(新课标)高考数学二轮复习专题5立体几何第1讲空间几何体的三视图、表面积与体积理【含答案】
高考数学二轮复习专题五立体几何5.1空间几何体的三视图、表面积和体积课件理
[技法领悟] 求解空间几何体表面积的注意点 (1)已知几何体的三视图求其表面积,一般是先根据三视图判断 空间几何体的形状,再根据题目所给数据与几何体的表面积公式, 求其表面积. (2)多面体的表面积是各个面的面积之和,组合体的表面积应注 意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个 曲面展开成平面图形计算,而表面积是侧面积与底面圆的面积之 和. (4)解决关于外接球的问题的关键是抓住外接的特点,即球心到 多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作 用.
3.(2017·湖南永州一模)在梯形 ABCD 中,∠ABC=π2,AD∥BC,
BC=2AD=2AB=2.将梯形 ABCD 绕 AD 所在的直线旋转一周而形
成的曲面所围成的几何体的体积为( )
2π 4π A. 3 B. 3
5π C. 3
D.2π
解析:
如图:以 AD 所在的直线为轴旋转一周,形成的几何体为一个 底面半径为 1,高为 2 的圆柱挖去一个底面半径为 1,高为 1 的圆 锥,所以其体积为 V=π·12·2-13·π·12·1=53π.故选 C.
3.(1)圆柱的表面积公式:S=2πr2+2πrl=2πr(r+l)(其中 r 为 底面半径,l 为圆柱的高);
(2)圆锥的表面积公式:S=πr2+πrl=πr(r+l)(其中 r 为底面半 径,l 为母线长);
(3)圆台的表面积公式:S=π(r′2+r2+r′l+rl)(其中 r 和 r′ 分别为圆台的上、下底面半径,l 为母线长);
高考数学二轮复习 专题5 立体几何 第1讲 空间几何体的
第1讲空间几何体的三视图、表面积与体积空间几何体的三视图1.若某几何体的三视图如图所示,则这个几何体的直观图可以是( B )解析:由题意知,选项A,C中所给的几何体的正视图、俯视图不符合要求,选项D中所给几何体的侧视图不符合要求.故选B.2.(2014福建卷)某空间几何体的正视图是三角形,则该几何体不可能是( A )(A)圆柱 (B)圆锥 (C)四面体(D)三棱柱解析:圆柱的正视图是矩形或圆,不可能是三角形,则该几何体不可能是圆柱.故选A.3.(2014湖北卷)在如图所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为( D )(A)①和②(B)③和①(C)④和③(D)④和②解析:在空间直角坐标系O xyz中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.故选D.4.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( D )(A)1 (B)2 (C)3 (D)4解析:由题意可知,几何体是三棱锥,其放置在长方体中形状如图中三棱锥A BCD,利用长方体模型可知,此三棱锥的四个面,全部是直角三角形.故选D.空间几何体的表面积与体积5.(2015新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( B )(A)14斛(B)22斛(C)36斛(D)66斛解析:设圆锥底面半径为r,因为米堆底部弧长为8尺,所以错误!未找到引用源。
高考数学大二轮复习专题五立体几何第1讲空间几何体的三视图表面积和体积课件理
【解析】
(1)如图,连接OA,OB.
由SA=AC,SB=BC,SC为球O的直径, 知OA⊥SC,OB⊥SC.
由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,
OA⊥SC,知OA⊥平面SCB. 设球O的半径为r,则OA=OB=r,SC=2r,
∴三棱锥 S-ABC 的体积
1 1 r3 V= ×2SC·OB·OA= , 3 3
2
【答案】
(1)36π
9 (2) π 2
互动探究答案
解析 设该球的球心为 O,三棱锥为 A-BCD,依题
意可知:VA-BCD=VO-ABC+VO-BCD+VO-CDA+VO-DAB, 1 1 1 1 1 即 S△BCD·h= S△ABC·r+ S△BCD·r+ S△CDA·r+ 3 3 3 3 3 1 3 6 1 3 1 3 2 2 S△DAB·r.所以 × ×3 · ×3= × ×3 ·r+ × 3 4 3 3 4 3 4 1 3 1 3 6 2 2 ×3 ·r+ × ×3 ·r+ × ×3 ·r.解得:r= .所以 3 4 3 4 4
(3)套用相应的面积公式与体积公式计算求解.
热点三 体积
由空间几何体的结构特征求表面积、
厦门模拟)已知圆锥的底面直径为 例2 (1)(2018· 2 3π ,且它的侧面展开图是一个半圆,则圆锥的表面 3π 积为 A.1 C.3 B.2 D.4
(2)(2018· 天津 ) 已知正方体 ABCD - A1B1C1D1 的棱长
面是面积为 8 的正方形,所以圆柱的高为 2 2,底面圆 的直径为 2 2,所以该圆柱的表面积为 2×π×( 2)2+ 2 2π×2 2=12π.故选 B. 答案 B
3 . (2018· 浙江 ) 某几何体的三视图如图所示 ( 单位:
高考数学 二轮 专题五 5.1 空间几何体的三视图、表面积与体积 新人教A
专题五
第1讲 空间几何体的三视图、表面积与体积
聚焦考题
高频考点
新题演练
命题热点
解析:
易错题型
高频考点高频 考点高频考点
命题热点
解析:
易错题型
高频考点高频 考点高频考点
高频考点
热点一 热点二 热点三
-17-
(1)由三视图可知,该几何体是一个组合体,如图所示. 其左侧是一个直三棱柱,右侧是一个长方体.其中三棱柱的底面是一个直角三角 形,其两直角边长分别是3 cm和4 cm,三棱柱的高为3 cm,因此其体积 V1=Sh=×4×3×3=18(cm3).长方体中三条棱的长度分别为4 cm,6 cm,3 cm,因此其 体积V2=4×6×3=72(cm3). 故该几何体的体积V=V1+V2=18+72=90(cm3),应选B.
