该小区的空气净化指数之和不低于90,费用最小为20250元. ······························································································· 10分 (说明:其他解法参照此法给分) 25.本题满分10分 (1)(方法一) 连接AC .AB 为O ⊙的直径,且AB CD ⊥于E ,由垂径定理得:点E 是CD 的中点. ··························· 1分 又M 是AD 的中点ME ∴是DAC △的中位线 ········································ 2分MN AC ∴∥ ························································· 3分 AB 为O ⊙直径,90ACB ∴∠=°, ························· 4分90MNB ∴∠=°即MN BC ⊥ ···································· 5分(方法二)AB CD ⊥,90AED BEC ∴∠=∠=° ····················· 1分M 是AD 的中点,ME AM ∴=,即有MEA A ∠=∠ ··········································· 2分又MEA BEN ∠=∠,由A ∠与C ∠同对BD 知C A ∠=∠C BEN ∴∠=∠ ····························································································· 3分又90C CBE ∠+∠=°90CBE BEN ∴∠+∠=° ················································································· 4分 90BNE ∴∠=°,即MN BC ⊥. ····································································· 5分(方法三)AB CD ⊥,90AED ∴∠=° ········································································· 1分由于M 是AD 的中点,ME MD ∴=,即有MED EDM ∠=∠ 又CBE ∠与EDA ∠同对AC ,CBE EDA ∴∠=∠ ············································ 2分 又MED NEC ∠=∠ NEC CBE ∴∠=∠ ························································································ 3分 又90C CBE ∠+∠=°90NEC C ∴∠+∠=° ···················································································· 4分即有90CNE ∠=°,MN BC ∴⊥ ···································································· 5分 (2)连接BDBCD ∠与BAF ∠同对BD ,C A ∴∠=∠4cos cos 5A C ∴∠=∠=······································ 6分 BF 为O ⊙的切线,90ABF ∴∠=°在Rt ABF △中,4cos 5AB A AF ∠== 设4AB x =,则5AF x =,由勾股定理得:3BF x =··········································································7分 又AB 为O ⊙直径,BD AD ∴⊥ABF BDF ∴△∽△ BF DF AF BF∴= ································································································ 8分即3353x x x= 53x = ··································································································· 9分∴直径5204433AB x ==⨯= 则O ⊙的半径为103······················································································· 10分(说明:其他解法参照此法给分) 26.本题满分12分. 解:(1)44k E ⎛⎫--⎪⎝⎭,,33k F ⎛⎫ ⎪⎝⎭, ······································································ 3分 (说明:只写对一个点的坐标给2分,写对两个点的坐标给3分)(2)(证法一)结论:EF AB ∥ ······································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 31241212123443PA PB k k PE k PF k ====++++, APB EPF ∠=∠PAB PEF ∴△∽△PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分(证法二)结论:EF AB ∥ ············································································ 4分 证明:(43)P -,44k E ⎛⎫∴-- ⎪⎝⎭,,33k F ⎛⎫⎪⎝⎭,,即得:3443k kPE PF =+=+, ······································································· 5分 在Rt PAB △中,4tan 3PB PAB PA ∠== 在Rt PEF △中,443tan 334k PF PEF k PE +∠===+tan tan PAB PEF ∴∠=∠PAB PEF ∴∠=∠ ························································································· 6分 EF AB ∴∥ ································································································· 7分。
2015年甘肃省兰州市中考数学试卷-答案
为O 21122y x y =,将1x =AP AB 1(2a =1(2MN QN c = ,P Q ,在反比例函数的图象上,【提示】解题关键在于根据矩形面积与三角形面积间的关系进行计算【考点】反比例函数的性质【解析】O 是ABC △OBC 为等边三角形,所以上时,易得)解:212(x -=1)2(x -=3)=0-22.【答案】【解析】解:作出角平分线,作出P,∴P就是所求作的圆。
【考点】尺规作图,线段垂直平分线的性质,角平分线的性质23.【答案】(1)1【解析】(1)根据题意画出树状图如下:(2)连接AE,延长AE交BF的延长线于点M,连接CG,延长CG交DH的延长线于点N。
