高中数学点到直线的距离公开课教案
《点到直线的距离》教学设计(优质课)
点到直线的距离(一)教学目标1.知识与技能理解点到直线距离公式的推导,熟练掌握点到直线距离公式.2.过程和方法会用点到直线距离公式求解两平行线距离.3.情感和价值认识事物之间在一定条件下的转化,用联系的观点看问题.(二)教学重点、难点教学重点:点到直线的距离公式.教学难点:点到直线距离公式的理解与应用.(三)教学方法学导式教学环节教学内容师生互动设计意图复习引入前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,两点间的距离公式。
逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我用POWERPOINT打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学.要求学生思考点到直线的距离的计算?能否用两点间距离公式进行推导?设置情境导入新课们将研究怎样由点的坐标和直线的方程求点P到直线l 的距离.概念形成1.点到直线距离公式点P (x0,y0)到直线l:Ax +By + C = 0的距离为0022||Ax By CdA B++=+推导过程方案一:设点P到直线l的垂线段为PQ,垂足为Q,由PQ⊥l可知,直线PQ的斜率为BA(A≠0),根据点斜式写出直线PQ的方程,并由l与PQ的方程求出点Q的坐标:由此根据两点距离公式求出|PQ|,得到点P到直线l的距离为d.此方法虽思路自然,但运算较繁,下面我们探讨另一种(1)教师提出问题已知P(x0,y0),直线l:Ax+ By+C= 0,怎样用点的坐标和直线方程直接求点P到直线l的距离呢?学生自由讨论(2)数形结合,分析问题,提出解决方案.把点到直线l的距离转化为点P到l的垂线段的长,即点到点的距离.画出图形,分析任务,理清思路,解决问题. 寻找最佳方案,附方案二.方案二:设A≠0,B≠0,这时l与x轴、y轴都相交,过点P作x轴的平行线,交l于点R (x1,y0);作y轴的平行线,交l于点S(x0,y2),由11002A x By CAx By C++=⎧⎨++=⎩得0012,By C Ax Cx yA B----==通过这种转化,培养学生“化归”的思想方法.方法.所以0001||||||Ax By CPR x x A++=-=0002||||||Ax By CPS y y B++=-=22||RS PR PS =+=22||A B AB +00||Ax By C ⨯++由三角形面积公式可知d ·|RS |=|PR |·|PS |. 所以0022||Ax By C d A B++=+可证明,当A = 0时仍适用. 这个过程比较繁琐,但同时也使学生在知识、能力、意志品质等方面得到了提高.应用举例例1 求点P = (–1,2 )到直线3x = 2的距离. 解:22|3(1)2|5330d ⨯--==+例2 已知点A (1,3),B (3,1),C (–1,0),求三角形ABC的面积.学生分析求解,老师板书 例2 解:设AB 边上的高为h ,则221||2||(31)(13)22ABCSAB h AB =⋅=-+-=AB 边上的高h 就是点C 到AB 的距离.AB 边所在直线方程为311331y x --=-- 即x + y – 4 = 0.点C 到x + y – 4 = 0的距离为h2|104|5112h -+-==+, 通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性.因此,1522522S ABC=⨯⨯=概念深化2.两平行线间的距离d已知l1:Ax + By + C1 = 0l2:Ax + By + C2 = 01222||C CdA B-=+证明:设P0 (x0,y0)是直线Ax + By + C2= 0上任一点,则点P0到直线Ax+ By + C1=0的距离为00122||Ax By CdA B++=+.又Ax0 + By0 + C2 = 0即Ax0 + By0= –C2,∴1222||C CdA B-=+教师提问:能不能把两平行直线间距离转化为点到直线的距离呢?学生交流后回答.再写出推理过程进一步培养学生化归转化的思想.应用举例例3 求两平行线l1:2x + 3y– 8 = 0l2:2x + 3y– 10 =0的距离.解法一:在直线l1上取一点P(4,0),因为l1∥l2,所以P到l2的距离等于l1与l2的距离,于是22|243010|2131323d⨯+⨯-==+在教师的引导下,学生分析思路,再由学生上台板书.开拓学生思维,培养学生解题能力.备选例题例1 求过点M (–2,1)且与A (–1,2),B (3,0)两点距离相等的直线的方程. 解法一:当直线斜率不存在时,直线为x = –2,它到A 、B 两点距离不相等. 所以可设直线方程为:y – 1 = k (x + 2)即kx – y + 2k + 1 = 0. 由=解得k = 0或12k =-.故所求的直线方程为y – 1 = 0或x + 2y = 0. 解法二:由平面几何知识:l ∥AB 或l 过AB 的中点.若l ∥AB 且12AB k =-,则l 的方程为x + 2y = 0. 若l 过AB 的中点N (1,1)则直线的方程为y = 1. 所以所求直线方程为y – 1 = 0或x + 2y = 0.