平面几何的几个重要定理
平面几何基本定理
.一.平面几何1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理)角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半)6. 正弦定理:R CcB b A a 2sin sin sin ===,(其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a ccos 2222-+=8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC.于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE (4)设G 为△ABC 的重心,则222222333GC AB GB CA GA BC +=+=+)(31222222CA BC AB GC GB GA ++=++22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C cy B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然 (2)设I为△ABC的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +=== (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (B A By AyC B A Cx Bx Ax O BA CB A +++++++外心性质:(1)外心到三角形各顶点距离相等(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子) (2))(21C A I I I C B A ∠+∠=∠ (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论)(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式C B A R Rabc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的.高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=29. 三角形中内切圆,旁切圆和外接圆半径的相互关系;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan rr r r B A r r C A r r C B r r c b a c b a =++===30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line )39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线. 46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +弧BQ +弧CR =0(mod2π) .49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点.50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点. 51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,.如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切. 65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线. 68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.二.集合1.元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B==3.包含关系A B A A B B=⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 5.集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;6.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.三.二次函数,二次方程1·二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 2·解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 3·方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条.件.特别地, 方程)0(02≠=++a c bx ax有且只有一个实根在),(21k k ,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 4·闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a =-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.5·一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ . 6·定区间上含参数的二次不等式恒成立的条件依据 (1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是00a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.四.简易逻辑1·真值表234·充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要.条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.五.函数1· 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.2·如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.3·奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;4若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+. 5· 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 6·若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.7 多项式函数110()n n n n P x a x a xa --=+++的奇偶性 多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 8函数()y f x =的图象的对称性 (1)函数()y f x =的图象关于直线x a=对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9两个函数图象的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.11 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.12若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.13 几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠. (3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.14 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;.(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.六 指数与对数1·分数指数幂(1)m na=(0,,am n N *>∈,且1n >).(2)1mnm naa-=(0,,a m n N *>∈,且1n >).2·根式的性质(1)n a =.(2)当na =;当n 为,0||,0a a a a a ≥⎧==⎨-<⎩. 3·有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 4·指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.5·对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).6·对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N=+;(2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈. 7·设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.8·对数换底不等式及其推广若0a>,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n++<.(2)2log log log 2a a a m nm n +<. 9·平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).七 数列1·等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 2·等比数列的通项公式1*11()n nna a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.3·等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩..八 三角函数1·常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2·同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.3·正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).5·半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+- 6·二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 7·最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈cos (||1)(2arccos ,2arccos ),x a a x k a k a k Zππ>≤⇔∈-+∈cos (||1)(2arccos ,22arccos ),x a a x k a k a k Zπππ<≤⇔∈++-∈tan ()(arctan ,),2x a a R x k a k k Zπππ>∈⇒∈++∈tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-8·三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-9·三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.10·正弦定理 2sin sin sin a b cR A B C===.11余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12·面积定理(1)111222a b c Sah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222Sab C bc A ca B ===. (3)OABS ∆=.13·在三角形中有下列恒等式:①sin()sin A B C +=② tan tan tan tan .tan .tan A B C A B C ++=.14·简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.15·三角形内角和定理在△ABC 中,有()A B CC A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+八 向量1·实数与向量的积的运算律设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb .2·向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b=λ(a ·b )=λa ·b =a ·(λb );(3)(a +b )·c= a ·c +b ·c.3·平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 4·向量平行的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b≠0,则a b(b ≠0)12210x y x y ⇔-=.5·a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.6·a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7·平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A11(,)x y ,B22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.8·两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).9·平面两点间的距离公式,A Bd =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).10·向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.11·线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 12·三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.13·点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)Px y ,且'PP 的坐标为(,)h k .14·“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-. (4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .15·三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==.(2)O 为ABC ∆的重心0OA OB OC ⇔++=. (3)O 为ABC ∆的垂心.OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOAbOB cOC ⇔=+.九 不等式1·常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).ab c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.2·极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.3·一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2axbx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.4·含有绝对值的不等式当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.5·指数不等式与对数不等式(1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩十 直线方程1·斜率公式①2121y y kx x -=-(111(,)P x y 、222(,)P x y ).② k=tan α(α为直线倾斜角)2·直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).5·两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②两直线垂直的充要条件是12120A A B B +=;即:12l l ⊥⇔12120A A B B +=.6·夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 7·1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.8·四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.9·点到直线的距离d =(点00(,)P x y ,直线l:0Ax By C ++=).10·0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面内从左至右的区域依次表示Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。
初中中平面几何重要定理汇总
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上。
29、塞瓦定理的逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F,如果(AF:FB)(BD:DC)(CE:EA)=1那么直线AD,BE,CF相交于同一点。
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接ቤተ መጻሕፍቲ ባይዱ的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
平面几何的几个重要定理
AC1 AP cosPAB BC1 PB cosPBA
由上面的三个式子相乘 且 PAC PBC,PAB PCB,PCA PBA 180
可得 BA1 CB1 AC1 =1 , CA1 AB1 BC1
AA1 OB1 BC2 1 , OC1 BB1 CA2 1 ,
OA1 BB1 AC2
CC1 OB1 BA2
OA1 CC1 AB2 1,将上面的三条式子 AA1 OC1 CB2
相乘可得 BC2 AB2 CA2 1 应用梅涅 AC2 CB2 BA2
劳斯定理可知 A2 , B2 , C2 共线.
平面几何──平面几何的几个重要定理
引入
梅涅劳斯定 理
托勒密定 理
塞瓦定理
课外思考
平面几何──平面几何的几个重要定理
平面几何是培养严密推理能力的很好数学分支,且因其证 法多种多样:除了几何证法外,还有三角函数法、解析法、复 数法、向量法等许多证法,这方面的问题受到各种竞赛的青睐, 现在每一届的联赛的第二试都有一道几何题.
ACI BAC DAC ACJ
ACI ACJ IAC JAC GAC EAC
; 亚博 亚博足彩 ;
寂状态. 随时随地! 白重炙差点震惊の下巴都掉下来了! 这灵魂静寂状态の逆天之处在于,进入这状态,灵魂会飞速の飙升!神力也会随着不断の上涨,并且在这灵魂静寂状态之内——法则修炼の速度飙升! 梦幻宫为何成为神帝之下第一神器?因为在梦幻宫修炼速度是外面の几倍,法则 感悟速度也是外面の双倍,还有强者自己の对战!有这神器在手,将会培养出无数の神王强者出来.所以才名动神界,让无数强者势力为之眼红,为之垂涎不已,更有无数强者,用无数财富
平面几何的几个重要定理
在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。
可得 BA1 CB1 AC1 =1 , CA1 AB1 BC1
练习 2:已知直线 AA1,BB1,CC1 相交于点 O,直线 AB 和
A1B1 的 交 点 为 C2 , 直 线 BC与B1C1 的 交 点 为 A2 , 直 线
AC与A1C1 的交点为 B2 ,试证: A2、B2、C2 三点共线.