//EF MF MFAB EF即10MF=5MF∴=在()tanND tan CND DH HN CAD∠=+∠// AB CDAC BM∴=BD AC=在BDC△BC AD∴=E H,为同理FG=BC AD=EF∴与GH【考点】全等三角形的判定及性质,特殊平行四边形的判定及性质等1=2=2b b,,解得1=25=2k b ⎧⎪⎪⎨⎪⎪⎩,, —次函数解析式为1522y x =+ 2),代入my x=,得m =)如图,设P 点坐标为1 22t (,PCA △和22解得t =-与O 相切 【解析】(1)连接ODOA OD =BAC ∠的角平分线CAD ∠=ODB ∴∠=与O 相切OAOD r ==中,30B ∠=过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,ACO ∠=,又+AOC BOD ∠过点A作AC x⊥轴于点C,过点B作BD x⊥轴于点D,1⎧2221=164x16OC OD AC BD==∴,又=ACO∠AOC OBD=∠,AOC∴∠∠+AOB△为直角三角形。
甘肃省兰州市2015年初中毕业生学业考试数学试题(附答案)
兰州市2015年初中毕业生学业考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共60分)一、选择题(本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数解析式中,一定为二次函数的是()A.y=3x-1 B.y=ax2+bx+cC.s=2t2-2t+1 D.答案:C 【解析】本题考查二次函数的概念,难度较小.二次函数y=ax2+bx+c(a ≠0)首先要满足二次项系数不为0,其次代数式是整式,符合条件的是C选项,故选C.2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同答案:B 【解析】本题考查三视图的确定,难度较小.主视图是从几何体正面看得到的平面图形,左视图是从几何体左侧看得到的平面图形,俯视图是从几何体上方看得到的平面图形.此几何体的主视图与左视图的形状相同,故选B.3.在下列二次函数中,其图象的对称轴为x=-2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2 D.y=2(x-2)2答案:A 【解析】本题考查二次函数的对称性,难度较小.二次函数y=a(x+h)2+k 的对称轴是直线x=-h,根据此规则判断,图象对称轴是x=-2的是A,故选A.4.如图,△ABC中,∠B=90°,BC=2AB,则cos A=()A.B.C.D.答案:D 【解析】本题考查勾股定理及三角函数的概念,难度较小.根据勾股定理计算出三角形的斜边,所以,故选D.5.如图,线段CD两个端点的坐标分别为C(1,2),D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)答案:B 【解析】本题考查位似图形的性质,难度中等.作AF⊥OB于点F,CE⊥OB于点E,CN⊥y轴于点N,AM⊥y轴于点M,根据位似图形的性质知△OCD∽△OAB,△OCE∽△OAF,△OCN∽△OAM,所以OD:OB=OC:OA=CE:AF=CN:AM=2:5,因为CE =2,所以AF=5,因为CN=1,所以AM=2.5,所以点A的坐标为(2.5,5),故选B.6.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15C.(x-4)2=17 D.(x-4)2=15答案:C 【解析】本题考查一元二次方程的配方,难度中等.移项得x2-8x=1.两边加上一次项系数一半的平方得x2-8x+16=1+16,即(x-4)2=17,故选C.7.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形答案:D 【解析】本题考查特殊平行四边形的判定及性质,难度中等.根据判定方法进行判断,A,B,C都正确;任意画出两条相等的相交线段,顺次连接四个顶点所得到的四边形不一定是矩形,故选项D错误,故选D.8.在同一直角坐标系中,一次函数y=kx-k与反比例函数,的图象大致是()A B C D答案:A 【解析】本题考查一次函数与反比例函数的图象的辨别,难度中等.此题分情况进行讨论:若k>0,则一次函数的图象经过第一、三、四象限,反比例函数的图象经过第一、三象限,没有满足条件的图象;若k<0,则一次函数的图象经过第一、二、四象限,反比例函数的图象经过第二、四象限,满足条件的图象为A,故选A.9.如图,经过原点O的⊙P与x,y轴分别交于A,B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定答案:B 【解析】本题考查90°圆周角所对的弦是直径的性质和同弧所对圆周角相等的性质,难度中等.连接AB,因为∠AOB=90°,所以AB为⊙O的直径,所以∠ACB=90°,故选B.10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.B.C.D.答案:B 【解析】本题考查菱形的性质,难度中等.连接AC交EF于点H,由题意知AB=AD=4,∠DAF=∠CAF=30°,所以△AHF∽△AFD.,FD=2,所以,因为,所以,所以,故选B.11.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()A.B.C.D.答案:B 【解析】本题考查增长率问题,难度中等.设股票的原价为a,则跌停后的价格为a(1-10%),两天的增长率为x,经过两天又回到原价,则a(1-10%)(1+x)2=a,整理得,故选B.12.若点P1(x1,y1),P2(x2,y2)在反比例函数的图象上,且x1=-x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=-y2答案:D 【解析】本题考查反比例函数的性质,难度中等.因为(x1,y1),(x2,y2)在反比例函数的图象上,所以x1·y1=x2·y2,将x1=-x2代入得y1=-y2,故选D.13.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是答案:A 【解析】本题考查二次函数与两坐标轴交点的意义,难度中等.观察图象可以看到C点的坐标为(0,c),因为OA=OC,所以点A的坐标为(-c,0),将x=-c代入二次函数解析式得ac2-bc+c=0,两边除以c,整理得ac+1=b,故选A.【易错分析】不能根据条件中的AO=CO表示A点坐标.14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0 B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x1答案:C 【解析】本题考查二次函数的图象和性质,难度较大.二次函数y=x2+x+c与x轴有两个交点,a=1>0,所以二次函数的图象开口向上,当x1<x<x2时,y<0,当x>x2或x<x1时,y>0,点P是图象上一点,所以当n<0时,x1<m<x2,故C正确.15.如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN 的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A.B.C.D.答案:A 【解析】本题考查圆的相关计算,解题关键在于理解题意,根据图形特征分析相关结论,难度较大.连接OP,由题意可知PM⊥AB,CD⊥AB,PN⊥CD,所以四边形PNOM为矩形,所以OP=MN,因为OP=2,所以MN=2,Q是MN的中点,也为OP的中点,所以OQ=1,当P沿着圆周转过45°时,Q也转过45°,所以它走过的路径长为,故选A.【易错分析】题目比较复杂,不能理解题意,造成错误.第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)16.若一元二次方程ax2-bx-2015=0有一根为x=-1,则a+b=_________.答案:2015 【解析】本题考查一元二次方程根的概念,难度较小.将x=-1代入一元二次方程得a+b-2015=0,所以a+b=2015.17.如果且,且a+c+e=3(b+d+f),那么k=__________.答案:3 【解析】本题考查比例性质的应用,难度较小.由合比性质得(a+c+e):(b+d+f)=3,所以k=3.18.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是__________.答案:n=10 【解析】本题考查用频率估计概率,再计算数据总量的问题,难度中等.根据摸球次数与摸出黑球次数的比近似等于2:1,可以近似认为摸到黑球的概率为,所以,解得n=10.19.