点评:本题需要根据三视图中正方形内的实线和虚线,采用构造正方体的方法确 定直观图.解题时需注意求解的几何体的表面积在正方体的表面积的基础上应该 去掉哪些和补充哪些.
新题演练
-35-
1234 1.如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为( )
命题热点
易错题型
高频考点
热点一 热点二 热点三
-25-
规律方法
1.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般 为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找 几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄 清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.
2020届新课标高考二轮复习名师精品课件1-5-1第1讲 空间几何体的三视图、表面积、体积
调研 2 空间几何体的表面积、体积 a.圆锥的侧面积 1.(2018·全国Ⅱ,16,5 分)已知圆锥的顶点为 S,母线 SA, SB 所成角的余弦值为78,SA 与圆锥底面所成角为 45°.若△SAB 的 面积为 5 15,则该圆锥的侧面积为_4_0___2_π__.
解析:如图,∵SA 与底面成 45°角,Fra bibliotek专题五 立体几何
第1讲 空间几何体的三视图、 表面积、体积
重点要点排查报告
[记牢方能用活] 一、空间几何体的三视图 1.三视图为三个三角形,一般对应三棱锥; 2.三视图为两个三角形、一个四边形,一般对应四棱锥; 3.三视图为两个三角形、一个圆,一般对应圆锥; 4.三视图为两个矩形、一个四边形,一般对应直四棱柱; 5.三视图为两个矩形、一个圆,一般对应圆柱.
A.2 17 B.2 5 C.3 D.2
解析:先画出圆柱的直观图,根据题图的三视图可知,点 M, N 的位置如图 1 所示.
图1
图2
圆柱的侧面展开图及 M,N 的位置(N 为 OP 的四等分点)如 图 2 所示,连接 MN,则图中 MN 即为 M 到 N 的最短路径.
ON=14×16=4,OM=2, ∴|MN|= OM2+ON2= 22+42=2 5. 故选 B.
小提示: 利用底面半径与母线的关系,以及△SAB 的面积值求出底面 半径是解题的突破口,把条件转化为方程,从而寻求 l 和 r 之间 的关系.
b.球内接棱锥体积的最值问题 2.(2018·全国Ⅲ,10,5 分)设 A,B,C,D 是同一个半径为 4 的球的球面上四点,△ABC 为等边三角形且其面积为 9 3,则 三棱锥 D-ABC 体积的最大值为( B ) A.12 3 B.18 3 C.24 3 D.54 3
高考数学大二轮复习第1部分专题5立体几何第1讲空间几何体的三视图、表面积及体积课件
B.4
C.6 D.8 [解析] 选 C. 由三视图可知,该几何体是底面为直角梯形的直四棱柱,底面
1+2×2 面积 S= 2 =3,高 h=2,所以 V=Sh=6.
4.(2018·北京卷 ,5)某四棱锥的三 C 视图如图所示,在 此四棱锥的侧面中 ,直角三角形的个 数为( )
A.1 C.3 B.2 D.4
[解析] 选 C.将四棱锥三视图转化为直观图,如图,
侧面共有 4 个三角形,即△PAB,△PBC,△PCD,△PAD, 由已知,PD⊥平面 ABCD,又 AD⊂平面 ABCD, 所以 PD⊥AD,同理 PD⊥CD,PD⊥AB, 所以△PCD,△PAD 是直角三角形.
因为 AB⊥AD,PD⊥AB,PD,AD⊂平面 PAD,PD∩AD=D, 所以 AB⊥平面 PAD,又 PA⊂平面 PAD, 所以 AB⊥PA,△PAB 是直角三角形. 因为 AB=1,CD=2,AD=2,PD=2, 所以 PA= PD2+AD2=2 2,PC= PD2+CD2=2 2, PB= PA2+AB2=3, 在梯形 ABCD 中,易知 BC= 5, △PBC 三条边长为 2 2,3, 5,△PBC 不是直角三角形. 综上,侧面中直角三角形个数为 3.
B
) A.12 2π C.8 2π B.12π D.10π
[解析] 截面面积为 8,所以高 h=2 2,底面半径 r= 2,所以该圆柱表面积 S =π·( 2)2· 2+2π· 2· 2 2=12π.