例2 (1)求直线2x + 11y + 16 = 0关于点P (0,1)对称的直线方程.(2)两平行直线3x + 4y – 1 = 0与6x + 8y + 3 = 0关于直线l 对称,求l 的方程. 【解析】(1)当所求直线与直线2x + 11y + 16 = 0平行时,可设直线方程为2x + 11y + C =0由P 点到两直线的距离相等,即=,所以C = –38.所求直线的方程为2x + 11y – 38 = 0.(2)依题可知直线l 的方程为:6x + 8y + C = 0. 则它到直线6x + 8y – 2 = 0的距离1d =到直线6x + 8y + 3 = 0的距离为2d =所以d 1 = d 2=12C =.即l 的方程为:16802x y ++=.例3 等腰直角三角形ABC 的直角顶点C 和顶点B 都在直线2x + 3y – 6 = 0上,顶点A 的坐标是(1,–2).求边AB 、AC 所在直线方程.【解析】已知BC 的斜率为23-,因为BC ⊥AC 所以直线AC 的斜率为32,从而方程32(1)2y x +=- 即3x – 2y – 7 = 0又点A (1,–2)到直线BC :2x + 3y – 6 = 0的距离为||AC =,且||||AC BC =.由于点B 在直线2x + 3y – 6 = 0上,可设2(,2)3B a a -,且点B 到直线AC的距离为2|32(2)7|a a --- 13|11|103a -= 所以1311103a -=或1311103a -=-,所以6313a =或313 所以6316(,)1313B -或324(,)1313B 所以直线AB 的方程为162132(1)63113y x -++=--或242132(1)3113y x ++=-- 即x – 5y – 11 = 0或5x + y – 3 = 0 所以AC 的直线方程为:3x – 2y – 7 = 0AB 的直线方程为:x – 5y – 11 = 0或5x + y – 3 = 0.。
数学教案:点到直线的距离
示范教案错误!教学分析点到直线的距离的公式的推导方法很多,可探究的题材非常丰富.除了本节课探究方法外,还有应用三角函数、应用向量等方法.因此“课程标准"对本节教学内容的要求是:“探索并掌握点到直线的距离公式,会求两条平行线间的距离”.希望通过本节课的教学,能让学生在公式的探索过程中深刻地领悟到蕴涵其中的重要的数学思想和方法,学会利用数形结合思想、化归思想和分类方法,由浅入深、由特殊到一般地研究数学问题,培养学生的发散思维.三维目标1.让学生掌握点到直线的距离公式,并会求两条平行线间的距离,培养转化的数学思想.2.引导学生构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.重点难点教学重点:点到直线距离公式的推导和应用.教学难点:对距离公式推导方法的感悟与数学模型的建立.课时安排1课时错误!导入新课设计1。
点P(0,5)到x轴的距离是多少?更进一步,在平面直角坐标系中,如果已知某点P的坐标为(x0,y0),直线l的方程是Ax+By+C=0,怎样由点的坐标和直线的方程直接求点P到直线l 的距离呢?教师引出课题.设计2.我们知道点与直线的位置关系有两种:点在直线上和点不在直线上,当点不在直线上时,怎样求出该点到直线的距离呢?教师引出课题.推进新课错误!错误!(1)设坐标平面上(如下图),有点P(x1,y1)和直线l:Ax+By+C =0(A2+B2≠0).作直线m通过点P(x1,y1),并且与直线l垂直,设垂足为P0(x0,y0).求证:①B(x0-x1)-A(y0-y1)=0;②C=-Ax0-By0。
(2)试求出(x1-x0)2+(y-y0)2.(3)写出点P到直线l的距离d的计算公式.(4)写出求点P(x1,y1)到直线Ax+By+C=0的距离的计算步骤.讨论结果:(1)证明:①设直线m的方程为Bx-Ay+D=0,∵P(x1,y1)在m上,∴Bx1-Ay1+D=0,∴D=Ay1-Bx1,∴直线m的方程为Bx-Ay+(Ay1-Bx1)=0,即B(x-x1)-A(y-y1)=0。
点到直线的距离 教案全套
点到直线的距离教案全套教学目标1、结合具体情境,理解"两点间所有连线中线段最短",知道两点间距离和点到直线的距离。
2、在对两点间的距离和点到直线的距离知识的探究过程中,培养观察、想象、动手操作的能力,发展初步的空间观念。
3、在解决实际的问题过程中,体验数学与日常生活的密切联系,提高学习兴趣,学会与他人合作共同解决问题。
4、激发学生探究学习的积极性和主动性。
教学重点与难点理解"两点间所有连线中线段最短",知道两点间距离和点到直线的距离。
教具三角尺、直尺教学过程一、专项训练1画一条长3cm的线段。
2、过A点画已知直线的平行线和垂线。
二、交流展示同学们,修路时遇河要怎样?架桥时如果遇到大山怎么办?(出示课件)学生观察情境图,说一说自己的意见。
得出结论,可以修隧道。
1、画一画:教师出示课件师:我们先确定两个点代表大山两侧的甲乙两地,怎样从甲地到达乙地?有没有更近的路线?自己动手画一画,看能发现什么?(组织学生进行小组讨论,给学生充足的要论的时间)2、让学生展开交流,使他们各抒己见,充分发表自己的意见和见解。
师:通过观察思考,你能得出什么结论?学生独立思考后画出几条不同的线,通过观察、测量得出结论。
