自招数学组合试题

合集下载

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

自主招生数学试题

自主招生数学试题

以下是一些自主招生数学试题的示例,:
1. 选择题:
- 1/2的平方根是多少?
A. √2
B. √1/2
C. 2
D. 1/2
-抛物线y=x^2-4x+4的顶点坐标是?
A. (0,0)
B. (2,-4)
C. (2,0)
D. (4,0)
2. 填空题:
-已知函数f(x)=x^3-3x+1,求f(-1)。

-1
-设向量a=(2,3),向量b=(-1,2),求向量a和向量b的点积。

2
3. 解答题:
-解方程组:
x+y=5
x-y=3
-证明:对于任意实数a和b,a^2+b^2≥2ab。

4. 应用题:
-一家工厂生产A、B两种产品,生产A产品需耗电8千瓦时,生产B产品需耗电12千瓦时。

若工厂每天只能生产A、B中的一种产品,且每天至少生产A产品2个,求该工厂每天最多能生产多少个B产品。

-一辆汽车从A地出发,以60公里/小时的速度行驶,行驶3小时后到达B地。

若汽车返回时的速度为80公里/小时,求汽车返回A地所需的时间。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。

A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。

A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。

A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。

B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。

设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。

A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。

答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。

2024年广东省深圳中学自主招生数学试卷

2024年广东省深圳中学自主招生数学试卷

2024年广东省深圳中学自主招生数学试卷1.202420252024202363030301030×+=−×____________.2x +=的正数解为____________.3.等腰ABC △的底边AC 长为30,腰上的高为24,则ABC △的腰长为____________.4.已知实数m ,n 满足2202410m m ++=,224200n n ++=且1mn ≠,则601n mn=+____________. 5.若x 为全体实数,则函数223y x x =−+与2243y x x =−+的交点有____________个. 6.若0abc ≠,1a b c b c c a a b++=+++,则222a b c b c c a a b ++=+++____________. 7.K 为ABC △内一点,过点K 作三边的垂线KM ,KN ,KP ,若3AM =,5BM =,4BN =,2CN =,4CP =,则2AP =____________.8.记a ,b ,c 的最小值为{}min ,,a b c ,若{}()min 41,2,24fx x x x =++−+的最大值为M ,则6M =____________.9.已知正方形OBAC ,以OB 为半径作圆,过A 的直线交O 于M ,Q ,交BC 与P ,R 为PQ 中点,若18AP =,7PR =,则BC =____________.10.若a ,b ,c ,d ,e 为两两不同的整数,则22222()()()()()a b b c c d d e e f −+−+−+−+−的最小值为____________.11.PA ,PB 分别为1O 和2O 的切线,连接AB 交1O 于C 交2O 于D ,且AC BD =,已知1O 和2O 的半径分别为20和24,则2180PA PB = ____________.12.已知a ,b ,c 正整数,且只要1111a b c ++<,则111m a b c ++≤,设m 的最小值为r s (r s 为最简分数),则r s +=____________. 13.对于任意实数x ,y ,定义运算符号*,且*x y 有唯一解,满足()()()***a b c a c b c +=+,0*()(0*)(0*)a b a b +=+,则20*24=____________. 14.已知正整数A ,B ,C 且A C >,满足222879897ABC BCA CAB ++=,则ABC =____________.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为____________.2024深圳中学自招答案一、填空题.1.【解析】原式20242025220242023630306303018090054301030301020×+×++===−×−.2.x +=,x =, ∴218232x x x =−, ∵0x >,∴223218x −=,解得:5x =,∴该方程的正数解为5x =.3.【解析】①若ABC △为锐角三角形,如图所示:设ABC △的腰长为x ,在ACD △中,18AD =,在BCD △中,222(18)24x x −+=,解得:25x =,∴ABC △的腰长为25;②若ABC △为钝角三角形,如图所示:在BCD △中,222(18)24x x −+=,解得:25x =(舍), 综上所述:ABC △的腰长为25.4.【解析】由224200n n ++=得21120()2410n n+⋅+=,∵1m n ≠,∴m ,1n可以视为方程2202410x x ++=的两个实数根, ∴165m n +=−,∴60605011n mn m n ==++. 5.【解析】问题等价于方程2223243x x x x −+=−+的解的个数问题; ∴2240x x x +−=, 当0x ≥时,220x x −=,∴0x =或2x =;当0x <时,260x x −=,∴0x =或6x =(舍); 综上所述:函数223y x x =−+与2243y x x =−+的交点有2个. 6.【解析】222()()a b c a b c a b c a b c b c a c a b b c a c a b++++=+++++++++++, ∴222a b c a b c a b c b c a c a b++=++++++++, ∴2220a b c b c a c a b++=+++. 7.【解析】22222222()()KA KB KM AM KM BM AM BM −=−+=−, 同理可得:2222KB KC BN CN −=−,2222KC KA CP AP −=−,三式相加得:222222AM BN CP BM CN AP ++=++,∴222222.34452AP ++=++,解得212AP =.8.【解析】由题意作出以下图形:考虑24y x =−+与2y x =+的交点即可;联立242y x y x =−+ =+ ,解得2383x y = = ,∴83M =,∴616M =. 9.【解析】连接OP ,设AM x =,ACOC a ==, ∴18PM x =−,32QM x =−,由正方形的对称性:18OP AP ==,由圆幂定理:2AC AM AQ =⋅,22PM PQ OC OP ⋅=−,∴232a x =,2214(18)18x a −=−,∴214(18)3218x x −=−,解得:28823x =,∴BC ==.10.【解析】记1a b x −=,2b c x −=,3c d x −=,4d e x −=,5e a x −=,则1x 、2x 、3x 、4x 、5x 均为整数且不等于0,同时满足123450x x x x x ++++=,∴1x 、2x 、3x 、4x 、5x 中存在偶数个奇数,若存在2个1,2个1−,1个2,则对于1x 、2x 、3x 、4x 、5x 构成的数环而言必有一个1与1−相邻,这是不符合要求的,否则存在两数相等;所以至少存在两个数的绝对值为1,3个数的绝对值为2,∴222221234514x x x x x ++++≥,对于(,,,,)(1,3,5,4,2)a b c d e =而言可以取到14,故其最小值为14.11.【解析】过1O 、2O 、P 分别作AB 的垂线,垂足依次为E 、F 、G , ∴1190PAG O AE AO E ∠=°−∠=∠,2290PBG O BF BO F ∠=°−∠=∠,1122AE AG BD BF ===, ∴1APG O AE △∽△,2BPG O BF △∽△,∴1PA AO PG AE =,2PB BO PG BF =, ∴1122205246AO PA AO AE BO PB AO BF====,∴225180()180()1256PA PB =×=.12.【解析】不妨设a b c ≤≤,则2a ≥,当3a ≥时,1111111133412a b c ++≤++=; 当2a =时,11111112a b c b c ++=++<,∴1112b c +<,∴3b ≥, 当4b ≥时,1111111924520a b c ++≤++=, 当3b =时,1111114123742a b c ++≤++=, 即当(,,)(2,3,7)a b c =时,4142m =,83r s +=. 13.【解析】由(*)(*)(*)a b c a c b c +=+得*(*)(*)a b a c b c c =+−, ∴*(*)(*)*b a b c a c c a b =+−=,取0c =,则*(*0)(*0)(0*)(0*)0*()a b a b a b a b =+=+=+,对于0*()(0*)(0*)a b a b +=+,取0a b ==,得0*00=, 同时0*0(0*)(0*)0c c c =+−=,∴0*2c c =, ∴20*240*(2024)0*4422=+==.14.【解析】首先22228798971000ABC BCA CAB ++=<,∴A 、B 、C 均为一位数,且不为0,即从1到9,其次考虑末尾特点,222A B C ++的末尾为7,而完全平方数的末尾为014569,不考虑0,剩下14569,想要使得末尾为7,可以有1157++=或44917++=或56617++=或99927++=,由于A B C >>,故99927++=舍去(末尾为9的只有3、7两个),若满足1157++=,则对应的数为9、5、1,显然222951519195879897++>,舍去; 若满足56617++=,则对应的数为6、5、4,显然222654546465942057879897++=>,舍去; 若满足44917++=,则对应的数为8、3、2或8、7、2,计算222832328283879897++=符合题意;计算222872728287879897++>,舍去; 综上所述:832ABC =.15.【解析】设该等腰ABC △的腰为a ,底为b .由题意:112(2)2b a b ×+,∴48(2)b a b +,∴b 2322304(2)ab b a b −=+, ∴33223042304246082(48)(48)b b b b a b b b ++=−+−,∴3230446082(48)(48)(48)(48)b b b a b b b b b +==++−+−, 记4608(48)(48)b k b b =+−,k 为正整数,∴222248480kb b k −×−=,∴2∆==×为完全平方数,m =(m 为正整数),∴22248m k −=,即2()()48m k m k +−=, 由于2824823=×,有(81)(21)27++=个因子,应该存在(271)2114−÷+=组,考虑到()m k +与()m k −应该同奇偶,故存在14311−=组,列举如下: ∴(,)(1152,2)m k m k +−=或(576,4)或(384,6)或(288,8)或(192,12)或(144,16)或(128,18)或(96,24)或(72,32)或(64,36)或(48,48),∴(,)(577,575)m k =或)290,286(或)195,189(或)148,140(或(102,90)或(80,64)或(73,55)或(60,36)或(52,20)或(50,14)或(48,0), 根据求根公式,224824848(48)2m m b k k ×+×+=, 代入检验可得:当(,)(102,90)m k =或(80,64)或(60,36)或(52,20)或(50,14), 依次解得:80b =或96或144或240或336, ∵2a b k =+,∴2b k a +=,解得85a =或80或90或130或175, 综上所述:所有可能的等腰三角形的腰长之和为858090130175560++++=.。