如图,点P,Q是反比例函数图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB,QM,△ABP的面积记为S1,△QMN 的面积记为S2,则S1_______S2(填“>”或“<”或“=”).答案:=【解析】本题考查反比例函数的性质,解题关键在于根据矩形面积与三角形面积间的关系进行计算,难度中等.设点P的坐标为(a,b),Q点的坐标为(c,d),则,.∵点P,Q在反比例函数的图象上,∴ab=cd=k,∴S1=S2.20.已知△ABC的边BC=4 cm,⊙O是其外接圆,且半径也为4 cm,则∠A的度数是_________.答案:30°或150°【解析】本题考查三角形外接圆的性质,解题关键在于确定△OBC 为等边三角形,难度中等.⊙O是△ABC外接圆,其半径为4 cm,所以OB=OC=4 cm,又因为△ABC的边BC=4 cm,所以△OBC为等边三角形,所以∠BOC=60°.当点A在优弧BC上时,易得;当点A在劣弧BC上时,易得.综上所述,∠A的度数为30°或150°.三、解答题(本大题共8小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本小题满分10分)(1)计算:;(2)解方程:x2-1=2(x+1).答案:(1)本题考查实数的相关计算,解题关键在于理解有理数的相关运算法则,难度中等.解:(4分)=-1.(5分)(2)本题考查一元二次方程的解法,难度中等.解:∵x2-1=2(x+1),∴(x+1)(x-1)=2(x+1),(6分)∴(x+1)(x-3)=0,(8分)∴x1=-1,x2=3.(10分)22.(本小题满分5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)答案:本题考查尺规作图,涉及线段垂直平分线的性质、角平分线的性质,难度中等.解:作出角平分线,(1分)作出垂直平分线,(2分)作出⊙P,(4分)∴⊙P就是所求作的圆.(5分)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?答案:本题考查列树状图求概率,按要求正确画出树状图是解题的关键,难度中等.解:(1)根据题意画出树状图如下:(4分)(2)由(1)可知三次传球有8种等可能结果,其中传回甲脚下的有2种.所以.(5分)(3)由(1),可知甲传球三次后球传回自己脚下的概率为,传到乙脚下的概率为,所以球传到乙脚下的概率大.(6分)24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是__________投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.答案:本题考查实践与综合应用,涉及三角形相似的相关知识,难度中等.解:(1)平行.(2分)(2)连接AE,延长AE交BF的延长线于点M,连接CG,延长CG交DH的延长线于点N.∵AB∥EF,∴,即,(3分)∴=,(4分)∴.(5分)由平行投影的知识可以知道∠AMB=∠CND,∴在Rt△NHG中,,∴.(6分)在Rt△CDN中,,∴CD=ND·tan∠CND=(DH+HN)·tan∠CND(米),∴电线杆长为7米.(8分)25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相垂直平分.答案:本题考查全等三角形的判定及性质,特殊平行四边形的判定及性质等相关知识,难度中等,证明:(1)作BM∥AC,交DC的延长线于点M,则∠ACD=∠BMD.(1分)∵AB∥CD,BM∥AC,∴四边形ABMC为平行四边形,(2分)∴AC=BM.∵BD=AC,∴BM=BD,∴∠BDM=∠BMD,∴∠BDC=∠ACD,在△BDC和△ACD中,∴△BDC≌△ACD,(4分)∴BC=AD.(5分)(2)连接EG,GF,FH,HE,(6分)∵E,H为AB,BD的中点,∴,同理∵BC=AD,EG=FG=FH=EH,(8分)∴四边形EGFH为菱形,∴EF与GH互相垂直平分.(9分)26.(本小题满分10分)如图,,B(-1,2),是一次函数y1=ax+b与反比例函数图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.答案:本题考查一次函数、反比例函数的应用,三角形面积的计算,难度中等.解:(1)当-4<x<-1时,y1-y2>0.(2分)(2)把B(-1,2)代入y=kx+b得解得∴一次函数解析式为.(5分)把B(-1,2)代入,得m=-1×2=-2.(6分)(3)如图,设P点坐标为.(7分)∵△PCA和△PDB面积相等,∴,解得,(9分)∴P点坐标为.(10分)27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)答案:本题考查圆的相关性质及计算,涉及圆切线的证明、不规则图形面积的计算,难度较大.解:(1)直线BC与⊙O相切.(1分)理由如下:连接OD,(2分)∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,(3分)∴∠ODB=∠C=90°,且OD⊥BC.(4分)∴直线BC与⊙O相切.(2)①设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,(5分)在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,(6分)解得r=2.(7分)②在Rt△ODB中,∠B=30°,∴∠BOD=60°,(8分)∴,(9分)∴所求图形面积为.(10分)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1),B(x2,y2)两点.①当时(图1),求证:△AOB为直角三角形;②试判断当时(图2),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案:本题考查二次函数与一次函数的综合应用,涉及待定系数法求函数的解析式、相似三角形的判定及性质、勾股定理及其逆定理的应用,难度较大.解:(1)由条件得1=4a,,∴二次函数的解析式是.(1分)(2)①证明:由得即A(-2,1),B(8,16),(3分)过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,则AC=1,OC=2,OD=8,BD=16,∴,又∵∠ACO=∠ODB=90°,∴△ACO∽△ODB.(4分)∴∠AOC=∠OBD,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB为直角三角形.(5分)②△AOB为直角三角形.(6分)证明如下:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,由得x2-4mx-16=0,解得,,(8分)∴,∴,(9分)∴OC·OD=AC·BD=16,∴,(10分)又∵∠ACO=∠ODB=90°,∴△ACO∽△ODB,∴∠AOC=∠OBD,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB为直角三角形.(11分)(3)答案不唯一,如(12分)如果过定点(0,4)的直线与抛物线交于A,B两点,O为抛物线的顶点,那么△AOB必为直角三角形.如果过定点的直线与抛物线y=ax2交于A,B两点,O为抛物线的顶点,那么△AOB必为直角三角形.综评:本套试卷题量较大,难度较小,知识覆盖面广,覆盖数与代数,空间与图形,统计与概率,综合与实践四大领域,能正确反映课程标准对考生“四基”“四能”的考查要求,试题多数为常规题,从而让不同的考生都能获得比较满意的成绩,个别试题具有一定的难度,用于区分不同层次考生对数学知识的掌握程度,具有较好的区分度,本卷中的特色题:反映函数与方程思想(第13题);反映数形结合思想(第13,14,15,19,26题);反映分类讨论思想(第8,14题);反映数学转化思想(第13,26,27题);与实际生活联系紧密的试题(第11,18,23,24题);较难题(第14,15,19,27,28题).。
2015学年甘肃省兰州中考数学年试题