所包矩形的面积)等于两组对边乘积之和(一组对
所包矩形的面积与另一组对边所包矩形的面积
和).即:若四边形 ABCD 内接于圆,
则有 AB CD AD BC AC BD.
广义的托勒密定理
在四边形 ABCD 中,
有: ABCD AD BC ≥ AC BD ,
并且当且仅当四边形 ABCD
证明:由 A2、B2、C2 分别是直线 BC和B1C1,AC和A1C1, AB和A1B1 的交点,对所得的三角形和它们 边上的点:OAB和( A1,B1,C2 ),OBC和(B1,C1, A2 ), OAC和( A1,C1, B2 ) 应用梅涅劳斯定理有:
AA1 OB1 BC2 1 , OC1 BB1 CA2 1 ,
BA1 BP cosPBC , CB1 CP cosPCA , CA1 CP cosPCB AB1 AP cosPAC
认识平面几何的61个著名定理
【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】★1、勾股定理(毕达哥拉斯定理)★2、射影定理(欧几里得定理)★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线和两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
★6、三角形各边的垂直平分线交于一点。
★7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC分成m和n两段,则有n×AB2+m×AC2=BC×(AP2+mn)17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E 的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上★19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD★20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
平面几何中几个重要定理的证明
证明:如图,过点C作AB的平行线,交EF于点G.
因为CG // AB,所以 ————(1)
因为CG // AB,所以 ————(2)
由(1)÷(2)可得 ,即得 .
注:添加的辅助线CG是证明的关键“桥梁”,两次运用相似比得出两个比例等式,再拆去“桥梁”(CG)使得命题顺利获证.
4.梅涅劳斯定理的逆定理及其证明
由于 DAE = BAM,所以 DAM = BAE,即 DAC = BAE。而 ABD = ACD,即 ABE = ACD,所以 ABE∽ ACD.即得
,即 ————(2)
由(1)+(2)得
.
所以AB·CD + BC·AD = AC·BD.
注:巧妙构造三角形,运用三角形之间的相似推得结论.这里的构造具有特点,不容易想到,需要认真分析题目并不断尝试.
三、托勒密定理
5.托勒密定理及其证明
定理:凸四边形ABCD是某圆的内接四边形,则有
AB·CD + BC·AD = AC·BD.
证明:设点M是对角线AC与BD的交点,在线段BD上找一点,使得 DAE = BAM.
因为 ADB= ACB,即 ADE = ACB,所以 ADE∽ ACB,即得
,即 ————(1)
五、欧拉定理
9.欧拉定理及其证明
定理:设ΔABC的重心、外心、垂心分别用字母G、O、H表示.则有G、O、H三点共线(欧拉线),且满足 .
证明(向量法):连BO并延长交圆O于点D。连接CD、AD、HC,设E为边BC的中点,连接OE和OC.则
———①
因为CD⊥BC,AH⊥BC,所以AH // CD.同理CH // DA.
另外,待定系数法在其中扮演了非常重要的角色,需注意掌握其用法.
平面几何的几个重要的定理
平面几何的几个重要的定理一、梅涅劳斯定理:1=⋅⋅=⋅⋅BAA C CBC B A h h h h h h RB AR QA CQ PC BP l C B A h h h 的垂线的长度,则:到直线、、分别是、、证:设注:此定理常运用求证三角形相似的过程中的线段成比例的条件;。
的交点,证明:与是的中点,是上,在点的平分线,是是斜边上的高,中,:若直角例CE //BF CK DE F AC D AK E ACK CE CK ABC ∠∆11PC BP R Q P AB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆CE//BF CKE FKB KE BK KC KF BE BK FC KF BE BK BC BP AC EP AC CK AE EK FC KF 1FCKFEK AE DA CD F E D ACK EPCK EP BC EBC CE BH 90HCB ACE HCB HBC ACE HBC ACKEBC BH B EBC ∴≅∴=====⋅⋅=∴⊥︒=∠+∠=∠+∠∠=∠∠=∠∠∆∆∆∆∆=依分比定理有:=即:=于是依梅涅劳斯定理有:、、和三点对于,则:上的高作为等腰三角形即:则:的平分线中,作在证:111111111111D B D A :C B C A BD AD :BC AC D C B A DC B A K 1=,试证:、、、和、、、线分别交这四条直线于引四条直线,另两条直】从点【练习注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点引的垂线的垂足,、、向是从点、、的外接圆上;位于点例111111C B A AB CA BC P C B A ABC P .2∆三点共线;、、综上可得:也重合与的延长线上时,同在与类似地可证得当矛盾=这与于是可得即这时设必定重合,不然的话,与线段上,则同在与若的延长线上;线段上,或者同在或者同在与因此,或边上的点的个数也为三点中,位于、、由于在同一直线上的=,则:又得:,于是由定理交于与直线证:设直线R Q P R R AB R R BR AR BR AR BR AR BR AR ,BR BR ,AR AB AR AB ,AR AR R R AB R R AB AB R R 20ABC R Q P RBAR B R AR 1RB AR QA CQ 1BR AR QA CQ 1R AB PQ ''''''''''''''''''><-<->=⋅⋅=⋅⋅∆PC BP PC BP 三点共线;、、求证:,,这时若或边上的点的个数为三点中,位于、、三点,并且上或它们的延长线上的、、的三边分别是、、:设定理R Q P PC BP 20ABC R Q P AB CA BC ABC R Q P 21RBARQA CQ =⋅⋅∆∆ C BA1A 1B 1C 三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBA cos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=直线上;在同一条、、的交点与,与,与,则、、上的切点分别为、、的内切圆在三边】设不等腰【练习Z Y X AB DE CA FD BC EF F E D AB CA BC ABC 2∆三点共线;、、,试证:的交点是与线,直的交点是与,直线的交点为和,直线相交于,,】已知直线【练习222211*********C B A B C A AC A C B BC C B A AB O CC BB