(理)(2018· 全国卷Ⅰ,7)某圆柱的高为 2,底面周长为 16,其 三视图如图所示,圆柱表面上的点 M 在正视图上的对应点为 A, 圆柱表面上的点 N 在侧视图上的对应点为 B, 则在此圆柱侧面上, 从 M 到 N 的路径中,最短路径的长度为( A.2 17 C.3
推荐-高考数学二轮复习专题五立体几何5.1空间几何体的三视图表面积和体积课件理
2.某几何体的三视图如图所示,则该几何体的表面积为( A ) A.7+ 5 B.7+2 5 C.4+2 2 D.4+ 5
解析:由三视图知该几何体是一个棱长为 2 的正方体中的一个 三棱锥 P-ABC,如图所示,
S△PAC=12×2×2=2,S△ABC=12×2×2=2. 因为 AB= 5,所以 S△ABP=12×2× 5= 5. 在△PBC 中,BC= 5,PC=2 2,PB=3, 则由余弦定理,得 cos∠BCP= 52×2+52×222-2 32= 1100,所以
例 3(1)(2017·全国卷Ⅲ)已知圆柱的高为 1,它的两个底面的圆
周在直径为 2 的同一个球的球面上,则该圆柱的体积为( B )
A.π B.34π
π
π
C.2 D.4
(2)在封闭的直三棱柱 ABC-A1B1C1 内有一个体积为 V 的球, 若 AB⊥BC,AB=6,BC=8,AA1=3,则 V 的最大值是( B )
积 V=π×32×10-12×π×32×6=63π. 方法二 依题意,该几何体由底面半径为 3,高为 10 的圆柱截
去底面半径为 3,高为 6 的圆柱的一半所得,其体积等价于底面半 径为 3,高为 7 的圆柱的体积,所以它的体积 V=π×32×7=63π, 选择 B.
【答案】 B
[技法领悟] 求几何体体积的类型及思路 (1)若所给定的几何体是柱体、锥体或台体,则可直接利用公式 进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用等 积转换法或割补法进行求解.其中,等积转换法多用来求锥体的体 积. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何 体的直观图,然后根据条件求解.
sin∠BCP=31010.所以 S△BCP=12×2 2× 5×31010=3. 所以该三棱锥的表面积为 2+2+ 5+3=7+ 5.故选 A.
高考数学二轮复习 专题五 立体几何 第一讲 空间几何体的三视图、表面积与体积学案 理-人教版高三全册
第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=24 S.[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )[解析] 两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A.[答案] A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[解析] 过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C.[答案] C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A .8B .4C .4 3D .4 2[解析] 由三视图可知该几何体的直观图如图所示,由三视图特征可知,PA ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,PA =AB =AC =4,DB =2,则易得S △PAC =S △ABC =8,S △CPD =12,S 梯形ABDP=12,S △BCD =12×42×2=42,故选D.[答案] D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析] 直观图的面积S ′=12×(1+1+2)×22=2+12.故原平面图形的面积S =S ′24=2+ 2.[答案] 2+ 2[快速审题] (1)看到三视图,想到常见几何体的三视图,进而还原空间几何体. (2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为24.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二 空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高); (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高);(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).2.柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高); (2)V 锥体=13Sh (S 为底面面积,h 为高);(3)V 台=13(S +SS ′+S ′)h (不要求记忆).3.球的表面积和体积公式S 表=4πR 2(R 为球的半径),V 球=43πR 3(R 为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8[解析] 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm.故直四棱柱的体积V =1+22×2×2=6 cm 3.[答案] C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是( )A.(5-1)π2+2 B.(5+1)π2+2 C.π2+3 D.52π+2 [解析] 由三视图知,此几何体为一个半圆锥,其底圆半径为1,高为2,故母线长为22+12=5,所以该几何体的表面积S =12π×1×5+12π×12+12×2×2=(5+1)π2+2.故选B.[答案] B3.一个几何体的三视图如图所示,则这个几何体的体积是( )A .1B .2C .3D .4[解析] 由已知易得该几何体是一个以正视图为底面,高为2的四棱锥.由于正视图是一个上底边为2,下底边为4,高为2的直角梯形,故该四棱锥的底面积S =12×(2+4)×2=6,则V =13Sh =13×6×2=4.故选D.[答案] D4.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1 B.(24+2)π4+1 C.(23+2)π4+12D.(23+2)π4+1 [解析] 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D.[答案] D[快速审题] (1)看到求规则图形的表面积(体积),想到相应几何体的表面积(体积)公式.(2)看到求不规则图形的表面积,想到几何体的侧面展开图.(3)看到求不规则图形的体积,想到能否用割补思想、特殊值法等解决.求几何体表面积和体积关键过好“两关”(1)还原关,即利用“长对正,宽相等,高平齐”还原空间几何体的直观图. (2)公式关,即会利用空间几何体的体积或表面积公式求简单组合体的体积或表面积.考点三 多面体与球的切接问题与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.角度1:与球的组合体中求棱柱(锥)的表面积或体积[探究追问] 若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.