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省南通市2015年初中毕业、升学考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果水位升高6m 时水位变化记作6m +,那么水位下降6m 时水位变化记作 ( ) A .3m -B .3mC .6mD .6m - 2.下面四个几何体中,俯视图是圆的几何体共有( )A .1个B .2个C .3个D .4个3.据统计:2014年南通市在籍人口总数约为7700000人,将7700000用科学记数法表示为( ) A .70.7710⨯B .77.710⨯C .60.7710⨯D .67.710⨯4.下列图形中既是轴对称图形又是中心对称图形的是( )ABCD5.下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4,4,80()a a a a > 6.如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( )ABC .12D .27.在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 ( ) A .12B .15C .18D .218.关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( )A .32b --<<B .32b --<≤C .32b --≤≤D .32b --≤<9.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有 ( ) A .1个B .2个C .3个D .4个10.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为 ( )A .2.5B .2.8C .3D .3.2第Ⅱ卷(非选择题 共120分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 11.因式分解224m n -= .12.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x +的值等于 . 13.计算2(2())x y x x y ---= .14.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)15.如图,在O 中,半径OD 垂直于弦AB ,垂足为C ,13cm OD =,24cm AB =,则CD = cm .第15题图第16题图第17题图16.如图,ABC △中,D 是BC 上一点,AC AD DB ==,102BAC =∠,则ADC =∠ 度. 17.如图,矩形ABCD 中,F 是DC 上一点,BF AC ⊥,垂足为E ,12AD AB =,CEF △的面积为1S ,AEB △的面积为2S ,则12SS 的值等于 .18.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在1-和0之间(不包括1-和0),则a 的取值范围是 . 三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:2021()((33)2)----;(2)解方程1325x x =+.20.(本小题满分8分)如图,一海轮位于灯塔P 的西南方向,距离灯塔海里的A 处,它沿正东方向航行一段时间后,到达位于灯塔P 的南偏东60方向上的B 处,求航程AB 的值(结果保留根号).21.(本小题满分10分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组()79.589.5”的扇形的圆心角为 度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖? (3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为 .22.(本小题满分8分)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.23.(本小题满分8分)如图,直线y mx n =+与双曲线ky x=相交于2()1,A -,()2,B b 两点,与y 轴相交于点C .(1)求,m n 的值; (2)若点D 与点C 关于x 轴对称,求ABD △的面积.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)24.(本小题满分8分)如图,,PA PB 分别与O 相切于,A B 两点,60ACB =∠. (1)求P ∠的度数;(2)若O 的半径长为4cm ,求图中阴影部分的面积.25.(本小题满分8分)如图,在□ABCD 中,点,E F 分别在,AB DC 上,且ED DB ⊥,FB BD ⊥. (1)求证:AED CFB △≌△;(2)若30A =∠,45DEB =∠,求证:DA DF =.26.(本小题满分10分) 某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?27.(本小题满分13分)如图,Rt ABC △中,90C =∠,15AB =,9BC =,点,P Q 分别在,BC AC 上,3CP x =,403()CQ x x =<<.把PCQ △绕点P 旋转,得到PDE △,点D 落在线段PQ 上. (1)求证:PQ AB ∥;(2)若点D 在BAC ∠的平分线上,求CP 的长;(3)若PDE △与ABC △重叠部分图形的周长为T ,且1216T ≤≤,求x 的取值范围.28.(本小题满分13分)已知抛物线2221y x mx m m =-++-(m 是常数)的顶点为P ,直线l :1y x =-. (1)求证:点P 在直线l 上;(2)当3m =-时,抛物线与x 轴交于,A B 两点,与y 轴交于点C ,与直线l 的另一个交点为,Q M 是x 轴下方抛物线上的一点,ACM PAQ =∠∠(如图),求点M 的坐标;(3)若以抛物线和直线l 的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m 的值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
兰州市中考数学试题附答案
兰州市2015年中考数学试题(附答案)兰州市2015年中考数学试题(附答案)满分150分,考试时间120分钟一、选择题(本题有15小题,每小题4分,共60分)1.下列函数解析式中,一定为二次函数的是A.B.C.D.2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为的是A.B.C.D.4.如图,△ABC中,∠B=90°,BC=2AB,则cosA=A.B.C.D.5.如图,线段CD两个端点的坐标分别为C(1,2),D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程配方后可变形为A.B.C.D.7.下列命题错误的是A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数与反比例函数的图象大致是9.如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是A.B.C.D.11.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为,则满足的方程是A.B.C.D.12.若点P1(,),P(,)在反比例函数的图象上,且,则A.B.C.D.13.二次函数的图象如图,点C在轴的正半轴上,且OA=OC,则A.B.C.D.以上都不是14.二次函数的图象与轴有两个交点A(,0),B(,0),且,点P(,)是图象上一点,那么下列判断正确的是A.当时,B.当时,C.当时,D.当时,15.如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为A.B.C.D.二、填空题(本题有5小题,每小题4分,共20分)16.若一元二次方程有一根为,则=________17.如果(),且,那么=_____18.在一个不透明的袋子中装有除颜色外其余均相同的个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球。
2015年甘肃中考数学真题卷含答案解析