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试卷一、填空题:本题共15小题,每小题3分,共45分。

1.______.2.方程在的正解为______.3.等腰的底边AC长为30,腰上的高为24,则的腰长为______.4.已知实数m,n满足,且,则______.5.若x为全体实数,则函数与的交点有______个.6.若,,则______.7.K为内一点,过点K作三边的垂线KM,KN,KP,若,,,,,则______.8.已知a,b,c,令a,b,c的最小值为,已知,若的最大值为M,则______.9.已知正方形OBAC,以OB为半径作圆,过A的直线交于M,Q,交BC与P,R为PQ中点,若,,则______.10.若a,b,c,d,e为两两不同的整数,则的最小值为______.11.PA,PB分别为和的切线,连接AB交于C交于D,且,已知和的半径分别为20和24,则______.12.已知a,b,c正整数,且只要则,设m的最小值为为最简分数,则______.13.对于任意实数x,y,定义运算符号*,且有唯一解,满足,,则______.14.已知正整数A,B,C且,满足,则______.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为______.答案和解析1.【答案】54【解析】解:,故答案为:利用同底数幂的乘法法则,有理数的混合运算法则进行计算,即可解答.本题考查了有理数的混合运算,同底数幂的乘法,准确熟练地进行计算是解题的关键.2.【答案】【解析】解:首先,考虑方程的两边统一分母.给定的方程是:,通过通分,我们可以将左边的两个分数合并为一个分数:,展开并化简分母和分子:分母:,分子:,于是原方程简化为:,进一步简化得到:,移项并除以假设,得:,解这个二次方程得到x的值:,,方程的正解为故答案为:根据解无理方程的步骤求解即可.本题考查无理方程,解题的关键是掌握无理方程的解题方法.3.【答案】【解析】解:等腰的底边AC长为30,腰上的高为24,的腰长为,故答案为:根据等腰三角形的性质和勾股定理即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4.【答案】50【解析】解:由题意可知,m,是方程的两个根,,即,,故答案为:由两个方程的形式可知,m,是方程的两个根,根据根与系数的关系得到与n的数量关系并代入计算即可.本题考查考查根与系数的关系、绝对值,确定m,是方程的两个根、掌握根与系数的关系是解题的关键.5.【答案】2【解析】解:方法①:,当时,,联立方程组,,整理,得,解得:,;当时,,联立方程组,,整理,得,解得:,,交点有2个.故答案为:方法②:图象法,在同一坐标系中画两个函数的图象.如图,两函数的交点有2个.根据二次函数的性质,分和两种情况把两函数解析式整理成一般形式,求x的值,确定交点个数即可.本题考查了二次函数的性质,利用分类讨论的思想,解题关键是根据x的取值范围去掉绝对值符号,整理成一般形式求解.6.【答案】0【解析】解:,,,所以故答案为:利用“代1”法将进行变形处理即可求得答案.本题主要考查了分式的化简求值,解题的技巧性在于“1”的巧妙应用.7.【答案】12【解析】解:连接AK、BK、CK,于点M,于点N,于点P,,,,,,,,,,,,,,,,,故答案为:连接AK、BK、CK,由,得,,,求得,,,可推导出,则,于是得到问题的答案.此题重点考查勾股定理的应用,正确地作出辅助线并且求得,,是解题的关键.8.【答案】14【解析】解:由题意,令,,,由,解得:,由,解得:,由,解得:,直线与直线的交点为,直线与的交点为,直线与的交点为,当时,,当时,,当时,,当时,,即,当时,;当时,;当时,;当时,综上所述,,即的最小值为,,故答案为:根据题意,令,,,联立方程组可求得直线与直线的交点为,直线与的交点为,直线与的交点为,再分情况进行分析:当时,;当时,;当时,;当时,进而求出M的值,即可得出答案.本题考查了一次函数与二元一次方程组,解二元一次方程组,熟练掌握一次函数与二元一次方程组,解二元一次方程组的方法是解题的关键.9.【答案】【解析】解:过P作直径FN,延长CO交于E,连MC、ME、MN、正方形ABOC,,为直径,,,又,,,,,正方形ABOC,,,又,≌,由得由得,即,,,,,,,故答案为:过P作直径FN,延长CO交于E,先证明,故再证明,故最后证明≌,故再换算即可.本题考查了正方形综合题,运用正方形性质,结合相似是解题关键.10.【答案】5【解析】解:,b,c,d为两两不同的整数,,,,,,的最小值为:故答案为:根据题意,a,b,c,d为两两不同的整数,可得,,,,,即可得的最小值为:本题考查了整式的混合运算,完全平方公式,熟练掌握整式混合运算法则,完全平方公式是解题的关键.11.【答案】125【解析】解:作,,,,,,,,,,,PB分别为和的切线,,,,,,,∽,∽,,,,故答案为:作,,,证,证,,证∽,∽,得出,即可解答.本题考查切线的性质,垂径定理,相似三角形的判定和性质,作辅助线,构造相似三角形是解题的关键.12.【答案】3【解析】解:,,,,,,,又,,即的最大值为2,,,为最简分数,故答案为:根据题意,,,,可得,,,进而得出,结合已知可得出,即的最大值为2,即可得出m的值,即的值,根据最简分数定义,即可得出答案.本题考查了分式的加减,最简分数定义,代数式求值,掌握分式的加减运算法则,最简分数定义是解题的关键.13.【答案】0【解析】解:令,则,即,令,,故答案为:根据新定义把变成据此解答即可.本题考查了实数的运算、数与式中的新定义问题,理解“*”的规定是关键.14.【答案】832【解析】解:,,,,,,,,,若尾数为7,则在1、4、9、6、5、6、9、4、1中,,此时A、B、C三个数为9、5、1,,此时A、B、C三个数为6、5、4,,此时A、B、C三个数为8、3、2,或8、7、2,下面开始验证,,不符合题意,,不符合题意,,符合题意,,不符合题意,综上,故答案为:根据平方的尾数和特征,从而得出ABC三个数的可能,再代入验证即可.本题主要考查尾数平方的特征,利用尾数和得出A、B、C三个数的可能性是解题的关键.15.【答案】560【解析】解:如图,作于点D,设腰长,底边,则,在中,,,,,故,,,,b为整数,,或,或,或,或,,可能的腰长之和为:故答案为:根据题意将腰长和底边设出来,通过面积和周长的关系建立关于a和b的等式,再利用分式取整的计算方法求解即可.本题主要考查了等腰三角形的性质等内容,熟练掌握相关知识是解题的关键.。

