2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷
2019-2020学年广东省佛山市南海区八年级(下)期末数学试卷 (解析版)
2019-2020学年广东省佛山市南海区八年级(下)期末数学试卷一.选择题(共10小题)1.下列式子是分式的是()A.B.C.x﹣2y D.2.将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A.(﹣1,﹣1)B.(﹣1,3)C.(5,﹣1)D.(5,3)3.下列多项式中,不能因式分解的是()A.ab﹣a B.a2﹣9C.a2+2a+5D.4a2+4a+14.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形6.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3B.4C.5D.67.如果把分式中的x、y的值都扩大为原来的3倍,那么分式的值()A.不变B.扩大为原来的3倍C.扩大为原来的6倍D.扩大为原来的9倍8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.点N C.点P D.点Q9.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.BE=CD D.DA=DE10.如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中.①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S=5.正确的个数是()四边形AEFDA.1个B.2个C.3个D.4个二.填空题(共7小题)11.“m2是非负数”,用不等式表示为.12.已知分式,当x=1时,分式无意义,则a=.13.已知x+y=2019,x﹣y=,则x2﹣y2的值为.14.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是.15.如图,在Rt△ABC中,∠C=90°,∠ABC═30°,AB=10,将△ABC沿CB方向向右平移得到△DEF,若四边形ABED的面积为20,则平移距离为.16.如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=度.17.如图,小芳作出了边长为1的第1个正△A1B1C1,然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第n个正△A n B n∁n的边长是.三.解答题18.解不等式组:.19.先化简,再求值:÷(x﹣),其中x=.20.如图,在▱ABCD中,∠B=60°.(1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:△ABE是等边三角形.21.本学期开学后,某校为了宜传关于新冠肺炎的防控知识,需印制若干份资料,印刷厂有甲、乙两种收费方式,甲种方式每份资料收费0.1元,另需收取制版费20元.乙种方式每份资料收费0.15元,不需要收取制版费.(1)设资料印刷的费用为y元,印刷的数量为x份,请分别写出两种收费方式下y与x 之间的函数关系式;(2)该校某年级每次需印制100~600(含100和600)份资料,选择哪种印刷方式较合算?22.如图,D是△ABC内一点,连接DB、DC、DA,并将AB、DB、DC、AC的中点E、H、G、F依次连接,得到四边形EHGF.(1)求证:四边形EHGF是平行四边形;(2)若BD⊥CD,AD=7,BD=8,CD=6,求四边形EHGF的周长.23.李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?24.(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是;(2)根据下面四个算式:52﹣32=(5+3)×(5﹣3)=8×2;112﹣52=(11+5)×(11﹣5)=16×6=8×12152﹣32=(15+3)×(15﹣3)=18×12=8×27192﹣72=(19+7)×(19﹣7)=26×12=8×39请你再写出两个(不同于上面算式)具有上述规律的算式;(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.25.如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当△CDE的周长最小时,求CD的值;(3)求证:AD2+DB2=2CE2.2019-2020学年广东省佛山市南海区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列式子是分式的是()A.B.C.x﹣2y D.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,x﹣2y,均为整式,是分式.故选:B.2.将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A.(﹣1,﹣1)B.(﹣1,3)C.(5,﹣1)D.(5,3)【分析】根据平移的方法:横坐标,右移加,左移减;纵坐标,上移加,下移减,即可得结论.【解答】解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(﹣1,3).故选:B.3.下列多项式中,不能因式分解的是()A.ab﹣a B.a2﹣9C.a2+2a+5D.4a2+4a+1【分析】直接利用公式法以及提取公因式分解因式进而判断即可.【解答】解:A、ab﹣a=a(b﹣1),能够分解因式,故此选项不合题意;B、a2﹣9=(a+3)(a﹣3),能够分解因式,故此选项不合题意;C、a2+2a+5,不能因式分解,故本选项符合题意;D、4a2+4a+1=(2a+1)2,能够分解因式,故此选项不合题意;故选:C.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、既是轴对称图形又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形,故本选项不合题意.故选:C.5.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形【分析】根据对角线互相平分的四边形是平行四边形即可得出结论.【解答】解:∵O是AC、BD的中点,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);故选:A.6.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3B.4C.5D.6【分析】作DE⊥OB于E,如图,根据角平分线的性质得DE=DP=4,然后根据三角形面积公式计算S△ODQ.【解答】解:作DE⊥OB于E,如图,∵OC是∠AOB的角平分线,DP⊥OA,DE⊥OB,∴DE=DP=4,∴S△ODQ=×3×4=6.故选:D.7.如果把分式中的x、y的值都扩大为原来的3倍,那么分式的值()A.不变B.扩大为原来的3倍C.扩大为原来的6倍D.扩大为原来的9倍【分析】根据分式的基本性质即可求出答案【解答】解:∵==,∴分式的值不变.故选:A.8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.点N C.点P D.点Q【分析】先确定点A与点E为对应点,点B和点F为对应点,则根据旋转的性质得旋转中心在AE的垂直平分线上,也在BF的垂直平分线上,所以作AE的垂直平分线和BF 的垂直平分线,它们的交点即为旋转中心.【解答】解:∵△ABC经过旋转后得到△EFD,∴点A与点E为对应点,点B和点F为对应点,∴旋转中心在AE的垂直平分线上,也在BF的垂直平分线上,作AE的垂直平分线和BF的垂直平分线,它们的交点为N点,如图,即旋转中心为N点.故选:B.9.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.BE=CD D.DA=DE【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【解答】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项不符合题意;C、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项不符合题意;D、添加DA=DE无法求出∠DAB=∠EAC,故本选项符合题意.故选:D.10.如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中.①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S=5.正确的个数是()四边形AEFDA.1个B.2个C.3个D.4个【分析】由AB2+AC2=BC2,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=150°,由SAS证得△ABC≌△DBF,得AC=DF=AE =4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=150°,则③正确;∠FDA=180°﹣∠DFE=30°,S▱AEFD=AD•(DF•sin30°)=6,则④不正确;即可得出结果..【解答】解:∵32+42=52,∴AB2+AC2=BC2,∴∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,∴∠DAE=150°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③正确;∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,∴S▱AEFD=AD•(DF•sin30°)=3×(4×)=6,故④不正确;∴正确的个数是3个,故选:C.二.填空题(共7小题)11.“m2是非负数”,用不等式表示为m2≥0.【分析】根据非负数即“≥0”可得答案.【解答】解:“m2是非负数”,用不等式表示为m2≥0,故答案为:m2≥0.12.已知分式,当x=1时,分式无意义,则a=3.【分析】把x=1代入分式,根据分式无意义得出关于a的方程,求出即可.【解答】解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.13.已知x+y=2019,x﹣y=,则x2﹣y2的值为2020.【分析】将x2﹣y2写成(x+y)(x﹣y),然后利用整体代入求值即可.【解答】解:x2﹣y2=(x+y)(x﹣y)=2019×=2020,故答案为:2020.14.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是x<1.【分析】利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.【解答】解:根据图象得,当x<1时,y1<y2.故答案为:x<115.如图,在Rt△ABC中,∠C=90°,∠ABC═30°,AB=10,将△ABC沿CB方向向右平移得到△DEF,若四边形ABED的面积为20,则平移距离为4.【分析】先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,AD∥BE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=4,即得平移距离.【解答】解:在Rt△ABC中,∵∠ABC=30°,∴AC=AB=5,∵△ABC沿CB向右平移得到△DEF,∴AD=BE,AD∥BE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于20,∴AC•BE=20,即5BE=20,∴BE=4,即平移距离等于4.故答案为:4.16.如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=150度.【分析】根据正方形ABCD和正六边形BEFGHC,的内角度数,即可求出∠ABE的度数.【解答】解:因为正方形ABCD的每个内角为90°正六边形BEFGHC的每个内角为120°,则∠ABE=360°﹣90°﹣120°=150°.故答案为:150.17.如图,小芳作出了边长为1的第1个正△A1B1C1,然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第n个正△A n B n∁n的边长是.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,分别求出各三角形的边长,再根据等边三角形的边长的变换规律求解即可.【解答】解:由题意得,△A2B2C2的边长为,△A3B3C3的边长为()2,△A4B4C4的边长为()3,…,∴△A n B n∁n的边长为()n﹣1,即,故答案为:.三.解答题18.解不等式组:.【考点】CB:解一元一次不等式组.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣2,解不等式②,得:x≤1,则不等式组的解集为﹣2<x≤1.19.先化简,再求值:÷(x﹣),其中x=.【考点】6D:分式的化简求值.【专题】513:分式;66:运算能力.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,当x=时,原式===+2.20.如图,在▱ABCD中,∠B=60°.(1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:△ABE是等边三角形.【考点】KL:等边三角形的判定;L5:平行四边形的性质;N2:作图—基本作图.【专题】13:作图题;555:多边形与平行四边形;64:几何直观;67:推理能力.【分析】(1)作∠A的角平分线与边BC交于点E即可;(2)根据平行四边形的性质即可证明△ABE是等边三角形.【解答】解:(1)如图,线段AE即为所求;(2)证明:在▱ABCD中,∵BC∥AD,∴∠B+∠BAD=180°,∵∠B=60°,∴∠BAD=120°,∵AE平分∠BAD,∴∠1=∠2=BAD=60°,∴∠AEB=60°∴△ABE是等边三角形.21.本学期开学后,某校为了宜传关于新冠肺炎的防控知识,需印制若干份资料,印刷厂有甲、乙两种收费方式,甲种方式每份资料收费0.1元,另需收取制版费20元.乙种方式每份资料收费0.15元,不需要收取制版费.(1)设资料印刷的费用为y元,印刷的数量为x份,请分别写出两种收费方式下y与x 之间的函数关系式;(2)该校某年级每次需印制100~600(含100和600)份资料,选择哪种印刷方式较合算?【考点】FH:一次函数的应用.【专题】533:一次函数及其应用;66:运算能力;69:应用意识.【分析】(1)根据题意,可以直接写出两种收费方式下y与x之间的函数关系式;(2)根据题意,可知刚开始乙种印刷方式合算,故令(1)中的两个函数值相等,求出相应的x的值,然后即可写出x在什么范围内,选择哪种印刷方式合算.【解答】解:(1)由题意可得,y甲=0.1x+20,y乙=0.15x;(2)令0.1x+20=0.15x,得x=400,故当印刷100≤x<400时,选择乙种印刷方式,当x=400时,两家印刷方式一样,当400<x≤600时,选择甲种印刷方式.22.如图,D是△ABC内一点,连接DB、DC、DA,并将AB、DB、DC、AC的中点E、H、G、F依次连接,得到四边形EHGF.(1)求证:四边形EHGF是平行四边形;(2)若BD⊥CD,AD=7,BD=8,CD=6,求四边形EHGF的周长.【考点】KX:三角形中位线定理;L7:平行四边形的判定与性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)证EF是△ABC的中位线,HG是△DBC的中位线,得出EF∥BC,EF=BC,HG∥BC,HG=BC,则EF∥HG,EF=HG,即可得出结论;(2)由勾股定理求出BC=10,则EF=GH=BC=5,由三角形中位线定理得出EH=AD=,即可得出答案.【解答】(1)证明:∵AB、DB、DC、AC的中点是E、H、G、F,∴EF是△ABC的中位线,HG是△DBC的中位线,∴EF∥BC,EF=BC,HG∥BC,HG=BC,∴EF∥HG,EF=HG,∴四边形EHGF是平行四边形;(2)解:∵BD⊥CD,BD=8,CD=6,∴BC===10,∴EF=GH=BC=5,∵AB、DB、DC、AC的中点是E、H、G、F,∴EH是△ABD的中位线,GF是△ACD的中位线,∴EH=AD=,GF=AD=,∴四边形EHGF的周长=2EH+2EF=7+10=17.23.李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】522:分式方程及应用;524:一元一次不等式(组)及应用;69:应用意识.【分析】(1)设李大伯第一次购进的小玩具有x个,则第二次购进的小玩具有2x个,根据单价=总价÷数量结合第二次购进的单价比第一次贵5元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每个小玩具售价是y元,根据利润=销售收入﹣成本结合总利润率不低于20%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设李大伯第一次购进的小玩具有x个,则第二次购进的小玩具有2x个,依题意,得:﹣=5,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:李大伯第一次购进的小玩具有200个.(2)设每个小玩具售价是y元,依题意,得:(200+200×2)y﹣8000﹣3000≥(8000+3000)×20%,解得:y≥22.答:每个小玩具售价至少是22元.24.(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是a2﹣b2=(a+b)(a﹣b);(2)根据下面四个算式:52﹣32=(5+3)×(5﹣3)=8×2;112﹣52=(11+5)×(11﹣5)=16×6=8×12152﹣32=(15+3)×(15﹣3)=18×12=8×27192﹣72=(19+7)×(19﹣7)=26×12=8×39请你再写出两个(不同于上面算式)具有上述规律的算式;(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.【考点】4G:平方差公式的几何背景;59:因式分解的应用.【专题】512:整式;66:运算能力;68:模型思想;69:应用意识.【分析】(1)利用两个图形,分别求出阴影部分的面积,即可得出关系式;(2)任意写出两个奇数的平方差,右边写出8的倍数的形式即可;(3)两个奇数的平方差一定能被8整除;任意写一个即可,如:(2n+1)2﹣(2n﹣1)2=8n.【解答】解:(1)图甲的阴影部分的面积为:a2﹣b2,图乙平行四边形的底为(a+b),高为(a﹣b),因此面积为:(a+b)(a﹣b),所以a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)32﹣12=(3+1)(3﹣1)=4×2=8×1,172﹣52=(17+5)(17﹣5)=22×12=8×33,(3)两个奇数的平方差一定能被8整除;设较大的奇数为(2n+1)较小的奇数为(2n﹣1),则,(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=8n,∴(2n+1)2﹣(2n﹣1)2=8n.25.如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当△CDE的周长最小时,求CD的值;(3)求证:AD2+DB2=2CE2.【考点】KY:三角形综合题.【专题】15:综合题;67:推理能力.【分析】(1)先判断出∠ACD=∠BCE,得出△ADC≌△CBE(SAS),即可得出结论;(2)先判断出DE=CD,进而得出△CDE的周长为(2+)CD,进而判断出当CD ⊥AB时,CD最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE2+DB2=DE2,即可得出结论.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ADC和△CBE中,,∴△ADC≌△CBE(SAS),∴AD=BE;(2)解:在Rt△CDE中,CD=CE,∴DE=CD,知识像烛光,能照亮一个人,也能照亮无数的人。
2022-2023学年广东省佛山市南海区名校八年级(上)第一次联考数学试卷
2022-2023学年广东省佛山市南海区名校八年级(上)第一次联考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列一组数:﹣8、2.7、﹣3、、0.66666…、0.2、0.080080008…,其中无理数的个数为()A.0B.1C.2D.32.(3分)已知+(b+3)2=0,则(a+b)2020的值为()A.0B.1C.﹣1D.20203.(3分)的平方根是()A.16B.2C.±2D.4.(3分)下列各组数中,能构成直角三角形的一组是()A.1,2,3B.1,1,C.2,3,4D.7,15,175.(3分)如图,矩形ABCD的边AD在数轴上,若点A与数轴上表示数1的点重合,AB=1,以点A为圆心,对角线AC的长为半径作弧与数轴负半轴交于一点,则该点表示的数为()A.﹣3B.C.+1D.﹣16.(3分)下列计算正确的是()A.+=B.4﹣=4C.×=D.÷=47.(3分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为2,3,4.则△ABC的面积为()A.B.C.D.8.(3分)如图,有一个圆柱,底面圆的直径AB=cm,高BC=12cm,P为BC的中点,一只蚂蚁从A点出发沿着圆柱的表面爬到P点的最短距离为()A.9cm B.10cm C.11cm D.12cm9.(3分)如图,△ABC中,∠ACB=90°,AC=8,BC=6,将△ADE沿DE翻折,使点A与点B重合,则CE 的长为()A.B.2C.D.10.(3分)如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P,作P1P2⊥OP1,且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)如果=x﹣1,则x的取值范围是.12.(3分)若有意义,则a=.13.(3分)若一个正整数的两个平方根为2m﹣6与3m+1,则这个数是.14.(3分)如图,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前大致有米.15.(3分)如图,以直角三角形的三边为边向外作三个正方形A、B、C.若S A=24,S B=16,则S C=.16.(3分)动手操作:在长方形纸片ABCD中,AB=6,AD=10.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.三、解答题(共52分)17.计算:(1);(2).18.(1)不使用计算器,估计的近似值(精确到0.01);(2)已知的整数部分为a,小数部分为b.求的值.19.如图,已知A、B、D在同一条直线上,且∠A=∠D=∠CBE=90°,AB=DE.(1)求证:△CAB≌△BDE;(2)若设BC=c,AC=a,AB=b,试利用这个图形验证勾股定理.20.如图,网格中每个小正方形的边长都为1.(1)求四边形ABCD的面积;(2)求∠BCD的度数.21.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?22.(1)观察下列各式的特点:,,,,…根据以上规律可知:(填“>”“<”或“=”).(2)观察下列式子的化简过程:,,=,…根据观察,请写出式子(n≥2,且n是正整数)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:+||+•••+||.23.如图,在△ABC中,AB=AC=5cm,BC=6cm,BD⊥AC交AC于点D.动点P从点C出发,按C→A→B→C 的路径运动,且速度为4cm/s,设出发时间为ts.(1)求BC上的高;(2)当CP⊥AB时,求t的值;(3)当点P在BC边上运动时,若△CDP是等腰三角形,求出所有满足条件的t的值.。
广东省佛山市南海区2019-2020学年第二学期七年级期末考试数学试卷 解析版