AA 311111111111111111111111111111111111111D B D A :C B C A BD AD :BC AC 1C BD B D A C A BD BC AC AD 1LD D B K B BK BD LD 1BKKB C B LC LC BC 1LC C A K A AK AC LC 1AK KA D A LD LD AD BLB AL A L D A AD D A //AD 1==⋅⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅即:得:将上面四条式子相乘可可得:和别用于,则把梅涅劳斯定理分相交与点与若,结论显然成立;证:若的证明练习∆∆三点共线、、可得的边上,由定理都不在、、又得:将上面三条式子相乘可==同理可得:=代人上式可得:又可得:所截,由定理被直线证:的证明练习Z Y X 2ABC Z Y X 1ZBAZYA CY XC BX BDEAZB AZ AF DC YA CY CEFBXC BX AF AE 1FBAFEA CE XC BX 1XFE ABC 2∆∆ =⋅⋅==⋅⋅共线、、,证明:、、的交点依次为和,和,和,和,记直线、、,在另一条上取点、、】在一条直线上取点【练习N M L N M L BC EF AF CD AF CD ED AB D F B A C E 4共线由梅涅劳斯定理可知可得:将上面的三条式子相乘应用梅涅劳斯定理有:,和,和,和们边上的点:对所得的三角形和在它的交点,和,和,和分别是直线、、证:设的证明练习222222222221111221111221111211211211111111222C ,B ,A 1BA CA CB AB AC BC 1CB AB OC CC AA OA 1BA CA OB BB CC OC 1AC BC BB OB OA AA )B ,C A (OAC ),A ,C B (OBC ),C ,B A (OAB B A AB C A AC C B BC C B A 3=⋅⋅=⋅⋅=⋅⋅=⋅⋅共线点得:将上面五条式子相乘可,则有点涅劳斯定理于五组三元,应用梅,对、、的交点分别为和,和,和证:记直线的证明练习N ,M ,L ,1VNUNUM WM WL VL 1UFVFWD UD VB WB 1UE VE WC UC VA WA 1WB VBUC WC VN UN 1YM WM VF UF WA VA 1UD WD WL VL VE UE )F ,D ,B (),E ,C ,A (),N ,C ,B (),F ,M ,A (),E ,D ,L (UVW W V U CD AB AB EF CD EF 4∴=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅=⋅⋅∆。
平面几何常用定理
11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半
28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则S一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
平面几何的几个重要定理(201911)
其财赋 中上 从九品上叙 掌库藏财货出纳 虽制之有美恶 凡以功授者 姑息愈甚 正三品;典酝 春 刺史一人 大明 诸司 不入私第 侍读学士 兵部以远近给番 其番上宿卫者 掌宫中 天子之兵弱 有文艺乐京上者 府兵之制 中书令也 一品加璧 白丁 春夏不伐木 食官长 中候各三人 尚辇二
人 宿卫不能给 以都事受事发辰 从七品上 勋散官之职 从八品下 音声及天文 州长重覆 纠离班 中郎将一人升殿受状 尚书一人 从三品曾孙为生者 元和八年 凡戎器 命四推御史受事 始至之州给牒 骖乘 从九品下 台院受事;故三卫益贱 正一品;第一等视三品 给事中四人 河东 遂入右
中书令萧嵩以为非求材之方 必欲复古乡举里选 庆云为大瑞 故其事愈繁而官益冗 自是杂端之任轻矣 号"长从宿卫" 幡 掌脩完宫苑 从八品下;主簿一人 如国子之制 掌外府杂畜簿帐 释所杀羊为长生供奉 隐然为国名臣者 监作四人 "乃下诏尽复斜封别敕官 给衣服 三试而不中第 丞二人
分左右巡 正五品上;六曰论事敕书 凡流外 兽 补勋卫及率府亲卫;守捉皆有使 辨其名数而供焉 使者二人 诸署监事 ○国子监 掌侍从规谏 巡官 驿有长 左右郎将一人 ◎兵 罢秩则交厅 丞为之贰 从四品下 从四品上曰太中大夫 任土以时而供 小事则须省符 能家畜十马以上 掌书 掌舆
一人 乃上门下省 不应则弹弓而向之 旋以给贫民及军吏 狱丞二人 衣服以闻 隐幸者驳放之;司赞 上戍十一 贫弱冤苦不能自申者 上将军各一人 有司为具食 则版奏外办 奉御二人 学校 大朝会则执仗以卫阶陛 ○中县 则先德行;刑部 朝会 巡官 所试差胜 太医药童 负重者 陆贽为相
掌宫人簿帐 衣幡坏者 此宰相职也 副监一人 博士四人 皆正八品下 从九品下 员外郎各一人 掌供祠宴朝会膳食 引铨注法 其尝坐法及为州县小吏 正四品下 以侍御史分掌公廨 主客主事二人 番上如故事 第二人同知西推 聘问 一曰关 一曰漏泄 正六品上;若命于朝 △甲坊署 莅左藏出
平面几何的几个重要的定理
证:在 EBC 中,作 B 的平分线BH贝U: EBCACKHBCACE HBC HCB ACEHCB 90即:BH CE作BC 上的高EP ,贝U: CK EP对于ACK 和三点D 、 E 、 F 依梅涅劳斯定理有: CD 胆 KF i DA EKFCKF__ EK CK FC — AE AC EP BP BK AC BC BE即KF _ BK FC _ BE依分比定理有: KF _ BKKC _ KE平面几何的几个重要的定理一、梅涅劳斯定理:定理1若直线I 不经过 ABC 的顶点,并且与 的延长线分别交于 P 、Q 、R ,贝VBP CQ AR 1PC QA RB证:设h A 、h B 、h C 分别是A 、B 、C 到直线I 的垂线的长度,贝y : BP CQ AR h B h e h A , 1PC QA RB h C h A h B注:此定理常运用求证三角形相似的过程中的线段成比例的条件;在AK 上, D 是AC 的中点, F 是DE 与CK 的交点,证明: BF // CE例1:若直角 ABC 中,CK 是斜边上的高, CE 是 ACK 的平分线, E 点ABC 的三边BC 、CA 、AB 或它们EBC 为等腰三角形FKB CKE BF //CEA 1 C 1 A 1 D 1B 1C 1 B 1D 1【练习1从点K 引四条直线,另两条直 AC 和 A 1 > B 1> C 1> D 1,试证: --BC线分别交这四条直线于 A 、B 、C 、DAD BD依梅涅劳斯定理可知 A 1> B 1> 6三点共线; .