初中自主招生试卷数学答案

初中自主招生试卷数学答案

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -3/5B. √4C. 0.618D. √(-1)答案:D解析:有理数是可以表示为两个整数之比的数,包括整数、分数和有限小数。

√(-1)是虚数,不属于有理数。

2. 若a=2,b=-3,则a+b的值为()A. 5B. -1C. -5D. 0答案:C解析:a+b=2+(-3)=-1,所以选C。

3. 下列函数中,y是x的一次函数的是()A. y=2x^2-3x+1B. y=3x+4C. y=√xD. y=x^3-2x+1答案:B解析:一次函数的形式为y=kx+b,其中k和b是常数。

只有选项B符合一次函数的定义。

4. 已知三角形ABC的三个内角分别为∠A=45°,∠B=60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°答案:C解析:三角形内角和为180°,所以∠C=180°-∠A-∠B=180°-45°-60°=75°。

5. 下列方程中,x=3是它的解的是()A. 2x+1=7B. x^2-5x+6=0C. 3x-2=7D. x^2+2x+1=0答案:A解析:将x=3代入选项A,左边=23+1=7,右边=7,左边等于右边,所以x=3是方程2x+1=7的解。

二、填空题(每题5分,共20分)6. 已知a+b=5,a-b=3,则a=(),b=()答案:a=4,b=1解析:将两个方程相加得2a=8,解得a=4;将两个方程相减得2b=2,解得b=1。

7. 已知x^2-4x+4=0,则x的值为()答案:x=2解析:这是一个完全平方公式,可以分解为(x-2)^2=0,解得x=2。

8. 已知直角三角形ABC中,∠C=90°,AB=10,BC=6,则AC的长度为()答案:AC=8解析:根据勾股定理,AC^2=AB^2-BC^2,代入AB=10,BC=6,得AC^2=100-36=64,所以AC=8。

数学自主招生试题答案

数学自主招生试题答案

数学自主招生试题答案一、选择题1. 已知函数f(x) = ax^2 + bx + c在点x=1取得极小值,且该点为函数的唯一极值点。

若a>0,求b与c的关系。

答案:根据题意,函数f(x)在x=1处取得极小值,因此一阶导数f'(x)在x=1处为0。

首先求导数f'(x) = 2ax + b。

将x=1代入得f'(1) =2a + b = 0。

又因为x=1是唯一极值点,根据二次函数的性质,其判别式Δ = b^2 - 4ac必须小于0。

将f'(1) = 0代入得Δ = (2a)^2- 4a*c = 4a^2 - 4ac < 0。

由于a>0,可以化简得ac < 0,即b与c的关系为c < 0。

2. 已知一个等差数列的前三项分别为a-2,a,a+2,求该数列的前n项和公式。

答案:设等差数列的首项为a1,公差为d。

根据题意,有a1 = a - 2,a2 = a,a3 = a + 2。

由于是等差数列,有a2 = a1 + d,a3 = a2 + d。

将已知条件代入得a = a1 + d,a + 2 = a1 + 2d。

解这个方程组得a1 = a - d,d = 2。

所以首项a1 = a - 2,公差d = 2。

根据等差数列前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入a1和d的值,得到Sn = n/2 * (2(a - 2) + (n-1)*2) = n/2 * (2a - 4 + 2n - 2) = n/2 * (2a + 2n - 6)。

二、填空题1. 一个圆的半径为r,求该圆的面积与周长。

答案:圆的面积公式为A = πr^2,周长公式为C = 2πr。

所以该圆的面积为πr^2,周长为2πr。

2. 已知一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,请判断该三角形的形状。

答案:根据勾股定理,如果一个三角形的三边长满足a^2 + b^2 = c^2,那么这个三角形是一个直角三角形。

自主招生考试数学卷(答案) (6)

自主招生考试数学卷(答案) (6)

A、第一象限 B、第二象限
C、第三象限 D、第四象限
24、函数 y 4sin x 3cos x 的最小值为 (
)
A .0
B .-3
C .-5
D . 13
25、已知角 的终边上有一点 P- 3, 4,则 cos (
A、0
3
B、 5
C、0.1
二、填空题:(共 30 分.)
) D、0.2
1.双曲线
D、 y sin x cos x
sin
21、若
5 13
,且
为第四象限角,则 tan
的值等于(
)
12
A、 5
12
B、 5
5
C、 12
5
D、 12
22、下列命题中正确的是(

A、第一象限角必是锐角
B、终边相同的角相等
C、相等的角终边必相同
D、不相等的角其终边必不相同
23、-870°角的终边所在的象限是( )
7、【答案】 C
【考点】复数的基本概念,复数代数形式的混合运算 【解析】【解答】解:z z + i = 2 − i 2 + 2i = 4 + 4i − 2i − 2i2 = 6 + 2i
故答案为:C
【分析】根据复数的运算,结合共轭复数的定义求解即可.
8、【答案】 B
【考点】旋转体(圆柱、圆锥、圆台)
自考本科数学卷
(满分 150 分,考试时间 120 分钟)
一、选择题:(本题共 25 小题,共 50 分)
1.对 2×2 数表定义平方运算如下:( )
a
c
b d
2
a
c
b d
a c