2019-2020学年广东省佛山市南海区七年级(下)期末数学试卷一.选择题(共10小题)1.计算a3•a3的结果等于()A.a9B.a6C.a27D.a02.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.3.下列事件中,随机事件是()A.水中捞月B.明天太阳从西方升起C.抛一枚硬币,落地后硬币的正面朝上D.三角形的内角和是180°4.如图,小华同学的家在点P处,他想尽快到达公路边去接从外地回来的外婆,他选择沿线段PC去公路边,他的这一选择用到的数学知识是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或248.已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为18,则△ABE的面积为()A.5B.4.5C.4D.99.若3x=5,3y=2,则3x﹣y的值为()A.B.C.3D.﹣310.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°二.填空题(共7小题)11.将0.000705用科学记数法表示为.12.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=度.13.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.14.若x2+y2=8,xy=2,则(x﹣y)2=.15.如图,△ABC中,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9cm,△BCE 的周长为15cm,则BC的长为cm.16.用七巧板摆成如图所示图形,一只蚂蚁在此图形上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在阴影部分的概率是.17.如图,△ABC中,∠BDC=90°,BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,若∠A=40°,则∠F=°.三.解答题18.计算:(π﹣3)0﹣|﹣2|+()﹣2.19.尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.20.如图所示转盘平均分成10份,分别标有1,2,…,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的区域对应的数字即为转出的数字(若指针指向分界处要重新转动,直至指到非分界处).(1)转出的数字为奇数的概率是多少?(2)转出的数字是3的倍数的概率是多少?21.先化简,再求值:[(x+2y)(x﹣2y)+(x﹣y)2﹣2x2]÷4y,其中x=﹣1,y=2.22.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.(1)试证明∠ABC=∠ADC;(2)若∠ADC=58°,求∠AEC的度数.23.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.现有如图1所示边长为a的正方形纸片,边长为b的正方形纸片,长宽分别为a、b的长方形纸片若干,取部分纸片摆成如图2所示的一个长方形,根据这个长方形的面积可以得到的等式是:(a+b)(a+2b)=a2+3ab+2b2;(1)请利用若干图1所示纸片,摆出图形来说明:当a,b都不为0时,(a+b)2≠a2+b2(画图并写出过程).(2)小明同学用图1中边长为a的正方形纸片x张,边长为b的正方形纸片y张,长宽分别为a、b的长方形纸片z张,拼出一个面积为(2a+b)(a+3b)的长方形,则x=,y=,z=.24.△ABC和△DBC中,∠BAC=∠BDC=90°,延长CD、BA交于点E.(1)如图1,若AB=AC,试说明BO=EC;(2)如图2,∠MON为直角,它的两边OM、ON分别与AB、EC所在直线交于点M、N,如果OM=ON,那么BM与CO是否相等?请说明理由.25.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为km;点M表示的实际意义是;(2)小张开车的速度是km/h;小李骑摩托车的速度是km/h.(3)试求出发多长时间后,两人相距60km.2019-2020学年广东省佛山市南海区七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.计算a3•a3的结果等于()A.a9B.a6C.a27D.a0【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选:B.2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.3.下列事件中,随机事件是()A.水中捞月B.明天太阳从西方升起C.抛一枚硬币,落地后硬币的正面朝上D.三角形的内角和是180°【分析】直接利用随机事件的定义结合三角形内角和定理分别分析得出答案.【解答】解:A、水中捞月,是不可能事件,不合题意;B、明天太阳从西方升起,是不可能事件,不合题意;C、抛一枚硬币,落地后硬币的正面朝上,是随机事件,符合题意;D、三角形的内角和是180°,是必然事件,不合题意.故选:C.4.如图,小华同学的家在点P处,他想尽快到达公路边去接从外地回来的外婆,他选择沿线段PC去公路边,他的这一选择用到的数学知识是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】根据垂线段的性质解答即可.【解答】解:某同学的家在P处,他想尽快到达公路边去接从外地回来的外婆,他选择P→C路线,是因为垂直线段最短,故选:D.5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;故选:A.6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.7.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或24【分析】根据等腰三角形的两边长分别为4和10,分两种情况讨论:4为腰时;10为腰时;再由三角形的三边关系定理得出结论.【解答】解:∵一个等腰三角形的两边长分别为4和10,∴当4为腰时,三边长分别为4,4,10,∵4+4=8<10,∴不成立;当10为腰时,三边长分别为4,10,10,∴三角形的周长为24cm.故选:C.8.已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为18,则△ABE的面积为()A.5B.4.5C.4D.9【分析】根据等底等高的三角形的面积相等可知三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵AD是△ABC的中线,∴S△ABD=S△ABC=×18=9,∵BE是△ABD的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.9.若3x=5,3y=2,则3x﹣y的值为()A.B.C.3D.﹣3【分析】根据同底数幂的运算法则即可求出答案.【解答】解:原式=3x÷3y=5÷2=,故选:A.10.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°【分析】直接利用长方形的性质结合平行线的性质得出∠3=∠6=∠4,再利用四边形内角和定理得出答案.【解答】解:如图所示:∵四边形ABCD是长方形,∴AD∥BC,∴∠3=∠6,∵把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,∴∠3=∠4=∠6,∵∠1=48°,∴∠5=132°,∴∠6=∠4==69°,∴∠2=180°﹣69°=111°.故选:D.二.填空题(共7小题)11.将0.000705用科学记数法表示为7.05×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000705用科学记数法表示为7.05×10﹣4.故答案为:7.05×10﹣4.12.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=125度.【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质来求∠AOD的度数.【解答】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°,故答案为:125.13.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是15.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,n=15.故估计n大约有15个.故答案为:15.14.若x2+y2=8,xy=2,则(x﹣y)2=4.【分析】直接利用完全平方公式去括号,再将已知代入求出答案.【解答】解:∵x2+y2=8,xy=2,∴(x﹣y)2=x2+y2﹣2xy=8﹣4=4.故答案为:4.15.如图,△ABC中,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9cm,△BCE 的周长为15cm,则BC的长为6cm.【分析】根据线段垂直平分线的性质得出AE=BE,求出AC+BC=15cm,再代入求出即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∵△BCE的周长为15cm,∴BC+CE+BE=15cm,∴BC+CE+BE=BC+CE+AE=BC+AC=15cm,∵AC=9cm,∴BC=6cm,故答案为:6.16.用七巧板摆成如图所示图形,一只蚂蚁在此图形上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在阴影部分的概率是.【分析】根据七巧板对应图形的面积,结合概率公式即可得到结论.【解答】解:设正方形的边长为a,则阴影部分的为×a×a++a2=a2,∴它停在阴影部分的概率==,故答案为:.17.如图,△ABC中,∠BDC=90°,BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,若∠A=40°,则∠F=52.5°.【分析】想办法求出∠FBC+∠FCB即可解决问题.【解答】解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=140°﹣90°=50°,∵BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,∴∠FBD+∠FCD=×50°=37.5°,∴∠FBC+∠FCB=37.5°+90°=127.5°,∴∠F=180°﹣127.5°=52.5°,故答案为52.5.三.解答题18.计算:(π﹣3)0﹣|﹣2|+()﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】511:实数;66:运算能力.【分析】原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=1﹣2+9=8.19.尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.【考点】KB:全等三角形的判定;N3:作图—复杂作图.【专题】13:作图题.【分析】先作一个∠D=∠A,然后在∠D的两边分别截取ED=BA,DF=AC,连接EF 即可得到△DEF;【解答】解:如图,△DEF即为所求.20.如图所示转盘平均分成10份,分别标有1,2,…,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的区域对应的数字即为转出的数字(若指针指向分界处要重新转动,直至指到非分界处).(1)转出的数字为奇数的概率是多少?(2)转出的数字是3的倍数的概率是多少?【考点】X4:概率公式.【分析】(1)由转盘平均分成10份,分别标有1,2,…,10这10个数字,且转出的数字为奇数的有5种情况,直接利用概率公式求解即可求得答案;(2)由转出的数字是3的倍数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:(1)∵转盘平均分成10份,分别标有1,2,…,10这10个数字,转出的数字为奇数的有5种情况,∴转出的数字为奇数的概率是:=;(2)∵转出的数字是3的倍数的有3种情况,∴转出的数字是3的倍数的概率是:.21.先化简,再求值:[(x+2y)(x﹣2y)+(x﹣y)2﹣2x2]÷4y,其中x=﹣1,y=2.【考点】4J:整式的混合运算—化简求值.【专题】512:整式;66:运算能力.【分析】原式中括号中利用平方差公式,完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣4y2+x2﹣2xy+y2﹣2x2)÷4y=(﹣3y2﹣2xy)÷4y=﹣y﹣x,当x=﹣1,y=2时,原式=﹣+=﹣1.22.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.(1)试证明∠ABC=∠ADC;(2)若∠ADC=58°,求∠AEC的度数.【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【分析】(1)根据平行线的性质即可得到答案(2)根据平行线的性质定理和角平分线的性质定理解答即可.【解答】(1)证明:∵AB∥CD,∴∠ABC=∠DCE,∵AD∥BC,∴∠ADC=∠DCE,∴∠ABC=∠ADC,(2)解:∵AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣58°=122°,∵AE平分∠BAD,∴,∵AD∥BC,∴∠AEC=∠DAE=61°.23.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.现有如图1所示边长为a的正方形纸片,边长为b的正方形纸片,长宽分别为a、b的长方形纸片若干,取部分纸片摆成如图2所示的一个长方形,根据这个长方形的面积可以得到的等式是:(a+b)(a+2b)=a2+3ab+2b2;(1)请利用若干图1所示纸片,摆出图形来说明:当a,b都不为0时,(a+b)2≠a2+b2(画图并写出过程).(2)小明同学用图1中边长为a的正方形纸片x张,边长为b的正方形纸片y张,长宽分别为a、b的长方形纸片z张,拼出一个面积为(2a+b)(a+3b)的长方形,则x=2,y=3,z=7.【考点】4B:多项式乘多项式;4D:完全平方公式的几何背景.【专题】511:实数;512:整式;64:几何直观;68:模型思想;69:应用意识.【分析】(1)画出面积拼图,说明(a+b)2=a2+2ab+b2,进而得出(a+b)2≠a2+b2;(2)利用多项式乘以多项式,根据结果得出答案.【解答】解:(1)如图,根据面积可得(a+b)2=a2+2ab+b2;因此有(a+b)2≠a2+b2;(2)∵(2a+b)(a+3b)=2a2+7ab+3b2,∴x=2,y=3,z=7.故答案为:2,3,7.24.△ABC和△DBC中,∠BAC=∠BDC=90°,延长CD、BA交于点E.(1)如图1,若AB=AC,试说明BO=EC;(2)如图2,∠MON为直角,它的两边OM、ON分别与AB、EC所在直线交于点M、N,如果OM=ON,那么BM与CO是否相等?请说明理由.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】553:图形的全等;554:等腰三角形与直角三角形;67:推理能力.【分析】(1)证明△BAO≌△CAE便可得结论;(2)证明△BOM≌△CNO便可得BM=CO.【解答】解:(1)∵∠BAC=∠BDC=90°,∴∠ABO+∠AOB=∠DCO+∠DOC=90°,∵∠AOB=∠DOC,∴∠ABO=∠DCO,∵∠EAC=180°﹣∠BAC=90°,∴∠BAO=∠EAC,在△BAO和△CAE中,,∴△BAO≌△CAE(ASA),∴BO=CE;(2)相等.理由如下:∵∠MON=∠BAC=90°,∴∠AMO+∠AOM=∠AOM+∠AON=90°,∴∠AMO=∠AON,∴∠BMO=∠NOC,由(1)知∠ABO=∠DCO,在△BOM和△CNO中,,∴△BOM≌△CNO(AAS),∴BM=CO.25.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为240km;点M表示的实际意义是出发2小时小张与小李相遇;(2)小张开车的速度是80km/h;小李骑摩托车的速度是40km/h.(3)试求出发多长时间后,两人相距60km.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用;68:模型思想;69:应用意识.【分析】(1)根据题意和函数图象中的数据解答即可;(2)根据题意和函数图象中的数据可以求得小张开车的速度和小李骑摩托车的速度;(3)由(2)的结论分情况列方程解答即可.【解答】解:(1)根据函数图象中的数据可得A、B两市之间的路程为240km,M表示的实际意义是出发2小时小张与小李相遇;故答案为:240;出发2小时小张与小李相遇;(2)小张开车的速度为:240÷3=80(km/h),小李骑摩托车的速度为:240÷2﹣80=40(km/h).故答案为:80;40;(3)设出发x小时两人相距60km.由三种情况:相遇前:80x+40x+60=240,解得x=1.5;相遇后小张未到达B市前:80x+40x﹣60=240,解得x=2.5;小张返回途中:40x﹣80(x﹣3)=60,解得x=4.5;答:出发1.5,2.5,4.5小时,两人相距60km.。
广东省佛山市南海区2019春八年级下学期期末统考数学试题
广东省佛山市南海区2019春八年级下学期期末统考数学试题(总9页)页内文档均可自由编辑,此页仅为封面南海区2018~2019学年度第二学期期末考试八 年 级 数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1. 在下列汽车标志中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2. 如果a b >,那么下列各式正确的是( )A . a +5<b +5B .5a <5bC .a ﹣5<b ﹣5D .b a 3131-<-3. 使分式22+x 有意义的x 的取值范围是( )A . 2-≠xB .2≠xC .2->xD .2-<x 4. 下列从左到右的变形,是因式分解的是( )A .(x ﹣y )(x + y )= x 2﹣y 2B .2x 2+4xy = 2x (x +2y )C .x 2+2x +3 = x (x +2)+3D .(m ﹣2)2 = m 2﹣4m +4 5. 如图,在平行四边形ABCD 中,下列结论中错误的是( ) A .∠1=∠2 B .AB ⊥AC C . AB =CD D .∠BAD +∠ABC=180°6. 下面的平面图形中,不能镶嵌平面的图形是( )A .正三角形B . 正六边形 C. 正四边形 D .正五边形 7.若不等式组的解集为13x -≤<,则图中表示正确的是( )8. 一个多边形的每个内角都等于135°,则这个多边形的边数为( ) A . 5 B . 6 C . 7 D . 8 9. 如图,在Rt △ABC 中,∠A =90°,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,若AE =1,则BE 的长为( ) A .2B .3C .2D .1DEBCA10. 如图,∆ABC 中,∠ACB =90°,∠ABC =22.5°,将∆ABC 绕着点C 顺时针旋转,使得点A 的对应点D 落在边BC 上,点B 的对应点是点E ,连接BE .下列说法中,正确的有( )①DE ⊥AB ②∠BCE 是旋转角 ③∠BED =30° ④∆BDE 与∆CDE 面积之比是2:1 A . 1个 B. 2个 C. 3个 D. 4个第5题图第9题图 第10题图二、填空题(本大题共6小题,每小题4分,共24分) 11. 因式分解:3x x -= .12. 若分式25x x -+的值为0,则x = . 13.已知实数x y 、满足08|3|=-+-y x ,则以x y 、的值为两边长的等腰三角形的周长是 .14.如图是一次函数y =kx +b 的图象,当y <0时,x 的取值范围是 .GFADxyCDBAOP15.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,连接BE ,点F 、G 分别是BE 、BC 的中点,若AB =6,BC =4,则FG 的长 .16.如图,在平面直角坐标系中,∆OAB 是边长为4的等边三角形,OD 是AB 边上的高,点P 是OD 上的一个动点,若点C 的坐标是)3,0(-,则PA +PC 的最小值是 .三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解不等式组:⎪⎩⎪⎨⎧+≥->+3322012x x x18.先化简,再求值:21111a a a a -⎛⎫-÷⎪++⎝⎭,其中13a =+19.如图,在平行四边形ABCD 中,AE =CF ,求证:四边形BFDE 是平行四边形.第14题图 第15题图 第16题图F C DABE四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,∆ABC的顶点均在格点上.(1)先将∆ABC向上平移4个单位后得到的∆A1B1C1,再将∆A1B1C1绕点C1按顺时针方向旋转90°后所得到的∆A2B2 C1,在图中画出∆A1B1C1和∆A2B2 C1.(2)∆A2B2 C1能由∆ABC绕着点O旋转得到,(3)请在网格上标出点O.21.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务,求原计划每小时抢修道路多少米?22.如图1,在∆ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F.(1)求∠BFC的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF,EG与DG交于点G,求∠EGD的度数.DEFAB CGDEFAB C第22题图1 第22题图2五、解答题(三)(本大题共3小题,每小题9分,共27分)第19题图第20题图23. 如图所示,点P 的坐标为(1,3),把点P 绕坐标原点O 逆时针旋转90°后得到点Q . (1)写出点Q 的坐标是________;(2)若把点Q 向右平移a 个单位长度,向下平移a 个单位长度后,得到的点(,)M m n 落在第四象限,求a 的取值范围;(3)在(2)条件下,当a 取何值,代数式2+25m n +24. 已知∆ABC 为等边三角形,点D 、E 分别在直线AB 、BC 上,且AD =BE . (1)如图1,若点D 、E 分别是AB 、CB 边上的点,连接AE 、CD 交于点F ,过点E 作∠AEG =60°,使EG=AE ,连接GD ,则∠AFD = (填度数); (2)在(1)的条件下,猜想DG 与CE 存在什么关系,并证明;(3)如图2,若点D 、E 分别是BA 、CB 延长线上的点,(2)中结论是否仍然成立?请给出判断并证明.GE CG第24题图1 第24题图225. 如图,在长方形ABCD 中,AB=6,BC=8,点O 在对角线AC 上,且OA=OB=OC ,点P 是边CD 上的一个动点,连接OP ,过点O 作OQ ⊥OP ,交BC 于点Q . (1)求OB 的长度;(2)设DP= x ,CQ= y ,求y 与x 的函数表达式(不要求写自变量的取值范围);第23题图(3)若∆OCQ 是等腰三角形,求CQ 的长度.QABP第25题图参考答案与评分标准(八年级数学)一、选择题(每题3分,共30分)11.)1)(1(-+x x x 12.2 13.19 14.2x < 15.1 16.31 三、解答题(本大题3小题,每小题6分,共18分)以下评分细则仅供参考.17.解:解①得x >21-, …………2分 解②得x≤0, …………4分 则不等式组的解集是:21-<x≤0. …………6分 18. 解:21111a a a a -⎛⎫-÷⎪++⎝⎭=1111(1)a a a a a +-+⨯+- …………2分=11a -, …………4分 当1a =+=3. …………6分19.证明:∵四边形ABCD 是平行四边形, …………1分 ∴AB ∥CD ,且AB =CD , …………2分 又∵AE =CF ,∴AB-AE=CD-FC …………3分 ∴BE =DF , …………4分 ∴BE ∥DF 且BE =DF , …………5分 ∴四边形BFDE 是平行四边形. …………6分20.解: (1)如图所示,△A 1B 1C 1和△A 2B 2 C 1为所求. ---------1分O21.解:设原计划每小时抢修道路x 米, …………1分 根据题意得:x1200+()x %5011200-3600+=10, …………4分 解得:x =280, …………5分经检验:x =280是原方程的解. …………6分 答:原计划每小时抢修道路280米. …………7分22. (1)∵BD 、CE 分别平分∠ABC 、∠ACB∴CBA CBD ∠=∠21,ACB BCE ∠=∠21…………1分∵10080180=-=∠+∠BCA CBA …………2分∴∠BFC= 13010021-180)(21180=︒⨯︒=∠+∠-︒BCA CBA …………3分(2)∵EG 、DG 分别平分∠AEF 、∠ADF∴AEF GEF ∠=∠21,ADF GDF ∠=∠21…………4分∵36080130150AEF ADF ∠+∠=-︒-︒=︒ …………5分∴︒=︒⨯=∠+∠⨯=∠+∠7515021)(21ADF AEF GDF GEF …………6分∴∠EGD 360-GEF GDF EFD =︒-∠+∠∠()36075130155=-︒-︒=︒ …………7分BB第22题图(1) 第22题图(2) 23. 解:(1)Q (-3,1) …………2分(2)把点Q (-3,1)向右平移a 个单位长度,向下平移a 个单位长度后,得到的点M 的坐标为(-3+a ,1-a ), …………3分而M 在第四象限,…………4分解得a>3, …………5分 即a 的范围为a >3.(3)由(2)得,m=-3+a ,n=1-a∴2225(3)2(1)5m n a a ++=-+-+ 269225a a a =-++-+2816a a =-+ …………6分24a =-() …………7分∵240a -≥() …………8分 ∴当a =4时,代数式225m n ++的最小值为0 …………9分 24.(1) ∠AFD= 60° …………1分(2)DG=CE ,DG//CE ; …………3分(每写出1个得1分)-3010a a +>⎧⎨-<⎩证明:∵△ABC 为等边三角形,∴AC =AB ,∠DAC=∠ABC =60°, 在△ACD 和△BAE 中,⎪⎩⎪⎨⎧==AB AC ABE ∠=DAC ∠BEAD ∴△ACD ≌△BAE (SAS ) …………4分 ∴∠ACD=∠BAE .∴∠AFD=∠ACD+∠EAC =∠BAE +∠EAC =∠B AC= 60°; ∵∠AFD= ∠AEG=60°∴GE//CD …………5分 ∵GE=AE=CD∴四边形GECD 是平行四边形 …………6分 ∴DG=CE ,DG//CE (3)延长EA 交CD 于点F ∵△ABC 为等边三角形, ∴AC =AB ,∠BAC=∠ABC =60°, ∴∠DAC=∠ABE =120°, 在△ACD 和△BAE 中,⎪⎩⎪⎨⎧==AB AC ABE ∠=DAC ∠BE AD ∴△ACD ≌△BAE (SAS ), …………7分 ∴∠ACD=∠BAE , CD=AE∴∠EFC=∠DAF+∠BDC =∠BAE +∠AEB =∠ABC = 60° ∴∠EFC=∠GEFGG∴GE//CD …………8分 ∵GE=AE=CD∴四边形GECD 是平行四边形 …………9分 ∴DG=CE ,DG//CE25. 解:(1)在Rt ⊿ABC 中,108622=+=AC ∴OB=OA=OC=5102121=⨯=AC …………2分 (2)延长QO 交AD 于点E ,连接PE 、PQ …………3分 在△COQ 和△AOE 中,⎪⎩⎪⎨⎧=QO C ∠=O E A ∠OQ C ∠=OE A ∠OCOA ∴△AEO ≌△CQO (SAS ) …………4分 ∴OE=OQ ,AE=CQ=y ∵OP ⊥OQ ∴OP 垂直平分EQ∴PE=PQ …………5分 ∴22PQ EP =在Rt ⊿EDP 中,222)8(x y EP +-=在Rt ⊿PCQ 中,222-6)(x y PQ += ∴2222-6)8()(x y x y +=+-∴4743+=x y …………6分 (3)分三种情况考虑:①如图1,若CQ=CO 时,此时CQ=5, …………7分 ②如图2,若OQ=CQ 时,作OF ⊥BC ,垂足为点F ,QABP10 则BF=CF=4(三线合一) ∴34522=-=OF∵OQ=CQ∴22CQ OQ =∴2223)4(y y =+- ∴825=y ∴825=CQ …………8分③若OQ=OC 时,此时点Q 与点B 重合,点P 在DC 延长线上,此情况不成立。
2020-2021学年广东省佛山市南海区八年级(下)期末数学试卷 (解析版)