教师出示课件,让学生检验自己的结论是否正确。
3、学生通过操作感知:两点之间线段最短。
(板书)4、小游戏:(投影出示课件)教师让四个同学站在同一水平线上(两个同学之间要间隔一段距离),抢板凳,板凳与其中的一个同学正对着,根据他们站的位置,谁最有可能抢到板凳?(先让学生们猜一猜,教师统计一下结果,然后让四个学生去做,其它同学认真观察,看结果究竟如何)师:这样公平吗?为什么?(教师请同学们说明原因)再让四个同学按照开始时的情形站好,让两个同学分别测量四个同学所站的位置到板凳的长度,教师把学生测量的数据记在黑板上。
让学生观察数据,分析游戏的结果,得出结论。
师:请同学们把刚才游戏的模拟图画出来,并测量每个同学到板凳的距离,分别记下来。
《点到直线的距离》(教案)
《点到直线的距离》(教案)教学目标:1、学习直线和点的基本概念,并能对其进行简单的区分和操作。
2、学习什么是点到直线的距离,掌握用不同方法求点到直线的距离。
3、能够在实际问题中运用所学知识,解决相关问题。
教学重点:1、点和直线的概念,及其区分;2、点到直线的距离的定义,及其求法。
教学难点:1、点到直线的距离的求法;2、两种方法的运用能力的提高。
教学方法:情景教学法。
教学资源:黑板、白板、笔、纸教学过程:一、导入新课1、分发习题册,并让学生先自学第十一章的内容。
2、提问:“在课堂上,你们了解过直线和点吗?”由此扩展对点和直线的概念和区分。
二、学习点到直线的距离1、引导学生思考,如何求点到直线的距离?2、讲解点到直线的距离的定义,即“点到直线距离是从该点引一条垂线到直线上,垂线的长度就是点到直线的距离”。
3、讲解两种方法如何求出点到直线的距离,并带着学生通过案例进行实际运用,进行验证。
4、补充例题,让学生通过自己的计算和思考来解题,并让学生相互交流。
5、公开课进行示范教学。
三、练习1、就教室内的物体进行距离计算,如教室门口离桌子的距离。
2、让学生阅读小问题,通过图像求解答案。
四、课外拓展1、出示各种图形,让学生独立计算各种情况下的到直线的距离。
2、让学生去实验室或其他地方,进行实地考察、测量点到直线的距离。
五、总结1、总结点到直线的距离的求法,并列举案例。
2、解释什么是求点到直线的距离,如何通过数学方法进行计算。
六、作业布置1、课堂上布置练习题,分组进行解决。
2、预习下一课的内容。
七、教学评价1、教师定期对学生进行小测验,以检查学生对本课题的掌握程度。
2、教师跟踪观察在课外拓展的实验中,学生是否有很好的理解和应用课堂所学知识。
3、收集学生的答题作业,从中发现问题并进行针对性教学。
八、教学反思1、教师观察到很多学生在学习过程中对于点和直线的区分还不是很明确,需要更好的引导和讲解。
2、在课堂规划中,需要考虑更具体和实用的案例,以便让学生真正地理解并运用所学知识。
点到直线的距离公式——公开课
点到直线距离公式
点 P( x0 , y0 )到直线 Ax By C 0
(其中A、B不同时为0)的距离为
d
Ax0 By0 C A B
2 2
注: 在使用该公式前,须将直线方程化为一般式.
A=0或B=0,此公式也成立,但当A=0或B=0时 一般不用此公式计算距离.
典型例题 例1:求点P(-1,2)到直线 ①2x+y-10=0; ②3x=2的距离。 解: ①根据点到直线的距离公式,得
解析 由于l1⊥l2,∴设直线l2的方程为3x-y+C=0, 3 10 ∵P(-1,0)到直线l2的距离为 , 5 |3×-1-0+C| |C-3| 3 10 ∴d= = = , 2 2 5 10 3 +-1 ∴|C-3|=6,∴C=9,或C=-3, ∴直线l2的方程为3x-y+9=0,或3x-y-3=0.
d
y
2 1 1 2 10 2 1
2 2
2 5
②如图,直线3x=2平行于y轴,
P(-1,2) O
2 5 d ( 1) 3 3 x 用公式计算该怎样算? l:3x=2
变式练习1
1.求下列点到直线的距离: (1) A(-2,3),l: 3x+4y+3=0
(2) B(1,0), l:
| AB | (3 1) 2 (1 3) 2 2 2
AB边上的高h就是点C到AB的距离 AB边所在直线的方程为 y 3 x 1
C O
1 3 3 1 即x y 4 0 点C (-1,0)到x y 4 0的距离 |-1+0-4| 5 h= 2 2 2 1 1
1 5 因此,S ABC= 2 2 5 2 2
点到直线的距离的教案
点到直线的距离的教案教案标题:点到直线的距离的教案教案目标:1. 理解点到直线的距离的概念和计算方法。
2. 掌握使用坐标系计算点到直线的距离的技巧。
3. 能够应用点到直线的距离的概念解决实际问题。
教学资源:1. 白板、黑板或投影仪。
2. 教学PPT或教学素材。
3. 学生练习册或作业本。
教学步骤:引入活动:1. 使用一张图片或实际物体,让学生观察并描述点到直线的距离。
2. 引导学生思考点到直线的距离的概念,并与学生进行讨论。
知识讲解:1. 介绍点到直线的距离的定义,并与学生一起探讨如何计算点到直线的距离。
2. 解释使用坐标系计算点到直线的距离的方法,并通过示例演示计算过程。
示范练习:1. 在白板上绘制一个坐标系,并给出一条直线的方程。
2. 随机选择一个点,让学生使用计算公式计算该点到直线的距离。
3. 逐步引导学生完成计算过程,并解答学生可能遇到的问题。