2023青岛高中自招题

2023青岛高中自招题

2023青岛高中自招题2023年青岛高中自主招生题目参考内容如下:一、语文题目参考1. 作文题:请根据以下题目写一篇记叙文或议论文。

题目:青春是什么?请结合自身经历和感悟,谈谈你对青春的理解。

2. 阅读理解:阅读下面的文章,根据文章内容回答问题。

文章内容:介绍了中国古代的四大发明及其对世界文明的影响。

问题:四大发明分别是什么?它们对世界文明有何重要影响?二、数学题目参考1. 选择题:下列各题中,有一题是错的,请找出来。

A. 30 ÷ 0.3 = 100B. 0.2 × 0.3 = 0.06C. 5 - 3 × 2 = -1D. 12 ÷ 3 + 6 × 2 = 202. 计算题:计算下列各题。

A. 3.5 × 4.2 ÷ 0.7 = ?B. (2.5 + 3.7) × 2.3 = ?三、英语题目参考1. 阅读理解:阅读以下短文,根据短文内容回答问题。

短文内容:介绍了一次有趣的户外探险活动。

问题:活动中遇到了什么困难?最终是如何解决的?2. 书面表达:请根据以下题目写一篇英语短文。

题目:How to Protect the Environment?内容要点:介绍环境保护的重要性、提出一些保护环境的方法、号召大家共同行动保护环境。

四、物理题目参考1. 选择题:下列各题中,有一题是错的,请找出来。

A. 电流的单位是A。

B. 重力是一种基本力。

C. 一物体的重力与其质量成正比。

D. 电阻的单位是欧姆。

2. 计算题:计算下列各题。

A. 一辆汽车行驶50公里,耗油5升,求其百公里油耗是多少?B. 一根长2m的细铁丝,其电阻为3欧姆,求其电阻率是多少?五、化学题目参考1. 选择题:下列各题中,有一题是错的,请找出来。

A. H2O是水的化学式。

B. 金属的氧化物是碱。

C. 一氧化碳是一种有毒气体。

D. 乙醇的化学式是C2H5OH。

2. 计算题:计算下列各题。

高校自招数学试题及答案

高校自招数学试题及答案

高校自招数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图像经过点(1, 2)和(2,3),则下列哪个选项是正确的?A. a + b + c = 2B. 4a + 2b + c = 3C. a + 2b + c = 3D. 4a + b + c = 5答案:C2. 已知数列{an}是等差数列,且a1 + a2 + a3 = 12,a2 + a3 + a4 = 18,则a1 + a5的值是多少?A. 18B. 20C. 24D. 26答案:B3. 若复数z满足|z - 1| = |z + i|,则z对应的点在复平面上位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B4. 已知函数f(x) = ln(x) + 1/x,若f(x)在区间(0, +∞)上单调递增,则实数k的取值范围是?A. k > 0B. k ≥ 1C. k ≤ -1D. k ≤ 0答案:B二、填空题(每题5分,共20分)5. 若一个圆的直径为10,则该圆的面积为_______。

答案:25π6. 已知向量a = (3, -1),b = (2, 4),则向量a与向量b的数量积为_______。

答案:57. 若函数f(x) = x^3 - 3x^2 + 2在区间[1, 2]上单调递增,则实数k的取值范围是_______。

答案:k ≤ -18. 已知等比数列{an}的前三项分别为1,2,4,则该数列的通项公式为an = _______。

答案:2^(n-1)三、解答题(每题15分,共40分)9. 已知函数f(x) = x^2 - 4x + 3,求f(x)的单调区间,并说明理由。

答案:函数f(x)的单调递增区间为[2, +∞),单调递减区间为(-∞, 2)。

理由是f(x)的导数为f'(x) = 2x - 4,令f'(x) > 0得x > 2,令f'(x) < 0得x < 2。

中考数学自主招生试题

中考数学自主招生试题

选择题:
1. 下列选项中,哪个数是素数?
A. 9
B. 15
C. 23
D. 30
2. 两个数的最大公因数是8,最小公倍数是40,这两个数分别是:
A. 8、5
B. 8、10
C. 16、5
D. 16、10
3. 某商品原价是120 元,现在打折20%,那么折后的价格是:
A. 20 元
B. 96 元
C. 100 元
D. 144 元
填空题:
1. 一个长方形的长是12 厘米,宽是5 厘米,它的面积是______ 平方厘米。

2. 一个数字的百位数是7,个位数是8,它是______。

3. 若x + 4 = 10,那么x 的值是______。

应用题:
1. 甲、乙两个人一起修一段路,甲单独修完需要6 天,乙单独修完需要10 天。

他们一起工作几天能够完成修路任务?
2. 小明的手机套餐费用是每月50 元,每分钟通话费用是0.2 元。

如果他一共通话了100 分钟,那么他需要支付多少费用?
3. 根据统计数据,某班级男生人数是女生人数的3 倍,班级一共有40 名学生。

求男生和女生的人数分别是多少?。

上海中学自招数学真题(含答案)

上海中学自招数学真题(含答案)