2020-2021学年广东省佛山市南海区八年级(下)期末数学试卷一、选择题(共10小题,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)23.若分式有意义,则x的取值范围是()A.x≠﹣2B.x≠2C.x>2D.x≠04.下列不等式变形正确的是()A.由4x﹣1≥0得4x>1B.由5x>3得x>15C.由﹣2x<4得x<﹣2D.由>0得y>05.+的运算结果正确的是()A.B.C.D.a+b6.如图,在Rt△ABC中∠C=90°,BD是∠ABC的平分线,若CD=4,AB=14,则S△ABD =()A.56B.28C.14D.127.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为()A.32°B.36°C.40°D.42°8.如图,已知AB=AC,AB=10,BC=6,以A,B两点为圆心,大于AB的长为半径画弧,两弧相交于点M、N,直线MN与AC相交于点D,则△BDC的周长为()A.16B.20C.22D.269.如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2021次闪烁呈现出来的图形是()A.B.C.D.10.如图,在▱ABCD中,已知AD=15cm,点P在AD边上以1cm/s的速度从点A向点D 运动,点Q在BC边上以4cm/s的速度从点C出发在BC上往返运动,两个点同时出发,当点P到达点D时停止运动(同时Q点也停止),设运动时间为t(s)(t>0),若以P、D、Q、B四点为顶点的四边形是平行四边形,则t的值错误的是()A.6B.8C.10D.12二、填空题(本大题共7小题,每小题4分,共28分)11.因式分解:x2﹣4x=.12.点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是.13.已知实数x、y满足|x﹣6|+(y﹣7)2=0,则以x、y的值为两边长的等腰三角形的周长为.14.分式方程的解是.15.▱ABCD中,∠A+∠C=200°,则∠A=.16.如图,△ABC中,∠ACB=90°,CD⊥AB交AB于点D,∠A=30°,BD=1.5cm,则AD=cm.17.如图,在△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC=DC,△ABC的顶点A在△ECD的斜边DE上.下列结论:①连接BD,∠BDC=45°;②∠DAB=∠ACE;③AE+AC=AD;④AE2+AD2=2AC2.请写出所有正确结论的序号是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.解不等式组:,并把解集在数轴上表示出来.19.先化简,再求值:(﹣1)÷,其中x=2021.20.如图,△ABC中,∠C=90°,∠A=30°,AB边上的垂直平分线DE,交AC于点D,交AB于点E,连接BD,求证:BD平分∠CBA.四、解答题(二)(本大题3小题,每小题8分,共24分)21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A (2,﹣2),B(0,﹣5),C(0,﹣2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称,则A1的坐标为.(2)平移△ABC,使点B的对应点B2的坐标为(2,3),画出平移后对应的△A2B2C2,则A2的坐标为.(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为.22.如图1,在△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DEFC是平行四边形.(2)如图2,当△ABC是等边三角形且边长是8,求四边形DEFC的面积.23.2021年2月1日后,南海区将用1年时间实现“双百目标”,即全区生活垃圾分类示范100%达标创建、生活垃圾八大产生源100%达标创建,我区的生活垃圾分类工作正式进入“提速”模式.某小区准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用8000元购买A种垃圾桶的组数量与用11000元购买B种垃圾桶的组数量相等.(1)求A、B两种垃圾桶每组的单价.(2)该小区物业计划用不超过18000元的资金购买A、B两种垃圾桶共40组.则最多可以购买B种垃圾桶多少组?五、解答题(三)(本大题2小题,每小题10分,共20分)24.在学习一元一次不等式与一次函数中,小明在同一个坐标系中发现直线l1:y1=kx+b(k ≠0)与x轴交于点A且与直线l2:y2=x交于点B,并且有如下信息:①当x>2时,y1<y2;当x<2时,y1>y2.②当y1<0时,x<﹣4.根据信息解答下列问题:(1)求直线l1的表达式.(2)过点A的直线l3:y3=与直线l2交于点C,求△ABC的面积.(3)若点D是x轴上的动点,点E是直线AB上的动点,是否存在以A、C、D、E为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的D点坐标.若不存在,请说明理由.25.如图,两个全等的等边三角形△ABC与△ACD,拼成的四边形ABCD中,AC=6,点E、F分别为AB、AD边上的动点,满足BE=AF,连接EF交AC于点G,连接BD与CE、AC、CF分别交于点M、O、N,且AC⊥BD.(1)求证:△CEF是等边三角形.(2)△AEF的周长最小值是.(3)若BE=3,求证:BM=MN=DN.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.解:A.既是轴对称图形,又是中心对称图形,故此选项符合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.2.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)2解:A、(x+1)(x﹣1)=x2﹣1,从左到右是整式的乘法运算,不合题意;B、x2﹣2x+1=(x﹣1)2,不合题意;C、a(x﹣y)=ax﹣ay,不合题意;D、x2+2x+1=(x+1)2,从左到右是因式分解,符合题意.故选:D.3.若分式有意义,则x的取值范围是()A.x≠﹣2B.x≠2C.x>2D.x≠0解:∵分式有意义,∴x﹣2≠0,∴x≠2,故选:B.4.下列不等式变形正确的是()A.由4x﹣1≥0得4x>1B.由5x>3得x>15C.由﹣2x<4得x<﹣2D.由>0得y>0解:A、由4x﹣1≥0得4x≥1,原变形错误,故此选项不符合题意;B、由5x>3得x>,原变形错误,故此选项不符合题意;C、由﹣2x<4得x>﹣2,原变形错误,故此选项不符合题意;D、由>0得y>0,原变形正确,故此选项符合题意;故选:D.5.+的运算结果正确的是()A.B.C.D.a+b解:+=+=故+的运算结果正确的是.故选:C.6.如图,在Rt△ABC中∠C=90°,BD是∠ABC的平分线,若CD=4,AB=14,则S△ABD =()A.56B.28C.14D.12解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=4,∴△ABD的面积=AB•DE=×14×4=28.故选:B.7.如图,将边长相等的正方形、正五边形和正六边形摆放在平面上,则∠1为()A.32°B.36°C.40°D.42°解:正方形的内角为90°,正五边形的内角为=108°,正六边形的内角为=120°,∠1=360°﹣90°﹣108°﹣120°=42°,故选:D.8.如图,已知AB=AC,AB=10,BC=6,以A,B两点为圆心,大于AB的长为半径画弧,两弧相交于点M、N,直线MN与AC相交于点D,则△BDC的周长为()A.16B.20C.22D.26解:∵AB=AC,AB=10,∴AC=10,由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=10+6=16.故选:A.9.如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2021次闪烁呈现出来的图形是()A.B.C.D.解:观察图形的变化可知:每旋转一次,旋转角为90°,即每4次旋转一周,∵2021÷4=505...1,即第2021次与第1次的图案相同.故选:A.10.如图,在▱ABCD中,已知AD=15cm,点P在AD边上以1cm/s的速度从点A向点D 运动,点Q在BC边上以4cm/s的速度从点C出发在BC上往返运动,两个点同时出发,当点P到达点D时停止运动(同时Q点也停止),设运动时间为t(s)(t>0),若以P、D、Q、B四点为顶点的四边形是平行四边形,则t的值错误的是()A.6B.8C.10D.12解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵P在AD上运动,∴t≤15÷1=15,即t≤15,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B﹣C,由题意得:4t﹣15=15﹣t,解得:t=6;②点Q的运动路线是C﹣B﹣C﹣B,由题意得:15﹣(4t﹣30)=15﹣t,解得:t=10;③点Q的运动路线是C﹣B﹣C﹣B﹣C,由题意得:4t﹣45=15﹣t,解得:t=12;综上所述,t的值为6或10或12,故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.因式分解:x2﹣4x=x(x﹣4).解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).12.点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(﹣1,1).解:点M(2,﹣1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是(2﹣3,﹣1+2),即(﹣1,1),故答案为:(﹣1,1).13.已知实数x、y满足|x﹣6|+(y﹣7)2=0,则以x、y的值为两边长的等腰三角形的周长为19或20.解:根据题意得x﹣6=0,y﹣7=0,解得x=6,y=7,①6是腰长时,三角形的三边分别为6、6、7,能组成三角形,三角形的周长为19.②6是底边时,三角形的三边分别为6、7、7,能组成三角形,三角形的周长为20.故答案为19或20.14.分式方程的解是x=3.解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.15.▱ABCD中,∠A+∠C=200°,则∠A=100°.解:∵四边形ABCD是平行四边形,∴∠A=∠C,又∵∠A+∠C=200°,∴∠A=100°.故答案是:100°.16.如图,△ABC中,∠ACB=90°,CD⊥AB交AB于点D,∠A=30°,BD=1.5cm,则AD= 4.5cm.解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=30°,∵BD=1.5cm,∴BC=2BD=3cm,AB=2BC=6cm,∴AD=AB﹣BD=4.5cm.故答案是:4.5.17.如图,在△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC=DC,△ABC的顶点A在△ECD的斜边DE上.下列结论:①连接BD,∠BDC=45°;②∠DAB=∠ACE;③AE+AC=AD;④AE2+AD2=2AC2.请写出所有正确结论的序号是①②④.解:∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,CE=CD,∠ACB=∠ECD=90°,∠E=∠CDE=45°,∠CAB=∠CBA=45°,∵∠DAB+∠CAB=∠ACE+∠E,∴∠DAB=∠ACE,故②正确;∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CDB=∠E=45°,故①正确;∴AE=BD,∠CEA=∠CDB=45°,∴∠ADB=∠CDB+∠EDC=90°,∴△ADB是直角三角形,∴AD2+BD2=AB2,∴AD2+AE2=AB2,∵△ABC是等腰直角三角形,∴AB=AC,∴AE2+AD2=2AC2,故④正确;在AD上截取DF=AE,连接CF,如图所示:在△ACE和△FCD中,,∴△ACE≌△FCD(SAS),∴AC=FC,当∠CAF=60°时,△ACF是等边三角形,则AC=AF,此时AE+AC=DF+AF=AD,故③不正确;故答案为:①②④.三、解答题(一)(本大题3小题,每小题6分,共18分)18.解不等式组:,并把解集在数轴上表示出来.解:解①得:x>2,解②得:x≥﹣1,∴不等式组的解集是x>2,将不等式组的解集表示在数轴上如下:19.先化简,再求值:(﹣1)÷,其中x=2021.解:(﹣1)÷=•==﹣,当x=2021时,原式=﹣=﹣.20.如图,△ABC中,∠C=90°,∠A=30°,AB边上的垂直平分线DE,交AC于点D,交AB于点E,连接BD,求证:BD平分∠CBA.【解答】证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.四、解答题(二)(本大题3小题,每小题8分,共24分)21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A (2,﹣2),B(0,﹣5),C(0,﹣2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称,则A1的坐标为(﹣2,﹣2).(2)平移△ABC,使点B的对应点B2的坐标为(2,3),画出平移后对应的△A2B2C2,则A2的坐标为(4,6).(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为(1,2).解:(1)如图,△A1B1C1即为所求,A1的坐标为(﹣2,﹣2).故答案为:(﹣2,﹣2).(2)如图,△A2B2C2即为所求,A2的坐标为(4,6).故答案为:(4,6).(3)旋转中心P的坐标为(1,2),故答案为:(1,2).22.如图1,在△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DEFC是平行四边形.(2)如图2,当△ABC是等边三角形且边长是8,求四边形DEFC的面积.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∵CF=BC,∴DE=CF,∴四边形DEFC是平行四边形.(2)解:过点D作DH⊥BC于H,如图2所示:∵△ABC是等边三角形,D为AB的中点∴∠B=60°,BD=AB=4,∵∠DHB=90°,∴∠BDH=30°,∴BH=DB=2,∴DH==,∵CF=CB=4,∴S四边形DEFC=CF•DH=4×2=8.23.2021年2月1日后,南海区将用1年时间实现“双百目标”,即全区生活垃圾分类示范100%达标创建、生活垃圾八大产生源100%达标创建,我区的生活垃圾分类工作正式进入“提速”模式.某小区准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用8000元购买A种垃圾桶的组数量与用11000元购买B种垃圾桶的组数量相等.(1)求A、B两种垃圾桶每组的单价.(2)该小区物业计划用不超过18000元的资金购买A、B两种垃圾桶共40组.则最多可以购买B种垃圾桶多少组?解:(1)设A种垃圾桶每组的单价为x元,则B种垃圾桶每组的单价为(x+150)元,依题意得:,解得:x=400,经检验,x=400是原方程的解,且符合题意,∴x+150=400+150=550(元).答:A种垃圾桶每组的单价为400元,B种垃圾桶每组的单价为550元.(2)设购买B种垃圾桶y组,则购买A种垃圾桶(40﹣y)组,依题意得:400(40﹣y)+550y≤18000,解得:y≤,又∵y为正整数,∴y的最大值为13.答:最多可以购买B种垃圾桶13组.五、解答题(三)(本大题2小题,每小题10分,共20分)24.在学习一元一次不等式与一次函数中,小明在同一个坐标系中发现直线l1:y1=kx+b(k ≠0)与x轴交于点A且与直线l2:y2=x交于点B,并且有如下信息:①当x>2时,y1<y2;当x<2时,y1>y2.②当y1<0时,x<﹣4.根据信息解答下列问题:(1)求直线l1的表达式.(2)过点A的直线l3:y3=与直线l2交于点C,求△ABC的面积.(3)若点D是x轴上的动点,点E是直线AB上的动点,是否存在以A、C、D、E为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的D点坐标.若不存在,请说明理由.解:(1)∵当x>2时,y1<y2;当x<2时,y1>y2,∴点B的横坐标为2,当x=2时,y2=×2=3,∴直线l1,l2的交点坐标为B(2,3),∵当y1<0时,x<﹣4,∴直线l1与x轴的交点坐标为A(﹣4,0),将A(﹣4,0),B(2,3)代入y1=kx+b中,∴,解得:,∴直线l1的表达式为y1=x+2;(2)联立,解得:,∴直线l2,l3的交点坐标为C(﹣1,﹣),∴S△ABC==9;(3)存在,∵点E是直线AB上的动点,点D是x轴上的动点,∴设E点坐标为(x,x+2),D点坐标为(m,0),又∵A(﹣4,0),C(﹣1,﹣),在以A、C、D、E为顶点的四边形是平行四边形中,①当AC,DE为平行四边形的对角线时,,解得,∴此时D点坐标为(2,0),②当AD,CE为平行四边形的对角线时,,解得,此时D点坐标为(2,0),③当AE,CD为平行四边形的对角线时,,解得,此时D点坐标为(﹣10,0),综上,满足条件的点D的坐标为(2,0)或(﹣10,0).25.如图,两个全等的等边三角形△ABC与△ACD,拼成的四边形ABCD中,AC=6,点E、F分别为AB、AD边上的动点,满足BE=AF,连接EF交AC于点G,连接BD与CE、AC、CF分别交于点M、O、N,且AC⊥BD.(1)求证:△CEF是等边三角形.(2)△AEF的周长最小值是6+3.(3)若BE=3,求证:BM=MN=DN.【解答】(1)证明:∵△ABC,△ACD是全等的等边三角形,∴AC=BC,∠ABC=∠DAC=∠BCA=60°,∵AF=BE,在△CBE和△CAF中,,∴△BEC≌△AFC(SAS),∴CE=CF,∠BCE=∠ACF,∴∠BCE+∠ACE=∠ACF+∠ACE,∴∠ECF=∠BCA=60°,∴△CEF是等边三角形.(2)解:∵△AEF的周长=AE+AF+EF=AE+BE+EF=AB+EF=6+EF,∴EF的值最小时,△AEF的周长最小,∵△ECF是等边三角形,∴EF=CE,∴当CE⊥AB时,CE的值最小,此时CE=AC•sin60°=3,∴△AEF的周长的最小值为6+3,故答案为:6+3.(3)证明:∵△ABC,△ACD是全等的等边三角形,AC⊥BD ∴AO=CO,BO=DO,∠ABO=∠ABC=30°∵BE=3,AB=AC=6,∴点E为AB中点,点F为AD中点,∴AO=AB=3,∴BO=,∴BD=6,∵△ABC是等边三角形,BE=AE=3,∴CE⊥AB,∴BM=2EM,∴∴BM=2,同理可得DN=2,∴MN=BD﹣BM﹣DN=2∴BM=MN=DN.。
2019—2020年最新鲁教版(五四制)八年级数学上册期末复习检测题及答案解析(试卷).doc
八年级(上)期末数学试卷(五四学制)一、选择题(共12小题,每小题3分,满分36分)1.下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣1=(a﹣1)2D.﹣a2+4b2=(2b+a)(2b﹣a)2.下列条件中,能判定四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.对角线相等C.一条对角线平分另一条对角线D.两条对角线互相平分3.绕某个点旋转180°后不能与自身重合的图形是()A.平行四边形B.长方形C.线段 D.等边三角形4.一件衬衫售价a元,利润为m%(m>0),则这种商品每件的成本是()A.B.C.a(1+m%)D.a(1﹣m%)5.某公司要出口一批易拉罐啤酒,标准体积为每瓶350mL,现抽取10瓶样品进行检测,它们的体积与标准体积的差值(单位:mL)如下:﹣6,+3,0,+3,0,0,﹣3,0,+3,+6,则这10瓶易拉罐啤酒体积的平均数及众数为()A.350.6mL,350mL B.0.6mL,0mLC.356mL,353mL D.350.6mL,353mL6.在▱ABCD中,EF过对角线的交点O,AB=4,BC=5,OF=1.5,则四边形ABFE的周长是()A.11 B.11.5 C.12 D.12.57.2710﹣324可以被20和30之间的某两个整数整除,这两个数是()A.22,24 B.23,25 C.26,28 D.27,298.设p=﹣,q=﹣,则p,q的关系是()A.p=q B.p>q C.p<q D.p=﹣q9.如图,在菱形ABCD中,对角线的交点为O,点E是BC的中点,∠BAD=110°,则∠BOE=()A.35° B.40° C.45° D.50°10.如图,已知点A(1,0),B(4,0),将线段AB平移得到线段CD,点B的对应点C恰好落在y轴上,且四边形ABCD的面积为9,则四边形ABCD的周长为()A.14 B.16 C.18 D.2011.如图,将△ABC绕点P逆时针旋转90°得到△A′B′C,则点P的坐标是()A.(1,1)B.(2,1)C.(1,2)D.(1,3)12.如图,过边长为2的正方形ABCD的中心O引两条互相垂直的射线,分别与正方形的边交于E,F两点,则线段EF长的取值范围是()A.≤EF≤2 B.≤EF≤2C.≤EF≤2D.≤EF≤二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣3x﹣4= .14.=(a﹣1)+ .15.某学校开展数学竞赛,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班的5名选手的复赛成绩如图所示.根据图示回答:一班复赛成绩的中位数是分,二班复赛成绩的极差是分.16.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是°.17.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,则∠BFD= .18.如图,将三条线段CD,EF,GN分别绕点O旋转,不能与线段AB重合的线段是.三、解答题(共7小题)19.把下列各式因式分解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2;(2)(x﹣1)(x﹣2)+.20.先化简,再求值:(﹣)÷(a+1﹣),其中a=﹣.21.如图,在▱ABCD中,AB=AE,连接BE且延长CD的延长线于点F.求证:AD=CF.22.小明和小亮在课外活动中,报名参加了短跑训练.在五次百米训练中,所测成绩如图所示,请根据图中所给信息解答以下问题:分别计算他们的平均数、极差和方差.23.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.24.如图,菱形ABCD的边长为5,过点A作对角线AC的垂线,交CB的延长线于点E,AE=4.(1)求证:BE=BC;(2)求S菱形ABCD.25.如图,P是等腰Rt△ACB内一点,AC=BC,且PA=8,PB=10,PC=.将△CPB绕点C 按逆时针方向旋转后,得到△CP′A.(1)直接写出旋转的最小角度;(2)求∠APC的度数.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣1=(a﹣1)2D.﹣a2+4b2=(2b+a)(2b﹣a)考点:提公因式法与公式法的综合运用.分析:分别利用提取公因式法以及公式法分解因式得出即可.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故此选项错误;B、2a﹣4b+2=2(a﹣2b+1),故此选项错误;C、a2﹣1=(a﹣1)(a+1),故此选项错误;D、﹣a2+4b2=(2b+a)(2b﹣a),正确.故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.2.下列条件中,能判定四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.对角线相等C.一条对角线平分另一条对角线D.两条对角线互相平分考点:平行四边形的判定.分析:根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线互相平分的四边形是平行四边形;④有一组对边相等且平行的四边形是平行四边形)进行判断即可.解答:解:如图:A、一组对边平行,另一组对边相等的四边形可能是等腰梯形,故本选项错误;B、对角线相等不能判定四边形是平行四边形,故本选项错误;C、一条对角线平分另一条对角线不能判定四边形是平行四边形,故本选项错误;D、两条对角线互相平分的四边形是平行四边形,故本选项正确.故选D.点评:本题考查了平行四边形的判定,解题的关键是了解平行四边形的所有判定定理,难度不大.3.绕某个点旋转180°后不能与自身重合的图形是()A.平行四边形B.长方形C.线段 D.等边三角形考点:旋转对称图形.分析:利用中心对称图形的性质进而分析得出即可.解答:解;A、平行四边形,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;B、长方形,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;C、线段,是中心对称图形,绕某个点旋转180°后能与自身重合的图形,故此选项错误;D、等边三角形,不是中心对称图形,绕某个点旋转180°后不能与自身重合的图形,故此选项正确;故选:D.点评:此题主要考查了旋转对称图形,正确把握中心对称图形的定义是解题关键.4.一件衬衫售价a元,利润为m%(m>0),则这种商品每件的成本是()A.B.C.a(1+m%)D.a(1﹣m%)考点:列代数式(分式).分析:根据进价与利润之间的关系求出即可.解答:解:设这种商品每件的成本是x元,根据题意可得:x(1+m%)=a,解得:x=.故选:B.点评:此题主要考查了列代数式,正确掌握进价与利润之间的关系是解题关键.5.某公司要出口一批易拉罐啤酒,标准体积为每瓶350mL,现抽取10瓶样品进行检测,它们的体积与标准体积的差值(单位:mL)如下:﹣6,+3,0,+3,0,0,﹣3,0,+3,+6,则这10瓶易拉罐啤酒体积的平均数及众数为()A.350.6mL,350mL B.0.6mL,0mLC.356mL,353mL D.350.6mL,353mL考点:众数;加权平均数.分析:首先求得﹣6,+3,0,+3,0,0,﹣3,0,+3,+6这10个数的平均数以及众数,然后分别加上350ml,即可求解.解答:解:平均数是:350+(﹣6+3+0+3+0+0﹣3+0+3+6)=350+0.6=350.6ml,﹣10,+5,0,+5,0,0,﹣5,0,+5,+10的众数是0,因而这10瓶啤酒的质量的众数是:350+0=350ml.故选A.点评:本题考查了众数与平均数的求法,正确理解定理,理解与这10瓶罐头质量的平均数及众数的关系是关键.6.在▱ABCD中,EF过对角线的交点O,AB=4,BC=5,OF=1.5,则四边形ABFE的周长是()A.11 B.11.5 C.12 D.12.5考点:平行四边形的性质.分析:先利用平行四边形的性质求出AB、CD、BC、AD的值,可利用全等的性质得到△AEO ≌△CFO,即可求出四边形的周长.解答:解:已知AB=4,BC=5,OE=1.5,根据平行四边形的性质,AB=CD=4,BC=AD=5,在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,所以△AEO≌△CFO,OE=OF=1.5,则ABFE的周长=EFCD的周长=ED+CD+CF+EF=(DE+CF)+AB+EF=5+4+3=12.故选C.点评:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.2710﹣324可以被20和30之间的某两个整数整除,这两个数是()A.22,24 B.23,25 C.26,28 D.27,29考点:因式分解的应用.分析:将2710﹣324利用分解因式的知识进行分解,再结合题目能被20至30之间的两个整数整除即可得出答案.解答:解:2710﹣324=324(36﹣1)=324(32﹣1)(33+1)∵可以被20和30之间的某两个整数整除,∴这两个数是26,28.故选:C.点评:此题考查因式分解的实际运用,利用提公因式法和平方差公式是解决问题的关键.8.设p=﹣,q=﹣,则p,q的关系是()A.p=q B.p>q C.p<q D.p=﹣q考点:分式的加减法.专题:计算题.分析:把p与q代入p+q中计算,即可做出判断.解答:解:∵p=﹣,q=﹣,∴p+q=﹣+﹣=﹣=1﹣1=0,则p=﹣q,故选D点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.如图,在菱形ABCD中,对角线的交点为O,点E是BC的中点,∠BAD=110°,则∠BOE=()A.35° B.40° C.45° D.50°考点:菱形的性质.分析:由菱形的性质可求得∠ABC,进一步可求得∠ABO,再利用中位线定理可得∠BOE=∠ABO,可求得答案.解答:解:∵四边形ABCD为菱形,∴AD∥BC,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣110°=70°,∴∠ABO=∠ABC=35°,又∵E为BC中点,∴OE为△ABC的中位线,∴OE∥AB,∴∠BOE=∠ABO=35°,故选A.点评:本题主要考查菱形的性质,掌握菱形对边平行、对角线互相平分且平分每一组对角是解题的关键.10.如图,已知点A(1,0),B(4,0),将线段AB平移得到线段CD,点B的对应点C恰好落在y轴上,且四边形ABCD的面积为9,则四边形ABCD的周长为()A.14 B.16 C.18 D.20考点:坐标与图形变化-平移.分析:根据平移的性质可得四边形ABCD是平行四边形,然后根据点A、B的坐标求出AB,再利用平行四边形的面积求出OC,然后利用勾股定理列式求出BC,再根据平行四边形的周长公式列式计算即可得解.