2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是( )A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是( )A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=( )A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则( )A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是( )A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.26.(本小题满分10分)如图,A(-4,12),B(-1,2)是一次函数y1=ax+b与反比例函数y2=mx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C 根据二次函数的定义:形如y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)的函数叫做二次函数,结合各选项知,选C.2.B 左视图为,主视图为,俯视图为,故选B.评析 本题主要考查物体的三视图,属容易题.3.A 根据二次函数y=a(x-h)2+k(a ≠0)的图象的对称轴为直线x=h,知只有A 选项符合题意. 4.D 设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB 2+BC 2=√5k,∴cos A=ABAC =√5k =√55,故选D.5.B 设点A 的坐标为(x,y),由位似图形的性质知,x 1=y 2=52,得x=2.5,y=5,则点A 的坐标为(2.5,5).故选B.6.C 变形得x 2-8x=1,x 2-8x+16=1+16,(x-4)2=17,故选C. 7.D 对角线相等的平行四边形是矩形,故D 错误,选D.8.A 分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A. 9.B 根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B 连结AC,在菱形ABCD 中,AB=BC,∵∠B=60°,∴△ABC 是等边三角形,∵AE ⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF 为等边三角形,∴S △AEF =√34×(2√3)2=3√3.故选B.11.B 设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=109,故选B.12.D 由题意,得xy=k,因为k 是定值,所以当x 1=-x 2时,y 1=-y 2,故选D. 13.A 由题意得点C 的坐标为(0,c), ∵OA=OC,∴点A 的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac 2-bc+c=0, ∵c ≠0,∴ac -b+1=0, 即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO=S矩形BONQ.同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.三、解答题21.解析 (1)2-1-√3tan 60°+(π-2 015)0+|-1| =1-3+1+1=1-3+1 =-1.(2)x 2-1=2(x+1)可化为x 2-2x-3=0,解得x 1=-1,x 2=3.22.解析☉P 为所求作的圆. 23.解析 (1)如图:(2)P(三次传球后,球回到甲脚下)=28=14. (3)P(三次传球后,球回到甲脚下)=28, P(三次传球后,球传到乙脚下)=38, 因为38>28,所以球传到乙脚下的概率大.24.解析 (1)平行.(2)如图,连结CG,AE,过点E 作EM ⊥AB 于M,过点G 作GN ⊥CD 于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5. 所以AM=10-2=8,由平行投影可知AM ME =CNNG ,即810=CD -35, 解得CD=7,即电线杆的高度为7米.25.证明 (1)过点B 作BM ∥AC 交DC 的延长线于点M, ∵AB ∥CD,∴四边形ABMC 为平行四边形. ∴AC=BM=BD,∴∠BDC=∠M=∠ACD. 在△ACD 和△BDC 中,{AC =BD,∠ACD =∠BDC,CD =DC,∴△ACD ≌△BDC, ∴AD=BC.(2)连结EH,HF,FG,GE,∵E,F,G,H 分别是AB,CD,AC,BD 的中点,∴HE ∥AD,且HE=12AD,FG ∥AD,且FG=12AD,EH=12AD,EG=12BC, ∴HE ∥FG 且HE=FG,∴四边形HFGE 为平行四边形. 由(1)知,AD=BC, ∴HE=EG,∴▱HFGE 为菱形,∴线段EF 与线段GH 互相垂直平分.26.解析 (1)在第二象限内,当-4<x<-1时,y 1-y 2>0. (2)∵反比例函数y 2=mx 的图象过A (-4,12), ∴m=-4×12=-2,∵一次函数y 1=ax+b 的图象过A (-4,12),B(-1,2),∴{-4a +b =12,-a +b =2,解得{a =12,b =52, ∴y 1=12x+52. (3)设P (t,12t +52),过P 作PM ⊥x 轴,PN ⊥y 轴,∴PM=12t+52,PN=-t,∵S △PCA =S △PDB ,∴12AC ·CM=12BD ·DN,即12×12(t+4)=12×1×(2-12t -52),解得t=-52, ∴P (-52,54).27.解析 (1)相切.理由如下:如图,连结OD,∵AD 平分∠BAC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD ∥AC.又∠C=90°,∴OD ⊥BC,∴BC 与☉O 相切.(2)①∵AC=3,∠B=30°,∴AB=6.设OA=OD=r,∴OB=2r.∴2r+r=6,解得r=2,即☉O 的半径是2.②由①得OD=2,OB=4,∴BD=2√3.S 阴影=12×2√3×2-60π×22360=2√3-2π3. 28.解析 (1)∵二次函数y=ax 2的图象过点(2,1),∴1=4a,∴a=1,∴二次函数的解析式为y=14x 2.(2)①证明:当m=32时,{y =32x +4,y =14x 2,解得{x 1=-2,y 1=1,{x 2=8,y 2=16,∴A(-2,1),B(8,16).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=1,OC=2,OD=8,BD=16.∴AC OC =OD BD =12,又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.②△AOB 为直角三角形,证明如下:当m ≠3时,{y =mx +4,y =14x 2,解得{x 1=2m -2√m 2+4,y 1=(m -√m 2+4)2,{x 2=2m +2√m 2+4,y 2=(m +√m 2+4)2,∴A(2m -2√m 2+4,(m-√m 2+4)2),B(2m+2√m 2+4,(m+√m 2+4)2).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=(m -√m 2+4)2,OC=-(2m-2√m 2+4),BD=(m+√m 2+4)2,OD=2m+2√m 2+4, ∴AC OC =OD BD =-m -√m 2+42, 又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.(3)如:一次函数y=mx+4的图象与二次函数y=ax2的图象的交点为A,B,则△AOB恒为直角三角形等.。
2015年兰州市中考数学试卷-解析版