上海中学自主招生试题1、因式分解:326114x x x -++=.【答案】()()()13421x x x --+.【解析】容易发现1x =是方程3261140x x x -++=的解,因此原式可以提出因式(1)x -,得到2(1)(654)x x x ---,对2(654)x x --用十字相乘可以得到原式等于(1)(34)(21)x x x --+.2、设0a b >>,224a b ab +=,则a ba b+=- .【解析】由条件可得2()6a b ab +=,2()2a b ab -=.因此22()63()2a b aba b ab+==-.由于0a b +>,0a b ->,所以a ba b+=-3、若210x x +-=,则3223x x ++=.【答案】4.【解析】对多项式用带余除法可得32223(1)(1)4x x x x x ++=+-++,而由条件2(1)(1)0x x x +-+=,因此原式的值等于4.4、已知()()()24b c a b c a -=--,且0a ≠,则b ca+=_________. 【答案】2.【解析】令a b m -=,c a n -=,则c b m n -=+, 代入()()()24b c a b c a -=--中得()24m n mn +=, ()20m n ∴-=,m n ∴=,即a b c a -=-,即2a b c =+,2b ca+∴=.5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是 .【答案】49.【解析】第一次取出红球的概率为23,且无论第一次取出什么球,第二次取出红球的概率仍为23,因此两次都是红球的概率是224339⨯=.6、直线:l y =与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是.【答案】32⎛ ⎝⎭.【解析】根据函数解析式可以算出A 、B 的坐标分别为(1,0)A,B .由于ACB 是AOB 关于直线AB 对称得到的,所以AC AO =,BC BO =.设(,)C m n,则可列方程组2222(1)1(3m n m n ⎧-+=⎪⎨+=⎪⎩,解得32m n ⎧=⎪⎪⎨⎪=⎪⎩O重合,舍去.因此3(2C .7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是. 【答案】454. 【解析】由题意知折痕是线段AC 的中垂线,设它与AB ,CD 分别交于,M N .设MB x =,则由MC MA =可列方程2229(12)x x +=-,解得218x =.同理有218DN =.作ME CD ⊥,垂足为E ,则四边形MECB 是矩形,因此9ME BC ==,218CE BM ==.可知274NE CD DN CE =--=.而454MN ===.因此折痕长为454.8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________. 【答案】128,21,20,3,16,2.【解析】设某一项为k ,则它的前一项应该为2k 或者13k -. 其中13k -必为奇数,即()4mod 6k ≡, 按照上述方法从1开始反向操作7次即可.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为.【答案】22cm .【解析】右图中,阴影部分是正六边形,且与正六边形ABCDEF的相似比为1:3.因为ABCDEF 的面积是26cm ,所以阴影部分的面积为2632()cm ÷=.10、已知()()21244y x m x m =+-+-与2y mx =在x 取任意实数时,1y ,2y 至少有一个是正数,m 的取值范围是________. 【答案】4m <.【解析】取0x =,则14y m =-,20y =,40m ∴->,4m <, 此时函数1y 的对称轴404mx -=-<, 则对任意0x ≥总有10y >,只需考虑0x <; 若04m ≤<,此时20y ≤, 则对任意0x <,有10y >,()()24840m m ∴∆=---<,解得04m ≤<;若0m <,此时20y >对0x <恒成立; 综上,4m <.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________.【答案】1.【解析】令()()()()()()()()()()2222x a x b x c f x mx nx k a b a c c b a b c a c b ---=++=++------, ()()()1f a f b f c ∴===,即222111ma na k mb nb k mc nc k ⎧++=⎪++=⎨⎪++=⎩,01m n k ==⎧∴⎨=⎩ ,即()1f x ≡.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________.【答案】133t -≤≤-.【解析】方法一:考虑基本不等式222a b ab +≥. 则2212a b ab ab +=-≥,则113ab -≤≤, 又2221t ab a b ab =--=-,133t ∴-≤≤-,其中1a =,1b =-时,3t =-成立;a b ==时,13t =-成立. 方法二:逆用韦达定理. 12t ab +=,()2302t a b ++=≥,3t ∴≥-,a b +=,故a ,b 是方程2102t x ++=的两个根, 314022t t ++∴∆=-⨯≥,解得13t ≤-,133t ∴-≤≤-.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.【答案】(1(2. 【解析】(1)设正五边形ABCDE ,联结,AC BE ,且设它们交于点M .可以计算得到36ABM ABC ∠=∠=︒,因此ABM ACB ,可得2AB AM AC =⋅.同时,72BMC CBM ∠=∠=︒,所以BC MC =.若正五边形边长为1,则1AB BC CM ===,设AC x =,则由2AB AM AC =⋅可列方程21(1)x x =-,解得x去). (2)根据诱导公式,sin18cos72︒=︒.在(1)的五边形中,BM AM AC CM ==-=.作CH BM ⊥,垂足为H ,则等腰三角形BMC 中12BH HM BM ===72CBM ∠=︒,所以sin18cos72BH BC ︒=︒==.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.【答案】(1)69c <≤ ;(2)8104.【解析】(1)()()()01233f f f <-=-=-≤,()0f x k ∴-=有三个实根1,2,3x =---,()()()()123f x k x x x ∴-=+++,展开得6c k =+,69c ∴<≤;(2)方程()100f x x -=有三个实根1,2,3x =,记第4个根为x p =,则()()()()()10123f x x x p x x x -=----,()()()()()12310f x x p x x x x ∴=----+,()()()()()()()106109871006789608104f f p p ∴+-=-⨯⨯⨯++--⨯-⨯-⨯--=.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=; 球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R >时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值; 问题(2)()12x y z =++. 【答案】(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩.【解析】(1)条件可转化为点(,,)m n k 在平面10x y z ++-=上,而222m n k ++的最小值即该点到原点距离平方的最小值.这个距离最小为原点到平面10x y z ++-=的距离,而原点到平面的距离可由材料公式计算得到:3d ==,因此222m n k ++的最小值为213d =,等号在13m n k ===时取到.(2)移项后配方可以得到2221111)1)1)0222-+-+=,因此必有101010-==-=,于是解得123xyz=⎧⎪=⎨⎪=⎩.。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项不是正整数?A. 0B. 1C. 2D. 3答案:A2. 如果函数\( f(x) = x^2 - 4x + 3 \),那么\( f(2) \)的值是多少?A. -1B. 1C. 3D. 5答案:A3. 圆的面积公式是?A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi d \)D. \( \pi r \)答案:A4. 已知\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。

A. \( \frac{4}{5} \)B. \( \frac{1}{5} \)C. \( -\frac{4}{5} \)D. \( -\frac{1}{5} \)答案:A5. 以下哪个数是无理数?A. \( \sqrt{2} \)B. 1.5C. 0.333...D. 1答案:A6. 一个等差数列的首项是3,公差是2,第10项是多少?A. 23B. 21C. 19D. 17答案:B二、填空题(每题3分,共15分)1. 一个直角三角形的两条直角边分别为3和4,斜边的长度是______。

答案:52. 函数\( g(x) = 2x - 1 \)的反函数是______。

答案:\( g^{-1}(x) = \frac{x + 1}{2} \)3. 一个数的平方根是4,这个数是______。

答案:164. 已知\( \tan(\theta) = 3 \),求\( \sin(\theta) \)的值(假设\( \theta \)在第一象限)。

答案:\( \frac{3\sqrt{10}}{10} \)5. 一个等比数列的首项是2,公比是3,第5项是多少?答案:162三、解答题(每题25分,共50分)1. 解不等式:\( |x - 5| < 4 \)。

2024初升高自主招生数学试卷(一)及参考答案

2024初升高自主招生数学试卷(一)及参考答案

—1—2024初升高自主招生数学模拟试卷(一)1.方程43||||x x x x -=实数根的个数为()A .1B .2C .3D .42.如图,△ABC 中,点D 在BC 边上,已知AB =AD =2,AC =4,且BD :DC =2:3,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.已知G 是面积为24的△ABC 的重心,D 、E 分别为边AB 、BC 的中点,则△DEG 的面积为()A .1B .2C .3D .44.如图,在Rt △ABC 中,AB =35,一个边长为12的正方形CDEF 内接于△ABC ,则△ABC 的周长为()A .35B .40C .81D .845.已知2()6f x x ax a =+-,()y f x =的图象与x 轴有两个不同的交点(x 1,0),(x 2,0),且1212383(1)()1)(16)(16)a a x x a x a x -=-++----,则a 的值是()A .1B .2C .0或12D .126.如图,梯形ABCD 中,AB //CD ,AB =a ,CD =b .若∠ADC =∠BFE ,且四边形ABFE 的面积与四边形CDEF 的面积相等,则EF 的长等于()A .2a b+B .abC .2ab a b +D .222a b +—2—7.在△ABC 中,BD 平分∠ABC 交AC 于点D ,CE 平分∠ACB 交AB 于点E .若BE +CD =BC ,则∠A 的度数为()A .30°B .45°C .60°D .90°8.设23a =,26b =,212c =.现给出实数a 、b 、c 三者之间所满足的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④21b ac -=.其中,正确关系式的个数是()A .1B .2C .3D .49.已知m 、n 是有理数,方程20x mx n ++=2,则m +n =.10.正方形ABCD 的边长为5,E 为边BC 上一点,使得BE =3,P 是对角线BD 上的一点,使得PE +PC 的值最小,则PB =.11.已知x y ≠,22()()3x y z y z x +=+=.则2()z x y xyz +-=.12.如图,四边形ABCD 的对角线相交于点O ,∠BAD =∠BCD =60°,∠CBD =55°,∠ADB =50°.则∠AOB 的度数为.13.两个质数p 、q 满足235517p q +=,则p q +=.14.如图,四边形ABCD 是矩形,且AB =2BC ,M 、N 分别为边BC 、CD 的中点,AM 与BN 交于点E .若阴影部分的面积为a ,那么矩形ABCD 的面积为.第12题图第14题图15.设k 为常数,关于x 的方程2223923222k k x x k x x k --+=---有四个不同的实数根,求k 的取值范围.—3—16.已知实数a 、b 、c 、d 互不相等,并且满足1111a b c d x b c d a+=+=+=+=,求x 的值.17.已知抛物线2y x =与动直线(21)y t x c =--有公共点(x 1,y 1),(x 2,y 2),且2221223x x t t +=+-.(1)求t 的取值范围;(2)求c 的最小值,并求出c 取最小值时t 的取值.—4—18.如图,已知在⊙O 中,AB 、CD 是两条互相垂直的直径,点E 在半径OA 上,点F 在半径OB 延长线上,且OE=BF ,直线CE 、CF 与⊙O 分别交于点G 、H ,直线AG 、AH 分别与直线CD 交于点N 、M .求证:1DM DN MC NC-=.参考答案。

