数学九年级上册期末试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学九年级上册期末试卷(含答案)
一、选择题
1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )
A .2
B .3
C .
218
D .
247
2.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( ) A .9︰16
B .3︰4
C .9︰4
D .3︰16
3.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④
B .①③
C .②③④
D .①③④
4.二次函数()2
0y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点
的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2
200ax bx c a ++-=≠有两个相等的实数根;⑤13
a >
.其中正确的有( )
A .②③⑤
B .②③
C .②④
D .①④⑤
5.sin30°的值是( ) A .
12
B .
22
C .
32
D .1
6.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .
12
B .
13
C .
14
D .
15
7.二次函数2
(1)3y x =-+图象的顶点坐标是( ) A .(1,3)
B .(1,3)-
C .(1,3)-
D .(1,3)--
8.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )
A .73
B .234+
C .
14
33
D .
22
33
9.一组数据0、-1、3、2、1的极差是( ) A .4
B .3
C .2
D .1
10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )
A .25°
B .40°
C .45°
D .50° 11.已知△ABC ≌△DEF ,∠A =60°,∠
E =40°,则∠
F 的度数为( )
A .40
B .60
C .80
D .100
12.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析
式为( ) A .y =32x −2
B .y =32x +2
C .y =3()2
2x -
D .y =3()2
2x +
13.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )
A .30°
B .45°
C .60°
D .75°
14.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度 15.下列方程中,是一元二次方程的是( )
A .2x +y =1
B .x 2+3xy =6
C .x +
1x
=4 D .x 2=3x ﹣2
二、填空题
16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.
17.二次函数2
3(1)2y x =-+图象的顶点坐标为________.
18.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________. 19.若
53x y x +=,则y
x
=______. 20.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是
2200.5s t t =-,飞机着陆后滑行______m 才能停下来.
21.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________
22.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 23.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
24.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.
25.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 26.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.
27.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____. 28.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 29.已知二次函数2
(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:
x
… -1 0 1 2 3 4 … y
…
6
1
-2
-3
-2
m
…
下面有四个论断:
①抛物线2
(0)y ax bx c a =++≠的顶点为(23)-,
; ②240b ac -=;
③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.
其中,正确的有___________________.
30.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),
三、解答题
31.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒
32.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.
(1)连接AQ 、PQ ,以PQ 为直径的
O 交AQ 于点E .
①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,
O 是以PQ 为弦的圆.
①若圆心O 恰好在CB 边的延长线上,求O 的半径:
②若
O 与矩形ABCD 的一边相切,求O 的半径.
33.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.
34.问题背景:如图1设P 是等边△ABC 内一点,PA =6,PB =8,PC =10,求∠APB 的度数.小君研究这个问题的思路是:将△ACP 绕点A 逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB =∠APP'+∠BPP'=150°.
简单应用:(1)如图2,在等腰直角△ABC 中,∠ACB =90°.P 为△ABC 内一点,且PA =5,PB =3,PC =22,则∠BPC = °.
(2)如图3,在等边△ABC 中,P 为△ABC 内一点,且PA =5,PB =12,∠APB =150°,则PC = .
拓展廷伸:(3)如图4,∠ABC =∠ADC =90°,AB =BC .求证:2BD =AD+DC . (4)若图4中的等腰直角△ABC 与Rt △ADC 在同侧如图5,若AD =2,DC =4,请直接写出BD 的长.
35.如图,AB 为
O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且
2D A ∠=∠.
(1)求D ∠的度数. (2)若
O 的半径为2,求BD 的长.
四、压轴题
36.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为(5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;
()1求点C 的坐标;
()2当点M在ABC
∠的内部且M与直线BC相切时,求t的值;
()3如图2,点E、F分别是BC、AC的中点,连接EM、FM,在运动过程中,是否存在某一∠=?若存在,直接写出t的值,若不存在,请说明理由.