2015年兰州市中考数学试卷-解析版一、选择题(共15小题,每小题4分,满分60分)1.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+不是二次函数,故2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()4.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()BcosA=5.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()28.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()B9.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF 的面积是()4,EF=AE=2的面积是:AM=×3=311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股1+2x=1+2x=,12.若点P1(x1,y1),P2(x2,y2)在反比例函数y=(k>0)的图象上,且x1=﹣x2,则(),==,从而(,,=y=(13.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()14.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图﹣﹣=15.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()B=.二、填空题(共5小题,每小题4分,满分20分)16.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.17.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.==3==k=.18.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模的值是n=10.=0.519.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1=S2.(填“>”或“<”或“=”)AP a=﹣MN mn,20.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是30°或150°.三、解答题(共8小题,满分70分)21.(10分)(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;(2)解方程:x2﹣1=2(x+1).﹣×+1+22.(5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?,传到乙脚下的概率,24.(8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.=,即=,由此求得由平行投影可知,=,即,25.(9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.AD,26.(10分)如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1﹣y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.y=,),利用三角形面积公式可得到••m),从而可确定图象的上面,,,,解得y=,m+m+,,(﹣,27.(10分)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O 为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)∴所求图形面积为28.(12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明),x时,联立直线和抛物线解析式可得,解得或==时,联立直线和抛物线解析式可得,解得或﹣m+﹣OD=2m+2==参与本试卷答题和审题的老师有:2300680618;HJJ;1286697702;放飞梦想;sd2011;sks;sdwdmahongye;dbz1018;zcx;sjzx;守拙;gsls;fangcao;caicl;yangwy;王学峰;522286788(排名不分先后)菁优网2015年7月21日。
2015年甘肃省中考数学试卷解析整理版解析
2015年甘肃省中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)2.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为5.(3分)(2015•酒泉)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()7.(3分)(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万))9.(3分)(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()10.(3分)(2015•酒泉)如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B 、C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E .设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•酒泉)分解因式:x 3y ﹣2x 2y+xy= .12.(3分)(2015•酒泉)分式方程的解是 .13.(3分)(2015•酒泉)在函数y=中,自变量x 的取值范围是 . 14.(3分)(2015•酒泉)定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 .15.(3分)(2015•酒泉)已知α、β均为锐角,且满足|sin α﹣|+=0,则α+β= .16.(3分)(2015•酒泉)关于x 的方程kx 2﹣4x ﹣=0有实数根,则k 的取值范围是 . 17.(3分)(2015•酒泉)如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为 .18.(3分)(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.三、解答题(本题共5小题,共26分)19.(4分)(2015•酒泉)计算:()0++(﹣1)2015﹣tan60°.20.(4分)(2015•酒泉)先化简,再求值:÷(1﹣),其中x=0.21.(6分)(2015•酒泉)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.(6分)(2015•酒泉)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.四、解答题(本题共5小题,共40分)24.(7分)(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(7分)(2015•酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(8分)(2015•酒泉)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.27.(8分)(2015•酒泉)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2015年甘肃省酒泉市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)2.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为5.(3分)(2015•酒泉)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()..C.D.年投入3500万7.(3分)(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015的度数是()ABC=∠AOC=×9.(3分)(2015•酒泉)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()..C.D.,得到=,,=,10.(3分)(2015•酒泉)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y 与x的函数关系的图象大致是()..C.D.,即x,二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•酒泉)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.12.