合作探究:1. 将学生分成小组,每组选择一个直线方程和一个点的坐标。
2. 学生通过合作讨论和计算,互相检查答案并解释计算过程。
3. 每个小组选择一组问题,向全班展示他们的计算结果和解题思路。
拓展应用:1. 给学生一些实际问题,让他们运用点到直线的距离的概念解决问题,如建筑设计、地理测量等。
2. 引导学生思考如何应用点到直线的距离的概念解决更复杂的问题,并鼓励他们尝试解决。
总结回顾:1. 对本节课所学内容进行总结,并强调点到直线的距离的重要性和应用。
2. 回答学生提出的问题,并解释可能存在的困惑或误解。
3. 鼓励学生在课后继续练习和应用点到直线的距离的知识。
评估与反馈:1. 布置一些练习题或作业,以检验学生对点到直线的距离的理解和应用能力。
2. 对学生的作业进行评估,并提供及时的反馈和指导。
教学延伸:1. 鼓励学生进一步研究点到直线的距离的相关知识,并进行更深入的探究。
2. 提供一些拓展资源,如相关的视频、教学网站等,供学生自主学习和探索。
教学注意事项:1. 确保学生理解点到直线的距离的概念和计算方法。
点到直线的距离教案
点到直线的距离教案教案标题:点到直线的距离教案教学目标:1. 了解点到直线的距离的概念和计算方法。
2. 能够应用点到直线的距离的概念解决实际问题。
3. 发展学生的逻辑思维和解决问题的能力。
教学准备:1. 教师准备:教学课件、白板、黑板笔、直尺、计算器等。
2. 学生准备:笔记本、铅笔、直尺、计算器等。
教学过程:引入:1. 教师通过展示一张图片,上面有一条直线和一个点,引导学生思考如何确定该点到直线的距离。
2. 引导学生回顾直线的定义和点的定义,让学生讨论点到直线的距离的概念。
探究:1. 教师通过示范,向学生介绍点到直线的距离的计算方法,并解释其中的数学原理。
2. 教师给学生提供一些练习题,让学生尝试计算点到直线的距离,并在黑板上解答。
实践:1. 学生分组进行小组讨论,解决一些应用问题,例如:一个飞机从一个点出发,以一定的角度和速度飞行,如何确定其到达某条直线的距离。
2. 学生展示自己的解答过程和答案,进行讨论和交流。
拓展:1. 学生通过计算器和数学软件等工具,进一步探究点到直线的距离的计算方法。
2. 学生尝试解决更复杂的问题,例如:给定一个平面上的点和一条直线,如何确定与该点距离最近的直线上的点。
总结:1. 教师对本节课的内容进行总结,并强调点到直线的距离在实际生活中的应用价值。
2. 教师鼓励学生继续探索和应用点到直线的距离的知识,并提供相关参考资料。
作业:1. 布置相关的课后作业,包括计算题和应用题,巩固学生对点到直线的距离的理解和计算能力。
2. 鼓励学生自主学习,寻找更多与点到直线的距离相关的问题,并尝试解决。
教学反思:1. 教师对本节课的教学效果进行评估,总结教学经验和不足之处,并进行反思。
2. 教师根据学生的学习情况,调整教学策略和方法,以更好地促进学生的学习。
点到直线的距离教案(精选2篇)
点到直线的距离教案(精选2篇)点到直线的距离篇1一. 教学目标1.教材分析⑴ 教学内容《点到直线的距离》是全日制普通高级中学教科书(必修·人民教育出版社)第二册(上),“§7.3两条直线的位置关系”的第四节课,主要内容是点到直线的距离公式的推导过程和公式应用.⑵ 地位与作用本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了解析几何的定量计算,其学习平台是学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识.对“点到直线的距离”的研究,为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.2.学情分析高二年级学生已掌握了三角函数、平面向量等有关知识,具备了一定的利用代数方法研究几何问题的能力.根据我校学生基础知识较扎实、思维较活跃,但处理抽象问题的能力还有待进一步提高的学习现状和认知特点,本课采用类比发现式教学法.3.教学目标依据上面的教材分析和学情分析,制定如下教学目标.⑴ 知识技能① 理解点到直线的距离公式的推导过程;② 掌握点到直线的距离公式;③ 掌握点到直线的距离公式的应用.⑵ 数学思考① 通过点到直线的距离公式的探索和推导过程,渗透算法的思想;② 通过自学教材上利用直角三角形的面积公式的证明过程,培养学生的数学阅读能力;③ 通过灵活应用公式的过程,提高学生类比化归、数形结合的能力.⑶ 解决问题① 通过问题获得数学知识,经历“发现问题—提出问题—解决问题”的过程;② 由探索点到直线的距离,推广到探索点到直线的距离的过程,使学生体会从特殊到一般、由具体到抽象的数学研究方法.⑷ 情感态度结合现实模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学生的学习兴趣.点到直线的距离教案篇2教学目标:1.让学生理解点到直线距离公式的推导和掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离.2.培养学生观察、思考、分析、归纳等数学能力,数形结合、化归(或转化)、特殊到一般的数学思想方法以及数学应用意识.3.让学生了解和感受探索问题的方法,以及用联系的观点看问题.在探索问题的过程中体验成功的喜悦.教学重点:点到直线距离公式及其应用.