时刻,使EMF90
37.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
你能和小菲一起解决下列各问题吗?(以下各问只要求写出必要的计算过程和简洁的文字说明即可。
)
(1)如图①,小菲同学把一个边长为1的正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片向右翻转一周回到初始位置,求顶点O所经过的路程;并求顶点O所经过的路线;
图①
(2)小菲进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片向右翻转若干次.她提出了如下问题:
图②
问题①:若正方形纸片OABC接上述方法翻转一周回到初始位置,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是+
41202。
(3)①小菲又进行了进一步的拓展研究,若把这个正三角形的一边OA与这个正方形的一边OA重合(如图3),然后让这个正三角形在正方形上翻转,直到正三角形第一次回到初始位置(即OAB的相对位置和初始时一样),求顶点O所经过的总路程。
图③
②若把边长为1的正方形OABC 放在边长为1的正五边形OABCD 上翻转(如图④),直到正方形第一次回到初始位置,求顶点O 所经过的总路程。
图④
(4)规律总结,边长相等的两个正多边形,其中一个在另一个上翻转,当翻转后第一次回到初始位置时,该正多边形翻转的次数一定是两正多边形边数的___________。
38.MN 是
O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有
点A,B (不与M,N 重合),且AN BN =,连接,AM BM .
(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:
290MOD DMO ︒∠+∠=;
(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求
出这个值;若不是,请说明理由. 39.已知抛物线y =﹣
14
x 2
+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.
(1)求抛物线的函数表达式和顶点B的坐标;
(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);
(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;
(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.40.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.
【详解】
解:∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC=5,
∵沿DE折叠A落在BC边上的点F上,
∴△ADE≌△FDE,
∴∠DFE=∠A=60°,AD=DF,AE=EF,
设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,
∵BF=2,BC=5,
∴CF=3,
∵∠C=60°,∠DFE=60°,
∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,
∴∠DFB=∠FEC,
∵∠C=∠B,
∴△DBF∽△FCE,
∴BD BF DF
FC CE EF
==,
即
25
35
x x
y y
-
==
-
,
解得:x=21
8
,
即BD=21
8
,
故选:C.
【点睛】
此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.
2.B
解析:B
【解析】
试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.
因为面积比是9:16,则相似比是3︰4,故选B.
考点:本题主要考查了相似三角形的性质
点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方
3.A
解析:A
【解析】
【分析】
根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出
OA=OB=OC=OE≠OD,再逐个判断即可.
【详解】
解:如图,连接OB、OD、OA,
∵O为锐角三角形ABC的外心,
∴OA=OC=OB,
∵四边形OCDE为正方形,
∴OA=OC<OD,
∴OA=OB=OC=OE≠OD,
∴OA=OC≠OD,即O不是△ADC的外心,
OA=OE=OB,即O是△AEB的外心,
OB=OC=OE,即O是△BCE的外心,
OB=OA≠OD,即O不是△ABD的外心,
故选:A.
【点睛】
本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.
4.A
解析:A
【解析】
【分析】
利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x 轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】
∵抛物线开口向下,
∴a<0,
x
∵对称轴为直线1
∴b=-2a>0
∵抛物线与y轴的交点在x轴下方,
∴c<-1,
∴abc >0,所以①错误;
∵110x -<<,对称轴为直线1x =
∴1212
x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,
故当x=0时,y=c <0,
∴当x=2时,y=421a b c ++<-,③正确;
如图,作y=2,与二次函数有两个交点,
故方程()2
200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,
当x=0时,y=c <-1
∴3a >1,
故13
a >
,⑤正确; 故选A.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.
5.A
解析:A
【解析】
【分析】
根据特殊角的三角函数值计算即可.
【详解】
解:sin30°=
12
. 故选:A .
【点睛】
本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.
6.D
解析:D
【解析】
【分析】
由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105
=. 【详解】
解:()21P 105
=
=次品 . 故选:D .
【点睛】
本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 7.A
解析:A
【解析】
【分析】
根据二次函数顶点式即可得出顶点坐标.