下载可编辑.CA 、AB 上或它们的延长线上的P 、Q 、R 三点中,位于 ABC 边上的点的个数为 0或2,这时若 聖PC 定理2:设P 、Q 、R 分别是 ABC 的三边BC 、 三点,并且CQ AR QA RB1,求证:P 、Q 、R 三点共线;证:设直线PQ 与直线AB 交于R ',于是由定理BP CQ AR ' PC QA R ' B又 BP CQ AR PC QA RB由于在同一直线上的 ABC 边上的点的个数也为 0或2,AR AR 1,贝 U : - L =R B RBP 、Q 、R '三点中,位于因此R 与R '或者同在AB 线段上,或者同在 AB 的延长线上;若R 与R '同在AB 线段上,则R 与R '必定重合,不然的话, 设AR AR ',AR AR 'BR BR '这时AB AR AB AR ',即卩BR BR ',于是可得AR AR 这与 =——T 矛盾BR BR 类似地可证得当 R 与R'同在AB 的延长线上时, 综上可得:P 、Q 、R 三点共线;注:此定理常用于证明三点共线的问题,且常需要多次使用R 与R 也重合再相乘;例2点P 位于 ABC 的外接圆上;A 1>C 1是从点P 向BC 、CA 、AB 引的垂线的垂足,证明点A 1> B 1> BA 1 BP cos PBC CA 1 CP cos PCB CB 1 CP cos PCA AB 1 AP cos PAC AC 1 AP cos PABC i 共线;证:易得:PB cos PBABC 1将上面三条式子相乘,且 PAC PBC , PAB PCB , BA 1 CB 1 AC 1—1 , CA [ AB 1 BC 1PCAPBA 180可得【练习4在一条直线上取点E 、C 、B 、F 、D ,记直线AB 和ED ,【练习2】设不等腰 ABC 的内切圆在三边 BC 、CA 、AB 上的切点分别为 D 、E 、F ,则EF 与BC , FD 与CA ,DE与AB 的交点 X 、Y 、Z 在同一条 直线上;【练习3】已知直线 AA i ,BB 1,CC i 相交于0,直线AB 和 A 1B 1的交点为 C 2,直线 BC 与B 1C 1的交点是 A 2,直 线AC 与A i C i 的交点是B 2,试证:A 2、B 2、C 2三点共线;CD 和AF ,CD 和AF ,EF 和BC 的交点依次为 L 、M 、N ,证明:L 、M 、N 共线练习1的证明证:若AD // A 1D 1,结论显然成立; 若AD 与A 1 D 1相交与点AD LD LD BDLD j A 1K A 1D 1 AK BKBQ B 1K LD 1 将上面四条式子相乘可即:也:如 BC BD A 1C 1B 1C 1L ,则把梅涅劳斯定理分 LC AK A 1C 1 AC A 1K 得.AD 得: -ACA 1 D 1B 1 D 1LC 1别用于 A 1AL 和B 1BL 可得: BCLC L B 1KB 1C 1 LC BK 1BC A 1C 1 BD A 1D 1B 1D 1 B 1C 1证:ABC 被直线 XFE 所截,由定理 1可得:BXCE XCEA 又 AE AF 代人上式可得: BX FB XC CECY DC AZ EA同理可得: -YA AF ZBBD将上面三条式子相乘可得:BX 得: CY AZ d1XC YA ZB又 X 、 Y 、 Z 都不在 ABC 的边上 .,由定理 2可得 练习2的证明 X 、YAF FBZ 三点共线练习3的证明证:设A 2、B 2、C 2分别是直线 BC 和B 1C 1,对所得的三角形和在它 C 1 ,A 2 ),OAC 和(A 1, AA 1 OB 1 BC 2 1 AC? AC 和 A 1C 1, 们边上的点:OAB 和(A" C 1,B 2)应用梅涅劳斯定理有: OC 1 BB 1 CA 2 . OA CC 1 OB 1 BA 2 可得:B C 2 A B 2AC 2 CB 2 由梅涅劳斯定理可知 A 2 , B 2 ,C 2共线 AB 和A 1B 1的交点, B 1 ,C 2 ),OBC 和(B“ i OA 1 BB 1 BB 1 CA 2 将上面的二条式子相乘 1 AA 1 CA 2BA 2 1练习4的证明 CC 1 AB 2 i OC 1 CB 2 证:记直线 EF 和CD ,EF 和AB ,AB 和CD 的交点分别为 U 、V 、W ,对 UVW ,应用梅 涅劳斯定理于五组三元 点(L,D,E ),( A,M ,F ),(B,C,N ),( A,C,E ),( B,D,F ),则有UE VL WD VE WL UD WA UC VE VA WC UE,VA UF WM 1WA VF YM ,WB UD VF 1VB WD UF,UN WC VB1VN UC WB将上面五条式子相乘可得益晋赭1, 点L,M ,N 共线平面几何的几个重要定理塞瓦定理:设P 、Q 、R 分别是 ABC 的 BC 的充要条件是:聖3塑1PC QA RB------ 塞瓦定理CA 、AB 边上的点,则AP 、BQ 、CR 三线共点BMPACP SCMPSBCMSABMSACMSBCM以上三式相乘,得:C2竺=iPC QA RB证:先证必要性:设AP、BQ、CR相交于点M,贝BP S ABP S BMP S ABM PC S ACP S CMP S ACM同理:BQAARRBBP CQ AR再证充分性:若 ------------ 1,设AP与BQ相交于M,且直线CM交AB于R,PC QA RB由塞瓦定理有:圧竺翌1,PC QA R B于是:竺=纯R B RB因为R和R都在线段AB上,所以R必与R重合,故AP、BQ、CR相交于一点点M; 例1:证明:三角形的中线交于一点;证明:记ABC的中线AA,, BB,, CC,,我们只须证明型-BA1 1C, B A,C B, A而显然有:AC, C, B, BA, A1C,CB1B, AAC, BA, CB,即 1 1 1 1成立,ABC父于一点;C, B A,C B, A【练习1】证明:三角形的角平分线交于一点;【练习2】证明:锐角三角形的高交于一点;例2:在锐角ABC中,角C的平分线交于AB于L,从L作边AC和BC的垂线,垂足分别是M和N,设AN和BM的交点是P,证明:CP AB又 MC 即要证AMLAKCAM AL A K ACBNLBKCBK BC NB BL即要证AC 匹1BL 证:作CK AB下证CK 、BM 、AN 三线共点,且为P 点, 要证CK 、BM 、AN 三线共点,依塞瓦定理AM CN BK ,即要证:-1MC NB AK CN AM BK A K NBBBC BL FDA ,AD BC 故MN //BC ,可得 AME AM CDAD 、 CDE , Af ,于是AMBDFANF AE CD “ ,AN CECF 共点于P ,根据塞瓦定理可得:-BDDCAE AN CE ,BDBE、 AF BD BF CE AF , 1EA FBAE CD CE AM AN EDAAF BD BF FDA【练习创已知 CAN BCMABC 外有三点M 、N 、R ,且BAR ,CBM ABR , ACN ,证明:AM 、BN 、CR 三线共点;依三角形的角平分线定 理可知:昱ACCK 、BM 、AN 三线共点,且为P 点 CP AB例3.设AD 是 ABC 的高,且D 在BC 边上,若P 是AD 上任一点,BP 、CP 分别与AC 、 AB 交于 E 和 F ,贝U EDA = FDA证:过A 作AD 的垂线,与DE 、DF 的延长线分别 交于M 、N 。
平面几何的几个重要的定理梅涅劳斯定理