教学难点:点到直线距离公式的推导.教学方法:启发式讲解法、讨论法.教学工具:电脑多媒体.教学过程:一、提出问题多媒体显示实际的例子:某电信局计划年底解决本地区最后一个小区的电话通信问题.经过测量,若按照部门内部设计好的坐标图(即以电信局为原点),得知这个小区的坐标为p(-1,5),离它最近的只有一条线路通过,其方程为2x y 10=0.要完成这项任务,至少需要多长的电缆线?这个实际问题要解决,要转化成什么样的数学问题?学生得出就是求点到直线的距离.教师提出这堂课我们就来学习点到直线的距离,并板书写课题:点到直线的距离.二、解决问题多媒体显示:已知点p(x0,y0),直线 :ax by c=0,求点p到直线的距离.怎样求点到直线距离呢?学生应该很快能回答出,做垂线找垂足q,求线段pq的长度.怎样用点的坐标和直线方程求和表示点到直线距离呢?教师提示在解决问题时先可以考虑特殊情况,再考虑一般情况.学生提出平行于x轴和y轴的特殊情况.显示图形:板书:如何求 ?学生思考回答下列想法:思路一:过作于点,根据点斜式写出直线方程,由与联立方程组解得点坐标,然后利用两点距离公式求得.教师评价:此方法思路自然,但是运算繁琐.并多媒体展示求解过程.解:直线 : ,即由 ,说明:本过程只展示,不在课堂推导.教师提问:能否用其它方法,不求点q的坐标,求线段pq的长度?学生思考:放在三角形---特殊三角形---直角三角形中.教师提问:如何构造三角形?第三个顶点选在什么位置?学生思考:可能在直线与x轴的交点m或与y轴交点n,或过p点做x,y轴的平行线与直线的交点r、s.教师根据学生提出的点的位置作分析,求解过程的繁与简,最后决定方法.下列是学生可能提到的情况:思路二:在直角△pqm,或直角△pqn中,求边长与角(角与直线到直线角有关),用余弦值.思路三:在直角△pqr,或直角△pqs中,求边长与角(角与直线倾斜角有关,但分情况),用余弦值.思路四:在直角△prs中,求线段pr、ps、rs,利用等面积法(不涉及角和分情况),求得线段pq长.学生练习求解思路四.教师巡视,根据学生情况演示过程.解:设 , , ,, ; ,由 ,而说明:如果学生没有想到思路二、三,教师提示做课后思考作业题目.教师提问:①上式是由条件下得出,对成立吗?②点p在直线上成立吗?③公式结构特点是什么?用公式时直线方程是什么形式?由此推导出点p(x0,y0)到直线 :ax by c=0距离公式:教师继续引导学生思考,不构造三角形可以求吗?(在前面学习的向量知识中,有向量的模.由于在证明两直线垂直时已经用到向量知识,且也提出过直线的法向量的概念.)能否用向量知识求解呢?思路五:已知直线的法向量 ,则 , ,如何选取法向量?直线的方向向量 ,则法向量为 ,或 ,或其它.由师生一起分析得出取 = .教师板演:,,由于点q在直线上,所以满足直线方程 ,解得教师评析:向量是新教材内容,是一种很好的数学工具,和解析几何结合应用是现在新教材知识的交汇点.而且上述方法在今后解析几何与向量结合的题目中,用坐标联系转化是常用方法.三、公式应用练习:1.解决课堂提出的实际问题.(学生口答)2.求点p0(-1,2)到下列直线的距离 :①3x=2 ②5y=3 ③2x y=10 ④y=-4x 1练习选择:平行坐标轴的特殊直线,直线方程的非一般形式.练习目的:熟悉公式结构,记忆并简单应用公式.教师强调:直线方程的一般形式.例题:3.求平行线2x-7y 8=0和2x-7y-6=0的距离.教师提问:如何求两平行线间的距离?距离如何转化?学生回答:选其中一条直线上的点到另一条直线的距离.师生共同分析:点所在直线的任意性、点的任意性.学生自己练习,教师巡视.教师提问几个学生回答自己选取的点和直线以及结果.然后选择一种取任意点的方法进行板书.解:在直线2x-7y-6=0上任取点p(x0,y0),则2 x0-7 y0-6=0,点p(x0,y0)到直线2x-7y 8=0的距离是 .教师评述:本例题选取课本例题,但解法较多.除了选择直线上的点,还可以选取原点,求它到两条直线的距离,然后作和.或者选取直线外的点p,求它到两条直线的距离,然后作差.引申思考: 与两平行线间距离公式.四、课堂小结:(由学生总结)①&n② 数学思想方法:类比、转化、数形结合思想,特殊到一般的方法.③ 多角度考虑问题,一题多解.五、布置作业① 课本习题7.3的第13题----16题;② 总结写出点到直线距离公式的多种方法.说明:一、教材分析我主要从三方面:教材的地位和作用、教学目标分析、教学重点和难点来说明的。
点到直线的距离教案公开课
点到直线的距离教案公开课第一章:课程引入1.1 教学目标让学生了解点到直线的距离的概念。
引导学生通过实例探究点到直线的距离的计算方法。
1.2 教学内容点到直线的距离的定义。
点到直线的距离的计算方法。
1.3 教学方法通过实例引导学生自主探究点到直线的距离的计算方法。
使用图形软件展示点到直线的距离的计算过程。
1.4 教学步骤1. 引入实例:讲解一个点到一条直线的距离的例子。
2. 引导学生思考:如何计算一个点到一条直线的距离?3. 引导学生探究:通过图形软件展示点到直线的距离的计算过程。
第二章:点到直线的距离的定义与性质2.1 教学目标让学生了解点到直线的距离的定义与性质。
2.2 教学内容点到直线的距离的定义。
点到直线的距离的性质。
2.3 教学方法通过实例引导学生理解点到直线的距离的定义与性质。