【详解】
∵2
(1)3y x =-+,
∴二次函数图像顶点坐标为:(1,3).
故答案为A.
【点睛】
本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 8.C
解析:C
【解析】
【分析】
由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.
【详解】
解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,
∴易证AE ⊥BC ,
∵A 、C 关于BD 对称,
∴PA =PC ,
∴PC +PE =PA +PE ,
∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.
观察图象可知,当点P 与B 重合时,PE +PC =6,
∴BE =CE =2,AB =BC =4,
∴在Rt △AEB 中,BE =
∴PC +PE 的最小值为
∴点H 的纵坐标a =
∵BC ∥AD , ∴AD PD BE PB
= =2,
∵BD =
∴PD =23⨯=
∴点H 的横坐标b ,
∴a +b =33
=; 故选C .
【点睛】 本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
9.A
解析:A
【解析】
【分析】
根据极差的概念最大值减去最小值即可求解.
【详解】
解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.
故选A .
【点睛】
本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.
10.B
解析:B
【解析】
【分析】
连接OA ,由圆周角定理得,∠AOP =2∠B =50°,根据切线定理可得∠OAP =90°,继而推出∠P =90°﹣50°=40°.
连接OA,
由圆周角定理得,∠AOP=2∠B=50°,
∵PA是⊙O的切线,
∴∠OAP=90°,
∴∠P=90°﹣50°=40°,
故选:B.
【点睛】
本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.
11.C
解析:C
【解析】
【分析】
根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.
【详解】
解:∵△ABC≌△DEF,
∴∠B=∠E=40°,∠F=∠C,
∵∠A=60°,
∴∠C=180°-60°-40°=80°,
∴∠F=80°,
故选:C.
【点睛】
此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.
12.D
解析:D
【解析】
【分析】
先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】
解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),
∴平移后的抛物线解析式为:y=3(x+2)2.
【点睛】
本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.A
解析:A
【解析】
【详解】
解:∵四边形ABCO是平行四边形,且OA=OC,
∴四边形ABCO是菱形,
∴AB=OA=OB,
∴△OAB是等边三角形,
∴∠AOB=60°,
∵BD是⊙O的直径,
∴点B、D、O在同一直线上,
∴∠ADB=1
∠AOB=30°
2
故选A.
14.D
解析:D
【解析】
分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.
详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.
故选D.
点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.
15.D
解析:D
【解析】
【分析】
利用一元二次方程的定义判断即可.
【详解】
解:A、原方程为二元一次方程,不符合题意;
B、原式方程为二元二次方程,不符合题意;
C、原式为分式方程,不符合题意;
D、原式为一元二次方程,符合题意,
故选:D.
此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.
二、填空题
16.【解析】
试题分析:连接BC ,∴∠D=∠A ,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.
考点:1.圆周角定理;2.解直角三角形
解析:
13
【解析】 试题分析:连接BC ,∴∠D=∠A ,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=AC AB =26=13.故答案为13
.
考点:1.圆周角定理;2.解直角三角形.
17.【解析】
【分析】
二次函数(a≠0)的顶点坐标是(h ,k ).
【详解】
解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).
【点睛】
本题考查了二次函数的性
解析:()1,2
【解析】
【分析】
二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).
【详解】
解:根据二次函数的顶点式方程2
3(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).
本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2
()y a x h k =-+中的h ,k 所表示的意义. 18.y=2(x+2)2-3
【解析】
【分析】
根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:根据“上加下减,左加右减”的原则可知,
二次函数y =2x2的图象向左平移2个单位,再向下平移
解析:y=2(x+2)2-3
【解析】
【分析】
根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:根据“上加下减,左加右减”的原则可知,
二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3
【点睛】
本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.
19.【解析】
【分析】
将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.
【详解】
解:∵,
∴3x+3y=5x,
∴2x=3y,
∴.
故答案为:.