(3分)(2015•酒泉)分式方程的解是x=2.13.(3分)(2015•酒泉)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.14.(3分)(2015•酒泉)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x >﹣1.15.(3分)(2015•酒泉)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.|+=16.(3分)(2015•酒泉)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.=0﹣﹣)17.(3分)(2015•酒泉)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.∴=,=∴+=,18.(3分)(2015•酒泉)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.三、解答题(本题共5小题,共26分)19.(4分)(2015•酒泉)计算:()0++(﹣1)2015﹣tan60°.﹣×20.(4分)(2015•酒泉)先化简,再求值:÷(1﹣),其中x=0.(﹣)•,=21.(6分)(2015•酒泉)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.AP=,再根据圆的ABP=,AP=,22.(6分)(2015•酒泉)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.)代数式所有可能的结果共有是分式的有种:,四、解答题(本题共5小题,共40分)24.(7分)(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.(1)训练后篮球定时定点投篮人均进球数为5个;(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.=525.(7分)(2015•酒泉)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由),,26.(8分)(2015•酒泉)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.落在函数(落在函数(在,x=﹣,.27.(8分)(2015•酒泉)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(10分)(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.t t+4,y=x﹣x+4=(,,)代入得解得y=﹣,y==,)t﹣﹣t+4,﹣t+4t+4﹣(t+4﹣NG+×(﹣)+t=时,面积的最大值为t=,得:y=t﹣,﹣。
2015年兰州市中考数学试题解析
2015年兰州市初中毕业生学业考试数 学(A )解析者:浙江省杭州市余杭区临平一中 朱兵一、选择题(本题有15小题,每小题4分,共60分)【 答 案 】C【考点解剖】本题考查的是二次函数的概念【解答过程】所谓二次函数,是指形如)0(2≠++=a c bx x a y 的函数,其中a ,b ,c 都是常数,且0≠a 。
首先,二次函数必须是整式函数,因此D 就被排除; 其次,函数的形式,那么它的最高次项是二次,并且由0≠a ,就保证了它一定要含有二次项,所以A 也被排除; 再来看B 和C 的区别:仅从形式上看,似乎没什么区别,但由于二次函数必须要求0≠a ,也就是说二次项系数必须不能为0,而这一点上,B 选项是没有保证的,所以B 选项也不对。
这样,只剩下C 。
【易错点津】主要看二次项系数是确定的具体的数,还是含有字母的一般的数【归纳拓展】如函数1)1(2--+=x m mx y 或方程01)1(2=--+x m mx ,在没有明确给出字母m 的取值范围之前,它们未必是关于x 的二次函数或二次方程【题目星级】★★【 答 案 】B【考点解剖】本题考查了三视图的相关知识,以及考生的空间概念能力【解答过程】就本题而言,其三视图如图那么容易得知只能是选项B 。
【题目星级】★★【 答 案 】A【考点解剖】本题考查了二次函数的图象和性质的相关知识【思路点拔】如果将二次函数改写为顶点式:)0()(2≠+-=a n m x a y ,那么其顶点为(m ,n ),对称轴为直线m x =(也有一些教科书将顶点式表示为n m x a y ++=2)(的形式,那么其顶点就是(m -,n ),对称轴为直线m x -=)【解答过程】这四个函数中,对称轴分别是A :2-=x ;B :0=x ;C :0=x ;D :2=x ,所以只能是选项A【解题策略】在涉及到二次函数的对称轴问题时,可以将函数改写为顶点式n m x a y +-=2)(的形式,那么只要令0=-m x ,其对称轴就便可求之。
【2015甘肃中考数学试卷及答案】甘肃中考数学试卷及答案
以下是甘肃2015年全部科目的试题发布入口:
甘肃
数学 数学 英语 化学 物理 历史 政治
数学 数学 英语 化学 物理 历史 政治
出国留学网中考频道的小编会及时为广大考生提供2015年甘肃中考数学试卷及答案有需要的考生可以在考题公布后刷新本页面按ctrlf5希望对大家有所帮助
【2015甘肃中考数学试卷及答案】甘肃中考数学试卷及答案
细安排,一刻也长,比龙争虎斗谁为豪杰。中考频道的小编会及时为广大考生提供2015年甘肃中考数学试卷及答案,有需要的考生可以在考题公布后刷新本页面(按ctrl+F5),希望对大家有所帮助。
甘肃省兰州市中考数学试题(word版)
1 x
[来源:Z,xx,]
2. (2015 ·甘肃兰州) 由五个同样大小的立方体组成如图的几何体,则关于此几何体三 种视图叙述正确的是 A. 左视图与俯视图相同 B. 左视图与主视图相同
[来源:]祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!
6. (2015 ·甘肃兰州) 一元二次方程 x 8 x 1 0 配方后可变形为 A. ( x 4) 17
2
B. ( x 4) 15
2
1
C. ( x 4) 17
2
D. ( x 4) 15
2
7. (2015 ·甘肃兰州)
下列命题错误的是 B. 平行四边形的对角线互相平分 D. 对角线相等的四边形是矩形
4
B.Biblioteka 2C.
6
D.
3
二、填空题(本题有 5 小题,每小题 4 分,共 20 分) 16. (2015 ·甘肃兰州) 若一元二次方程 ax bx 2015 0 有一根为 x 1 , 则ab
2
=________ 17. ( 2015 · 甘 肃 兰 州 ) 如 果
a c e k ( b d f 0 ), 且 b d f
15. (2015 ·甘肃兰州) 如图, ⊙O 的半径为 2, AB, CD 是互相垂 直的两条直径, 点 P 是⊙O 上任意一点 (P 与 A, B, C, D 不重合) , 过点 P 作 PM⊥AB 于点 M, PN⊥CD 于点 N, 点 Q 是 MN 的中 点,当点 P 沿着圆周转过 45°时,点 Q 走过的路径长为 A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省兰州市2015年初中毕业升学考试
数学试卷(A )
一、选择题(本题有15小题,每小题4分,共60分) 1. 下列函数解析式中,一定为二次函数的是( )
A. 13-=x y
B. c bx ax y ++=2
C. 1222+-=t t s
D. x
x y 12+
= 2. 由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )
A. 左视图与俯视图相同
B. 左视图与主视图相同
C. 主视图与俯视图相同
D. 三种视图都相同 3. 在下列二次函数中,其图象的对称轴为2-=x 的是( )
A. 2
)2(+=x y B. 222
-=x y C. 222
--=x y D. 2
)2(2-=x y
4. 如图,△ABC 中,∠B=90°,BC=2AB ,则cosA=( )
A.