2017年___数学自招真题

2017年___数学自招真题

2017年___数学自招真题1. 已知三角形的三边为a、b、c,求a+b+c-2ab-2bc-2ca的值。

解:根据三角形的三边关系,有a+b>c,b+c>a,c+a>b。

将a+b+c-2ab-2bc-2ca进行化简,得到(a-b-c)^2>0,即a-b-c不等于0。

2. 设m、n是正整数,且m+n>mn,判断以下四个结论中正确的一个。

解:将m+n-mn>0进行化简,得到(m-1)(n-1)<1。

若m、n均大于1,则m-1≥1,n-1≥1,因此(m-1)(n-1)≥1,与(m-1)(n-1)<1矛盾。

3. 已知方程2x+a=x+a有一个根为1,求实数a的值。

解:将x=1代入方程2x+a=x+a,得到a+2=a+1,化简得a=-1±√5。

当a=-1-√5时,方程2x+a=x+a的根不包括1,因此舍去。

4. 已知a、b、c是不完全相等的任意实数,求x=a-2b+c,y=a+b-2c,z=-2a+b+c的大小关系。

解:将x、y、z相加,得到x+y+z=-2a-2b-2c。

若x、y、z均小于0,则x+y+z<0,与上式矛盾。

5. 已知a、b、c不全为无理数,判断关于a+b、b+c、c+a的说法是否正确。

解:若a、b、c均为有理数,则a+b、b+c、c+a均为有理数,选项A正确。

若a=2,b=3,c=√2,则a+b、b+c、c+a均为无理数,选项B正确。

若a=2,b=-2,c=√2,则a+b、b+c、c+a中有且仅有一个为有理数,选项D错误。

6. 求方程组(x-y)(x-2y)=1,(x+y-2)^2+(2x-y-1)^2的实数解。

解:将(x-y)(x-2y)=1化简,得到x^2-3xy+2y^2=1。

将x+y-2=a,2x-y-1=b,化简得到a^2+b^2=10。

将x=ay+b代入x^2-3xy+2y^2=1,得到a^2-3ab+2b^2=1。

高中自招试题数学答案及解析

高中自招试题数学答案及解析

高中自招试题数学答案及解析试题一:已知函数\( f(x) = 3x^2 - 2x + 1 \),求其导数\( f'(x) \)。

答案:首先,根据导数的定义,我们对函数\( f(x) \)进行求导。

对于\( f(x) = 3x^2 - 2x + 1 \),其导数\( f'(x) \)为:\[ f'(x) = 6x - 2 \]解析:求导的过程涉及到幂函数的导数规则,即\( (x^n)' = n \cdot x^{n-1} \)。

对于常数项1,其导数为0。

将各项的导数相加,得到最终的导数表达式。

试题二:设集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B 的交集A∩B。

答案:集合A和集合B的交集A∩B为{2, 3}。

解析:交集是指两个集合中共有的元素。

在这个例子中,我们可以看到元素2和3同时出现在集合A和集合B中,因此它们构成了这两个集合的交集。

试题三:若\( \sin(2x) = 2\sin(x) \),求\( x \)的值。

答案:根据二倍角公式,我们知道\( \sin(2x) = 2\sin(x)\cos(x) \)。

将题目中的等式代入,得到:\[ 2\sin(x)\cos(x) = 2\sin(x) \]由于\( \sin(x) \neq 0 \),我们可以除以\( 2\sin(x) \)得到:\[ \cos(x) = 1 \]这意味着\( x \)的值是\( 2k\pi \),其中\( k \)是整数。

解析:这个问题的关键在于识别并应用二倍角公式。

通过将等式转换为已知的三角恒等式,我们可以简化问题并找到\( x \)的解。

试题四:解不等式\( |x - 3| < 2 \)。

答案:不等式\( |x - 3| < 2 \)可以分解为两个不等式:\[ -2 < x - 3 < 2 \]解得:\[ 1 < x < 5 \]解析:绝对值不等式可以通过将其分解为两个不等式来解决。

进才中学自招数学真题(含答案)

进才中学自招数学真题(含答案)