2.4 教学步骤1. 讲解点到直线的距离的定义。
2. 引导学生思考:点到直线的距离有哪些性质?3. 举例说明点到直线的距离的性质。
第三章:点到直线的距离的计算方法3.1 教学目标让学生掌握点到直线的距离的计算方法。
3.2 教学内容点到直线的距离的计算方法。
3.3 教学方法通过实例引导学生理解点到直线的距离的计算方法。
3.4 教学步骤1. 讲解点到直线的距离的计算方法。
2. 引导学生思考:如何将一般情况下的点到直线的距离计算转化为已知情况的计算?3. 举例说明点到直线的距离的计算方法。
第四章:点到直线的距离的应用4.1 教学目标让学生了解点到直线的距离在实际问题中的应用。
4.2 教学内容点到直线的距离的应用。
4.3 教学方法通过实例引导学生了解点到直线的距离的应用。
4.4 教学步骤1. 讲解点到直线的距离在实际问题中的应用。
2. 引导学生思考:如何运用点到直线的距离解决实际问题?3. 举例说明点到直线的距离的应用。
第五章:总结与拓展5.1 教学目标让学生总结本节课所学内容。
引导学生思考点到直线的距离在数学和其他学科中的应用。
点到直线的距离教案公开课
点到直线的距离教案公开课第一章:课程导入1.1 教学目标让学生理解点到直线距离的概念。
培养学生使用点到直线距离公式解决问题的能力。
1.2 教学内容点到直线的距离定义。
点到直线距离公式的推导。
应用点到直线距离公式解决实际问题。
1.3 教学方法采用问题驱动的教学方法,引导学生思考和探索。
使用几何图形和实例辅助讲解,帮助学生直观理解。
1.4 教学步骤1.4.1 导入新课通过一个实际问题引入点到直线距离的概念,例如:“在平面直角坐标系中,点P(2,3)到直线y=2x+1的距离是多少?”1.4.2 讲解点到直线的距离定义解释点到直线距离的定义:点P到直线Ax+By+C=0的距离d可以用公式d=|Ax0+By0+C|/√(A^2+B^2)表示,其中(x0,y0)是点P的坐标。
1.4.3 推导点到直线距离公式通过几何图形和实例,引导学生推导点到直线距离公式。
强调公式中各参数的含义和作用。
1.4.4 应用实例解决一些实际问题,例如:“已知点P(2,3)和直线y=2x+1,求点P到直线的距离。
”引导学生运用点到直线距离公式进行计算。
第二章:点到直线距离公式的应用2.1 教学目标让学生掌握点到直线距离公式的应用。
培养学生解决实际问题的能力。
2.2 教学内容点到直线距离公式的应用。
解决实际问题。
2.3 教学方法采用案例教学法,提供丰富的实例,引导学生运用点到直线距离公式解决实际问题。
使用几何图形和实例辅助讲解,帮助学生直观理解。
2.4 教学步骤2.4.1 讲解点到直线距离公式的应用通过几何图形和实例,讲解点到直线距离公式的应用。
强调公式中各参数的含义和作用。
2.4.2 解决实际问题提供一些实际问题,例如:“已知点P(2,3)和直线y=2x+1,求点P到直线的距离。
”引导学生运用点到直线距离公式进行计算。
2.4.3 练习与巩固提供一些练习题,让学生巩固所学知识。
引导学生运用点到直线距离公式解决问题。
第三章:点到直线距离公式的拓展3.1 教学目标让学生了解点到直线距离公式的拓展。
点到直线的距离教案公开课
点到直线的距离教案公开课一、教学目标:1. 让学生理解点到直线距离的概念,掌握点到直线距离的计算方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的团队合作精神。
二、教学重点与难点:1. 教学重点:点到直线的距离概念、计算方法及应用。
2. 教学难点:点到直线的距离公式的推导及灵活运用。
三、教学准备:1. 教师准备:点到直线距离的相关案例、图片、PPT等教学资源。
2. 学生准备:笔记本、尺子、三角板等学习工具。
四、教学过程:1. 导入:通过展示生活中的实例,如垂线段最短等问题,引导学生思考点到直线的距离。
2. 新课讲解:介绍点到直线距离的概念,讲解点到直线距离的计算方法,并通过PPT展示相关案例。
3. 课堂互动:学生分组讨论,运用点到直线距离公式解决实际问题,教师巡回指导。
4. 练习巩固:布置针对性的练习题,让学生独立完成,巩固所学知识。
5. 课堂小结:总结本节课所学内容,强调点到直线距离的概念及计算方法。
五、课后作业:1. 请学生运用点到直线距离的知识,解决生活中的一些实际问题。
2. 完成课后练习题,巩固所学知识。
3. 准备下一节课的相关内容。
六、教学拓展:1. 讲解点到直线距离在实际应用中的例子,如建筑设计、工程测量等领域。
2. 引导学生思考如何利用点到直线距离解决更复杂的问题,如两条平行线间的距离。
七、课堂练习:1. 请学生独立完成PPT上的练习题,巩固点到直线距离的计算方法。
2. 教师选取部分学生的作业进行点评,讲解解题思路和技巧。
八、总结与反思:1. 让学生回顾本节课所学内容,总结点到直线距离的计算方法及应用。
2. 鼓励学生提出问题,培养学生的质疑精神。
九、课后作业布置:1. 请学生运用点到直线距离的知识,解决生活中的实际问题。
2. 完成课后练习题,巩固所学知识。
3. 预习下一节课的相关内容。
十、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
点到直线的距离教案