解答:解:∵线段AB平移得到线段CD,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵A(1,0),B(4,0),∴AB=4﹣1=3,∵四边形ABCD的面积为9,∴3•OC=9,解得OC=3,在Rt△BOC中,由勾股定理得,BC===5,∴四边形ABCD的周长=2(3+5)=16.故选B.点评:本题考查了坐标与图形变化﹣平移,勾股定理,平行四边形的判定与性质,熟记性质并求出BC长度是解题的关键.11.如图,将△ABC绕点P逆时针旋转90°得到△A′B′C,则点P的坐标是()A.(1,1)B.(2,1)C.(1,2)D.(1,3)考点:坐标与图形变化-旋转.分析:先根据旋转的性质得到点A的对应点为点A′,点B的对应点为点B′,再根据旋转的性质得到旋转中心在线段AA′的垂直平分线,也在线段BB′的垂直平分线,即两垂直平分线的交点为旋转中心.解答:解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选:C.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.如图,过边长为2的正方形ABCD的中心O引两条互相垂直的射线,分别与正方形的边交于E,F两点,则线段EF长的取值范围是()A.≤EF≤2 B.≤EF≤2C.≤EF≤2D.≤EF≤考点:全等三角形的判定与性质;正方形的性质.分析:如图,作辅助线;证明△AOE≌△DOF,进而得到OE=OF,此为解决该题的关键性结论;求出OE的范围,借助勾股定理即可解决问题.解答:解:如图,连接EF;∵四边形ABCD为正方形,∴∠EAO=∠FDO=45°,AO=DO;∵∠EOF=90°,∠AOD=90°,∴∠AOE=∠DOF;在△AOE与△DOF中,,∴△AOE≌△DOF(SAS),∴OE=OF(设为λ);由勾股定理得:EF2=OE2+OF2=2λ2;由题意可得:1≤λ≤,∴,故选A.点评:该题以正方形为载体,主要考查了正方形的性质、全等三角形的判定等几何知识点的应用问题;牢固掌握全等三角形的判定等几何知识点,是灵活解题的基础和关键.二、填空题(共6小题,每小题3分,满分18分)13.分解因式:x2﹣3x﹣4= (x+1)(x﹣4).考点:因式分解-十字相乘法等.分析:因为﹣4=1×(﹣4),1+(﹣4)=﹣3,所以x2﹣3x﹣4=(x+1)(x﹣4).解答:解:x2﹣3x﹣4=(x+1)(x﹣4).点评:本题考查十字相乘法分解因式,因为x2+(a+b)x+ab=(x+a)(x+b),只要符合此形式,就可以进行因式分解,称为十字相乘法.14.=(a﹣1)+ .考点:分式的加减法.专题:计算题.分析:原式分子配方后,计算即可得到结果.解答:解:原式==(a﹣1)+,故答案为:点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.15.某学校开展数学竞赛,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班的5名选手的复赛成绩如图所示.根据图示回答:一班复赛成绩的中位数是80 分,二班复赛成绩的极差是30 分.考点:中位数;条形统计图;极差.分析:根据中位数和极差的概念求解.解答:解:八(1)班的成绩按照从小到大的顺序排列为:60,75,80,80,95,则中位数为:80,八(2)班的成绩的极差为:95﹣65=30.故答案为:80.30.点评:本题考查了中位数和极差的概念:极差是指一组数据中最大数据与最小数据的差;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是140 °.考点:多边形内角与外角.分析:根据多边形的内角和公式即可得出结果.解答:解:∵九边形的内角和=(9﹣2)•180°=1260°,又∵九边形的每个内角都相等,∴每个内角的度数=1260°÷9=140°.故答案为:140.点评:本题考查多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n﹣2)•180°.17.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,则∠BFD= 80°.考点:平行四边形的性质.分析:根据平行四边形的对角相等可得∠A=∠C,对边相等可得AB=CD,再利用三角形的内角和定理求出∠ABE,然后求出四边形BGDF是平行四边形,最后利用平行四边形的邻角互补列式计算即可得解.解答:解:在在▱ABCD中,∠A=∠C=50°,AB=CD,∵∠E=30°,∴∠ABE=180°﹣50°﹣30°=100°,∵AF=CG,∴BF=DG,又∵BF∥DG,∴四边形BGDF是平行四边形,∴∠BFD=180°﹣∠ABE=180°﹣100°=80°.故答案为:80°.点评:本题考查了平行四边形的性质,三角形的内角和定理,熟练掌握平行四边形的判定方法与性质是解题的关键.18.如图,将三条线段CD,EF,GN分别绕点O旋转,不能与线段AB重合的线段是线段CD .考点:旋转的性质.分析:连结OA、OC、ON、OF、OB、OD、OG、OE,设小方格正方形的边长为1,如图,易得OA=ON=OF=2,而OC=,根据对应点到旋转中心的距离相等可判断线段CD绕点O旋转,不能与线段AB重合.解答:解:连结OA、OC、ON、OF、OB、OD、OG、OE,设小方格正方形的边长为1,如图,∵OA=ON=OF=2,而OC=,OB=OG=OE=3,而OD=,∴线段EF,GN分别绕点O旋转,能与线段AB重合,而线段CD绕点O旋转,不能与线段AB 重合.故答案为线段CD.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的判定与性质.三、解答题(共7小题)19.把下列各式因式分解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2;(2)(x﹣1)(x﹣2)+.考点:提公因式法与公式法的综合运用.分析:(1)首先提取负号,进而利用完全平方公式分解因式得出即可;(2)首先去括号,进而利用完全平方公式分解因式即可.解答:解:(1)﹣9a2+6a(a﹣b)﹣(a﹣b)2=﹣[(3a﹣(a﹣b)]2=﹣(2a+b)2;(2)(x﹣1)(x﹣2)+=x2﹣3x+2+=(x﹣)2.点评:此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.20.先化简,再求值:(﹣)÷(a+1﹣),其中a=﹣.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.解答:解:原式=÷=•=,当a=﹣时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,在▱ABCD中,AB=AE,连接BE且延长CD的延长线于点F.求证:AD=CF.考点:平行四边形的性质.专题:证明题.分析:利用平行四边形的性质得出AD∥BC,AB∥FC,AD=BC,进而得出∠CBF=∠F,即可得出AD=CF.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥FC,AD=BC,∴∠ABE=∠F,∠CBE=∠FED,∵AB=AE,∴∠ABE=∠AEB,∴∠CBF=∠F,∴BC=FC,∴AD=CF.点评:此题主要考查了平行四边形的性质,利用平行线的性质得出∠CBF=∠F是解题关键.22.小明和小亮在课外活动中,报名参加了短跑训练.在五次百米训练中,所测成绩如图所示,请根据图中所给信息解答以下问题:分别计算他们的平均数、极差和方差.考点:方差;折线统计图;算术平均数;极差.分析:从折线图中得出小明和小亮的五次百米训练的成绩数据,再由公式计算平均数,极差,方差.解答:解:小明的短跑平均成绩=(13.3+13.4+13.3+13.2+13.3)÷5=13.3秒,小亮的短跑平均成绩=(13.2+13.4+13.1+13.5+13.3)÷5=13.3秒,小明的极差=13.4﹣13.2=0.2,小亮的极差=13.5﹣13.1=0.4,小明的方差=[(13.3﹣13.3)2+(13.4﹣13.3)2+(13.3﹣13.3)2+(13.2﹣13.3)2+(13.3﹣13.3)2]÷5=0.004,小亮的方差=[(13.2﹣13.3)2+(13.4﹣13.3)2+(13.1﹣13.3)2+(13.5﹣13.3)2+(13.3﹣13.3)2]÷5=0.02.点评:本题考查平均数、极差和方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.手机专卖店经营的某种手机去年销售总额为10万元,今年每部售价比去年降低500元,若今年卖出的数量与去年卖出的数量相同,且销售总额比去年减少10%,求今年每部手机的售价是多少元.考点:分式方程的应用.分析:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,根据今年的销售总额比去年减少10%,列方程求解.解答:解:设今年每部手机的售价是x元,则去年每部手机的售价是(x+500)元,由题意得,x=100000×(1﹣10%),解得:x=4500,经检验,x=4500是原分式方程的解,且符合题意.答:今年每部手机的售价是4500元.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图,菱形ABCD的边长为5,过点A作对角线AC的垂线,交CB的延长线于点E,AE=4.(1)求证:BE=BC;(2)求S菱形ABCD.考点:菱形的性质.分析:(1)由条件可证得∠E+∠ACB=∠EAB+∠BAC,可证得∠E=∠EAB,可得结论;(2)由(1)的结论,结合菱形的性质可得S菱形ABCD=S△EAC,结合条件可求得答案.解答:(1)证明:∵四边形ABCD为菱形,∴AB=BC,∴∠BAC=∠ACB,∵EA⊥AC,∴∠E+∠ACB=∠EAB+∠BAC,∴∠E=∠EAB,∴BA=BE,∴BE=BC;(2)解:在Rt△ACE中,BC=BA=BE=5,∴CE=10,∴AC===2,∵四边形ABCD为菱形,∴△ABC≌△ADC,∴S菱形ABCD=2S△ABC=S△EAC=AE•AC=×4×2=4.点评:本题主要考查菱形的性质,掌握菱形的四条边都相等是解题的关键.25.如图,P是等腰Rt△ACB内一点,AC=BC,且PA=8,PB=10,PC=.将△CPB绕点C 按逆时针方向旋转后,得到△CP′A.(1)直接写出旋转的最小角度;(2)求∠APC的度数.考点:旋转的性质.专题:计算题.分析:(1)由等腰直角三角形的性质得CA=CB,∠ACB=90°,再根据旋转的性质得∠ACB 等于旋转角,于是可判断旋转的最小角度为90°;(2)连结PP′,如图,根据旋转的性质得∠P′CP=∠ACB=90°,CP′=CP=,P′A=PB=10,则可判断△CPP′为等腰直角三角形,得到PP′=CP=6,∠CPP′=45°,然后利用勾股定理的逆定理判断△APP′为直角三角形,∠APP′=90°,于是利用∠APC=∠APP′+∠CPP′计算即可.解答:解:(1)∵△ACB为等腰直角三角形,∴CA=CB,∠ACB=90°,∵△CPB绕点C按逆时针方向旋转后,得到△CP′A,∴∠ACB等于旋转角,∴旋转的最小角度为90°;(2)连结PP′,如图,∵△CPB绕点C按逆时针方向旋转后,得到△CP′A,∴∠P′CP=∠ACB=90°,CP′=CP=,P′A=PB=10,∴△CPP′为等腰直角三角形,∴PP′=CP=×=6,∠CPP′=45°,在△APP′中,∵PP′=6,PA=8,P′A=10,∴PP′2+PA2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴∠APC=∠APP′+∠CPP′=90°+45°=135°.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.。
2019-2020学年广东省广州市番禺区八年级(上)期末数学试卷
三.解答题(本大题共 9 小题,满分 68 分.解答应写出文字说明、证明过程或演算步骤.) 17.(6 分)(海淀区一模)如图,在△ABC 中,D,E 是 BC 边上两点,
2019-2020 学年广东省广州市番禺区八年级(上)期末数学试卷
答案与试题解析
一.选择题(本大题共 10 小题,每小题 2 分,满分 20 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
1.(2 分)(2019 秋•番禺区期末)点 M(1,﹣2)关于 y 轴的对称点坐标为( )
A.(﹣1,2)
内角的和.
4.(2 分)(苏州)下列四个图案中,不是轴对称图案的是( )
A.
B.
C.
D.
【考点】轴对称图形.
【分析】根据轴对称的概念对各选项分析判断利用排除法求解.
解:A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
A.5cm
B.6cm
C.7cm
D.8cm
二.填空题(共 6 题,每题 2 分,共 12 分.)
11.(2 分)(2002•宁德)计算:(xy2)2= .
12.(2 分)(成都)等腰三角形的一个底角为 50°,则它的顶角的度数为 .
13.(2 分)(雁江区模拟)分解因式:b3﹣6b2+9b= .
10.(2 分)(2019 秋•番禺区期末)如图,在△ABC 中,∠C=90°,AC=BC,AD 是
2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)
2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。
A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。
二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。
10.若一个正数的两个平方根是x-5和x+1,则x= 。
2022-2023学年广东省佛山市南海区大沥镇八年级(下)期中数学试卷+答案解析(附后)
2022-2023学年广东省佛山市南海区大沥镇八年级(下)期中数学试卷1. 下列图形中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.2. 若,则下列各式中一定成立的是( )A. B. C. D.3. 下列生活现象中不是平移现象的是( )A. 站在运行的电梯上的人B. 坐在直线行驶的列车上的乘客C. 拉开抽屉D. 时钟上分针的运动4. 等腰三角形的一个角是,则它顶角的度数是( )A. 或B.C. 或D.5. 若不等式组的解集是,则m的取值范围是( )A. B. C. D.6. 如图,函数和的图象交于点,则不等式的解集是( )A.B.C.D.7. 如图,将沿BC方向平移2cm得到,若的周长为16cm,则四边形ABFD的周长为( )A. 16cmB. 18cmC. 20cmD. 22cm8. 下列说法,错误的是( )A. 一个三角形两边的垂直平分线的交点到这个三角形三个顶点的距离相等B. “若,则”的逆命题是假命题C. 在角的内部到角的两边距离相等的点一定在这个角的平分线上D. 用反证法证明“三角形中必有一个角不大于”,先假设这个三角形中有一个内角大于9. 如图,在的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A. 点MB. 格点NC. 格点PD. 格点Q10. 如图,在中,,,在中,,,CD,BE相交于点F,有下列四个结论:①;②FA平分;③;④其中,正确的结论有( )A. ①②③④B. ①③④C. ②③D. ②③④11. 若代数式的值不大于6,则可列不等式为:______ .12. 已知点M,将它向上平移4个单位后得到点,则点M的坐标是______ .13. 如图,已知P是平分线上一点,,交OA于点C,,垂足为D,且,,则的面积等于______ .14. 已知关于x,y的方程组的解满足,则k的取值范围是______ .15. 如图所示,已知中,,,,点P是BC边上的一个动点,点P从点B开始沿方向运动,且速度为每秒2cm,设运动的时间为,若是以AB为腰的等腰三角形,则运动时间______ .16. 解不等式:,并把它的解集在数轴上表示出来.17. 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买多少支笔?18. 在等腰三角形ABC中,,DE垂直平分AB,已知,求19. 在平面直角坐标系xOy中的位置如图所示.作关于点C成中心对称的;将向右平移4个单位,作出平移后的20. 已知,如图,为等边三角形,,AD、BE相交于点求证:≌;求的度数;若于Q,,,求AD的长.21. 如图,点P是中一点,于点A,于点B,连接AB,求证:OP平分;若,,求的面积.22. 为更好地推进生活垃圾分类工作,改善城市生态环境,某小区准备购买A、B两种型号的垃圾箱,通过对市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需390元,购买2个A型垃圾箱比购买1个B型垃圾箱少用20元.求每个A型垃圾箱和每个B型垃圾箱分别多少元?该小区计划用不多于1500元的资金购买A、B两种型号的垃圾箱共20个,且A型号垃圾箱个数不多于B型垃圾箱个数的3倍,则该小区购买A、B两种型号垃圾箱的方案有哪些?23. 已知是边长为4的等边三角形,点D是射线BC上的动点,将线段AD绕点D顺时针方向旋转得到线段DE,连接如图1,求证:;①当______ 时,;直接写出结果②点D在运动过程中,的周长是否存在最小值?若存在,请直接写出周长的最小值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】C【解析】解:如果,那么,根据等式性质得出,若c小于等于0不成立,故此选项错误;B.如果,那么,根据等式性质得出,故此选项错误;C.如果,那么,根据等式性质得出,故此选项正确;D.如果,那么,根据等式性质得出,不等式两边乘或除以同一个负数,不等号的方向改变.故此选项错误;故选:根据不等式的基本性质分别进行分析即可.此题主要考查了不等式的基本性质,不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变.不等式两边乘或除以同一个正数,不等号的方向不变.不等式两边乘或除以同一个负数,不等号的方向改变.3.【答案】D【解析】解:根据平移的性质,钟摆的运动过程中,方向不断的发生变化,不是平移运动.故选:根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,可得答案.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻折.4.【答案】A【解析】解:分两种情况讨论:①当的角为顶角时,底角为;②当角为底角时,另一底角也为,顶角为;综上所述:等腰三角形的一个角是,则它顶角的度数是或;故选:分两种情况讨论:①当的角为顶角时;当角为底角时;容易得出结论.本题是开放题目,考查了等腰三角形的性质;熟练掌握等腰三角形的性质是解题的关键;注意分类讨论,避免漏解.5.【答案】C【解析】解:解不等式,得:,且不等式组的解集为,,故选:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】A【解析】解:把代入得,解得,所以A点坐标为,当时,故选先利用正比例函数解析式确定A点坐标,然后观察函数图得到当时,的图象都在直线的上方,由此得到不等式的解集.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.7.【答案】C【解析】【分析】本题考查平移的基本性质,属于中档题.根据平移的基本性质,得出四边形ABFD的周长即可得出答案.【解答】解:根据题意,将周长为16cm的沿BC向右平移2cm得到,,,;又,四边形ABFD的周长故选:8.【答案】D【解析】解:A、一个三角形两边的垂直平分线的交点到这个三角形三个顶点的距离相等,故本选项说法正确,不符合题意;B、“若,则”的逆命题是若,则是假命题,例如,而,故本选项说法正确,不符合题意;C、在角的内部到角的两边距离相等的点一定在这个角的平分线上,本选项说法正确,不符合题意;D、用反证法证明“三角形中必有一个角不大于”,先假设这个三角形中每一个内角都大于,故本选项说法错误,符合题意;故选:根据线段垂直平分线的性质、有理数的乘方、角平分线的性质定理、反证法的应用解答.本题考查了逆命题,以及命题的真假判断,掌握线段垂直平分线的性质、有理数的乘方、角平分线的性质定理、反证法的应用是解题的关键.9.【答案】B【解析】【分析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解答】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选10.【答案】D【解析】解:和都是等腰直角三角形,,,,和不一定相等,与不确定相等;故①错误,,,即,在和中,,≌,,故④正确;过A点作于M,于N,如图,≌,,平分,所以②正确.,而,,,,所以③正确;故正确的结论为②③④.故选:由等腰直角三角形的性质得出,由和不一定相等,则可得出①错误;先证明≌得到,则可对④进行判断;过A点作于M,于N,如图,利用全等三角形对应边上的高相等得到,则根据角平分线的性质定理的逆定理可对②进行判断.利用三角形内角和证明,则可对③进行判断.本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.证明≌是解决问题的关键.也考查了等腰直角三角形的性质.11.【答案】【解析】解:代数式的值不大于6,可列不等式为:故答案为:根据不大于用“”表示解答即可.本题考查了列不等式表示数量关系,与列代数式问题相类似,首先要注意其中的运算及运算顺序,再就是要注意分清大于、小于、不大于、不小于的区别.12.【答案】【解析】解:将点M它向上平移4个单位后得到点N,将点N它向下平移4个单位后得到点M,,,即故答案为:根据纵坐标上移加求解即可.本题考查了坐标与图形变化-平移,熟记平移的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.13.【答案】18【解析】解:过点P作于点E,如图所示,平分,,,,,,,,,,,,,,,的面积,故答案为:过点P作于点E,然后根据平分线的性质可知,再根据平行线的性质和角平分线的性质,可以得到的度数,从而可以求得PE的长,然后根据可以得到PD 的长,本题得以解决.本题考查角平分线的性质、平行线的性质、含角的直角三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.14.【答案】【解析】解:,①+②得:,即:;,,解得:;故答案为:将两个二元一次方程相加,得到的值,根据,求出k的取值范围即可.本题考查的是解一元一次不等式及二元一次方程组的解,求参数的取值范围,熟练掌握加减法解二元一次方程组是解题的关键.15.【答案】6s或12s或【解析】解:,,,,,如图1,,;如图2,,,;如图3,,过点B作于D,则,,,,由勾股定理得:,,,综上所述,t的值是6s或12s或故答案为:6s或12s或分情况讨论:,,画出图形分别求解即可.本题考查的是等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【答案】解:去分母得,,去括号得,,移项得,,合并得,,系数化1得,;不等式的解集在数轴上表示如下:【解析】根据一元一次不等式的解法,将不等式去分母、去括号、移项、合并同类项、系数化1,解出不等式的值即可.本题考查了解一元一次不等式和不等式的性质.不等式的两边同时加上或减去同一个数或整式不等号的方向不变;不等式的两边同时乘以或除以同一个正数不等号的方向不变;不等式的两边同时乘以或除以同一个负数不等号的方向改变.17.【答案】解:设小颖买了x支笔,,,,取4,小颖最多还可以买4支笔.【解析】设小颖买了x支笔,根据题意,列出不等式,解出x即可.本题考查一元一次不等式的运用,解题的关键是理解题意,找到关系式.18.【答案】解:垂直平分AB,,,,,,,,,【解析】根据DE垂直平分AB,可得,再由,可求出的度数,再根据即可求解.本题考查的是等腰三角形的性质,涉及到线段垂直平分线的性质,正确进行角度的计算是关键.19.【答案】解:如图,即为所求;如图,即为所求.【解析】根据旋转的性质即可作关于点C成中心对称的;根据平移的性质即可将向右平移4个单位,作出平移后的本题考查了作图-旋转变换,平移变换,解决本题的关键是掌握旋转和平移的性质.20.【答案】解:证明:是等边三角形,,,在和中,,≌;≌,,,即;,,,,,≌,【解析】根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;利用中的全等三角形的对应角相等和三角形外角的性质,即可求得;利用的结果求得,所以由“30度角所对的直角边是斜边的一半”得到,则易求,进而得出AD的长.本题考查了全等三角形的证明,全等三角形对应边、对应角相等的性质,等边三角形各内角为的性质,本题中求证≌是解题的关键.21.【答案】证明:,,于点A,于点B,,,,,,于点A,于点B,平分,即OP是的平分线;解:如图,连接OP交AB于E,,,,,是等边三角形,,由可知OP平分,,,,,,设,则,,,,【解析】根据等角对等边得,再由角平分线的性质的逆定理可得结论;根据题意先证明是等边三角形,再根据角平分线性质,勾股定理求出,利用含角的直角三角形性质求出,再用三角形面积即可得出最后结果.此题考查角平分线的定义,勾股定理,含角的直角三角形性质,三角形面积,关键是掌握角平分线的判定定理.22.【答案】解:设每个A型垃圾箱x元,每个B型垃圾箱y元.依题意,得:,解得:答:每个A型垃圾箱50元,每个B型垃圾箱120元;设购买m个B型垃圾箱,则购买个A型垃圾箱.依题意,得:,解得:又m为整数,m可以为5,6,7,有3种购买方案:方案1:购买15个A型垃圾箱,购买5个B型垃圾箱;方案2:购买14个A型垃圾箱,购买6个B型垃圾箱;方案3:购买13个A型垃圾箱,购买7个B型垃圾箱.【解析】设每个A型垃圾箱x元,每个B型垃圾箱y元,根据“购买3个A型垃圾箱和2个B型垃圾箱共需390元,购买2个A型垃圾箱比购买1个B型垃圾箱少用20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;设购买B型垃圾箱m个,则购买A型垃圾箱个,根据“购买3个A型垃圾箱和2个B型垃圾箱共需390元,购买2个A型垃圾箱比购买1个B型垃圾箱少用20元”列出不等式组,求出m的范围,可得出答案.本题考查一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找准数量关系,正确列出二元一次方程组与不等式组.23.【答案】2或8【解析】证明:如图1中,由旋转的性质可知,,,是等边三角形,,,,,即,在和中,,≌,,①BD为2或8时,,当点D在线段BC上,时,如图中,≌,,,,,,当点D在线段BC的延长线上,时,如图中,,,,,,,,为2或8时,故答案为:2或②点D在运动过程中,的周长存在最小值,最小值为,理由如下:≌,,则的周长,当点D在线段BC上时,的周长,当点D在线段BC的延长线上时,的周长,的周长,当D在线段BC上,且DE最小时,的周长最小,为等边三角形,,的最小值为,的周长的最小值为证明≌,根据全等三角形的性质得到①分点D在线段BC上和点D在线段BC的延长线上两种情况,根据直角三角形的性质解答;②根据≌得到,根据垂线段最短解答.本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
2019-2020学年广东省佛山市南海区人教版六年级下册期末考试数学试卷+答案
八、其他计算
31.如图所示,已知圆的周长是18.84厘米,0为圆心,平行四边形 的面积为42平方厘米,线段DE∶EC=1∶3。求阴影部分的面积。(π取3.14)参Βιβλιοθήκη 答案1.√【分析】
年份除以4(整百的年份除以400),如果有余数就是平年,没有余数就是闰年,据此解答。
3.描述新冠肺炎治愈人数占感染人数的百分比情况用折线统计图比较合适。(______)
4.一个班男生人数占全班人数的 ,男生人数相当于女生人数的 。________
二、选择题
5.如果 ( 、 都不等于零),那么( )。
A. B. C. D.无法确定
6.一根4米长的铁丝,用去 米,还剩( )米.