25 B. 2
1
C. 552
D. 55 5. 如图,线段CD 两个端点的坐标分别为C (1,2),D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,
若点B 的坐标为(5,0),则点A 的坐标为( )
A.(2,5)
B.(2.5,5)
C. (3,5)
D.(3,6) 6. 一元二次方程0182=--x x 配方后可变形为( )
A. 17)4(2
=+x B. 15)4(2
=+x C. 17)4(2
=-x D. 15)4(2
=-x 7. 下列命题错误..
的是( ) A. 对角线互相垂直平分的四边形是菱形 B. 平行四边形的对角线互相平分 C. 矩形的对角线相等 D. 对角线相等的四边形是矩形 8. 在同一直角坐标系中,一次函数k kx y -=与反比例函数)0(≠=
k x
k
y 的图象大致是( )
9. 如图,经过原点O 的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧
上一点,则∠ACB=( )
A. 80°
B. 90°
C. 100°
D.无法确定
10. 如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连结EF ,则△AEF 的面积是( )
A. 34
B. 33
C. 32
D.
3
11. 股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,
便不能再跌,叫做跌停。
已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )
A. 1011)1(2=
+x B. 910)1(2=+x C. 101121=+x D. 9
10
21=+x 12. 若点P 1(1x ,1y ),P (2x ,2y )在反比例函数)0(>=k x
k
y 的图象上,且21x x -=,则( )
A. 21y y <
B. 21y y =
C. 21y y >
D. 21y y -=
13. 二次函数c bx ax y ++=2
的图象如图,点C 在y 轴的正半轴上,且OA=OC ,则( )
A. b ac =+1
B. c ab =+1
C. a bc =+1
D. 以上都不是
14. 二次函数c x x y ++=2
的图象与x 轴有两个交点A (1x ,0),B (2x ,0),且21x x <,点P (m ,n )是图
象上一点,那么下列判断正确的是( )
A. 当0<n 时,0<m
B. 当0>n 时,2x m >
C. 当0<n 时,21x m x <<
D. 当0>n 时,1x m <
15. 如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),
过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为( )
A. 4π
B. 2π
C. 6π
D. 3
π
二、填空题(本题有5小题,每小题4分,共20分)
16. 若一元二次方程020152=--bx ax 有一根为1-=x ,则b a +=________。
17. 如果
k f
e
d c b a ===(0≠++f d b )
,且)(3f d b e c a ++=++,那么k =_____。
18. 在一个不透明的袋子中装有除颜色外其余均相同的n 个小球,其中5个黑球,从袋中随机摸出一球,记下其颜
色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球。
以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
根据列表,可以估计出n 的值是________。
19. 如图,点P ,Q 是反比例函数x
k
y =
图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连结PB ,QM ,记△ABP 的面积为S 1,△QMN 的面积为S 2,则S 1_____S 2(填“>”或“<”
或“=”)
20. 已知△ABC 的边BC=4cm ,⊙O 是其外接圆,且半径也为4cm ,则∠A 的度数是____。
三、解答题(本题有8小题,共70分。
解答写出必要的文字说明、证明过程或演算步骤) 21.(本题满分10分,每小题5分)
(1)计算:2
1)2015(60tan 3201-+-+︒--π;
(2)解方程:)1(212
+=-x x
22.(本小题满分5分)如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦,且圆心P 到
∠AOB 两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)。
23.(本小题满分6分)为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练。
球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次。
(1)求请用树状图列举出三次传球的所有可能情况;
(2)传球三次后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
24.(本小题满分8分)如图,在一面与地面垂直的围墙的同一侧有一根高10米的旗杆AB和一个高度未知的电线
杆CD,它们都与地面垂直。
为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米;而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米。
依据这些数据,该小组的同学计算出了电线杆的高度。
(1)该小组的同学在这里利用的是____________投影的有关知识进行计算的;
(2)试计算出电线杆的高度,并写出计算的过程。
25.(本小题满分9分)如图,四边形ABCD 中AB ∥CD ,AB ≠CD ,BD=AC 。
(1)求证:AD=BC ;
(2)若E ,F ,F ,H 分别是AB ,CD ,AC ,BD 的中点,
求证:线段EF 与线段GH 互相垂直平分。
26.(本小题满分10分)如图,A (-4,
21),B (-1,2)是一次函数b ax y +=1与反比例函数x
m y =2图象的两个交点, AC ⊥x 轴于点C ,BD ⊥y 轴于点D 。
(1)根据图象直接回答:在第二象限内,当x 取何值时,021>-y y ? (2)求一次函数解析式及m 的值;
(3)P 是线段AB 上一点,连结PC ,PD ,若△PCA 和△PDB 面积相等,求点P 的坐标。
27.(本小题满分10分)如图,在Rt △ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 边于点D 。
以AB 上一点O 为圆
心作⊙O ,使⊙O 经过点A 和点D 。
(1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC=3,∠B=30°,
①求⊙O 的半径;
②设⊙O 与AB 边的另一个交点为E ,求线段BD ,BE 与劣弧所围成的阴影部分的面积(结果保留根号
和π)。
28.(本小题满分12分)已知二次函数2
ax y =的图象经过点(2,1)。
(1)求二次函数2
ax y =的解析式;
(2)一次函数4+=mx y 的图象与二次函数2
ax y =的图象交于点A (1x ,1y ),
B (2x ,2y )两点
①当2
3
=
m 时(图①),求证:△AOB 为直角三角形; ②试判断当2
3
≠m 时(图②),△AOB 的形状,并证明;
(3)根据第(2)问,说出一条你能得到的结论(不要求证明)。