[解] 将直三棱柱补形为长方体ABEC-A1B1E1C1,则球O是长方体ABEC-A1B1E1C1的外接球.∴体对角线BC1的长为球O的直径.因此2R=32+42+122=13.故S球=4πR2=169π.“切”“接”问题的处理方法(1)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.(2)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[对点训练]1.[角度1](2018·广东惠州二模)已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,AB =2,SA =SB =SC =2,则三棱锥S -ABC 的外接球的球心到平面ABC 的距离是( )A.33 B .1 C. 3 D.332[解析] ∵三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA =SB =SC =2,∴S 在底面ABC 内的射影为AB 的中点,设AB 的中点为H ,连接SH ,CH ,∴SH ⊥平面ABC ,∴SH 上任意一点到A ,B ,C 的距离相等,易知SH =3,CH =1,∴Rt △SHC 中∠HSC =30°.在面SHC 内作SC 的垂直平分线MO ,交SH 于点O ,交SC 于点M ,则O 为三棱锥S -ABC 的外接球的球心.∵SC =2,∴SM =1,又∠OSM =30°,∴SO =233,OH =33,∴球心O 到平面ABC 的距离为33,故选A. [答案] A2.[角度2](2018·武汉调研)一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为( )A .16π B.9π C.4π D.π[解析] 三棱锥如右图,设外接球半径为R ,AB =AC =2,∠BAC =90°,D 为BC 中点.SD ⊥面ABC .球心O 在SD 上,SD =2.在直角△ODC 中,OC =R ,OD =2-R ,DC = 2.则(2-R )2+(2)2=R 2,即R =32,故V -ABC 的外接圆的表面积为S =4πR 2=9π,选B.[答案] B1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2[解析] 由圆柱的三视图及已知条件可知点M与点N的位置如图1所示,设ME与FN 为圆柱的两条母线,沿FN将圆柱的侧面展开,如图2所示,连接MN,MN即为从M到N的最短路径,由题意知,ME=2,EN=4,∴MN=42+22=2 5.故选B.[答案] B2.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2 C.3 D.4[解析] 由三视图得四棱锥的直观图如图所示.其中SD⊥底面ABCD,AB⊥AD,AB∥CD,SD=AD=CD=2,AB=1.由SD⊥底面ABCD,AD,DC,AB⊂底面ABCD,得SD⊥AD,SD⊥DC,SD⊥AB,故△SDC,△SDA为直角三角形,又∵AB⊥AD,AB⊥SD,AD,SD⊂平面SAD,AD∩SD =D,∴AB⊥平面SAD,又SA⊂平面SAD,∴AB⊥SA,即△SAB也是直角三角形,从而SB=SD2+AD2+AB2=3,又BC=22+12=5,SC=22,∴BC2+SC2≠SB2,∴△SBC不是直角三角形,故选C.[答案] C3.(2017·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 [解析] 由三视图可知该几何体是由底面半径为1 cm ,高为3 cm 的半个圆锥和三棱锥S -ABC 组成的,如图,三棱锥的高为3 cm ,底面△ABC 中,AB =2 cm ,OC =1 cm ,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=⎝ ⎛⎭⎪⎫π2+1cm 3.故选A.[答案] A4.(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.[解析] 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.[答案]1125.(2017·江苏卷)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,∴V 1V 2=πR 2·2R 43πR3=32.[答案] 321.该部分在高考中一般会以“两小”或“一小”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积.2.考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查2个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第10~16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.热点课题12 补形法求几何体的表面积与体积[感悟体验]1.(2018·太原一模)某几何体的三视图如图所示,则该几何体的体积为( )A .2 B.83 C .4 D.209[解析] 观察三视图并依托正方体,可得该几何体直观图为A 1-ABEF ,如图所示,其体积为V正方体-V AFD -BEC -VA 1-BEC 1B 1-VA 1-FEC 1D 1=2×2×2-12×2×1×2-13×2×(1+2)×2×12-13×1×2×2=83.[答案] B2.(2018·合肥联考)如图,网格纸上小正方形的边长为1,粗线(实线和虚线)表示的是某几何体的三视图,则该几何体外接球的体积为( )A .24π B.29π C.48π D.58π[解析] 如图,在3×2×4的长方体中构造符合题意的几何体(三棱锥A -BCD ),其外接球即为长方体的外接球,表面积为4πR 2=π(32+22+42)=29π.[答案] B专题跟踪训练(二十一)一、选择题1.(2017·北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3 C.2 2 D.2[解析] 由三视图得该四棱锥的直观图如图中S-ABCD所示,由图可知,其最长棱为SD,且底面ABCD是边长为2的正方形,SB⊥面ABCD,SB=2,所以SD=22+22+22=2 3.故选B.[答案] B2.(2018·益阳、湘潭高三调考)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的体积为( )A.23B.43C.83D .4 [解析] 由三视图可得三棱锥为如图所示的三棱锥A -PBC (放到棱长为2的正方体中),则V A -PBC =13×S △PBC ×AB =13×12×2×2×2=43.故选B.[答案] B3.(2018·辽宁五校联考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A.36 B.48 C.64 D.72[解析] 由几何体的三视图可得该几何体的直观图如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.[答案] B4.