【点睛】
本题考查比例的 解析:23
【解析】
【分析】
将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.
【详解】 解:∵
53
x y x +=, ∴3x+3y=5x,
∴2x=3y, ∴23
y x =. 故答案为:
23. 【点睛】
本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.
20.200
【解析】
【分析】
要求飞机从滑行到停止的路程就,即求出函数的最大值即可.
【详解】
解:
所以当t=20时,该函数有最大值200.
故答案为200.
【点睛】
本题主要考查了二次函数的应用
解析:200
【解析】
【分析】
要求飞机从滑行到停止的路程就,即求出函数的最大值即可.
【详解】
解:()()2
22200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.
故答案为200.
【点睛】
本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.
21.【解析】
【分析】
首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.
【详解】
解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C
解析:3 2
【解析】
【分析】
首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.
【详解】
解:∵∠DAB=∠ABC=90°,
∴AB、BC是⊙O的切线,
∵CF是⊙O的切线,
∴AF=EF,BC=EC,
∴FC=AF+DC,
设AF=x,则,DF=2-x,
∴CF=2+x,
在RT△DCF中,CF2=DF2+DC2,
即(2+x)2=(2-x)2+22,解得x=1
2
,
∴DF=2-1
2
=
3
2
,
∴
1133
2
2222 CDF
S DF DC
=⋅=⨯⨯=,
故答案为:3 2 .
【点睛】
本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.
22.(6,4).
【解析】
【分析】
作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,P
解析:(6,4).
【解析】
【分析】 作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.
【详解】
解:如图,过点B 作BQ ⊥AC 于点Q ,
则AQ=5,BQ=12,
∴AB=2213AQ BQ +=,CQ=AC-AQ=9,
∴BC=2215BQ CQ +=
设⊙P 的半径为r ,根据三角形的面积可得:r=
14124141315
⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,
设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,
∴BE=BC-CE=15-(14-x )=1+x ,
由BF=BE 可得13-x=1+x ,
解得:x=6,
∴点P 的坐标为(6,4),
故答案为:(6,4).
【点睛】
本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.
23.∠B=∠1或
【解析】
【分析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
【详解】
此题答案不唯
解析:∠B=∠1或AE AD AC AB
=
【解析】
【分析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
【详解】
此题答案不唯一,如∠B=∠1或AD AE AB AC
=.
∵∠B=∠1,∠A=∠A,
∴△ADE∽△ABC;
∵AD AE
AB AC
=,∠A=∠A,∴△ADE∽△ABC;
故答案为∠B=∠1或AD AE AB AC
=
【点睛】
此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 24.50(1﹣x)2=32.
【解析】
由题意可得,
50(1−x)²=32,
故答案为50(1−x)²=32.
解析:50(1﹣x)2=32.
【解析】
由题意可得,
50(1−x)²=32,
故答案为50(1−x)²=32.
25.【解析】
分析:
由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.
详解:
∵从,0,π,3.14,6这五个数中随机
解析:3 5
分析:
,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.
详解:
∵
,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,
∴抽到有理数的概率是:3
5.
故答案为3
5
.
,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”
并能识别其中“0,3.14,6”是有理数是解答本题的关键.
26.【解析】
【分析】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数
解析:3
k<
【解析】
【分析】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.
【详解】
根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.
1
a,b=-,c k
=方程有两个不相等的实数根,
241240
b a
c k
∴∆=-=->,
3
k
∴<.
故答案为:3
k<.
【点睛】
本题考查了根的判别式.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
27.-4
【解析】
根据根与系数的关系即可求解.
【详解】
∵x1、x2 是关于 x 的方程 x2+4x5=0的两个根,∴x1 x2=-=-4,
故答案为:-4.
【点睛】
此题主要考
解析:-4
【解析】
【分析】
根据根与系数的关系即可求解.
【详解】
∵x1、x2是关于 x 的方程 x2+4x-5=0的两个根,
∴x1+ x2=-4
1
=-4,
故答案为:-4.【点睛】
此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-b
a
.