A.3B. C.3
【详解】
4×3.14=12.56
左边的图形周长:12.56+9+9
=12.56+18
=30.56
右边图形周长:(4+9)×2
=13×2
=26
所以左边的图形周长与右边图形周长不相等;
将左边图形在突出部分进行切割,得到一个半圆和一个有缺口的长方形,因为半圆与缺口同半径所以半圆和缺口可以重合,将半圆与缺口重合,得到一个与右图等长等宽的长方形,故左图面积=右图面积。
10. ________ 3.5小时=________时________分
11. 折。
12.箱子里有20个一样的球,如果摸到红球的可能性是 ,摸到黄球的可能性是 ,摸到白球的可能性是 ,则箱子里有________个红球,________个白球。
13.在 、 、 、 这四个数中,最小的数是________,相等的两个数是________和________。
2019-2020学年广东省中山市八年级(上)期末数学试卷含答案
2019-2020学年广东省中山市八年级(上)期末数学试卷一、选择题(本大题10题,每小题3分,共30分)1.(3分)下列四个手机APP 图标中,是轴对称图形的是( )A .B .C .D .2.(3分)已知某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为( ) A .1.52×10﹣5米 B .﹣1.52×105米 C .152×105米D .1.52×10﹣4米3.(3分)下列等式成立的是( ) A .x 2+x 3=x 5 B .(a ﹣b )2=a 2﹣b 2C .(x 2)3=x 6D .(﹣1)0=﹣14.(3分)点A (2,﹣1)关于y 轴对称的点的坐标是( ) A .(2,1) B .(﹣2,﹣1) C .(﹣1,2)D .(﹣2,1)5.(3分)若分式,则( ) A .x ≠0B .x =2C .x =0D .x =0或x =26.(3分)下列因式分解正确的是( ) A .x 2+y 2 =(x +y )2B .x 4﹣y 4 =(x 2+y 2)(x 2﹣y 2)C .﹣3a +12=﹣3(a ﹣4)D .a 2+7a ﹣8=a (a +7)﹣87.(3分)一边长为3,另一边长为6的等腰三角形的周长是( ) A .12 B .15 C .12或15D .98.(3分)已知,则的值为( )A .6B .﹣6C .D .﹣ 9.(3分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,AB =6cm ,DE =4cm ,S △ABC =30cm 2,则AC 的长为( )A .10cmB .9cmC .4.5cmD .3cm10.(3分)如图,Rt △ACB 中,∠ACB =90°,∠A =60°,CD 、CE 分别是△ABC 的高和中线,下列说法错误的是( )A .AD =AB B .S △CEB =S △ACEC .AC 、BC 的垂直平分线都经过ED .图中只有一个等腰三角形二、填空题(本大题7题,每小题4分,共28分) 11.(4分)(﹣2a 2)3÷a 2= .12.(4分)如图,在△ABC 中,D 是BC 延长线上一点,∠A =68°,∠B =65°,则∠ACD = .13.(4分)如图,BC =EF ,AC ∥DF ,请你添加一个适当的条件,使得△ABC ≌△DEF , .(只需填一个答案即可)14.(4分)方程的解x = .15.(4分)已知ab=﹣3,a+b=5,则10+a2b+ab2= .16.(4分)关于x的分式方程的解为正数,则m的取值范围是 .17.(4分)如图,∠AOB=30°,点P是∠AOB内任意一点,且OP=7,点E和点F分别是射线OA和射线OB上的动点,则△PEF周长的最小值是 .三、解答题(一)(本大题3题,每小题6分,共18分)18.(6分)计算:(2x﹣1)2﹣x(4x﹣1)19.(6分)先化简,再求值:,其中a=﹣1.20.(6分)如图,已知△ABC中,∠BAC=23°,∠BCA=125°.(1)尺规作图:作AC的垂直平分线,交BC的延长线于点D;(不写作法,保留作图痕迹)(2)连接AD,求∠BAD的度数.四、解答题(二)(本大题3题,每小题8分,共24分)21.(8分)如图,已知△ABC≌△DEF,BG、EH分别是△ABC和△DEF的中线,求证:BG=EH.22.(8分)如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.23.(8分)某商家用1000元购进一批多肉盆栽,很快售完,接着又用了1600元购进第二批多肉盆栽,且数量是第一批的1.2倍,已知第一批盆栽的单价比第二批的单价少3元,问这两批多肉盆栽的单价各是多少元?五、解答题(三)(本大题2题,每小题10分,共20分)24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC边的中点,BE⊥AB交AD的延长线于点E,CF平分∠ACB交AD于点F,连接CE.求证:(1)点D是EF的中点;(2)△CEF是等腰三角形.25.(10分)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB =9,求BG的长.2019-2020学年广东省中山市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10题,每小题3分,共30分)1.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为1.52×10﹣5米.故选:A.3.【分析】根据幂的乘方与积的乘方,完全平方公式的应用,以及零指数幂的运算方法,逐项判断即可.【解答】解:∵x2+x3≠x5,∴选项A不符合题意;∵(a﹣b)2=a2﹣2ab+b2,∴选项B不符合题意;∵(x2)3=x6,∴选项C符合题意;∵(﹣1)0=1,∴选项D不符合题意.故选:C.4.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:A(2,﹣1)关于y轴对称的点的坐标是(﹣2,﹣1),故选:B.5.【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:分式,则x=0.故选:C.6.【分析】根据十字相乘法,提公因式法,以及公式法在因式分解中的应用,逐项判断即可.【解答】解:∵x2+y2 ≠(x+y)2,∴选项A不符合题意;∵x4﹣y4 =(x2+y2)(x+y)(x﹣y),∴选项B不符合题意;∵﹣3a+12=﹣3(a﹣4),∴选项C符合题意;∵a2+7a﹣8=(a+8)(a﹣1),∴选项D不符合题意.故选:C.7.【分析】因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6∴不能构成三角形,故舍去.∴这个等腰三角形的周长为15.故选:B.8.【分析】根据已知条件可得=6,进而可得m﹣n=﹣6mn,然后再代入可得答案.【解答】解:∵,∴=6,n﹣m=6mn,∴m﹣n=﹣6mn,∴==﹣,故选:D.9.【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4,∵AB=6,∴S△ABC=×6×4+AC×4=30,解得AC=9;故选:B.10.【分析】根据等腰三角形的判定和性质和直角三角形的性质即可得到结论.【解答】解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE=S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.二、填空题(本大题7题,每小题4分,共28分)11.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=﹣8a6÷a2=﹣8a4.故答案为:﹣8a4.12.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算.【解答】解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=68°+65°=133°,故答案为:133°.13.【分析】根据全等三角形的判定方法解决问题即可.【解答】解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x﹣x2+4=3x+6,解得:x=﹣,经检验x=﹣是分式方程的解,故答案为:﹣15.【分析】直接提取公因式ab,将原式变形进而求出答案.【解答】解:∵ab=﹣3,a+b=5,∴10+a2b+ab2=10+ab(b+a)=10﹣3×5=﹣5.故答案为:﹣5.16.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.17.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点F、E在CD上时,△PEF的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7cm.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.18.【分析】根据完全平方公式和单项式乘以多项式的法则计算即可.【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.19.【分析】首先计算括号里面分式的减法,然后再计算括号外的除法,化简后,再把a的值代入即可.【解答】解:原式=(﹣),=,=•,=﹣,当a=﹣1时,原式=﹣2.20.【分析】(1)直接利用线段垂直平分线的作法得出AC的垂直平分线,进而得出答案;(2)利用线段垂直平分线的性质得出AD=DC,进而得出∠ACD=∠CAD=55°,即可得出答案.【解答】解:(1)如图所示:D点即为所求;(2)∵∠BCA=125°,∴∠ACD=55°,∵ED垂直平分线AC,∴DC=AD,∴∠ACD=∠CAD=55°,∵∠BAC=23°,∴∠BAD=23°+55°=78°.21.【分析】根据全等三角形的性质得到BC=EF,AC=DF,∠C=∠F,证明△BCG≌△EFH,根据全等三角形的性质证明结论.【解答】证明:∵△ABC≌△DEF,∴BC=EF,AC=DF,∠C=∠F,∵BG、EH分别是△ABC和△DEF的中线,∴CG=AC,FH=DF,∴CG=FH,在△BCG和△EFH中,,∴△BCG≌△EFH(SAS)∴BG=EH.22.【分析】(1)要证明BD平分∠ABC,只要证明∠DBC=∠ABE即可,根据题目中的条件和三角形外角和内角的关系,可以证明∠DBC=∠ABE,从而可以证明结论成立;(2)根据(1)中的结论和题意,利用三角形内角和可以求得∠C的度数.【解答】(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∴∠EAB=∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.23.【分析】首先设第一批单价为x元,则第二批单价为(x+3)元,根据题意可得等量关系:进一批的数量×1.2=第二批的数量,根据等量关系列出方程,再解即可.【解答】解:设第一批单价为x元,则第二批单价为(x+3)元,由题意得:×1.2=,解得:x=9,经检验:x=9是分式方程的解,x+3=9+3=12,答:第一批单价为9元,则第二批单价为12元.五、解答题(三)(本大题2题,每小题10分,共20分)24.【分析】(1)根据ASA证明△CDF≌△BDE,即可得出DF=DE;(2)由(1)中的全等得:CF=BE,判定△ACF≌△CBE,得到∠CAF=∠BCE,根据三角形外角的性质和等腰三角形的判定可得结论.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵EB⊥AB,∴∠ABE=90°,∴∠CBE=45°,∵CF平分∠ACB,∴∠DCF=45°=∠CBE,在△CDF和△BDE中,∵,∴△CDF≌△BDE(ASA),∴DF=DE,∴点D是EF的中点;(2)由(1)知△CDF≌△BDE,∴CF=BE,在△ACF和△CBE中,∵,∴△ACF≌△CBE(SAS),∴∠CAF=∠BCE,∵∠CFE=∠CAF+∠ACF,∠ECF=∠BCF+∠BCE,∠ACF=∠BCF,∴∠CFE=∠ECF,∴EC=EF,∴△CEF是等腰三角形.25.【分析】(1)利用平行线的性质得出∠ADE=60°,再利用翻折变换的性质得出∠ADE =∠EDF=60°,进而得出∠BDF=60°,即可得出结论;(2)由折叠的性质得出∠ADE=∠FDE=60°,∠A=∠DFE,得出∠ADC=120°,由等腰三角形的性质得出∠FEC=∠FCE,设∠FEC=∠FCE=x,由三角形的外角性质得出∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,由三角形内角和定理得出方程,解方程即可;(3)同(1)得出△BDG是等边三角形,∠ADE=∠B=60°,得出BG=BD,由折叠的性质得出AD=FD,由直角三角形的性质得出FD=2BD,得出AD=2BD,由已知得出2BD+BD=9,求出BD=3,即可得出BG=BD=3.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD,由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.。
广东省佛山市南海区、三水区2022-2023学年八年级下学期期末数学试卷(含答案)
广东省佛山市南海区、三水区2022-2023学年八年级下学期期末数学试卷(解析版〉一、选择题g 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的!. (3分)下列图形中,是中心对称图形的是(A.飞、」B.c.D言传2.0分)已失aa<b ,则下列不等式不成立的是〈A.a -S<b -5B.2α<2bc.-3α> -3bD . .!. >.£.3 33.(3分)在平面直角坐标系中,将点A(-3,2)1句右平移3个单位长度后的坐标是()A.( -6, 2)B.(0, 2)C.( -3,’I)0.(-3,5)4.0分)用下列一种正多边形瓷砖铺设地面,不能镶嵌整个半丽的图形是(A.正六边形B.正五边形C 正四边形D.正三角形5.(3分)下列各式从左到右的变形中,属于因式分解的是(〉A .m 2 -mn=m (m -n)B.am+bm+c=m (a+b) +cC. (m+2) 2=n i 2+4m+4D.2m (m -311) =2m 2 -6mn6.(3分)用反证法证明“若x 2笋Jλ则x学y”时,应首先假设() A.x>yB.x =yC.x<yD.l 耳l=lyl7.(3分)!:::.ABC 为等边三角形,点D在线段BC 上,且LBAD=20°,则LADC 的皮数是〈A.40。
B.60。
c.so·o.100°8. (3分〉从整式2400,x2, 2x -y 中任意这取两个分别作为分子和分句,则能构成分式的个数为(A. 6个B. 5个c. 4个D. 3个9.(3分〉如图,在L.ABC 中,点D,E 分别为AB,AC 中点,将线段BD 绕点B 旋转到BC 边上,点D的对应点为点F.若DE=4cm,BD=3cm ,则CF 的长度为〈AcFBA.lcmB.3cmC.4c.川D.Scm为值的ιU句,.+ρ“式数h飞口贝一不C叫-’’图集解的。
广东省佛山市南海区2019-2020学年度第一学期期末考试七年级数学试题(Word,含答案)
南海区2019~2020学年度第一学期期末考试七年级数学试卷试卷说明:本试卷共4页,满分120分,考试时间90分钟.答题前,考生务必将自己的姓名等信息按要求填写在答题..卡.交回...卡.上;答案必须写在答题..卡.各题目指定区域内;考试结束后,只需将答题一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.2的相反数是()A.2 B.-2 C.1D.±222.下列图形中,圆锥的侧面展开图是()A B C D3.下列调查中,最适合...采用抽样调查的是()A.乘坐飞机时对旅客行李的检查B.了解小明一家三口对端午节来历的了解程度C.了解某批灯泡的使用寿命D.通过体检了解我校初一级全体同学的健康状况4.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释应是()A.两点之间线段最短B.两点确定一条直线C.线段可以比较大小D.线段有两个端点5.单项式-5ab的系数与次数分别是()A.5,1 B.-5,1 C.5,2 D.-5,26.1.5°=()A.9′B.15′C.90′D.150′7.根据等式的基本性质,下列结论正确的是()A.若x=y,则xz =yzB.若2x=y,则6x=yC.若ax=2,则x=a2D.若x=y,则x-z=y-z8.某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是()A.36元B.48元C.50元D.54元9.若代数式x-2y+8的值为18,则代数式3x-6y+4的值为()A.30 B.-26 C.-30 D.3410.若m是有理数,则|m|-m一定是()A.零B.非负数C.正数D.负数二、填空题(本大题共7小题,每小题4分,共28分)11.用科学记数法表示:6400000=.12.在(−38)4中,底数是.13.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.14. 如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的方向.15.一般地,将连续的正整数1,2,…,n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,就形成了一个n阶幻方(如图是3阶幻方的一种情况).记n阶幻方每行的数的和为N n,易知N3=15,那么N4=.16.如图1,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,则这个“”图案的周长可表示为.17.已知线段AC ,点D 为AC 的中点,B 是直线AC 上的一点,且 BC =12AB ,BD =1,则AC = .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:-23-(1-0.5)÷13×(-2)319.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.20.两个圆柱体容器如图所示,容器1的半径是4cm ,高是20cm ;容器2的半径是6cm, 高是8cm ,我们先在容器2中倒满水,然后将里面的水全部倒入容器1中,问:倒完以后,容器1中的水面离容器口有多少厘米?第14题图第16题图第15题图四、解答题(二)(本大题共3小题,每小题8分,共24分)21.若(x+2)2+|y -1|=0,求4xy -2(2x2+5xy -y2)+2(x2+3xy)的值.22.某中学从学生入学开始就积极开展环保教育,半学期后随机对部分学生的环保习惯养成情况进行了问卷调查,问卷中的环保习惯有:①随手关灯;②充电后及时拔充电器插头;③生活用水合理重复利用;④不用或少用一次性餐具;⑤少用塑料袋多用环保袋;⑥绿色出行,同学勾选出自己已经养成的环保习惯,学校将结果绘成了如图所示的不完整的条形统计图和扇形统计图.(1)求在这次调查中,一共抽查了多少名学生?(2)通过计算....补全条形统计图.(3)已知全校共有学生1200人,请估计全校所有学生中已经养成3个或3个以上环保习惯的同学共有多少人?23.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图所示,有若干边长为1的正方形卡片,第1次并排摆2张黑色卡片,铺成一个长方形;第2次在黑色卡片上方和右侧摆白色卡片,所有卡片铺成了一个较大的长方形;第3次继续在白色卡片上方和右侧摆黑色卡片,所有卡片铺成了一个更大的长方形;以此类推,请解决以下问题:(1)仅第..用去_______张卡片...10..次.要用去______张卡片,摆完第10次后,总共(2)你知道 2+4+6+8+……+2n的结果是多少吗?写出结果,结合图形规律说明你的理由.(3)求出从第51次至第100次所摆卡片的数量之和.25.已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD(1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为.(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC<180°),试求出∠MON的大小.南海区2019~2020学年第一学期期末考试七年级数学参考答案与评分标准一. 选择题(本大题10小题,每小题3分,共30分)题号12345678910答案B A C A D C D C D B 二. 填空题(本大题共6小题,每小题4分,共24分)11.6.4×106 . 12.−38. 13.4 . 14.南偏东45°(或东南方向).15.34 . 16. 8a-4b .17.6或2 3.以下评分细则仅供参考三. 解答题(一)(本大题共3小题,每小题6分,共18分)18.解:原式=﹣23﹣(1﹣0.5)÷13×(﹣2)3=﹣8−12×3×(﹣8)………………………3分=﹣8+12 ………………………5分=4 ………………………6分19.解:…………………6分(每个2分,没有文字说明不扣分)从正面看从左面看从上面看20.解:设倒完以后,第一个容器中的水面离容器口有x cm,………………………1分则:π×42×(20−x)=π×62×8………………………4分解得:x=2………………………5分答:第一个容器中的水面离容器口有2 cm . ………………………6分四. 解答题(二)(本大题共3小题,每小题8分,共24分)21.解:∵(x+2)2+|y﹣1|=0,∴x=﹣2,y=1 ………………………2分原式=4xy﹣4x2﹣10xy+2y2+2x2+6xy………………………4分=2y2﹣2x2 ………………………6分把x=﹣2,y=1代入,得………………………7分原式=2﹣8=﹣6 ………………………8分22.解:(1)24÷30%=80(人).答:在这次调查中,一共抽查了80名学生.……2分(2)80-12-24-10-4=30 (人) ………………4分补全条形统计图如图所示:……5分(无计算过程扣1分)(3)1200×12+30+24+1080=1140人…………7分答:估计全校所有学生中已经养成3个或3个以上环保习惯的同学有1140人. …………8分23.解:(1)设爸爸追上乐乐用了x分钟,………………………1分依题意有280x=80x+80×5,………………………3分解得x=2.故爸爸追上乐乐用了2分钟. ………………………4分(2)设爸爸搭上乐乐到学校共骑行了s米,则………………………5分s 80−s240=10 ………………………6分解得s=1200 ………………………7分1200+280×2=1760(米)答:乐乐家离学校共1760米. ……………8分(本题两个小题均可用算术方法完成)五. 解答题(三)(本大题共2小题,每小题10分,共20分)24.解:(1)20,110 …………………4分(每空2分)(2)2+4+6+8+……+2n= n(n+1) …………………5分因为2+4+6+8+……+2n表示摆完第n次后共用去的卡片数………………………6分根据图形可知:这些卡片共有n(n+1)张,所以2+4+6+8+……+2n= n(n+1). ………………………7分(结果可以保留括号)(3)方法一:摆完第50次共用去50×(50+1)块卡片;摆完第100次共用去100×(100+1)块卡片;…………………8分从第51次至第100次所摆卡片的数量之和为:100×(100+1)-50×(50+1)…………9分=7550答:从第51次至第100次所摆卡片的数量之和7550. ………………………10分方法二:从第51次至第100次所摆卡片的数量之和为102+104+……+200 ………………8分102+104++……+200=(2+4+6+8+……+200)-(2+4+6+8+100)= 100×(100+1)-50×(50+1)………………………9分=7550答:从第51次至第100次所摆卡片的数量之和7550. ………………………10分25.解:(1)55°. ………………………2分(2)能. ………………………3分(不回答也不扣分)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠NOD=12∠BOD,所以∠MON=∠NOD+∠DOC+∠MOC ………………………4分=12∠BOD+12∠AOC+20°=12(∠BOD+∠AOC)+20° ………………………5分=12(90°-20°)+20°=55°故答案为:55°. ………………………6分(3)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠NOD=12∠BOD,所以∠MON=∠NOD+∠DOC-∠MOC ………………………7分=12∠BOD+20°−12∠AOC=12(90°+∠AOD)+20°−12(∠AOD+20°)………………………9分=45°+12∠AOD+20°−12∠AOD-10°=55°故答案为:55°. ………………………10分(猜测出结果给1分)。
八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案
八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。
佛山市南海区2020-2020学年八年级下期末数学试卷(含答案)