点到直线的距离教案一、教学目标1.了解点到直线的距离的概念和计算方法;2.掌握点到直线的距离的求解步骤;3.能够应用点到直线的距离解决实际问题。
二、教学内容1. 点到直线的距离的概念在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离为:d=|Ax+By+C|√A2+B2其中,A,B,C分别为直线的系数,x0,y0分别为点P的坐标。
2. 点到直线的距离的求解步骤求点P(x0,y0)到直线Ax+By+C=0的距离的步骤如下:1.求出直线的系数A,B,C;2.将点P(x0,y0)带入直线方程Ax+By+C=0,求出点P到直线的距离。
3. 应用点到直线的距离解决实际问题点到直线的距离在实际问题中有广泛的应用,例如:1.求点P到直线l的距离,判断点P是否在直线l的上方或下方;2.求点P到直线l的距离,判断点P是否在直线l的左侧或右侧;3.求点P到直线l的距离,判断点P是否在直线l的同侧或异侧。
三、教学方法本课程采用讲解和实例演练相结合的教学方法,通过讲解点到直线的距离的概念和计算方法,以及实例演练点到直线的距离的求解步骤和应用,使学生掌握点到直线的距离的基本概念和计算方法,并能够应用点到直线的距离解决实际问题。
四、教学过程1. 讲解点到直线的距离的概念和计算方法首先,讲解点到直线的距离的概念和计算方法,包括点到直线的距离的公式和求解步骤。
讲解时,可以通过幻灯片或黑板等方式进行。
2. 实例演练点到直线的距离的求解步骤和应用接着,通过实例演练点到直线的距离的求解步骤和应用,让学生掌握点到直线的距离的求解方法和应用技巧。
实例演练时,可以选择一些简单的例题,让学生跟随教师一起完成,逐步提高难度,直至学生能够独立完成。
3. 练习和巩固最后,通过练习和巩固,让学生进一步掌握点到直线的距离的求解方法和应用技巧。
练习和巩固可以采用课堂练习、作业布置等方式进行。
五、教学评价本课程的教学评价主要包括学生的课堂表现和作业成绩。
点到直线的距离优秀教学设计
点到直线的距离优秀教学设计教学设计:点到直线的距离一、教学目标1.能理解点到直线的概念和几何意义;2.能计算点到直线的距离。
二、教学重难点1.理解点到直线的概念;2.利用几何知识计算点到直线的距离。
三、教学准备教学课件、教学工具、计算工具。
四、教学过程1.导入(5分钟)通过展示一个点和一条直线的图像,向学生介绍点到直线的概念,并引发学生对点到直线距离的思考。
2.点到直线的距离(15分钟)教师给出点到直线的定义,即从点引垂线与直线交于一点,所引出的线段的长度就是点到直线的距离。
然后,通过示例分析和推理,引导学生理解点到直线距离的计算方法。
最后,给出点到直线距离计算的公式。
3.计算练习(20分钟)教师给出一系列的计算题目,引导学生灵活应用所学知识解决问题。
可以将练习分为不同难度等级,使学生能够逐步提高计算能力。
4.解析和讨论(15分钟)教师与学生一起解析练习题,讨论不同解题方法的优缺点,特别注重讲解一些常见错误和易混淆的问题。
鼓励学生提问和分享解题思路,激发他们的思维。
5.拓展应用(20分钟)教师引导学生将点到直线距离的概念应用到实际问题中,如求点到直线距离最小的点、点对面的距离等。
通过这些应用题目,培养学生抽象思维和解决实际问题的能力。
6.总结归纳(10分钟)教师与学生一起总结本节课的重点知识点和解题方法,提醒学生记忆和巩固相关知识。
也可以提供一些类似的练习题作为课后作业,以巩固所学内容。
五、教学反思通过本节课的设计和实施,学生能够理解点到直线的概念和几何意义,能够计算点到直线的距离。
课堂上采用了引导式授课和互动式教学的方法,使学生能够主动思考和参与解决问题。
在拓展应用环节,培养了学生抽象思维和解决实际问题的能力。
通过反复训练和解析练习题,巩固了学生的计算技巧。
整体上,本节课设计合理,能够提高学生的学习效果和兴趣。
《点到直线的距离公式》教案(公开课)
《点到直线的距离公式》教案一、教学目标(一)知识教学点点到直线距离公式的推导思想方法及公式的简单应用.(二)能力训练点培养学生数形结合能力,综合应用知识解决问题的能力、类比思维能力,训练学生由特殊到一般的思想方法.(三)知识渗透点由特殊到一般、由感性认识上升到理性认识是人们认识世界的基本规律.二、教材分析1.重点:展示点到直线的距离公式的探求思维过程.2.难点:推导点到直线距离公式的方法很多,怎样引导学生数形结合,利用平面几何知识得到课本上给出的证法是本课的难点,可构造典型的、具有启发性的图形启发学生逐层深入地思考问题.3.疑点:点到直线的距离公式是在A≠0、B≠0的条件下推得的.事实上,这个公式在A=0或B=0时,也是成立的.三、活动设计启发、思考,逐步推进,讲练结合.四、教学过程(一)提出问题已知点P(x0,y0)和直线l:Ax+By+C=0,点的坐标和直线的方程确定后,它们的位置也就确定了,点到直线的距离也是确定的,怎样求点P到直线l的距离呢?(二)构造特殊的点到直线的距离学生解决思考题1 求点P(2,0)到直线L:x-y=0的距离(图1-33).学生可能寻求到下面三种解法:方法2 设M(x,y)是l:x-y=0上任意一点,则当x=1时|PM|有最小值,这个值就是点P到直线l的距离.