(2018·广东七校联考)某一简单几何体的三视图如图所示,该几何体的外接球的表面积是( )A .13π B.16π C.25π D.27π[解析] 由三视图知该几何体是一个底面为正方形的长方体,由正视图知该长方体的底面正方形的对角线长为4,所以底面边长为22,由侧视图知该长方体的高为3,设该几何体的外接球的半径为R ,则2R =(22)2+(22)2+32=5,解得R =52,所以该几何体的外接球的表面积S =4πR 2=4π×254=25π,故选C. [答案] C5.(2018·洛阳市高三第一次联考)已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( )A.823π B.833π C.863π D.1623π [解析] 将正四面体补成正方体,则正四面体的棱为正方体相应面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长,其长为22,则球O 的体积V =43πR3=823π,故选A.[答案] A6.(2018·河北第二次质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( )A .50B .75C .25.5D .37.5[解析] 由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为 5.如图,图中几何体ABCC 1MN 为剩余部分,因为AM =2,B 1C 1⊥平面MNB 1A 1,所以剩余部分的体积V =V 三棱柱-V 四棱锥=12×5×5×5-13×3×5×5=37.5,故选D.[答案] D7.(2018·广东广州调研)如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为( )A .4+42+2 3B .14+4 2C .10+42+2 3D .4[解析] 如图,该几何体是一个底面为直角梯形,有一条侧棱垂直于底面的四棱锥S -ABCD .连接AC ,因为AC =22+42=25,SC =(25)2+22=26,SD =SB =22+22=22,CD =22+22=22,SB 2+BC 2=(22)2+42=24=SC 2,故△SCD 为等腰三角形,△SCB 为直角三角形.过D 作DK ⊥SC 于点K ,则DK =(22)2-(6)2=2,△SCD 的面积为12×2×26=23,△SBC 的面积为12×22×4=4 2.所求几何体的表面积为12×(2+4)×2+2×12×2×2+42+23=10+42+23,选C.[答案] C8.(2018·河南濮阳二模)已知三棱锥A -BCD 中,△ABD 与△BCD 是边长为2的等边三角形且二面角A -BD -C 为直二面角,则三棱锥A -BCD 的外接球的表面积为( )A.10π3B.5π C.6π D.20π3[解析] 取BD中点M,连接AM,CM,取△ABD,△CBD的中心即AM,CM的三等分点P,Q,过P作面ABD的垂线,过Q作面CBD的垂线,两垂线相交于点O,则点O为外接球的球心,其中OQ=33,CQ=233,连接OC,则外接球的半径R=OC=153,表面积为4πR2=20π3,故选D.[答案] D9.(2018·广东揭阳一模)某几何体三视图如图所示,则此几何体的表面积为( )A.4π+16 B.2(2+2)π+16C.4π+8 D.2(2+2)π+8[解析] 由三视图知,该几何体是一个棱长为2的正方体和一个底面半径为2、高为1的圆柱的组合体,其表面积S表=5×22+2π·2·1+2π·(2)2-22=2(2+2)π+16.故选B[答案] B10.(2018·福建福州质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .64-32π3B .64-8πC .64-16π3D .64-8π3[解析] 由三视图可知该几何体是由棱长为4的正方体截去14个圆锥和14个圆柱所得到的,且圆锥的底面半径为2,高为4,圆柱的底面半径为2,高为4,所以该几何体的体积为43-14⎝ ⎛⎭⎪⎫π3×4×4+π×4×4=64-16π3.故选C.[答案] C11.(2018·湖南十三校联考)三棱锥S -ABC 及其三视图中的正视图和侧视图如下图所示,则该三棱锥S -ABC 的外接球的表面积为( )A .32π B.1123π C.283π D.643π [解析] 设外接球的半径为r ,球心为O .由正视图和侧视图可知,该三棱锥S -ABC 的底面是边长为4的正三角形.所以球心O 一定在△ABC 的外心上方.记球心O 在平面ABC 上的投影点为点D ,所以AD =BD =CD =4×32×23=433,则由题可建立方程 r 2-⎝⎛⎭⎪⎫4332+r 2-⎝⎛⎭⎪⎫4332=4,解得r 2=283.所以该三棱锥S -ABC 的外接球的表面积S =4πr 2=1123π.故选B.[答案] B12.(2018·中原名校联考)已知A ,B ,C ,D 是球O 表面上四点,点E 为BC 的中点,点AE ⊥BC ,DE ⊥BC ,∠AED =120°,AE =DE =3,BC =2,则球O 的表面积为( )A.73π B.28π3C .4πD .16π[解析] 由题意可知△ABC 与△BCD 都是边长为2的正三角形,如图,过△ABC 与△BCD 的外心M ,N 分别作面ABC 、面BCD 的垂线,两垂线的交点就是球心O .连接OE ,可知∠MEO =∠NEO =12∠AED =60°,在Rt △OME 中,∠MEO =60°,ME =33,所以OE =2ME =233,连接OB ,所以球O 的半径R =OB =OE 2+BE 2=⎝ ⎛⎭⎪⎫2332+12=213,所以球O 的表面积为S =4πR 2=283π,故选B.[答案] B 二、填空题13.(2018·沈阳质检)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2的值为________.[解析] 如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,所以V 1V 2=S 1h 1S 2h 2=14.[答案] 1414.(2018·宁夏银川一中模拟)如图为某几何体的三视图,则该几何体的体积为________.[解析] 由三视图知,该几何体是一个高为2,底面直径为2的圆柱被一平面从上底面最右边缘斜向下45°切开所剩下的几何体,其体积为对应的圆柱的体积的一半,即V=1 2×π×12×2=π.故答案为π.[答案] π15.已知某几何体的三视图如图所示,则该几何体最长的棱长为________.[解析] 依题意知,几何体是如图所示的三棱锥A-BCD.其中∠CBD=120°,BD=2,点C到直线BD的距离为3,BC=2,CD=23,AB=2,AB⊥平面BCD,因此AC=AD=22,所以该几何体最长的棱长为2 3.[答案] 2 3.16.(2018·厦门一模)如图所示的是一个几何体的三视图, 则该几何体的表面积为________.[解析] 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长、宽、高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S =S 长方体表-S 半圆柱底-S 圆柱轴截面+S 半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.[答案] 26。
高考数学二轮复习 专题五 立体几何 第1讲 空间几何体的三视图 表面积与体积课件 理
(2)体积公式 ①柱体的体积 V=Sh; ②锥体的体积 V= 1 Sh;
3 ③台体的体积 V= 1 (S′+ SS +S)h.