一、选择题南海区 2020-2020 学年度第二学期期末考试八 年 级 数 学 试 卷1.若 a > b ,则下列不变式变形正确的是( )A. a + 5 < b + 5 B . 2a >2bC . - 4a > -4bD .3a - 2 < 3b - 2【答案】:B 【考点】:不等式的性质2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形( )【答案】:B【考点】:中心对称图形3.分式21xx -有意义,则 x 的取值范围是( )A . x = 1B . x ≠ 0C . x ≠ 1D . x ≠ -1 【答案】:C 【考点】:分式有意义4.多项式 x 2- 4 因式分解的结果是( )A . (x + 2)2B . (x - 2)2C . (x + 2)(x - 2)D . (x + 4)(x - 4)【答案】:C 【考点】:因式分解 5.计算322222()()()x y y y x x⋅÷-的结果是( ) A . 368x y B . - 368x y C .2516x y D . -2516x y【答案】:D 【考点】:分式的乘方、乘除运算BD 、CD 的中点,6.已知等腰三角形两边分别是 10cm 和 5cm ,那么它的周长是( )A .15cmB .20cmC .25cmD .20cm 或 25cm 【答案】:C 【考点】:等腰三角形7.如图,在平行四边行 ABCD 中,AD =8,点 E 、F 分别是 则 EF 等于( )A .3.5B .4C .4.5D .5 【答案】:B 【考点】:三角形中位线8.下列多项式中,能用完全平方公式因式分解的是( )A . m 2- mn +14n 2B . x 2- y 2 - 2xyC . a 2- 2a +14 D . n 2 - 2n + 4(第 7 题图)【答案】:A 【考点】:因式分解9.下列图形中,不能单独镶嵌成平面图形的是( )A .正三角形B .正方形C .正五边形D .正六边形 【答案】:C【考点】:正多边形的内角度数;周角10.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③ B . ①②④ C . ①③④ D . ②③④ 【答案】:D 【考点】:平行四边形的证明;三角形全等二.填空题11.因式分解 x 2 - 9 x =【答案】:x ( x - 9)【考点】:因式分解12.化简2239a a a --=答案:3a a +考点:分式化简13.十二边形的内角和度数为 . 【答案】:1800° 【考点】:多边形内角和14.不等式组2410x x -⎧⎨-⎩的解集是【答案】: x > 1 【考点】:解不等式组15.若∠BAC =30°,AP 平分∠BAC ,PD ∥AC ,且 PD =6,PE ⊥AC ,则 PE = 【答案】:3 【考点】:角平分线与平行线的综合;30°所对直角边为斜边一半16. 如图 , 在 射 线 OA 、OB 上 分 别 截 取 OA 1、OB 1 , 使 OA 1 = OB 1 ;,连接 A 1B 1 , 在B 1 A 1、B 1B ,上分别截取 B 1 A 2、B 1B 2 ,使 B 1 A 2 = B 1B 2 ,连接 A 2 B 2 ;……依此类推,若∠A 1B 1O = α,则 ∠A 2020 B 2020O = 。
人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)
人教版八年级数学上册期末复习:全等三角形常考基础专题复习一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=度.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.参考答案与试题解析部分一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,故选:B.2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;C、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;故选:D.5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF【分析】根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC ≌△DEF.【解答】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD,又∵AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB=6cm,∴△DBE的周长=6cm.故选:A.9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm【分析】过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知P A=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,P A⊥ON,∴PQ=P A=2,故选:B.二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是18.【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB 的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC=∠DCB,BC=CB,①AB=CD,根据SAS可以判定△ABC≌△DCB.②AC=DB,无法判断△ABC≌△DCB.③∠A=∠D,根据AAS可以判定△ABC≌△DCB.④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.故答案为:①③④.16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=3cm.【分析】易证△ABC≌△CED,可得AB=CE,BC=DE,可以求得BE的值.【解答】解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=100°.【分析】根据全等三角形的性质求出∠B,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35°.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=90°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=90°,可得∠1+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,故答案为:90°.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=30度.【分析】根据△ABC≌△ADE,可得∠CAB=∠EAD,由于∠EAB是公共角,可得∠EAC =∠BAD,即可得解.【解答】解:∵△ABC≌△ADE,∵∠EAB是公共角,∴∠CAB﹣∠EAB=∠EAD﹣∠EAB,即∠EAC=∠BAD,已知∠EAC=30°,∴∠BAD=30°.故答案填:30.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【分析】(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.【解答】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD=AB•DE=×10×3=1524.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.【分析】(1)根据角平分线的性质得到CD=DE,根据全等三角形的判定和性质即可得到结论;(2)根据角平分线的定义可得∠CAD=∠BAD,根据等边对等角可得∠B=∠BAD,再根据三角形的内角和定理列出方程求解即可.【解答】证:(1)∵DE⊥AB于E,∠C=90°,AD是△ABC的角平分线,∴CD=DE,在Rt△ACD与Rt△AED中,∴Rt△ACD≌Rt△AED,∴AC=AE,∵AC=BE,∴AE=BE,∴AD=BD;(2)∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵AD=BD,∴∠B=∠BAD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴∠CAD+∠BAD+∠B=90°,∴∠B=30°.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB×DE=×10×4=20cm2.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.【分析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.【解答】证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠F AP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【分析】利用平行线的性质可得∠ABE=∠BED,根据等式的性质可得EF=BC,然后利用ASA判定△ABC≌△DEF即可.【解答】解:∵AB∥ED∴∠ABE=∠BED,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,即∠OCB=∠OBC,所以有OB=OC.【解答】证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.【分析】欲证BD、CE两边相等,只需证明这两边所在的△ABD与△ACE全等,这两个三角形,有一对直角相等,公共角∠A,AB=AC,所以两三角形全等.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【分析】要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.。
广东省佛山市南海区2019-2020学年第二学期七年级期末考试数学试卷 解析版
2019-2020学年广东省佛山市南海区七年级(下)期末数学试卷一.选择题(共10小题)1.计算a3•a3的结果等于()A.a9B.a6C.a27D.a02.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.3.下列事件中,随机事件是()A.水中捞月B.明天太阳从西方升起C.抛一枚硬币,落地后硬币的正面朝上D.三角形的内角和是180°4.如图,小华同学的家在点P处,他想尽快到达公路边去接从外地回来的外婆,他选择沿线段PC去公路边,他的这一选择用到的数学知识是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或248.已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为18,则△ABE的面积为()A.5B.4.5C.4D.99.若3x=5,3y=2,则3x﹣y的值为()A.B.C.3D.﹣310.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°二.填空题(共7小题)11.将0.000705用科学记数法表示为.12.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=度.13.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.14.若x2+y2=8,xy=2,则(x﹣y)2=.15.如图,△ABC中,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9cm,△BCE 的周长为15cm,则BC的长为cm.16.用七巧板摆成如图所示图形,一只蚂蚁在此图形上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在阴影部分的概率是.17.如图,△ABC中,∠BDC=90°,BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,若∠A=40°,则∠F=°.三.解答题18.计算:(π﹣3)0﹣|﹣2|+()﹣2.19.尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.20.如图所示转盘平均分成10份,分别标有1,2,…,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的区域对应的数字即为转出的数字(若指针指向分界处要重新转动,直至指到非分界处).(1)转出的数字为奇数的概率是多少?(2)转出的数字是3的倍数的概率是多少?21.先化简,再求值:[(x+2y)(x﹣2y)+(x﹣y)2﹣2x2]÷4y,其中x=﹣1,y=2.22.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.(1)试证明∠ABC=∠ADC;(2)若∠ADC=58°,求∠AEC的度数.23.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.现有如图1所示边长为a的正方形纸片,边长为b的正方形纸片,长宽分别为a、b的长方形纸片若干,取部分纸片摆成如图2所示的一个长方形,根据这个长方形的面积可以得到的等式是:(a+b)(a+2b)=a2+3ab+2b2;(1)请利用若干图1所示纸片,摆出图形来说明:当a,b都不为0时,(a+b)2≠a2+b2(画图并写出过程).(2)小明同学用图1中边长为a的正方形纸片x张,边长为b的正方形纸片y张,长宽分别为a、b的长方形纸片z张,拼出一个面积为(2a+b)(a+3b)的长方形,则x=,y=,z=.24.△ABC和△DBC中,∠BAC=∠BDC=90°,延长CD、BA交于点E.(1)如图1,若AB=AC,试说明BO=EC;(2)如图2,∠MON为直角,它的两边OM、ON分别与AB、EC所在直线交于点M、N,如果OM=ON,那么BM与CO是否相等?请说明理由.25.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为km;点M表示的实际意义是;(2)小张开车的速度是km/h;小李骑摩托车的速度是km/h.(3)试求出发多长时间后,两人相距60km.2019-2020学年广东省佛山市南海区七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.计算a3•a3的结果等于()A.a9B.a6C.a27D.a0【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选:B.2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.3.下列事件中,随机事件是()A.水中捞月B.明天太阳从西方升起C.抛一枚硬币,落地后硬币的正面朝上D.三角形的内角和是180°【分析】直接利用随机事件的定义结合三角形内角和定理分别分析得出答案.【解答】解:A、水中捞月,是不可能事件,不合题意;B、明天太阳从西方升起,是不可能事件,不合题意;C、抛一枚硬币,落地后硬币的正面朝上,是随机事件,符合题意;D、三角形的内角和是180°,是必然事件,不合题意.故选:C.4.如图,小华同学的家在点P处,他想尽快到达公路边去接从外地回来的外婆,他选择沿线段PC去公路边,他的这一选择用到的数学知识是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】根据垂线段的性质解答即可.【解答】解:某同学的家在P处,他想尽快到达公路边去接从外地回来的外婆,他选择P→C路线,是因为垂直线段最短,故选:D.5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;故选:A.6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.7.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或24【分析】根据等腰三角形的两边长分别为4和10,分两种情况讨论:4为腰时;10为腰时;再由三角形的三边关系定理得出结论.【解答】解:∵一个等腰三角形的两边长分别为4和10,∴当4为腰时,三边长分别为4,4,10,∵4+4=8<10,∴不成立;当10为腰时,三边长分别为4,10,10,∴三角形的周长为24cm.故选:C.8.已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为18,则△ABE的面积为()A.5B.4.5C.4D.9【分析】根据等底等高的三角形的面积相等可知三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵AD是△ABC的中线,∴S△ABD=S△ABC=×18=9,∵BE是△ABD的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.9.若3x=5,3y=2,则3x﹣y的值为()A.B.C.3D.﹣3【分析】根据同底数幂的运算法则即可求出答案.【解答】解:原式=3x÷3y=5÷2=,故选:A.10.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°【分析】直接利用长方形的性质结合平行线的性质得出∠3=∠6=∠4,再利用四边形内角和定理得出答案.【解答】解:如图所示:∵四边形ABCD是长方形,∴AD∥BC,∴∠3=∠6,∵把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,∴∠3=∠4=∠6,∵∠1=48°,∴∠5=132°,∴∠6=∠4==69°,∴∠2=180°﹣69°=111°.故选:D.二.填空题(共7小题)11.将0.000705用科学记数法表示为7.05×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000705用科学记数法表示为7.05×10﹣4.故答案为:7.05×10﹣4.12.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=125度.【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质来求∠AOD的度数.【解答】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°,故答案为:125.13.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是15.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,n=15.故估计n大约有15个.故答案为:15.14.若x2+y2=8,xy=2,则(x﹣y)2=4.【分析】直接利用完全平方公式去括号,再将已知代入求出答案.【解答】解:∵x2+y2=8,xy=2,∴(x﹣y)2=x2+y2﹣2xy=8﹣4=4.故答案为:4.15.如图,△ABC中,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9cm,△BCE 的周长为15cm,则BC的长为6cm.【分析】根据线段垂直平分线的性质得出AE=BE,求出AC+BC=15cm,再代入求出即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∵△BCE的周长为15cm,∴BC+CE+BE=15cm,∴BC+CE+BE=BC+CE+AE=BC+AC=15cm,∵AC=9cm,∴BC=6cm,故答案为:6.16.用七巧板摆成如图所示图形,一只蚂蚁在此图形上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在阴影部分的概率是.【分析】根据七巧板对应图形的面积,结合概率公式即可得到结论.【解答】解:设正方形的边长为a,则阴影部分的为×a×a++a2=a2,∴它停在阴影部分的概率==,故答案为:.17.如图,△ABC中,∠BDC=90°,BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,若∠A=40°,则∠F=52.5°.【分析】想办法求出∠FBC+∠FCB即可解决问题.【解答】解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=140°﹣90°=50°,∵BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,∴∠FBD+∠FCD=×50°=37.5°,∴∠FBC+∠FCB=37.5°+90°=127.5°,∴∠F=180°﹣127.5°=52.5°,故答案为52.5.三.解答题18.计算:(π﹣3)0﹣|﹣2|+()﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】511:实数;66:运算能力.【分析】原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=1﹣2+9=8.19.尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.【考点】KB:全等三角形的判定;N3:作图—复杂作图.【专题】13:作图题.【分析】先作一个∠D=∠A,然后在∠D的两边分别截取ED=BA,DF=AC,连接EF 即可得到△DEF;【解答】解:如图,△DEF即为所求.20.如图所示转盘平均分成10份,分别标有1,2,…,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的区域对应的数字即为转出的数字(若指针指向分界处要重新转动,直至指到非分界处).(1)转出的数字为奇数的概率是多少?(2)转出的数字是3的倍数的概率是多少?【考点】X4:概率公式.【分析】(1)由转盘平均分成10份,分别标有1,2,…,10这10个数字,且转出的数字为奇数的有5种情况,直接利用概率公式求解即可求得答案;(2)由转出的数字是3的倍数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:(1)∵转盘平均分成10份,分别标有1,2,…,10这10个数字,转出的数字为奇数的有5种情况,∴转出的数字为奇数的概率是:=;(2)∵转出的数字是3的倍数的有3种情况,∴转出的数字是3的倍数的概率是:.21.先化简,再求值:[(x+2y)(x﹣2y)+(x﹣y)2﹣2x2]÷4y,其中x=﹣1,y=2.【考点】4J:整式的混合运算—化简求值.【专题】512:整式;66:运算能力.【分析】原式中括号中利用平方差公式,完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣4y2+x2﹣2xy+y2﹣2x2)÷4y=(﹣3y2﹣2xy)÷4y=﹣y﹣x,当x=﹣1,y=2时,原式=﹣+=﹣1.22.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.(1)试证明∠ABC=∠ADC;(2)若∠ADC=58°,求∠AEC的度数.【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【分析】(1)根据平行线的性质即可得到答案(2)根据平行线的性质定理和角平分线的性质定理解答即可.【解答】(1)证明:∵AB∥CD,∴∠ABC=∠DCE,∵AD∥BC,∴∠ADC=∠DCE,∴∠ABC=∠ADC,(2)解:∵AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣58°=122°,∵AE平分∠BAD,∴,∵AD∥BC,∴∠AEC=∠DAE=61°.23.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.现有如图1所示边长为a的正方形纸片,边长为b的正方形纸片,长宽分别为a、b的长方形纸片若干,取部分纸片摆成如图2所示的一个长方形,根据这个长方形的面积可以得到的等式是:(a+b)(a+2b)=a2+3ab+2b2;(1)请利用若干图1所示纸片,摆出图形来说明:当a,b都不为0时,(a+b)2≠a2+b2(画图并写出过程).(2)小明同学用图1中边长为a的正方形纸片x张,边长为b的正方形纸片y张,长宽分别为a、b的长方形纸片z张,拼出一个面积为(2a+b)(a+3b)的长方形,则x=2,y=3,z=7.【考点】4B:多项式乘多项式;4D:完全平方公式的几何背景.【专题】511:实数;512:整式;64:几何直观;68:模型思想;69:应用意识.【分析】(1)画出面积拼图,说明(a+b)2=a2+2ab+b2,进而得出(a+b)2≠a2+b2;(2)利用多项式乘以多项式,根据结果得出答案.【解答】解:(1)如图,根据面积可得(a+b)2=a2+2ab+b2;因此有(a+b)2≠a2+b2;(2)∵(2a+b)(a+3b)=2a2+7ab+3b2,∴x=2,y=3,z=7.故答案为:2,3,7.24.△ABC和△DBC中,∠BAC=∠BDC=90°,延长CD、BA交于点E.(1)如图1,若AB=AC,试说明BO=EC;(2)如图2,∠MON为直角,它的两边OM、ON分别与AB、EC所在直线交于点M、N,如果OM=ON,那么BM与CO是否相等?请说明理由.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】553:图形的全等;554:等腰三角形与直角三角形;67:推理能力.【分析】(1)证明△BAO≌△CAE便可得结论;(2)证明△BOM≌△CNO便可得BM=CO.【解答】解:(1)∵∠BAC=∠BDC=90°,∴∠ABO+∠AOB=∠DCO+∠DOC=90°,∵∠AOB=∠DOC,∴∠ABO=∠DCO,∵∠EAC=180°﹣∠BAC=90°,∴∠BAO=∠EAC,在△BAO和△CAE中,,∴△BAO≌△CAE(ASA),∴BO=CE;(2)相等.理由如下:∵∠MON=∠BAC=90°,∴∠AMO+∠AOM=∠AOM+∠AON=90°,∴∠AMO=∠AON,∴∠BMO=∠NOC,由(1)知∠ABO=∠DCO,在△BOM和△CNO中,,∴△BOM≌△CNO(AAS),∴BM=CO.25.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为240km;点M表示的实际意义是出发2小时小张与小李相遇;(2)小张开车的速度是80km/h;小李骑摩托车的速度是40km/h.(3)试求出发多长时间后,两人相距60km.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用;68:模型思想;69:应用意识.【分析】(1)根据题意和函数图象中的数据解答即可;(2)根据题意和函数图象中的数据可以求得小张开车的速度和小李骑摩托车的速度;(3)由(2)的结论分情况列方程解答即可.【解答】解:(1)根据函数图象中的数据可得A、B两市之间的路程为240km,M表示的实际意义是出发2小时小张与小李相遇;故答案为:240;出发2小时小张与小李相遇;(2)小张开车的速度为:240÷3=80(km/h),小李骑摩托车的速度为:240÷2﹣80=40(km/h).故答案为:80;40;(3)设出发x小时两人相距60km.由三种情况:相遇前:80x+40x+60=240,解得x=1.5;相遇后小张未到达B市前:80x+40x﹣60=240,解得x=2.5;小张返回途中:40x﹣80(x﹣3)=60,解得x=4.5;答:出发1.5,2.5,4.5小时,两人相距60km.。