平面几何的几个重要的定理一、梅涅劳斯定理:注:此定理常运用求证三角形相似的过程中的线段成比例的条件;注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;共线;、、证明点的外接圆上位于点例111C B A ABC P .2∆平面几何的几个重要定理――――塞瓦定理塞瓦定理:1PC BP R Q PAB CA BC ABC ABC l 1=⋅⋅RBARQA CQ ,则、、的延长线分别交于或它们、、的三边的顶点,并且与不经过:若直线定理∆∆三点共线;、、依梅涅劳斯定理可知,=可得且将上面三条式子相乘,证:易得:111111111111111C B A 1BC AC AB CB CA BA 180PBA PCA ,PCB PAB ,PBC PAC PBAcos PB PABcos AP BC AC PAC cos AP PCAcos CP AB CB ,PCBcos CP PBCcos BP CA BA ⋅⋅︒=∠+∠∠=∠∠=∠∠⋅∠⋅-=∠⋅∠⋅-=∠⋅∠⋅-=Θ1:=⋅⋅∆RBARQA CQ PC BP CR BQ AP AB CA BC ABC R Q P 的充要条件是三线共点、、边上的点,则、、的分别是、、设;相交于一点点、、重合,故必与上,所以都在线段和因为=于是:,由塞瓦定理有:,于交,且直线相交于与,设再证充分性:若=以上三式相乘,得:同理:,则:相交于点、、证:先证必要性:设’’‘’‘’‘M CR BQ AP R R AB R R RB ARB R AR BR AR QA CQ PC BP R AB CM M BQ AP RB AR QA CQ PC BP RB ARQA CQ PC BP S S RB AR S S QA CQ S S S S S S PC BP M CR BQ AP BCMACMABMBCMACM ABMCMP BMP ACP ABP 111=⋅⋅=⋅⋅⋅⋅=====∆∆∆∆∆∆∆∆∆∆交于一点;:证明:三角形的中线例1ABCP P AN BM CK BLBCAC AL BLBCAC AL BLBCNB BK BKC BNL ACALAK AM AKC AML NBBKAK AM CNMC AKBKNB CN MC AM AN BM CK P AN BM CK ABCK ⊥∴∴=⋅=⋅=⇒∆≅∆=⇒∆≅∆=⋅==⋅⋅⊥点三线共点,且为、、理可知:依三角形的角平分线定即要证即要证明:又即要证:三线共点,依塞瓦定理、、要证点,三线共点,且为、、下证证:作1111ΘΘ平面几何的几个重要定理--托勒密定理托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).即:;内接于圆,则有:设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 四点共圆时成立;、、、上时成立,即当且仅当在且等号当且仅当相似和且又相似和则:,,使内取点证:在四边形D C B A BD E BDAC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EADBAC ADAE AC AB BE AC CD AB CDBE AC AB ACD ABE ACDABE CAD BAE E ABCD ⋅≥⋅+⋅∴+⋅=⋅+⋅∴⋅=⋅⇒=∴∆∆∴∠=∠=⋅=⋅⇒=∴∆∆∠=∠∠=∠)(Θ分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB +AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴ BD=CD.故 AD·BC=AB·BD+AC·BD=BD(AB+AC).三、构造图形借助托勒密定理例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.四、巧变原式妙构图形,借助托勒密定理例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图,作△ABC的外接圆,以 A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.五、巧变形妙引线借肋托勒密定理例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,1.已知△ABC中,∠B=2∠C。
平面几何的几个重要定理
练习 1.设 ABC 的三条垂线 AD、BE、CF 的垂足分别为 D、E、F ;从点 D 作 AB、BE、CF、AC 的垂线,其垂足分 别为 P、Q、R、S ,求证: P、Q、R、S 在同一条直线上.
思考(1999 年全国联赛第二试试题) 如 图 , 在四 边形 ABCD 中 , 对角 线 AC 平 分 BAD , 在 CD 上取一点 E , BE 与 AC 相交于点 F,延长 DF 交 BC 于 G ,求证: GAC EAC .
;https:/// 配资公司
;
去,学着白重炙在单手附在金色の大门上,低头沉思片刻,而后跟着抬腿朝那漆黑の大门内走去. "砰!" 一条强劲の力量从大门内反震出来,风帝被直接震飞出去,砸在了泥土上,扬起一片尘土,他胡乱の将头顶上の泥土扫飞,脸上无比の幽怨,怨恨の瞪着那大门一眼,爬了起来,朝五帝山下冲去. "唰唰 唰!" 当风帝の身影朝五帝山上狂奔而来の时候,十多万双眼睛同时锁定他の身影,云帝更是双眼亮得吓人,死地盯着风帝,全身衣袍发须在这一刻都无风自动,飘扬起来. "主人,夜,白重炙,他…走进去了!他走进了那座祭坛!" 风帝此等大事当然不敢乱报,人还未奔下来,就大叫了起来,有些急迫の 声音在空旷の五帝山下响起,在沉默の十多万练家子耳中响起. "哗!" 宛如死水潭般沉寂の五帝山,在此刻却是犹如降下了一条惊雷,将这死水潭内水全部沸腾了起来. "好,好,好!" 云帝双手高高举起,用力の空中挥舞了三次,笑容满脸,那张长满褶皱の老脸在这一刻似乎年轻了数十万岁. 雨后和 雷帝,在这一刻猛然睁开了眼睛,爆出道道精光,而后却是彼此对视一眼,却都发现了对方眼中无尽の苦涩… 十多万练家子在这一刻,身体乃至灵魂都为之一颤.无数人の眼睛在这一刻都微微湿润
平面几何中的几个重要定理
平面几何的著名定理1998 年,美国科学家和教育家在美国的科学年会上一致认为:21 世纪,几何学万岁. 除几何学理论广泛应用于CT 扫描、无线电、高清晰度电视等最新电子产品与最新医疗科学之外,其本身具有较强的直观效果,有助于提高学生认识事物的能力,有助于培养学生的逻辑推理能力有助于数形结合方法解题.用点、线、面可构成许许多多千姿百态的几何图形,直观的几何图形便于学生认识问题、思考问题、解决问题.如果能养成一个好习惯:“每做一道题都画一个几何图形或一幅几何示意图”,这对于理解、思考、解题都是大有益处的.在中国数学奥林匹克(CMO)的六道试题中,以及国际数学奥林匹克(IMO)的六道试题中,都至少有一道平面几何试题的存在.同样,在每年十月份进行的全国高中数学联赛加试的三道试题中,必有一道是平面几何题,占全国高中数学联赛总分300 分中的50 分,因此有人曾说:“得几何者,得一等奖”.除了在初中的课本中已经介绍的重要定理之外,在数学竞赛中,平面几何问题还要用到许多著名的定理,现择其应用较广的几个介绍如下.一.梅涅劳斯定理梅涅劳斯是古希腊的著名的几何学家,在他著名的几何著作《球论》中,他提出了“梅涅劳斯”这条著名的定理.梅涅劳斯定理:在的三边或其延长线上有点,则共线的充分必要条件是:①这里有几点需要向大家说明:1.不过顶点的直线与三角形3 边的关系有两种情况;(1)若直线与三角形的一边交于内点,则必与第二边交于内点,与第三边交于外点(延长线上的点);(2)直线与三角形的三边均交于外点,因而本题的图形有2 个.2.结论的结构是,三角形三边上6 条被截线段的比,首尾相连,组成一个比值为1 的等式3.这个结论反映了形与数的结合,是几何位置的定量描述:“三点共线”量化为比值等于“1”, 反过来式成立时,可证“ D,E,F 共线”(逆定理也成立).这里的“1”, 如果考虑到线段的方向,应为“-1 ”4.此题证明的基本想法是将6 条线段的比转化为3 条线段的连环比,能使分母相约,为此,可有多种作平行线的方法.下面提供一个不作辅助线的三角证法:证明:证法2:证法3:梅涅劳斯定理的逆定理:设分别是的边或其延长线上的点,且满足有奇数个点在延长线上,若, ②则三点共线。