3 ④球的体积 V= 4 π R3.
3 温馨提示 在有关体积,表面积的计算应用中注意等积法的应用.
热点精讲
热点一 空间几何体的三视图 【例 1】 (1)(2015 北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱 的棱长为( ) (A)1 (B) 2 (C) 3 (D)2
解析:由几何体的正视图和俯视图可知,该几何体的底面为半圆和等腰三 角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形, 故应选D.
2.(2013新课标全国卷Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图 中的正视图时,以zOx平面为投影面,则得到的正视图可以为( A )
2.三视图 (1)正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方 观察几何体得到的投影图.画三视图的基本要求:正俯一样长,俯侧一样宽, 正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图 放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题 (1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直 径即是棱柱的体对角线. (2)解决柱、锥的内切球问题的关键是找准切点位置,化归为平面几何问题. 4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式 ①圆柱的表面积S=2π r(r+l); ②圆锥的表面积S=π r(r+l); ③圆台的表面积S=π (r′2+r2+r′l+rl); ④球的表面积S=4π R2.
2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》
突破点拨 由几何体的三视图画出直观图,根据直观图的特点判断和计算.
解析 如图,由三视图还原的几何体是三棱锥 C′-BCD,是长方体的一部分,且长方体的底面是边长 为 2 的正方形,高为 4,∴三棱锥 C′-BCD 中,最长 的棱为 BC′=DC′=2 5,最短的棱长为 BC=CD= 2.∴最长的棱和最短的棱长度之和为 2 5+2.
【变式考法】 如图,ABCDA1B1C1D1是棱长为1的正方体,SABCD是高为1的正 四棱锥,若点S,A1,B1,C1,D1在同一个球面上,则该球的表面积为( D)
9 A.16π B.2156π C.4196π
81 D.16π
解析 按如图所示作辅助线,O为球心.设OG1=x,则OB1=SO=2-x.由正 方体的性质知B1G1=,则在Rt△OB1G1中,OB=G1B+OG,即(2-x)2=2+x2, 解得x=,所以球的半径R=OB1=,所以球的表面积S=4πR2=π.故选D.
第1讲 空间几何体的三视图、表面积与体积
考情回顾
①三视图的识别与 计算
设问 ②求表面积 方式
③求体积
[例](2017·北京卷,7)(2016·天津卷, 11)
[例](2017·全国卷Ⅰ,7)(2016·全国卷 Ⅰ,6)
[例](2017·浙江卷,3)(2017·全国卷Ⅱ ,4) (2016·北京卷,6)(2016·天津卷,11)
2.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图 形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)( B )
A.①②⑥ B.①②③ C.④⑤⑥ D.③④⑤
突破点拨 按三视图的定义,依次判断即可. 解析 正视图应该是相邻两边长为3和4的矩形,其对角线左下到右上是实线,左 上到右下是虚线,因此正视图是①;侧视图应该是相邻两边长为5和4的矩形,其对 角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是相邻 两边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视 图是③,故选B.
全国高考数学第二轮复习 专题五 立体几何第1讲 空间几
专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2012·北京高考,文7)某三棱锥的三视图如图所示,该三棱锥的表面积是( ).A.28+6 5 B.30+6 5C.56+12 5 D.60+12 52.(2012·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2012·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2012·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2013年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)变式训练A .32B .16+16 2C .48D .16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A .12+22B .1+22C .1+ 2D .2+ 2热点二 空间几何体的表面积与体积【例2】(2011·福建高考,文20)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P -ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32π B.24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积. (1)证明:取BC 中点G , 连接AG ,EG .因为E 是B 1C 的中点, 所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点, 所以EG AD ,所以四边形EGAD 是平行四边形, 所以ED ∥AG.又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E -BCD =V D -BCE =V A -BCE =V E -ABC . 由(1)知,DE ∥平面ABC ,所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2012·山东济南三月模拟,4)如图,正三棱柱ABC -A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4C . 3D .2 32.(2012·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2012·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2π B.20-23πC .40-23π D.40-43π4.(2012·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.