2020-2021学年广东省佛山市南海区八年级(上)期末数学试卷
2020-2021学年广东省佛山市南海区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.(3分)在下列四组数中,属于勾股数的是( ) A .0.3,0.4,0.5B .9,40,41C .2,3,4D .1,2,32.(3分)点(3,2)-关于x 轴的对称点坐标是( ) A .(3,2)B .(3,2)--C .(3,2)-D .(3,2)-3.(3分)下列运算结果正确的是( ) A .752-= B .2323+=C .623÷=D .2(21)322-=-4.(3分)已知直线12//l l ,将一块直角三角板ABC (其中A ∠是30︒,C ∠是60)︒按如图所示方式放置,若184∠=︒,则2∠等于( )A .56︒B .64︒C .66︒D .76︒5.(3分)下列说法正确的是( ) A .0.01的平方根是0.1 B 84= C .0的立方根是0D .1的立方根是1±6.(3分)某校篮球队有12名队员,队员的年龄情况统计如下: 年龄/岁 13 14 15 16 人数2433则这12名队员年龄的中位数和众数分别是( ) A .14,15B .14.5,14C .14,14D .14.5,157.(3分)下列关于直线31y x =-+的结论中,正确的是( )A .图象必经过点(1,4)-B .图象经过一、二、三象限C .当1x >时,2y <-D .y 随x 的增大而增大8.(3分)某电信公司推出两种手机收费方案.方案A :月租费30元,本地通话话费0.15元/分;方案B :不收月租费,本地通话话费为0.3元/分.设婷婷的爸爸一个月通话时间为x 分钟,婷婷的爸爸一个月通话时间为多少时,选择方案A 比方案B 优惠?( ) A .100分钟B .150分钟C .200分钟D .250分钟9.(3分)已知关于x 、y 的方程组2531x y ax y +=⎧⎨+=-⎩与1411x y x by -=⎧⎨+=⎩有相同的解,则a 和b 的值为( ) A .23a b =⎧⎨=-⎩B .46a b =⎧⎨=-⎩C .23a b =-⎧⎨=⎩D .46a b =-⎧⎨=⎩10.(3分)两条直线1y mx n =-与2y nx m =-在同一坐标系中的图象可能是图中的( )A .B .C .D .二、填空题(本大题共7小题,每小题4分,共28分) 11.(4分)比较大小:415>”或“<” ).12.(42|1|0a b ++-=,则2021()a b += .13.(4分)一次函数21y x =-的图象经过点(,5)a ,则a = .14.(4分)小宁的数学期末总评成绩由平时、期中期末考试成绩按权重比2:3:5组成如果小宁本学期三项成绩依次为110分、105分、115分,则小宁本学期的数学期末总评成绩是 分.15.(4分)如图,已知函数y ax b =+和y cx d =+图象交于点M ,则根据图象可知,关于x 、y 的二元一次方程组y ax by cx d =+⎧⎨=+⎩的解为 .16.(4分)如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且ACG AGC ∠=∠,GAF F ∠=∠.若20ECB ∠=︒,则ACD ∠的度数是 .17.(4分)如图,在平面直角坐标系中,点1A ,2A ,3A ,⋯,都在x 轴正半轴上,点1B ,2B ,3B ,⋯,都在直线3y x =上,△112A B A ,△223A B A ,△334A B A ,⋯,都是等边三角形,且11OA =,则点6B 的纵坐标是 .三、解答题(一)(本大题3小题,每小题6分,共18分) 18.(6分)计算:132|6263+ 19.(6分)解二元一次方程组:25537x y x y -=⎧⎨+=⎩.20.(6分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(3,2)A -,(4,3)B --,(2,2)C --.(1)ABC ∆的面积是 ;(2)画出ABC ∆关于y 轴对称的△111A B C ,并写出点1B 的坐标.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆) 总量(吨) 第一次 4 5 31 第二次3630(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?22.(8分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲. (1)求乙命中的平均数x 乙和方差2:S 乙(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么? 23.(8分)在ABC ∆中,(1)如图1,15AC =,9AD =,12CD =,20BC =,求ABC ∆的面积; (2)如图2,13AC =,20BC =,11AB =,求ABC ∆的面积.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,在平面直角坐标系xOy 中,一次函数的图象经过点(3,0)A -与点(0,4)B . (1)求这个一次函数的表达式;(2)若点M 为此一次函数图象上一点,且MOB ∆的面积为12,求点M 的坐标; (3)点P 为x 轴上一动点,且ABP ∆是等腰三角形,请直接写出点P 的坐标.25.(10分)已知:线段AB 、CD 相交于点O ,连接AD 、CB .(1)如图1,求证:A D B C∠+∠=∠+∠;(2)如图2,ADC∠和ABC∠的平分线DE和BE相交于点E,并且与AB、CD分别相交于点M、N,28A∠=︒,32C∠=︒,求E∠的度数;(3)如图3,ADC∠和ABC∠的三等分线DE和BE相交于点E,并且与AB、CD分别相交于点M、N,13CDE ADC∠=∠,13CBE ABC∠=∠,试探究A∠、C∠、E∠三者之间存在的数量关系,并说明理由.2020-2021学年广东省佛山市南海区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.(3分)在下列四组数中,属于勾股数的是( )A .0.3,0.4,0.5B .9,40,41C .2,3,4D .1【解答】解:A 、0.3,0.4,0.5不是整数,不是勾股数;B 、22294041+=,9∴、40、41是勾股数;C 、222234+≠,2∴,3,4不是勾股数;D 、2221+=1∴故选:B .2.(3分)点(3,2)-关于x 轴的对称点坐标是( ) A .(3,2)B .(3,2)--C .(3,2)-D .(3,2)-【解答】解:点(3,2)-关于x 轴的对称点坐标是(3,2), 故选:A .3.(3分)下列运算结果正确的是( )A B .2C 3D .21)3=-【解答】解:A 不能合并,所以A 选项错误;B 、2B 选项错误;C 、原式C 选项错误;D 、原式213=-=-,所以D 选项正确.故选:D .4.(3分)已知直线12//l l ,将一块直角三角板ABC (其中A ∠是30︒,C ∠是60)︒按如图所示方式放置,若184∠=︒,则2∠等于( )A .56︒B .64︒C .66︒D .76︒【解答】解:34180A ∠+∠+∠=︒,30A ∠=︒,4184∠=∠=︒, 31804180308466A ∴∠=︒-∠-∠=︒-︒-︒=︒.又直线12//l l , 2366∴∠=∠=︒.故选:C .5.(3分)下列说法正确的是( ) A .0.01的平方根是0.1 B 84= C .0的立方根是0D .1的立方根是1±【解答】解:A 、0.01的平方根是0.1±,所以A 选项错误;B 164=,所以B 选项错误;C 、0的立方根为0,所以C 选项正确;D 、1的立方根为1,所以D 选项错误.故选:C .6.(3分)某校篮球队有12名队员,队员的年龄情况统计如下: 年龄/岁 13 14 15 16 人数2433则这12名队员年龄的中位数和众数分别是( )A .14,15B .14.5,14C .14,14D .14.5,15【解答】解:这12名队员年龄的中位数141514.52+=(岁),众数为14岁, 故选:B .7.(3分)下列关于直线31y x =-+的结论中,正确的是( ) A .图象必经过点(1,4)- B .图象经过一、二、三象限 C .当1x >时,2y <-D .y 随x 的增大而增大【解答】解:当1x =时,2y =-, ∴图象不过点(1,4)-,故A 错误;10=-<,10b =>,∴图象经过一、二、四象限,故B 错误;当1x =时,2y =-,1x ∴>时,函数图象在x 轴的下方, ∴当1x >时,2y <-,故C 正确;30=-<,y ∴随x 的增大而减小,故D 错误;故选:C .8.(3分)某电信公司推出两种手机收费方案.方案A :月租费30元,本地通话话费0.15元/分;方案B :不收月租费,本地通话话费为0.3元/分.设婷婷的爸爸一个月通话时间为x 分钟,婷婷的爸爸一个月通话时间为多少时,选择方案A 比方案B 优惠?( ) A .100分钟B .150分钟C .200分钟D .250分钟【解答】解:由题意可得, 300.150.3x x +<,解得200x >,即通过时间超过200时,选择方案A 比方案B 优惠, 故选:D .9.(3分)已知关于x 、y 的方程组2531x y ax y +=⎧⎨+=-⎩与1411x y x by -=⎧⎨+=⎩有相同的解,则a 和b 的值为( )A .23a b =⎧⎨=-⎩B .46a b =⎧⎨=-⎩C .23a b =-⎧⎨=⎩D .46a b =-⎧⎨=⎩【解答】解:解方程组251x y x y +=⎧⎨-=⎩得21x y =⎧⎨=⎩,把21x y =⎧⎨=⎩代入31411ax y x by +=-⎧⎨+=⎩得231811a b +=-⎧⎨+=⎩,解得23a b =-⎧⎨=⎩.故选:C .10.(3分)两条直线1y mx n =-与2y nx m =-在同一坐标系中的图象可能是图中的( )A .B .C .D .【解答】解:根据一次函数的图象与性质分析如下:A .由1y mx n =-图象可知0m <,0n <;由2y nx m =-图象可知0m <,0n >.A 错误;B .由1y mx n =-图象可知0m >,0n <;由2y nx m =-图象可知0m >,0n <.B 正确;C .由1y mx n =-图象可知0m >,0n >;由2y nx m =-图象可知0m <,0n >.C 错误;D .由1y mx n =-图象可知0m >,0n >;由2y nx m =-图象可知0m >,0n <.D 错误; 故选:B .二、填空题(本大题共7小题,每小题4分,共28分) 11.(4分)比较大小:4 > 15>”或“<” ).【解答】解:416= 16154∴故答案为:>.12.(4|1|0b -=,则2021()a b += 1- .【解答】解:|1|0b -=,20a ∴+=,10b -=,解得2a =-,1b =,则20212021()(21)1a b +=-+=-. 故答案为:1-.13.(4分)一次函数21y x =-的图象经过点(,5)a ,则a = 3 . 【解答】解:一次函数21y x =-的图象经过点(,5)a , 521a ∴=-,解得3a =. 故答案为:3.14.(4分)小宁的数学期末总评成绩由平时、期中期末考试成绩按权重比2:3:5组成如果小宁本学期三项成绩依次为110分、105分、115分,则小宁本学期的数学期末总评成绩是 111 分.【解答】解:由题意可得,110210531155111235⨯+⨯+⨯=++(分),即小宁本学期的数学期末总评成绩是111分, 故答案为:111.15.(4分)如图,已知函数y ax b =+和y cx d =+图象交于点M ,则根据图象可知,关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为 57x y =-⎧⎨=⎩.【解答】解:由图可知:直线y ax b =+和直线y cx d =+的交点坐标为(5,7)-; 因此关于x 、y 的二元一次方程组y ax by cx d =+⎧⎨=+⎩的解为:57x y =-⎧⎨=⎩,故答案为57x y =-⎧⎨=⎩.16.(4分)如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且ACG AGC ∠=∠,GAF F ∠=∠.若20ECB ∠=︒,则ACD ∠的度数是 30︒ .【解答】解:四边形ABCD 是矩形, //AD BC ∴,90DCB ∠=︒, 20F ECB ∴∠=∠=︒, 20GAF F ∴∠=∠=︒,240ACG AGC GAF F F ∴∠=∠=∠+∠=∠=︒, 60ACB ACG ECB ∴∠=∠+∠=︒, 906030ACD ∴∠=︒-︒=︒,故答案为:30︒.17.(4分)如图,在平面直角坐标系中,点1A ,2A ,3A ,⋯,都在x 轴正半轴上,点1B ,2B ,3B ,⋯,都在直线3y 上,△112A B A ,△223A B A ,△334A B A ,⋯,都是等边三角形,且11OA =,则点6B 的纵坐标是 3 .【解答】解:过1B 作1B C x ⊥轴于C ,过2B 作2B D x ⊥轴于D ,过3B 作3B E x ⊥轴于E ,如图所示:设△1n n n B A A +的边长为n a , 则121212AC A C A A ==,232312A D A D A A ==,⋯, 113BC ∴=,223B D =,333B E =,⋯, 点1B ,2B ,3B ,⋯是直线3y =上的第一象限内的点, 30n n A OB ∴∠=︒,又△1n n n A B A +为等边三角形, 160n n n B A A +∴∠=︒,30n n OB A ∴∠=︒,190n n OB A +∠=︒, 13n n n n B B OB a +∴==,11OA =,∴点1A 的坐标为(1,0),11a ∴=,2112a =+=,31214a a a =++=,412318a a a a =+++=,⋯,12n n a -∴=, 632a ∴=, ∴点6B 63332163== 故答案为:3.三、解答题(一)(本大题3小题,每小题6分,共18分) 18.(6分)计算:132|6263+ 【解答】解:原式236223=⨯232323=23=19.(6分)解二元一次方程组:25537x y x y -=⎧⎨+=⎩.【解答】解:25537x y x y -=⎧⎨+=⎩①②,①3⨯+②得:1122x =, 解得:2x =,把2x =代入①得:1y =-, 所以方程组的解为:21x y =⎧⎨=-⎩.20.(6分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(3,2)A -,(4,3)B --,(2,2)C --.(1)ABC ∆的面积是 4.5 ;(2)画出ABC ∆关于y 轴对称的△111A B C ,并写出点1B 的坐标.【解答】解:(1)ABC∆的面积为:11125141512 4.5222⨯-⨯⨯-⨯⨯-⨯⨯=;故答案为:4.5;(2)如图所示,△111A B C即为所求.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆)总量(吨)第一次4531第二次3630(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?【解答】解:(1)设甲种货车每辆能装货x 吨,乙种货车每辆能装货y 吨, 依题意得:45313630x y x y +=⎧⎨+=⎩,解得:43x y =⎧⎨=⎩.答:甲种货车每辆能装货4吨,乙种货车每辆能装货3吨. (2)设租用甲种货车m 辆,乙种货车n 辆, 依题意得:4345m n +=, 4153n m ∴=-.又m ,n 均为正整数, ∴311m n =⎧⎨=⎩或67m n =⎧⎨=⎩或93m n =⎧⎨=⎩,∴共有3种租车方案,方案1:租用3辆甲种货车,11辆乙种货车; 方案2:租用6辆甲种货车,7辆乙种货车; 方案3:租用9辆甲种货车,3辆乙种货车.22.(8分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲. (1)求乙命中的平均数x 乙和方差2:S 乙(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么? 【解答】解:(1)乙命中的平均数()7978958x =++++÷=乙, 方差(2222221[(78)(98)(78)(88)98)0.85S ⎤=-+-+-+-+-=⎦乙;(2)选乙队员去.因为甲、乙两名选手命中的平均数相同,但是22S S >乙甲,所以乙的成绩较稳定(答案不唯一,有理由即可). 23.(8分)在ABC ∆中,(1)如图1,15AC =,9AD =,12CD =,20BC =,求ABC ∆的面积; (2)如图2,13AC =,20BC =,11AB =,求ABC ∆的面积.【解答】解:(1)2214481225CD AD +=+=,2225AC =,222CD AD CA ∴+=,∴△ADC ∆是直角三角形,90ADC ∴∠=︒, CD AB ∴⊥, 90ADC ∴∠=︒,2216BD BC CD ∴=-=, 16925AB AD DB ∴=+=+=, ABC ∴∆的面积125121502=⨯⨯=; (2)过C 作CD BA ⊥的延长线于点D ,CD AB ⊥, 90CDB ∴∠=︒,设AD 为x ,(11)DB x =+,由勾股定理得:222CD AC AD =-,222CD BC DB =-, 即2222AC AD BC DB -=-,则22221320(11)x x -=-+, 解得:10.5x =,2222131057.665CD AC AD ∴=-=-⋅≈, ABC ∴∆的面积11117.66542.157522AB CD =⋅=⨯⨯=. 五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,在平面直角坐标系xOy 中,一次函数的图象经过点(3,0)A -与点(0,4)B . (1)求这个一次函数的表达式;(2)若点M 为此一次函数图象上一点,且MOB ∆的面积为12,求点M 的坐标; (3)点P 为x 轴上一动点,且ABP ∆是等腰三角形,请直接写出点P 的坐标.【解答】解:(1)设一次函数的表达式为y x b =+, 把点(3,0)A -与点(0,4)B 代入得:304b b -+=⎧⎨=⎩,解得:434b ⎧=⎪⎨⎪=⎩,此一次函数的表达式为:443y x =+; (2)设点M 的坐标为4(,4)3a a +,(0,4)B ,4OB ∴=,又MOB ∆的面积为12,∴1||4122a ⨯⨯=, ||6a ∴=,6a ∴=±,∴点P 的坐标为(6,12)或(6,4)--;(3)点(3,0)A -,点(0,4)B . 3OA ∴=,4OB =,2222345AB OA OB ∴=+=+=, 当PA AB =时,P 的坐标为(8,0)-或(2,0); 当PB AB =时,P 的坐标为(3,0);当PA PB =时,设P 为(,0)m ,则222(3)4m m +=+, 解得76m =, P ∴的坐标为7(6,0);综上,P 点的坐标为(8,0)-或(2,0)或(3,0)或7(6,0).25.(10分)已知:线段AB 、CD 相交于点O ,连接AD 、CB .(1)如图1,求证:A D B C ∠+∠=∠+∠;(2)如图2,ADC ∠和ABC ∠的平分线DE 和BE 相交于点E ,并且与AB 、CD 分别相交于点M 、N ,28A ∠=︒,32C ∠=︒,求E ∠的度数;(3)如图3,ADC ∠和ABC ∠的三等分线DE 和BE 相交于点E ,并且与AB 、CD 分别相交于点M 、N ,13CDE ADC ∠=∠,13CBE ABC ∠=∠,试探究A ∠、C ∠、E ∠三者之间存在的数量关系,并说明理由.【解答】(1)证明:180A D AOD CB BOC∠+∠+∠=∠+∠+∠=︒,AOD BOC∠=∠,A D C B∴∠+∠=∠+∠;(2)解:ADC∠和ABC∠的平分线DE和BE相交于点E,ADE CDE∴∠=∠,ABE CBE∠=∠,由(1)可得A ADE E ABE∠+∠=∠+∠,C CBE E CDE∠+∠=∠+∠,2A C E∴∠+∠=∠,28A∠=︒,32C∠=︒,30E∴∠=︒;(3)解:23A C E∠+∠=∠.理由:13CDE ADC∠=∠,13CBE ABC∠=∠,2ADE CDE∴∠=∠,2ABE CBE∠=∠,由(1)可得A ADE E ABE∠+∠=∠+∠,C CBE E CDE∠+∠=∠+∠,2222C CBE E CDE∴∠+∠=∠+∠,2232A C ADE CBE E ABE CDE∴∠+∠+∠+∠=∠+∠+∠,即23A C E∠+∠=∠.。
广东省佛山市南海区大沥镇2022-2023学年八年级上学期期中数学试卷 (含答案)