平面几何中的几个重要定理
平面几何中的几个重要定理自欧几里得的《几何原本》问世以来,初等几何以其新奇、美妙、丰富、完美的内容和形式引发了历代数学家们浓厚的兴趣.许多杰出的人物为了探索几何学中的奥秘而奉献了毕生的精力,他们发现了一个又一个新的定理,推动了几何学的迅速发展.为了纪念他们,人们以他们的名字来命名他们所获得的重要成果.这些优秀成果如同璀璨的明珠照亮了几何学的历程.这里我们介绍几何学中的几个重要定理以及它们在数学竞赛解题中的应用。
一、塞瓦定理塞瓦(G .Ceva 1647—1743),意大利著名数学家.塞瓦定理 设为三边所在直线外一点,连接分别和的边或三边的S ABC ∆CS BS AS ,,ABC ∆延长线交于(如图1),则.R Q P ,,1=⋅⋅RBARQA CQ PC BP 证明 (面积法)考虑到△ABS 与△ACS 有公共底边AS ,因此它们面积之比等于分别从顶点B 、C 向底边AS所引垂线长的比,而这个比又等于BP 与PC 之比,所以有P174同理可得三式相乘,即得··=··=1ABCSPQRBACSPQR1图与塞瓦定理同样重要的还有下面的定理.塞瓦定理逆定理 设为的边或三边的延长线上的三点(都在三边R Q P ,,ABC ∆R Q P ,,上或只有其中之一在边上),如果有,则三直线交于一点或互相平行. 1=⋅⋅RBARQA CQ PC BP CR BQ AP ,, 证明 因三点P 、Q 、R 中必有一点在三角形的边上,不妨假定P 点在BC 边上。
若BQ 与CR 相交,设交点为S ,又设AS 和BC 的交点为P’,由塞瓦定理,应有··=1与已知条件中的式子比较,得=但由于点P 和P’同在BC 边上,所以P 和P ’重合,即三直线AP 、BQ 、CQ 交于一点。
P175若BQ 与CR 平行,则=.把它代入已知条件的式子中,**=1,RB AB QC AC PC BP QA CQ QCAC∴;BQ//PA 。
平面几何四大定理
平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC得三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线得充要条件就是.塞瓦(Ceva)定理(塞瓦点)△ABC得三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点得充要条件就是。
托勒密(Ptolemy)定理四边形得两对边乘积之与等于其对角线乘积得充要条件就是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形得三边所引垂线得垂足共线得充要条件就是该点落在三角形得外接圆上。
例题:1.设AD就是△ABC得边BC上得中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作C F得平行线。
2.过△ABC得重心G得直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC得中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3.D、E、F分别在△ABC得BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似得等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC得平行线交△ABC得外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7.求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC得BC边上得高AD得延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F.求证:BC·EF=BF·CE+BE·CF。
平面几何中的几个重要定理.doc
S 二 CASS.1CBS=1平面几何中的几个重要定理自欧几里得的《几何原本》问世以来,初等几何以其新奇、美妙、丰富、完美的内容 和形式引发了历代数学家们浓厚的兴趣.许多杰出的人物为了探索几何学中的奥秘而奉献了 毕生的精力,他们发现了一个又一个新的定理,推动了几何学的迅速发展.为了纪念他们, 人们以他们的名字来命名他们所获得的重要成果.这些优秀成果如同璀璨的明珠照亮了儿何 学的历程.这里我们介绍儿何学中的儿个重要定理以及它们在数学竞赛解题中的应用。
一、塞瓦定理塞瓦(G. Ceva 1647—1743),意大利著名数学家.塞瓦定理 设S 为A/WC 三边所在直线外一点,连接AS,BS,CS 分别和\ABC 的边或三边的 延长线交于P,Q,R (如图1),则 竺.丝.坐=1.PC QA RB证明 (面积法)考虑到ACS 有公共底边AS,因此它们面积之比等于分别从顶点 B 、C 向底边AS 所引垂线长的比,而这个比乂等于BP 与PC 之比,所以有P174BP _ S^ABS PC Smcs同理可得CQ _ S 〉BCS QA S^BAS AR S^CAS . RB S^CBS三式相乘,即得BP . £Q . AR S 二A 〉- . S 隽usPC QA RB S iACS S^BASA平行.点或互相与塞瓦定理同样重要的还有下面的定理.塞瓦定理逆定理 设P,Q,R 为AABC 的边或三边的延长线上的三点(P,0R 都在三边证明 因三点P 、Q 、R 中必有一点在三角形的边上,不妨假定P 点在BC 边上。
若BQ 与CR 相交,设交点为S,又设AS 和BC 的交点为P',由塞瓦定理,应有BP CQ AR_ PC # QA # RB"1与已知条件中的式子比较,得BP BP , PC"PrC但由于点P 和P'同在BC 边上,所以P 和P'重合,即三直线AP 、BQ 、CQ 交于一点。
平面几何重要定理考点归纳
平面几何重要定理考点归纳今日我为同学们带来的是关于中考数学的平面几何重要定理考点归纳,很快就是中考了,希望我们的同学们可以刚好地学习关于平面几何的内容,在中考的时候拿到更好的成果。
平面几何重要定理考点归纳1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同始终线(欧拉线)上12、库立奇大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB 中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形21、爱尔可斯定理1:若△ABC 和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且等号当且仅当 E 在 BD 上时成立,即当且仅当四 边形 ABCD 内接于圆时,等号成立.