在正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥P -GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向 真题试做1.B 解析:根据三棱锥的三视图可还原此几何体的直观图(如图所示).此几何体为一个底面为直角三角形,高为4的三棱锥,因此表面积为S =12×(2+3)×4+12×4×5+12×4×(2+3)+12×25×41-5=30+6 5.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴该几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.(1)证明:因为四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, 所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以直线B 1D 1⊥平面ACC 2A 2.(2)解:因为四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点 热点例析【例1】(1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正视图可排除A ,C ;由侧视图可判断该几何体的直观图是B.【变式训练1】(1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】(1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P -ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF ,则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,∴S △SBC =12BC ·SF =12a ×72a =74a 2,S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a , ∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练 1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π5.8273 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3. 6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD 的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D GAC V P GAC =13S △GAC ×DC 13S △GAC ×OM =2. 7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图).方法一:作AF ⊥平面DEC ,垂足为F ,F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG ,过球心O 作OH ⊥平面AEC ,则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得.∵AG =32,AF =1-⎝ ⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AH AF =32×3363=64, ∴外接球体积为43π×OA 3=43·π·6643=68π. 方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22,6 4,∴体积为43π·⎝⎛⎭⎪⎫643=68π.∴R=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲空间几何体的三视图、表面积与体积空间几何体的三视图【教师备用】若某几何体的三视图如图所示,则这个几何体的直观图可以是( B )解析:由题意知,选项A,C中所给的几何体的正视图、俯视图不符合要求,选项D中所给几何体的侧视图不符合要求.故选B.1.(2014福建卷)某空间几何体的正视图是三角形,则该几何体不可能是( A )(A)圆柱 (B)圆锥(C)四面体(D)三棱柱解析:圆柱的正视图是矩形或圆,不可能是三角形,则该几何体不可能是圆柱.故选A.2.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( D )(A)1 (B)2 (C)3 (D)4解析:由题意可知,几何体是三棱锥,其放置在长方体中形状如图中三棱锥A BCD,利用长方体模型可知,此三棱锥的四个面,全部是直角三角形.故选D.3. (2014湖北卷)在如图所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为( D )(A)①和②(B)③和①(C)④和③(D)④和②解析:在空间直角坐标系O xyz中作出棱长为2的正方体,在该正方体中作出四面体,如图所示,由图可知,该四面体的正视图为④,俯视图为②.故选D.空间几何体的表面积与体积4.(2015新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( D )(A)(B)(C)(D)解析:由三视图可知,该几何体是一个正方体截去了一个三棱锥,即截去了正方体的一个角.设正方体的棱长为1,则正方体的体积为1,截去的三棱锥的体积为V1=××1×1×1=,故剩余部分的体积为V2=,所求比值为=.5. (2015大庆市二检)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的表面积为( A )(A)32+4π(B)24+4π(C)12+ (D)24+解析:该几何体为长方体与球的组合体,其中长方体的棱长分别为2,2,3,球的半径为1,故其表面积为2×2×2+2×3×4+4×π×12=32+4π,故选A.6.(2015河北沧州质检)已知一个几何体的三视图如图所示,若该几何体的体积为,则其俯视图的面积为( B )(A)π+2 (B)2π+4(C)2π+6 (D)π+4解析:三视图所对应的空间几何体为一半圆锥拼接一三棱锥,因为V=××πa2×4+××2a×a×4=a2(π+2)=,所以a2=4,所以俯视图的面积为πa2+·2a·a=2π+4,故选B.多面体与球的切接问题【教师备用】 (2015东北三校联合二模)一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为( B )(A)16π (B)9π(C)4π(D)π解析:由三视图可知立体图形如图所示.由三视图知顶点A在底面BCD上的射影E为BD中点,AE⊥底面BCD,BC⊥CD,BC=CD=2,BD=2,AE=2,设O为外接球球心,AO=R,OE=2-R,则AB==,在Rt△BOE中R2=(2-R)2+()2,得R=,因为S=4πR2,所以此三棱锥外接球的表面积为9π.