2022-2023学年广东省佛山市南海区大沥镇八年级第一学期期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每题的四个选项中,只有一项正确)1.在,3.14,,0.001,π﹣1,中,无理数的个数有()A.1个B.2个C.3个D.4个2.下列各组数为勾股数的是()A.2,3,5B.0.3,0.4,0.5C.5,12,13D.7,8,93.下列算式中,计算正确的是()A.+=B.×=C.﹣=D.÷=4 4.点(4,﹣5)关于y轴的对称点的坐标是()A.(4,5)B.(﹣4,﹣5)C.(﹣4,5)D.(﹣5,4)5.二元一次方程组的解是()A.B.C.D.6.正比例函数y=ax的图象经过一、三象限,则直线y=(﹣a﹣1)x经过()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限7.《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余 4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,可列方程组为()A.B.C.D.8.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则空格中M代表的实数为()A.B.C.D.9.直线y=﹣2x+b上有三个点(﹣2.4,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y3 10.两个函数y=kx+b和y=bx+k,它们在同一个坐标系中的图象不可能是()A.B.C.D.二、填空题(本大题5小题,每小题3分,共15分)11.比较大小:3.3 .(填上>、<或=)12.的算术平方根是.13.若一个正数的平方根是2a﹣4和﹣a+6,则这个正数为.14.若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为.15.如图,在平面直角坐标系中,函数y=3x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,点A2022的坐标为.三、解答题(一)(本题共3个小题,每题8分,共24分.)16.计算:(+3)(﹣3)﹣(﹣1)2.17.解方程组:.18.已知:如图,已知△ABC,(1)画出与△ABC关于x轴对称的图形△A1B1C1.(2)求△ABC的面积.四、解答题(二)(本题共3个小题,每题9分,共27分.)19.已知一次函数y=x+2.(1)画出函数的图象.(2)图象与x轴的交点坐标是,与y轴的交点坐标是.(3)当x时,y>0.20.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AB=6,AD=2,求DE的长.21.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息回答下列问题:(1)甲的速度是km/h,乙比甲晚出发h;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)甲经过多长时间被乙追上?此时两人距离B地还有多远?五、解答题(三)(本题共2个小题,每题12分,共24分.)22.2022年北京冬奥会的吉祥物冰墩墩和雪容融深受国内外广大朋友的喜爱,在某北京奥运官方特许零售店购买3个冰墩墩和2个雪容融需要560元;购买1个冰墩墩和3个雪容融需要420元.(1)求每个冰墩墩和雪容融的售价分别是多少元?(2)该店在开始销售这两种吉祥物的第一天就很快全部售馨,于是从厂家紧急调配商品,现拟租用甲、乙两种车共8辆,若每辆甲种车的租金为400元,每辆乙种车的租金为280元.若乙种车不超过3辆,设租用乙种车a辆,总租金为w元,求w与a的关系式,并求总租金的最低费用.23.如图,在平面直角坐标系中,直线AB:y=﹣2x+8交y轴于点A,交x轴于点B,以AB为底作等腰三角形△ABC的顶点C恰好落在y轴上,连接BC,直线x=2交AB于点D,交BC于点E,连接CD.(1)求点C的坐标和直线BC的解析式;(2)在x轴上存在一点P使PD+PC最小,请求出点P的坐标;(3)求△DBC的面积.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每题的四个选项中,只有一项正确)1.在,3.14,,0.001,π﹣1,中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:=4,,=5,故在,3.14,,0.001,π﹣1,中,无理数有π﹣1,共1个.故选:A.【点评】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽得到的数;以及0.1010010001…(两个1之间依次多一个0),等有这样规律的数.2.下列各组数为勾股数的是()A.2,3,5B.0.3,0.4,0.5C.5,12,13D.7,8,9【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数判定则可.解:A、22+32≠52,不能构成直角三角形,故不是勾股数,不符合题意B、0.3,0.4,0.5不都是正整数,故不是勾股数,不符合题意;C、52+122=132,能构成直角三角形,故是勾股数,符合题意;D、72+82≠92,能构成直角三角形,故不是勾股数,不符合题意.故选:C.【点评】本题考查了勾股数的定义,注意:一组勾股数必须同时满足两个条件:①三个数都是正整数;②两个较小数的平方和等于最大数的平方.3.下列算式中,计算正确的是()A.+=B.×=C.﹣=D.÷=4【分析】根据二次根式的加减运算以及乘除运算法则即可求出答案.解:A、与不是同类二次根式,不能合并,故A不符合题意.B、原式=,故B符合题意.C、原式=3﹣,故C不符合题意.D、原式==2,故D不符合题意.故选:B.【点评】本题考查二次根式的混合运算,解题的关键是熟练运用二次根式的加减运算以及乘除运算,本题属于基础题型.4.点(4,﹣5)关于y轴的对称点的坐标是()A.(4,5)B.(﹣4,﹣5)C.(﹣4,5)D.(﹣5,4)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.解:点(4,﹣5)关于y轴的对称点的坐标是(﹣4,﹣5),故选:B.【点评】此题主要考查了关于y轴对称的点的坐标特点,关键是掌握点的坐标的变化规律.5.二元一次方程组的解是()A.B.C.D.【分析】把y=2﹣x代入方程3x=1+2y,即可消去未知数y,求出未知数x,然后再求出y即可.解:,把①代入②,得:3x=1+2(2﹣x),解得x=1,把x=1代入①,得y=1,故原方程组的解为,故选:C.【点评】本题考查了解二元一次方程组,掌握消元的方法是解答本题的关键.6.正比例函数y=ax的图象经过一、三象限,则直线y=(﹣a﹣1)x经过()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限【分析】根据正比例函数y=ax的图象经过一、三象限,可以得到a>0,从而可以得到﹣a﹣1<0,再根据正比例函数的性质,即可得到直线y=(﹣a﹣1)x经过的象限.解:∵正比例函数y=ax的图象经过一、三象限,∴a>0,∴﹣a﹣1<0,∴直线y=(﹣a﹣1)x经过第二、四象限,故选:C.【点评】本题考查正比例函数的性质,解答本题的关键是明确题意,利用正比例函数的性质解答.7.《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余 4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,可列方程组为()A.B.C.D.【分析】根据用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,可以列出相应的方程组,从而可以解答本题.解:由用一根绳子去量一根长木,绳子还剩余4.5尺,可得方程y=x+4.5,由将绳子对折再量长木,长木还剩余1尺,可得方程y=x﹣1,故,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程组.8.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则空格中M代表的实数为()A.B.C.D.【分析】先计算第一行三个实数的乘积,再用这个积除以M所在行的另外两个数的乘积即可得出结论.解:3÷(3)=2,故选:B.【点评】本题主要考查了实数的运算,依据题意列算式解答是解题的关键.9.直线y=﹣2x+b上有三个点(﹣2.4,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2<y1<y3D.y2>y1>y3【分析】由k=﹣2<0,利用一次函数的性质可得出y值随x值的增大而减小,结合﹣2.4<﹣1.5<1.3可得出y1>y2>y3,此题得解.解:∵k=﹣2<0,∴y值随x值的增大而减小.又∵﹣2.4<﹣1.5<1.3,∴y1>y2>y3.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.10.两个函数y=kx+b和y=bx+k,它们在同一个坐标系中的图象不可能是()A.B.C.D.【分析】根据直线判断出k、b的符号,然后根据k、b的符号判断出直线经过的象限即可,作出判断.解:当x=1时,两函数函数值相等,故两条直线在x=1处相交,故选项B不符合题意.故选:B.【点评】本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关键.二、填空题(本大题5小题,每小题3分,共15分)11.比较大小:3.3 <.(填上>、<或=)【分析】先求出3.32与()2的值,再比较大小即可.解:3.32=10.89,()2=13,∵10.89<13,∴3.3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知实数大小比较的方法是解题的关键.12.的算术平方根是3.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.13.若一个正数的平方根是2a﹣4和﹣a+6,则这个正数为64.【分析】应用平方根的性质,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根,进行计算即可得出答案.解:根据题意可得,2a﹣4+(﹣a+6)=0,解得:a=﹣2,则2a﹣4=2×(﹣2)﹣4=﹣8,则这个正数为(﹣8)2=64.【点评】本题主要考查了平方根,熟练掌握平方根的性质进行求解是解决本题的关键.14.若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为2024.【分析】先把点(m,n)代入函数y=﹣2x+1求出n=﹣2m+1,再代入所求代数式进行计算即可.解:∵一次函数y=﹣2x+1的图象过A(m,n),∴﹣2m+1=n,∴2m+n=1,∴4m+2n+2022=2(2m+n)+2022=2×1+2022=2024.故答案为:2024.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.15.如图,在平面直角坐标系中,函数y=3x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,点A2022的坐标为(﹣21011,﹣21012).【分析】把点(1,0)代入y=2x求出A1坐标,进而求得A2、A3坐标,可得A4、A6坐标,据此找到规律,即可得A2022坐标.解:∵过点(1,0)作x轴的垂线交l1于点A1,∴A1(1,2),把y=2代入y=﹣x得x=﹣2,即A2(﹣2,2),把x=﹣2代入y=2x得y=﹣4,即A3(﹣2,﹣4),同理可得A4(4,﹣4),A5(4,8),∴A2n+1((﹣2)n,2×(﹣2)n)(n为自然数),∵2022=1011×2+1,∴A2022的坐标为((﹣2)1011,2×(﹣2)1011)=(﹣21011,﹣21012).故答案为:(﹣21011,﹣21012).【点评】本题考查一次函数图象上点的坐标特征以及规律型中点的坐标,解题的关键是找出变化规律.三、解答题(一)(本题共3个小题,每题8分,共24分.)16.计算:(+3)(﹣3)﹣(﹣1)2.【分析】利用平方差公式和完全平方公式计算.解:原式=5﹣9﹣(3﹣2+1)=﹣4﹣4+2=﹣8+2.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质和乘法公式是解决问题的关键.17.解方程组:.【分析】利用加减消元法求出解即可.解:②×4﹣①,得:5y=﹣15,解得y=﹣3,将y=﹣3代入②,得:x+6=4,解得:x=﹣2,则方程组的解为.【点评】本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.18.已知:如图,已知△ABC,(1)画出与△ABC关于x轴对称的图形△A1B1C1.(2)求△ABC的面积.【分析】(1)根据轴对称的性质分别找到A、B、C三点的对称点,顺次连接即可得出△A1B1C1.(2)将△ABC补全为矩形,然后运用面积差求出△ABC的面积.解:(1)所画图形如下所示:(2)将△ABC补全为矩形,则S△ABC=S矩形CDEF﹣S△ADC﹣S△AEB﹣S△CBF=12﹣2﹣2﹣3=5.故△ABC的面积为5【点评】本题考查了轴对称作图及三角形的面积,再第二问的求解中有一定技巧,同学们要注意格点三角形的应用.四、解答题(二)(本题共3个小题,每题9分,共27分.)19.已知一次函数y=x+2.(1)画出函数的图象.(2)图象与x轴的交点坐标是(﹣2,0),与y轴的交点坐标是(0,2).(3)当x>﹣2时,y>0.【分析】(1)根据画一次函数的图象的方法,列表、描点、连线可以画出一次函数y=﹣2x+4的图象;(2)根据图象即可求解;(3)根据函数图象,可以写出当x为何值时,y>0.解:(1)列表如下:x…﹣20…y…02…描点.连线画出函数图象,如图所示;(2)图象与x轴的交点坐标是(﹣2,0),与y轴的交点坐标是(0,2).故答案为:(﹣2,0),(0,2);(3)由函数图象可得:当x>﹣2时,一次函数y=x+2的图象在x轴上方,∴当x>﹣2时,y>0.故答案为:>﹣2.【点评】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AB=6,AD=2,求DE的长.【分析】(1)已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD =∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,利用勾股定理得出答案即可.【解答】(1)证明:∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE,∵BC=AC,DC=EC,∴△ACE≌△BCD(SAS).(2)解:由(1)△ACE≌△BCD,∴AE=BD,∵AB=6,AD=2,∴DB=AB﹣AD=4,∴AE=4,∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.即DE==2.【点评】本题考查三角形全等的判定与性质,掌握三角形全等的判定方法是解决问题的关键.21.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息回答下列问题:(1)甲的速度是5km/h,乙比甲晚出发1h;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)甲经过多长时间被乙追上?此时两人距离B地还有多远?【分析】(1)根据函数图象可以求得甲的速度和乙比甲晚出发的时间;(2)根据函数图象可以分别设出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式,然后根据图象中的数据即可解答本题;(3)令(2)中的两个函数值相等,即可求得t的值,进而求得s的值,然后再用20减去s的值即可解答本题.解:(1)由图象可得,甲的速度为:20÷4=5km/h,乙比甲晚出发1小时,故答案为:5,1;(2)设甲出发的路程s与t的函数关系式为s=kt,则20=4k,得k=5,∴甲出发的路程s与t的函数关系式为s=5t;设乙出发的路程s与t的函数关系式为s=at+b,,得,∴乙出发的路程s与t的函数关系式为s=20t﹣20;(3)由题意可得,5t=20t﹣20,解得,t=,当t=时,s=5t=5×,20﹣,即甲经过h被乙追上,此时两人距B地还有km.【点评】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(三)(本题共2个小题,每题12分,共24分.)22.2022年北京冬奥会的吉祥物冰墩墩和雪容融深受国内外广大朋友的喜爱,在某北京奥运官方特许零售店购买3个冰墩墩和2个雪容融需要560元;购买1个冰墩墩和3个雪容融需要420元.(1)求每个冰墩墩和雪容融的售价分别是多少元?(2)该店在开始销售这两种吉祥物的第一天就很快全部售馨,于是从厂家紧急调配商品,现拟租用甲、乙两种车共8辆,若每辆甲种车的租金为400元,每辆乙种车的租金为280元.若乙种车不超过3辆,设租用乙种车a辆,总租金为w元,求w与a的关系式,并求总租金的最低费用.【分析】(1)设1个冰墩墩的售价为x元,1个雪容融的售价为y元,根据“购买3个冰墩墩和2个雪容融需要560元;购买1个冰墩墩和3个雪容融需要420元”,列出方程组求解即可;(2)设租用甲种车x辆,则租用乙种车(8﹣a)辆,总租金为w元,根据题意求出w 与a的关系式,并根据题意求出a的取值范围,再根据一次函数的性质解答即可.解:(1)设1个冰墩墩的售价为x元,1个雪容融的售价为y元,根据题意,得:,解得,答:1个冰墩墩的售价为120元,1个雪容融的售价为100元;(2)设租用甲种车a辆,则租用乙种车(8﹣a)辆,总租金为w元,根据题意得:w=400a+280(8﹣a)=120a+2240,由题意得8﹣a≤3,解得a≥5,∵120>0,∴w随a的增大而增大,∴当a=5时,w有最小值为2840,此时8﹣a=3,即当租用甲种车3辆,租用乙种车5辆,总租金最低,最低费用为2840元.答:w与a关系式为w=120a+2240,最低费用为2840元.【点评】本题考查了一次函数的应用,一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.23.如图,在平面直角坐标系中,直线AB:y=﹣2x+8交y轴于点A,交x轴于点B,以AB为底作等腰三角形△ABC的顶点C恰好落在y轴上,连接BC,直线x=2交AB于点D,交BC于点E,连接CD.(1)求点C的坐标和直线BC的解析式;(2)在x轴上存在一点P使PD+PC最小,请求出点P的坐标;(3)求△DBC的面积.【分析】(1)可先求得A、B的坐标,则可求得OA=8、OB=4,在设OC=x,则AC =BC=8﹣x,在Rt△OBC中由勾股定理可列方程,可求得OC的长,则可求得点C的坐标,再利用待定系数法可求得直线BC的解析式;(2)作点C关于x轴的对称点C1,根据最短路径分析出P点的位置,再求解即可.(3)由直线AB、BC的解析式可分别求得点D、E的坐标,则可求得DE的长,可求得△DCB的面积;解:(1)在y=﹣2x+8中,令x=0可得y=8,令y=0可求得x=4,∴A(0,8),B(4,0),∴OA=8,OB=4,设OC=x,则AC=BC=8﹣x,在Rt△OBC中,由勾股定理可得BC2=OC2+OB2,即(8﹣x)2=x2+42,解得x=3,∴C(0,3),设直线BC解析式为y=kx+b,把B、C点的坐标代入可得,解得,∴直线BC解析式为y=﹣x+3;(2)作点C关于x轴的对称点C1,则C1的坐标为(0,﹣3);设直线DC1的解析式为y=kx+b,可得:,解得:,∴设直线DC1的解析式为y=3.5x﹣3,将y=0代入解析式可得:x=,∴点P的坐标为(,0).(3)直线x=2交AB于D点,交BC于E点,交x轴于点G,∴D(2,4),E(2,),G(2,0),DE=4﹣=,且B(4,0),∴S△DBC=×DE•OB=××4=5,∴△DBC的面积为5.【点评】本题考查一次函数的综合应用,涉及等腰三角形和外角的性质、勾股定理、三角形的面积、三角形的三边关系、待定系数法及方程思想,正确利用相关知识进行运算是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1. 在下列各组数据中,不能作为直角三角形三边边长的是( ) A.3,4,5 B.3,3,3 C.6,8,10 D.5,12,132. 下列各数中与√2相乘结果为有理数的是( ) A.√2 B.2−√2 C.√5D.23. 若点A(m +3, m +1)在x 轴上,则点A 的坐标为( ) A.(0, 2) B.(2, 0) C.(0, −4) D.(4, 0)4. 下列各式中,运算正确的是( ) A.√6÷√3=√2 B.√16=±4 C.2√2+3√3=5√5D.√(−4)2=−45. 下列命题为真命题的是( ) A.两直线平行,同旁内角相等 B.两个锐角之和一定是钝角 C.平行于同一条直线的两条直线平行 D.如果x 2>0,那么x >06. 二元一次方程组{x −2y =6x =−y 的解是( )A.{x =2y =−2B.{x =−2y =2C.{x =2y =2D.{x =−2y =−27. 下列图象中,以方程y −2x −2=0的解为坐标的点组成的图象是( )A. B.C. D.8. 已知(x −y +3)2+√2x +y =0,则x +y 的值为( )A.−1B.0C.1D.59. 如图,在△ABC 中,∠B =46∘,∠C =54∘,AD 平分∠BAC ,交BC 于D ,DE // AB ,交AC 于E ,则∠ADE 的大小是( )A.45∘B.40∘C.54∘D.50∘10. 有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是( )A.2018B.1C.2020D.2019二、填空题(本大题共7小题,每小题4分,共28分)计算:25的平方根是________.某地教育局拟招聘一批数学教师,现有一名应聘者笔试成绩88分、面试成绩90分,综合成绩按照笔试占45%、面试占55%进行计算,该应聘者的综合成绩为________分.为了比较√10与√5+1的大小,可以构造如图所示的图形进行推算,其中∠C =90∘,BC =3,D 在BC 上且BD=AC=1,通过计算可得√10________√5+1.(填“>”或“<”或“=”).一副分别含有30∘和45∘角的两个直角三角板,拼成如上图形,则∠1=________度.如图,边长为4的等边△AOB在平面直角坐标系中的位置如图所示,则点A的坐标为________.如图,三角形ABC中,∠ACB=90∘,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC的最小值是________.将长为25cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为________.三、解答题(一)(本大题3小题,每小题6分,共18分)计算:√32−3√12+(√3+√2)(√3−√2)−√42019国际篮联篮球世界杯的D组小组赛由佛山赛区承办,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为3400元,其中小组赛球票每张280元,淘汰赛球票每张580元,问小李预定了小组赛和淘汰赛的球票各多少张?如图,在△ABC中,CE⊥AB于E,MN⊥AB于N,∠1=∠2.求证:∠EDC+∠ACB=180∘.四、解答题(二)(本大题3小题,每小题8分,共24分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A,C的坐标分别为(−4, 5),(−1, 3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y (元)与骑行时间x (时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是________(填①或②).(2)在图①中当x ≥1时,求y 与x 的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示计算出a 、b 、c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s 初中2,并判断哪一个代表队选手成绩较为稳定.五、解答题(三)(本大题2小题,每小题10分,共20分)如图,在平面直角坐标系中,直线y =−2x +12与x 轴交于点A ,与y 轴交于点B ,与直线y =x 交于点C .(1)求点C 的坐标.(2)若P 是x 轴上的一个动点,直接写出当△POC 是等腰三角形时P 的坐标.(3)在直线AB 上是否存在点M ,使得△MOC 的面积是△AOC 面积的2倍?若存在,请求出点M 的坐标;若不存在,请说明理由.阅读下面的材料,并解决问题.(1)已知在△ABC 中,∠A =60∘,图1−3的△ABC 的内角平分线或外角平分线交于点O ,请直接求出下列角度的度数.如图1,∠O =________;如图2,∠O =________;如图3,∠O =________;如图4,∠ABC ,∠ACB 的三等分线交于点O 1,O 2,连接O 1O 2,则∠BO 2O 1=________.(2)如图5,点O 是△ABC 两条内角平分线的交点,求证:∠O =90∘+12∠A .(3)如图6,△ABC 中,∠ABC 的三等分线分别与∠ACB 的平分线交于点O 1,O 2,若∠1=115∘,∠2=135∘,求∠A 的度数.参考答案与试题解析2019-2020学年广东省佛山市南海区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1.【答案】此题暂无答案【考点】勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】分于落理化实数【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】命体与白理【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】代入使碳古解革元一次方程组二元一都接程组的解【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】一次常数图按上点入适标特点一次射可的图象【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】非负数的常树:偶次方非负射的纳质:算术棱方础【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】平行体的省质三角形常角簧定理此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】勾体定展【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共7小题,每小题4分,共28分)【答案】此题暂无答案【考点】平方根【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】加水正均数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展实数根盖比较【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形射外角性过【解析】此题暂无解析此题暂无解答【答案】此题暂无答案【考点】等边三根形的性隐坐标正测形性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展垂因丙最短【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函较燥系式【解析】此题暂无解析【解答】此题暂无解答三、解答题(一)(本大题3小题,每小题6分,共18分)【答案】此题暂无答案【考点】二次根明的织合运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二元一明方息组交应先——销售问题【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【考点】平行线明判轮与性质【解析】此题暂无解析【解答】此题暂无解答四、解答题(二)(本大题3小题,每小题8分,共24分)【答案】此题暂无答案【考点】作图-射对称变面【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用一元都次特等水的实常应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】众数中位数算三平最数方差【解析】此题暂无解析【解答】此题暂无解答五、解答题(三)(本大题2小题,每小题10分,共20分)【答案】此题暂无答案【考点】一次函常的头合题【解析】此题暂无解析此题暂无解答【答案】此题暂无答案【考点】三角形常角簧定理【解析】此题暂无解析【解答】此题暂无解答。