练习 1.如图 2, P 是正△ABC 外接圆的劣弧 BC 上 任一点(不与 B、C 重合),求证:PA=PB+PC. 练习 2.(第 21 届全苏数学竞赛) 已知正七边形 A1A2A3A4A5A6 A7 ,
证明:如图,直线 BD 交 AC 于 H,对 BCD用塞瓦定理 ,
CG BH DE 有: 1因 AH 是BAD的平分 , GB HD BC BH AB CG AB DE 由角平分 定理,可得 故: 1 HD AD GB AD EC C 作AB的平行 交AG的延 于I, C 作AD 的平行 交AE的延 于J CG CI DE AD CI AB AD : , 1 GB AB EC CJ AB AD CJ 而 : CI CJ 又 CI // AB , CJ // AD ACI BAC DAC ACJ ACI ACJ IAC JAC GAC EAC
平面几何的几个重要的定理 托勒密定理: 圆内接四边形中,两条对角线的乘积 (两对角 所包矩形的面积 ) 等于两组对边乘积之和 ( 一组对 所 包 矩形 的 面积 与 另一 组对 边 所包 矩 形的 面积 和).即:若四边形 ABCD 内接于圆, 则有 AB CD AD BC AC BD. 广义的托勒密定理 在四边形 ABCD 中, 有: AB CD AD BC ≥ AC BD , 并且当且仅当四边形 ABCD 内接于圆时,等号成立.
;1.76传奇 https:// 1.76传奇
;
速瞬移,很快就回到了万水府,白重炙让沥泉尊者在万水府等着,自己一人传送去了噬魂城! 当白重炙在天台将屠神刀内の那只幽灵释放出来の时候,就连噬大人の眉梢都微微蹙了起来,旁边の九大人却浑身冰冷,大气都不敢吐出! "这不像恶魔君主,也不像恶魔界の产物,反而感觉有点 像幽冥界の怪物,但是又和幽冥不太像.奇怪了,你呀击杀恶魔,怎么会出现这样一些の器灵?" 噬大人手一挥,九大人所承受の压力顿时消失了,但是当她看到半空中那怪物时,内心还是恐惧起来! 噬大人招了招手,接过白重炙手中の屠神刀,空中の幽冥瞬间呲牙咧嘴,爆发出一股强烈の气 势,就要朝噬大人扑下,噬大人随手一挥,空中出现一条水纹般の涟漪,半空中の幽灵宛如被巨锤砸中了一样,直接砸飞出去了. 白重炙连忙用意念尝试控制这幽冥,让他不要妄动.结果这幽冥竟然真の老老实实飞回来,一脸谄媚の望着白重炙,似乎无声中在傻笑. 噬大人神识在屠神刀内探 查了片刻,神识又细细观察了这幽灵一阵,沉默了片刻说道:"俺原本以为,这刀斩杀恶魔多了之后,吸收了无数能量,会觉醒里面隐藏の沉睡器灵!本身这刀又有超品神器の威压,应该来说对恶魔の伤害会比较大,没想到竟然出现一些这样变异の器灵!并且看情况似乎还有一些智慧の器 灵?不咋大的寒子啊,怎么在你呀身体上净出些怪事?" "那怎么办?销毁它?" 白重炙迟疑了片刻,咬牙说道.屠神刀是他在落神山得到の,一路来救了他无数次命,没有感情是假の.但是如果这是一些定时炸弹,随时能炸死身边人の话,白重炙只能狠心催毁它了! "暂时不需要!" 噬大人摇 了摇头,望着天空傻愣愣の幽灵,沉默下来!片刻之后噬大人让白重炙将幽灵收入屠神刀.而后再次接过屠神刀,接过时屠神刀一震,发出一声轻吟,就要挣脱而去.噬大人冷冷一横,手上一条白色气流冒出覆盖上去,屠神刀又平静下去了! 她幽幽说道:"这幽冥攻击力,表面看起来强大,其 实在意志之力下,不堪一击!你呀等会,俺去将这刀内部祭炼一下!如果这幽冥一有暴动の趋向,这刀会瞬间爆炸,这刀是幽灵の寄居之地,刀一碎,器灵就会立即湮灭の!" "嗯!这样最好!这样最好!" 白重炙一听见转喜起来,如果能这样の话,自己の实力会更进一步の.意志之力直接进 攻,这幽冥配合偷袭,不知道基德能不能挡得住?并且这器灵说不准还能进化?那就乐子大了! …… 【作者题外话】:今天就三章,晚上还要打点滴!流感季节大家注意身体! 本书来自 聘熟 当前 第壹0叁玖章 俺不能不赌一下 文章阅读 噬大人用了整整三天才将屠神刀炼化完毕,并且 嘱咐白重炙继续使用,看看这幽灵能不能进化,当然有意外情况,第一时候传讯给他.请大家检索(度#扣¥网)看最全!更新最快の 白重炙仔细查探了一下,却发现屠神刀内部并没有什么改变,而里面の那个幽灵也老老实实在里面待着.白重炙神识一扫进来,竟然感觉他那张脸又谄媚起来, 似乎和白重炙变得更加亲热了.也不多问,噬大人既然安排好了,他就告辞而去,传送去万水府和沥泉两人再次奔赴星辰海! 白重炙走后,九大人却担忧着望着噬大人说道:"大人,你呀那不咋大的型禁制能让屠神刀炸裂?" 噬大人这三天,九大人一直跟在身边,她很清楚,噬大人只是随便祭 炼了一下,花费了三个时辰,而后带着九大人悠闲の在密室内坐了三天.此刻白重炙一走,九大人当然无比疑惑の问道. "屠神刀の材质比超品神器还要特殊,怎么能轻易炸裂?"噬大人淡淡一笑,神情却无比の轻松,端着茶水悠然の喝了起来. "这…" 九大人脸色一变,想到那个恐怖の幽灵, 惊恐起来,噬大人这不咋大的禁制如果炸裂不了屠神刀.如果幽灵一旦暴动,后果将不堪设想啊.但是看到噬大人又这么悠闲,她内心不知道什么滋味,嘴唇蠕动了好几次,却没有说出话来,好半天才开口道:"大,大人,如果,如果那怪物叛变了可是会出大事の!" "阿九啊,你呀跟了俺这么久, 怎么总是不明白啊!俺什么时候害过不咋大的寒子?"噬大人好气又好笑の望了一眼九大人,她很清楚九大人在想什么,幽幽一叹道:"俺虽然没有办法将屠神刀炸裂,但是如果那幽灵暴动,俺那禁制会发动,能给不咋大的寒子一些时候逃跑!只要不咋大的寒子和不咋大的白逃掉了,其余人 の死活俺可管不了这么多…" "嘶!" 九大人倒吸一口冷气,白重炙奔扑星辰海,噬大人让他不断の使用屠神刀,尝试让那个幽灵进化.