【教师备用】 (2015甘肃兰州第二次监测)已知长方体ABCD A 1B1C1D1的各个顶点都在球O的球面上,若球O的表面积为16π,且AB∶AD∶AA1=∶1∶2,则球心O到平面ABCD的距离为( B )(A)1 (B)(C)(D)2解析:设外接球O的半径为R,则4πR2=16π,所以R=2,由题意知长方体的对角线为球的直径,又AB∶AD∶AA1=∶1∶2,设AD=x,AB=x,AA1=2x,则x2+(x)2+(2x)2=42,解得x=,球心O到平面ABCD的距离为AA1=x=,选B.7.(2015江西上饶三模)从点P 出发的三条射线PA,PB,PC两两成60°角,且分别与球O相切于A,B,C三点,若OP=,则球的体积为( C )(A)(B)(C)(D)解析: 设OP交平面ABC于O′,由题得△ABC和△PAB为正三角形,所以O′A=AB=AP,因为AO′⊥PO,OA⊥PA,所以=,=,=,所以OA==×=1,即球的半径为1,所以其体积为π×13=π.选C.8.(2015东北三校第一次联合模拟)三棱柱ABC A 1B1C1各顶点都在一个球面上,侧棱与底面垂直,∠ACB=120°,CA=CB=2,AA1=4,则这个球的表面积为.解析:在△ABC中,∠ACB=120°,CA=CB=2,由余弦定理可得AB=6,由正弦定理可得△ABC外接圆半径r=2,设此圆圆心为O′,球心为O,在Rt△OAO′中,球半径R==4,故球的表面积为S=4πR2=64π.答案:64π一、选择题1.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( D )解析:根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是选项D.2.(2015河南模拟)如图,某几何体的正视图与侧视图都是边长为1的正方形,且其体积为,则该几何体的俯视图可以是( D )解析:根据正视图与侧视图的形状和几何体的体积是,知底面积是,所以底面是一个半径为1的四分之一圆,故选D.3.(2015河南六市第二次联考)某几何体的三视图(单位:cm)如图所示,其中侧视图是一个边长为2的正三角形,则这个几何体的体积是( B )(A)2 cm3(B) cm3 (C)3 cm3 (D)3 cm3解析:由三视图可知几何体如图所示,其侧面PCB与底面垂直,且△PCB为边长为2的正三角形,底面为直角梯形,上底为1,下底为2,高为2,所以四棱锥的体积为V=××(1+2)×2××2=.【教师备用】 (2015怀化二模)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( D )(A)2 (B)(C)(D)3解析:根据三视图判断几何体为四棱锥,其直观图如图所示.V=××2×x=3⇒x=3.故选D.【教师备用】 (2015太原市高三模拟)已知某几何体的三视图如图所示,其中俯视图是扇形,则该几何体的体积为( B )(A)4π(B)2π(C)(D)解析: 由正视图可知该几何体的高为H=3,其俯视图如图,OA=OB=2,AC=,AC⊥OB,所以∠AOB=,弧AB的长为,所以扇形面积为S=×2×=,所以几何体的体积为V=3×=2π.选B.【教师备用】 (2015宁夏石嘴山高三联考)一个四棱锥的三视图如图所示,那么这个四棱锥的表面积是( A )(A)(B)(C)(D)解析:由三视图可知,其直观图如图,S△ABC=×1×2=1,S△ABE=×2×2=2,S△ACD=×1×=,可知AD⊥DE,AD==,DE=,S△ADE=××=,S梯形BCDE=×(1+2)×1=,故其表面积为S=1+2+++=.选A.4. (2015黑龙江高三模拟)一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都如图所示.图中圆内有一个以圆心为中心边长为1的正方形.则这个四面体的外接球的表面积是( B )(A)π(B)3π(C)4π(D)6π解析:由三视图可知,该四面体是正方体的一个内接正四面体,且正方体的棱长为1,所以内接正方体的对角线长为,即球的直径为,所以球的表面积为S=4π×()2=3π,故选B.5.(2015辽宁沈阳高三一模)已知直三棱柱ABC A 1B1C1中,所有棱的长都为3,顶点都在同一球面上,则该球的表面积为( B )(A)9π(B)21π (C)33π (D)45π解析:如图,因为所有棱的长都为3,所以OO1=,OA即为其外接球的半径R,又AO1=××3=,所以R2=O+A=()2+()2=,所以S球=4πR2=21π.选B.6.(2015贵州省适应性考试)一个四面体的顶点在空间直角坐标系O xyz中的坐标分别是(0,0,0),(0,1,1),(1,0,1),(1,1,0),该四面体的体积为( A )(A)(B)(C)1 (D)2解析:如图所示,正方体棱长为1,依题意知,该四面体为OABC,其体积为V=1×1×1-4×××1×1×1=1-=.选A.【教师备用】 (2015郑州第一次质量预测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为( C )(A)32 (B)32(C)64 (D)64解析:设三棱锥的高为h,则根据三视图可得所以x2+y2=128,因为x>0,y>0,所以x2+y2≥2xy,所以xy≤64,当且仅当x=y=8时取“=”号,故xy的最大值为64.选C.【教师备用】 (2015广西南宁二模)已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为( B )(A)24π (B)6π(C)4π(D)2π解析:依题意知,该几何体是一个如图所示的三棱锥A BCD,其中AB⊥平面BCD,AB=,BC=CD=,BD=2,将该三棱锥补成一个正方体,则有(2R)2=()2+()2+()2=6,所以R=,所以外接球的表面积为S=4πR2=4π×()2=6π.选B.【教师备用】 (2015唐山市一模)某几何体的三视图如图所示,则该几何体的表面积为( C )(A)4 (B)21+(C)3+12 (D)+12解析:根据三视图可知该几何体是正六边形截得的正方体下方的几何体,因为正方体的棱长为2,所以根据分割的正方体的2个几何体的对称性得,S1=×6×22=12,正六边形的面积为6××()2=3,所以该几何体的表面积为12+3.选C.二、填空题7.(2015广西南宁二模)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等且=,则的值是.解析:设两个圆柱的底面半径分别为r1,r2,高分别为h1,h2,则由题意知,==·=,①又2πr1·h1=2πr2·h2,所以=, ②把②代入①可得,=,所以=()2=()2=.答案:【教师备用】 (2015辽宁沈阳高三一模)已知某多面体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此多面体最长的一条棱长为.解析:由三视图知,该几何体是一个四棱锥,如图所示,其底面是直角梯形,AD=4,AB=4,OA=4,BC=1,则OD==,CD==5,OB==,OC===,故多面体最长的一条棱长为.答案:8.一个几何体的三视图如图所示,则这个几何体的体积为.解析:由三视图知,几何体由一个四棱锥与四棱柱组成,则体积V=×2×2×1+1×1×2=.答案:9.(2015大连市高三一模)如图,半球内有一内接正四棱锥S ABCD,该四棱锥的体积为,则该半球的体积为.解析:设球的半径为R,则底面ABCD的面积为2R2,因为半球内有一内接正四棱锥S ABCD,该四棱锥的体积为,所以×2R2×R=,所以R3=2,所以该半球的体积为V=×πR3=π.答案:π。