28.2023
【解析】
【分析】
根据一元二次方程的解的定义即可求出答案.【详解】
解:由题意可知:2m2﹣3m﹣1=0,
∴2m2﹣3m=1,
∴原式=3(2m2﹣3m)+2020=3+2020=2
解析:2023
【解析】
【分析】
根据一元二次方程的解的定义即可求出答案.
【详解】
解:由题意可知:2m2﹣3m﹣1=0,
∴2m2﹣3m=1,
∴原式=3(2m2﹣3m)+2020=3+2020=2023.
故答案为:2023.
本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.
29.①③.
【解析】
【分析】
根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】
由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:
该函数图象是开口向上的抛
解析:①③.
【解析】
【分析】
根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
【详解】
由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:
该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;
∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;
②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;
③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;
④m=﹣3,结论错误,
∴其中,正确的有. ①③
故答案为:①③
【点睛】
本题考查了二次函数的图像,结合图表信息是解题的关键.
30.∠ACP=∠B(或).
【解析】
【分析】
由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.
【详解】
解析:∠ACP=∠B(或AP AC
AC AB
=).
【解析】
由于△ACP 与△ABC 有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.
【详解】
解:∵∠PAC=∠CAB ,
∴当∠ACP=∠B 时,△ACP ∽△ABC ; 当AP AC AC AB
=时,△ACP ∽△ABC . 故答案为:∠ACP=∠B (或
AP AC AC AB =). 【点睛】
本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.
三、解答题
31.(1)x 1=-1,x 2=4;(2)原式=
12 【解析】
【分析】
(1)按十字相乘的一般步骤,求方程的解即可;
(2)把函数值直接代入,求出结果
【详解】
解:(1)234x x -=
(x+1)(x-4)=0
∴x 1=-1,x 2=4;
(2)原式2(
)2=12
【点睛】
本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.
32.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②
53、255,35630、5. 【解析】
【分析】
(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;
(2)①画出图形,由勾股定理列方程求解;②分O与矩形ABCD的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.
【详解】
解:(1)①如图,PQ是直径,E在圆上,
∴∠PEQ=90°,
∴PE⊥AQ,
∵AE=EQ,
∴PA=PQ,
∴∠PAQ=∠PQA,
∴∠QPB=∠PAQ+∠PQA=2∠AQP,
∵∠QPB=2∠AQP.
\
②解:如图,∵BE=BQ=3,
∴∠BEQ=∠BQE,
∵∠BEQ=∠BPQ,
∵∠PBQ=∠QBA,
∴△PBQ∽△QBA,
∴BP BQ BQ BA
,
∴
3 36 BP
,
∴BP=1.5;
(2)①如图, BP=3,BQ=1,设半径OP=r,
在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2
∴32+(r-1)2=r2,
∴r=5,
∴O的半径是5.
②如图,O与矩形ABCD的一边相切有4种情况,
如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,
设OP=OQ=r,则PK=3x,
由勾股定理得,r2=12+(3-r)2,
解得,r=5 3 ,
∴O半径为5 3 .
如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,
设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,
由勾股定理得,
222
222
3
331
x x y
x x y
,
解得
1
25 2
3
x(舍去),
2
25 2
3
x,
∴ON=
25 5
3
,
∴O半径为
25 5
3
.
如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,
设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,
由勾股定理得,
222
222
3
331
y x y
y x y
,
解得
163032
x (舍去),
263032
x,
∴OM=35630,
∴O半径为35630.
如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,
设OF=CG=x,,则OP=OQ=x+4,
由勾股定理得(x+4)2=32+(x+3)2,
解得,x=1,
∴OP=5,
∴O半径为5.
综上所述,若O与矩形ABCD的一边相切,为O的半径5
3
,
25
5
3
,
35630,5.
【点睛】
本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.
33.路灯杆AB的高度是6m.
【解析】
【分析】。