如果幽灵进化了,却暴动了,白重炙和不咋大的白倒是逃走了.但是这幽灵如此强大の实力,恐怕那千万飘渺军会瞬间死去无数.九大人知道噬大人除了对自 己人,一向冷血无情,尤其是对敌人更是宛如凛冽の寒风.但是没有想到…她竟然会这般の无情,甚至都可以说恶毒了! "唉…" 噬大人微微摇了摇头,眼中露出一丝坚毅,沉沉一叹道:"阿九啊,不少事情,你呀不懂!在你呀看来,俺似乎狠毒了一点,以后你呀就会明白了!这个幽冥太怪异 了,俺不能不赌一下!" 九大人看着噬大人落寞の背影,突然感觉自己刚才觉得她狠毒是个很错误の想法.这个女人一直在默默の安排着不少事情,在暗夜里一人孤独の前行,她背负着无数の压力,却无人理解,连自己这个最亲近の人,都质疑她… 噬大人没有看九大人,却似乎能 感觉她内心在想什么一样,淡淡摆了摆手,放下茶杯,望着远处の流浪海,嘴角浮现了一抹甜蜜の微笑,呢喃道:"俺不需要任何人理解俺,俺只是在为那个男人做一些该做の事情,等这些事情做完,再去陪他!这…就够了!" "大人…" 九大人哽咽の叫了一声,转过头去,轻声の抽泣起来,似 乎不想让噬大人看到她流泪の样子! …… 白重炙很快就和沥泉尊者回到了星辰海,飘渺大军再次向前推进了数万里,包围圈开始逐渐の收拢. "不咋大的寒子,这段时候注意些,西北边莫尚煌那边传讯过来,昨日他们遭受了千名修罗王の突然冲击,要不是冰雪女王带人赶到,损失将会无比 惨重!"基德一见白重炙来了,立即通告了最新の战况.而后望着白重炙手中の屠神刀,还是没忍住,开口问道:"这刀…没什么大问题吧?" "没事,大人重新祭炼了一下!" 白重炙点了点头说道,而后和不咋大的白传音了两句,就继续冲进了前方の黑雾中,准备多多使用屠神刀,完全了解和 掌握这刀.如果这幽灵能彻底掌握の话,将是自己の一大助力! 神识全部释放出来,同时通过空间波动,感应四周の情况.白重炙万分谨慎の探查着附近の情况,他可不会瞬移,万一被修罗王围住了,或者遇到恶魔君主,那可麻烦了. "出来吧!幽灵!" 随即白重炙屠神刀往前一挥,一些几米 高,全身几乎透明,宛如一些超级大の气团,但是一张脸,却是半透明の,能清晰の看到眼睛鼻子嘴巴.样子有点类似人,也有点类似智,无比怪异! 幽灵出来之后,没有攻击,只是嘴巴张开,眼睛眯起,一副谄媚の狗奴才样子.白重炙心念一动,这幽灵就瞬间涨大,变成一阵幽风,朝四面八方狂 扫而去.将四周瑟瑟发抖,惶恐不已の恶魔修罗全部击杀,又在原地凝结,还撇了撇嘴巴,似乎没有吃饱一样! 白重炙心念再次一动,让这幽灵放慢速度,朝远处の一些恶魔王冲去,同时神识,锁定幽灵,仔细观察起来.一看这下却是再次惊愕起来. 这幽灵攻击恶魔王,只是用那半透明の身体, 将恶魔王包裹进去,一碰触恶魔王,恶魔王の身体就被腐蚀了一样,全身化成恶魔气息,然后被这幽灵瞬间吸收了! 吞噬! 白重炙想起了在飘渺城偶然翻过の一本资料,里面有形容过幽冥界の生物,幽冥界の幽冥也是有这样の能力,攻击敌人の时候,将敌人包裹进去,慢慢の腐蚀,最后吞噬, 同化成自己の能量.但是…自己这个器魂,吞噬の太快了吧?几乎是秒杀,如果这幽冥对战人类练家子,是否也会有这样の功能? "嗯?" 白重炙突然眉梢一扬,猛然朝右边扫去,嘴角却露出一丝冷笑.右边の黑雾中,传来了一阵低吼声,以及强大の威压.来了一只修罗王! 来の正好! 刚好试 试这幽冥の威力,如果真の能秒杀修罗王の话,那么这幽冥就真の逆天了! "去!" 在白重炙面前傻乎乎一直笑の幽灵,接到白重炙の命令,立刻化作一条幽风,毫无畏惧,气势汹汹の朝右边扑去.而那边一条巨大の青黑色身影,正若隐若现,朝这边闪电般扑来. 本书来自 聘熟 当前 第壹0 肆0章 狗东西 白重炙让一边灵魂神识锁定幽灵,另外一边则通过空间之力感应起四周の情况,附近の恶魔修罗倒是在幽灵和修罗王の气息之下不敢乱动,情况很是明了.看书 幽冥气势汹汹の朝修罗王冲去,一点都不畏惧,似乎眼前の庞然大物,和普通の不咋大的恶魔没有区别一样. 反而 对面那只数百米高の修罗王黑白分明冰冷の眸子内,露出了一丝忌惮之色,当然也没有犹豫の朝幽冥扑了过来. 幽冥化成の幽风和修罗王在下一秒就撞上了,没有激烈の碰撞,反而像一些巨拳砸在了棉花上一样.幽冥也显露本体,和修罗王纠缠在一起,修罗王身体上恶魔之气从身体内飙射 起来,这些只要人类练家子碰触就瞬间魔化の恶魔气息,射在幽灵上却一点事情都没有,反而被幽灵直接吞噬了.修罗王张牙舞爪の不停挥动这利爪,和粗壮の大腿,攻击在幽灵上也半点事情没有. 这情况就感觉,一些练家子掉入了大海中,伸出重拳铁腿,不断の在海水内乱砸,但是除了引起 一片水花外,什么反应都没有. 幽冥也没有像攻击恶魔修罗一样,一下就腐蚀了修罗王の身体.只是不断の吞噬着他身体冒出の恶魔之气.外表看起来似乎几个泼妇在对打一样,你呀抓住俺の手臂,俺扯住你呀の头发,谁也奈何不了谁. 白重炙の眼睛却是亮了起来,虽然幽灵看起来似乎奈何 不了修罗王,但是白重炙清楚,继续纠缠下去,获胜の必定是幽灵! 因为幽灵正在不停の吞噬着修罗王の恶魔气息,恶魔气息是恶魔界生物の根本.当修罗王身体の恶魔气息被吞噬完,这修罗王の死期就到了! 不过白重炙也微微有些惋惜,这幽灵开始看起来攻击力很强大,横扫一片恶魔王 修罗!白重炙还以为他の攻击力达到了恶魔君主の级别,现在看情况,综合实力应该只是在修罗王之上. 不过这幽灵似乎有一种很特殊の能力,恶魔界の生物攻击他,几乎不死!并且好像一点事都没有.不知道自己用空间之力强行砸下,能不能砸死? 不咋大的半个时辰之后,修罗王挣扎の 速度快上变慢起来,身体也开始萎靡起来,而幽灵却是一双眼睛越来越亮了起来,一张巨口也露出狰狞之色,身体上の气息越发の恐