进才自招试题1、220162017a a +=,220162017b b +=,求()()11a b --.【答案】0或4072324.【解析】由题意,,a b 都是方程220162017x x +=的根,所以,1a b =或2017-. 若1a =或1b =,则()()110a b --=;若2017a b ==-,则()()21120184072324a b --==. 因此()()110a b --=或4072324.2、已知0,0x y >>,y xy x =,2y x x y =,求x y +. 【答案】2或9724. 【解析】由题意()2x xy y=,所以3x y -=.于是23y y y --=. 若1y =则1x =,经检验符合条件,此时2x y +=;若1y ≠,则23y -=-,此时23y =,而3278x y -==,经检验也符合条件, 此时9724x y +=. 因此2x y +=或9724.3、已知()()(),b c,,a d ac bd ad bc =++且()()(),,,v u v x y u =,求x y +.【答案】当0u v +≠时1x y +=,当0u v +=时x y +可为任意实数.【解析】由题意()()(),,,u v x y ux vy uy vx =++,所以()(),,ux vy uy vx u v ++=. 将两者相加可知ux vy uy vx u v +++=+,所以()()10u v x y ++-=.若0u v +≠,则1x y +=;若0u v +=,则()(),,ux vy uy vx u v ++=当且仅当1x y -=,所以x y +可以为任意实数.4、21x m x -=-有三个不等的实数解,求m .【答案】1或54. 【解析】由题意,函数2|1|y x =-与y m x =-的图像恰有三个不同交点.其中,2|1|y x =-为抛物线21y x =- 在()1,1-区间上的部分关于x 轴翻折得到的, 而y m x =-的图像是由y x =-图像上下平移得到的.分析两者的图像可知,当且仅当y m x =-与()2|1|11y x x =--<<相切或y m x =-过()1,0时两者恰有三个交点. 若y m x =- 与()2|1|11y x x =--<<相切,则方程21x m x -=-判别式为零, 即()2514104m m --=⇒=.经检验此时两图像相切于13,24⎛⎫ ⎪⎝⎭,符合条件. 若y m x =-过()1,0,则1m =,经检验也符合条件.因此1m =或54.5、0a >,210a a --=,求43a a -.【答案】32+.【解析】由题意4321a a a a -==+.由于21102a a a --=⇒=,而0a >,所以12a +=,故43312a a a +-=+=.6、甲、乙相距60km ,公交车速度为60km /h ,6点发第一班车,每15分钟一班,问从乙站9点发的一班车可在途中遇到几辆车?【答案】9.【解析】当这班车从乙地出发时,恰有一班从甲地出发的车到达乙地, 此车的出发时间为60160=小时前(即8点发车). 此车到达甲地的时间为10点, 所以途中会遇到所有8点到10点之间从甲地出发的车,共2601519⨯÷+=(辆),且不会遇到别的车.7、1:10'≥2:10'> 3:x x '> 224:2230a b a b '++-+> 中正确的有()个.【答案】3. 【解析】10≥正确,10>正确,||x x >错误,比如0x ≥时||x x =,()()22222231110a b a b a b ++-+=++-+>正确,因此共3个正确选项.8、230x ax b ---=有两个不等实根,2330x ax a b -+--=有两个相等实根, 2210x ax a b -+-+=无实根,求a 、b 范围.【答案】04,35a b <<-<<.【解析】由题意得()()()22243043304210a b a a b a a b ⎧++>⎪⎪---=⎨⎪--+<⎪⎩ .由中间式可知212124a a b -+=-, 代入其余两式得1204160a a >⎧⎨-<⎩,所以04a <<,对应b 的范围为35b -<<. 9、42a a -+=,求[]a ([]a 为不超过a 的最大整数). 【答案】2或1-.【解析】去分母可得2240a a --+=,故)410-=.0≥10=, 得2210a a --=,即1a =±. 经检验都是原方程的解.因此[]12a ⎡=+=⎣或[]11a ⎡==-⎣.10、矩形ABCD ,2AB =,BC a =,E 为BC 边上一点,且AE ED ⊥,求a 的取值范围.【答案】4a ≥.【解析】设,BE x CE y ==,则由于AE ED ⊥可得ABEECD ∆∆,所以AB EC BE CD =,由于2AB CD ==,所以4xy =.于是4a x y =+≥=,且没有上界(只要4a ≥,,x y 就有解).因此a 的取值范围是4a ≥.11、四个圆环由大到小排列,将四个圆环转移到C ,可借助B ,转移过程中只能大环在小环下A B C面,至少需要几次?【答案】15.【解析】此题为著名的“汉诺塔”问题.可以通过归纳证明移动n 个圆环至少需要21n -次移动.当1n =时结论显然成立.为完成归纳过渡,设结论在n k =时已成立,假设1n k =+. 此时考虑移动最大的一个圆环的操作. 设第一次移动最大的圆环的操作是i ,最后一次移动这个圆环的操作是j (i j ≤),我们证明:i 之前至少有21k -次操作,j 之后至少有21k -此操作,从而整套操作至少12112121k k k +-++-=-次.由于操作i 进行时,最大圆环进出的两根柱子都不能有其他圆环,所以其余k 个圆环此时都在第三根柱子上,即操作i 之前须将前k 个圆环从A 移至另一根柱子,且保持上小下大的顺序,而最大的圆环不动.由归纳假设至少需要21k -次操作.另一方面,操作j 进行时同样其余k 个圆环都在第三根柱子上,上小下大,且j 之后最大圆环不再移动,所以须将其余k 个圆环从另一根柱子上移到C 上,根据归纳假设至少需要21k -次操作.因此归纳过渡成立.从而转移四个圆环至少需要42115-=次. 例子的构造只需根据归纳中取到等号的条件来进行即可(即先将上面的1k -个圆环移动到B 然后将最大的圆环移动到C ,最后将B 上的圆环移动到C ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【题文】下图是2008年北京奥运会的会徽图案——“中国印”它是由四个色块构成,可以用线段在不穿越其他色块的条件下将其中任意两块相连接(如同架桥)现在要求只用三条线段将四个色块连成一体,不同的连接方案共有()A4种B12种C16种D24种【题文】新区新建有5个住宅小区(A、B、C、D、E),现要铺设连通个小区的自来水管道,如果它们两两之间的路线长如下表(距离单位:Km)请问最短的管线长为()'A13B14C15D17【题文】用四种不同颜色给一个六棱锥的各个面(包括底面)染色,要求相邻的面颜色不同,不同的染色方案有()A.4×66 B. 7!C.4×36 D.4×35【题文】五刀最多可以将一个西瓜切成()块。

A.15 B. 26 C.37 D. 125【题文】在主街道ABCD上则一地点P建立供货站,使位于沿街各支线(有共线现象)未端的店铺(那些带的位置)到此供货站的距离之和为最小,则P的位置()A.只能是BB.只能是CC.可以取BC之间任意一点(含B,C)D.可以取CD之间任意一点(含C,D)【题文】将一个四棱锥的每个顶点染上一种颜色,并使每一条棱的两端异色,若只有五种颜色可供使用,则不同的染色方法的总数为()(A)120;(B)260;(C)340;(D420.【题文】(2009年清华)一场跑马比赛最多只能有8匹马参加,假设同一匹马参加每一场比赛的表现都一样的. 问:可以由不多于50场比赛,完全将64匹马的实力顺序排序吗?【题文】(2009年清华)现有一数字游戏:有1到100这100个数,两个人轮流写. 设已经写下的数为若一个数能表示成(为非负整数),则这个数不能够被写(如若3, 5已被写,则不能在被写,,以及也不能在被写).规定:最后不得不写1的人算输. 现在甲和乙玩这个游戏,已知5,6应经被写,现在轮到甲写. 问:怎样才能使甲必胜?【题文】(2009年清华)证明:一个项的整数数列,它们全部相等的充分必要条件是满足条件,条件为任意取出个数,都存在一种划分方法,使得两堆数每堆含有个数,并且这两堆数的和相等.【题文】(2009年清华)有数条抛物线(线和线的内部)能够覆盖整个平面吗?证明你的结论.【题文】世界杯预选赛中,中国、澳大利亚、卡塔尔和伊拉克被分为同一组.比赛采用主客场循环制(即每一队与其他三队在主场、客场各比赛一场).规定胜一场得3分,平一场得1分,负一场的0分,积分最多的前两个队出线.如出现因积分相同而难以选出前2名的情况,将按净胜球等其他规则,使得最终只能有两队从小组出线.(1)由于4支队伍实力相当,每支队伍至少得3分.于是甲专家预测:中国队至少得10分才能确保出线;乙专家预测:中国队至少得11分才能确保出线.(以上预测都不考虑净胜球等其他因素)问:甲乙专家哪个说的对?为什么?(2)若不考虑每支队伍至少得3分这个条件,中国至少得多少分才能确保出线?【题文】(复旦)将一个四棱锥的每个顶点染上一种颜色,并使一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法的总数为()A.120B.260C.340D.420【题文】(2000年复旦保送生)设平面上有三个点,任意两个点之间的距离不超过1,问:半径至少为多大的圆盘才能盖住着三个点?请证明你的结论.【题文】在中取一组数,使得其中任意两数之和不能被其差整除,最多能取多少个数?【题文】有黑、白、黄、筷子各8只,不用眼睛看,任意地取出筷子来,使得至少有两双筷子不同色,那么至少要取出______只筷子才能做到【题文】(交大2008冬令营)世界杯预选赛中,中国、澳大利亚、卡塔尔和伊拉克被分在A组,进行主客场比赛。

规定每场比赛胜者得三分,平局各得一分,败者不得分。

比赛结束后前两名可以晋级。

(1)由于4支队伍均为强队,每支队伍至少得3分。

于是甲专家预测:中国队至少得10分才能确保出线;乙专家预测:中国队至少得11分才能确保出线;问:甲、乙专家哪个说的对?为什么?(2) 若不考虑(1)中条件,中国队至少得多少分才能确保出线?【题文】(北大2008自招)排球单循环赛,南方球队被北方球队多9支,南方球队总得分是北方球队的9倍,求证,冠军是一支南方球队(胜得1分,败得0分)。

【题文】在欧非杯排球赛中,欧洲的参赛队伍比非洲的参赛队伍多9支.每两支球队赛一场,胜者得1分,败者得0分.若欧洲球队所得总分为非洲所得总分的9倍,则非洲球队的各支球队中得分的最大可能值是()A.8;B.9;C.10;D.11.【题文】(清华2009自招)有100个集装箱里面有200个货物,在取出来的过程中货物的顺序被打乱了,现要将它们按一定的规则重新装入集装箱中,将货物依次取出,依次放入集装箱中,集装箱体积都是1,且每个集装箱最多放两个货物,若装了一个货物装不下第二个,那么就将这个集装箱密封,把第二个货物装到了一个货物后装不下第二个,那么就将这个集装箱密封,把第二个或武装到下个集装箱中,比如原来有2个集装箱中的货物体积是,被打乱顺序后为,那么就需要3个集装箱去装它们,问在最坏的情况是需要多少个集装箱?【题文】(北大2009自招)有333人考试,一共做对了1000道题,做对不多于3道为不及格,做对不少于6道为优秀,不是所有人答对的题的数量的奇偶性都相同,问不及格的多还是优秀的多?【题文】(清华2009自招)一场跑马比赛最多只能有8匹马参加,假设同一匹马参加每一场比赛的表现都是一样的,问:可以由不多于50场比赛,完全将64匹马的实力顺序排序吗?【题文】(清华2009自招)现有一数字游戏:有1到100这100个数,两个人轮流写,设已经写下的数为,若一个数x能表示成(为非负整数),则这个数不能够被写(如若3,5以被写,则8=5+3不能在被写,13=3+5×2,以及9=3×3+5×0也不正在被写)规定,最后不得不写1的人算输,现在甲和乙玩这个游戏,已知,5,6已经被写,现在轮到甲写,问:怎样才能使甲必胜?【题文】有10个人各自拿着一个水桶到统一自来水龙头接水,它们的水桶的容量不同,因而接满水的用时也不同,假设这10个人同时到达水龙头前,问怎样安排打水顺序,才能是等待的总时间最短?【题文】(武大)某珠宝店失窃,甲、乙、丙、丁四人涉嫌被拘审,四人的口供如下:甲:作案的是丙;乙:丁是作案者;丙:如果我作案,那么丁是主犯;丁:作案的不是我.如果四人口供中只有一个是假的,那么一下判断正确的是()A.说假话的是甲,作案的是乙B.说假话的是丁,作案的是丙和丁C.说假话的是乙,作案的是丙D.说假话的是丙,作案的是丙【题文】(武大)来自英、法、德的甲、乙、丙四位客人同时参加一个国际会议.他们除了懂本国语言外,每人还会说其他三国语言中的一种,有一种语言是三个人都会说的,但没有一种语言人人都懂.现知道:①甲是日本人,丁不会说日语,但他俩能自由交谈;②四个人中,没有一个人既能用日语交谈,又能用法语交谈;③乙不会说英语,当甲与丙交谈时,他都能做翻译;④乙、丙、丁交谈时,找不到共同语言沟通,由上述可知,丁会说的两种语言是_______、________.【题文】(武大)运动会上,甲、乙、丙名同学各获得一枚奖牌,其中1人得金牌、1人得银牌、1人得铜牌.王老师曾猜测“甲得金牌、乙不得金牌、丙不得铜牌”,结果王老师只才对了一人,那么甲、乙、丙分别获得______、_______、________牌.【题文】(上海交大)珠宝店丢失了一件珍贵珠宝.以下四人只有一人说真话,只有一人偷了珠.甲:我没有偷.乙:丙是小偷.丙:丁是小偷.丁:我没有偷.则说真话的人是______,偷珠宝的人是_______.【题文】某商店失窃,赵、钱、孙、李四人涉案被拘捕.四人口供如下:赵说:“孙是窃贼”;钱说“李是窃贼”;孙说“如果我作案,那么李是主犯”;李说“我没有偷”.已知四个口供中只有一个是假的,可以断定,说假话的是_____;作案者是____.【题文】(清华2009自招)证明:一个2n+1项的整数列,它们全部相等的充分必要条件是满足条件p,条件p为任意取出2n个数,都存在一种划分方法,使得两堆每堆含有n个数,并且这两堆数的和相等。

【题文】(北大2009自招)已知一无穷等差数列中有3项:13,25,41,求证:2009为数列中一项。

【题文】(复旦2009选拨)下列曲线中哪一条拿住两端拉直后不打结?()【题文】设如图所示,是一人出差从A城到B城区,沿途可能经过的城市的示意图,通过两城市所需的时间标在两城市的连线上(单位:时)试求此人从城A到城B 所需时间的最小值。

【题文】如题图模块①~⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成,现从模块①~⑤中选出三个放到模块⑥上,使得模块6成为一个棱长为3的大正方体,则下列选择方案中,能够完成任务的为()A,模块①,②,⑤B,模块①,③,⑤C,模块②,④,⑥ D 模块③,④,⑤【题文】(上海交大)世界杯预选赛中,中国、澳大利亚、卡塔尔和伊拉克被分在组,进行主客场比赛.规定每场比赛胜者得三分,平局各得一分,败者不得分.比赛结束后前两名可以晋级.(1)由于4支队伍均为强队,每支队伍至少得3分.于是甲专家预测:中国队至少得10分才能确保出线;乙专家预测:中国队至少得11分才能确保出线.问:甲、乙专家那个说的对?为什么?(2)若不考虑(1)中的条件,中国队至少得多少分才能确保出线?【题文】(复旦,改编)设平面上有三个点,任意两个点之间的距离不超过1.问:半径至少为多大的圆盘才能盖住这三个点.请证明你的结论.【题文】对任意实数,定义运算,其中为常数,且等式右端中的运算为通常的实数加法、乘法运算.已知,且有一个非零实数,使得对于任意实数均有则()(A)(B)(C)(D)。

相关文档
最新文档