方法3 直线x-y=0的倾角为45°,在Rt△OPQ中,|PQ|=|OP|进一步放开思路,开阔眼界,还可有下面的解法:方法4 过P作y轴的平行线交l于S,在Rt△PAS中,|PO|=|PS|方法5 过P作x轴的垂线交L于S∵|OP|·|PS|=|OS|·|PQ|,比较前面5种解法,以第3种或4种解法为最佳,那么第3种解法是否可以向一般情况推广呢?思考题2 求点P(2.0)到直线2x-y=0的距离(图1-34).思考题 3求点P(2,0)到直线2x-y+2=0的距离(图1-35).思考题4 求点P(2,1)到直线2x-y+2=0的距离(图1-36).过P作直线的垂线,垂足为Q,过P作x轴的平行线交直线于R,(三)推导点到直线的距离公式有思考题4作基础,我们很快得到设A≠0,B≠0,直线l的倾斜角为α,过点P作PR∥Ox, PR与l交于R(x1,x1)(图1-37).∵PR∥Ox,∴y1=y.代入直线l的方程可得:当α<90°时(如图1-37甲),α1=α.当α>90°时(如图1-37乙),α1=π-α.∵α<90°,∴|PQ|=|PR|sinα1这样,我们就得到平面内一点P(x0,y0)到一条直线Ax+By+C=0的距离公式:如果A=0或B=0,上面的距离公式仍然成立,但这时不需要利用公式就可以求出距离.(四)例题例1 求点P0(-1,2)到直线:(1)2x+y-10=0,(2)3x=2的距离.解:(1)根据点到直线的距离公式,得(2)因为直线3x=2平行于y轴,所以例2 求平行线2x-7y+8=0和2x-7y-6=0的距离.解:在直线2x-7y-6=0上任取一点,例如取P(3,0),则两平行线间的距离就是点P(3,0)到直线2x-7y+8=0的距离(图1-38).例3 正方形的中心在C(-1,0),一条边所在的直线方程是x+3y-5=0,求其它三边所在的直线方程.解:正方形的边心距设与x+3y-5=0平行的一边所在的直线方程是x+3y+C1=0,则中心到C1=-5(舍去0)或C1=7.∴与x+3y-5=0平行的边所在的直线方程是x+3y+7=0.设与x+3y-5=0垂直的边所在的直线方程是3x-y+C2=0,则中心到这解之有C2=-3或C2=9.∴与x+3y-5=0垂直的两边所在的直线方程是3x-y-3=0和3x-y+9=0.(五)课后小结(1)点到直线的距离公式及其证明方法.(2)两平行直线间的距离公式.五、布置作业1.(1.10练习第1题)求坐标原点到下列直线的距离:2.(1.10练习第2题)求下列点到直线的距离:3.(1.10练习第3题)求下列两条平行线的距离:(1)2x+3y-8=0, 2x+3y+18=0.(2)3x+4y=10, 3x+4y=0.解:x-y-6=0或x-y+2=0.5.正方形中心在C(-1,0),一条边所在直线方程是3x-y二0,求其它三边所在的直线方程.解:此题是例3交换条件与结论后的题:x+3y-5=0, x+3y+7=0, 3x-y+9=0.六、板书设计。
高中数学点到直线的距离公开课教案
《点到直线的距离》教学设计教材:人教A版高中《数学》必修2第三章第3.3.3节【教学内容解析】《点到直线的距离》是人教A版高中《数学》必修2中第三章第3.3.3节的内容. 它既是两点间距离公式的延续,又为导出两平行线间距离公式作了铺垫,具有承上启下的重要作用.这一节课的任务是:给出已知点的坐标与已知直线的方程,求点到直线的距离,建立点到直线的距离公式.从课型来说,应该属于“问题教学”.以一个问题为载体,学生在教师的引导与帮助下,分析、研究问题,制定解决问题的策略,选择解决问题的方法.本节课的教学重点是点到直线距离公式的探索与应用;难点是点到直线距离公式的推导.本节课蕴含特殊到一般,转化与化归,数形结合,函数与方程等丰富的数学思想方法.【教学目标设置】1.探索并掌握点到直线的距离公式;学会点到直线距离公式的应用.2.通过经历公式多种推导方案的设计及比较,领会特殊到一般,转化与化归,数形结合,函数与方程等丰富的数学思想方法.3.在探索问题的过程中,在运算的比较与优化思考的过程中,感受数学的严谨与统一,感受数学的形式美与简洁美.【学生学情分析】学生已经学习了直线的倾斜角和斜率,两点间的距离公式,且具备了相关的几何知识和三角函数知识,如:交点、垂直、三角函数等. 学生对坐标法解决几何问题有初步的认识.【教学策略分析】本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学.通过合作交流,类比联想,归纳化归,总结提升,让学生在学习中学会怎样发现问题、分析问题、解决问题.【教学过程】一、回顾旧知 引出课题回顾两点间的距离公式,同时,引出课题——点到直线的距离.【设计意图】平面图形最基本的要素是点和线.在研究了两点间距离公式后,很自然地会去研究点线间的距离,当然还可以更深入地去探究两平行线间的距离.这三个距离公式是一脉相承的,因此,这样引入自然、贴切,符合学生的认知规律.二、特例探路 巧作铺垫引例:已知点(2,1)P ,直线l 的方程为290x y +-=,求点P 到直线l 的距离。
点到直线的距离教学案例
《点到直线的距离》教学设计方案尹战平一、教材分析1、地位与作用:本节是“两条直线的位置关系”的最后一个内容,它是在研究了两条直线的位置关系的判定方法之基础上,研究两条平行线间距离的一个重要公式。
推导此公式不仅完善了两条直线的位置关系这一知识体系,而且也为将来用代数方法研究曲线的几何性质奠定了基础。
而更为重要的是:通过认真设计这一节教学,能使学生在探索过程中深刻地领悟到蕴涵于公式推导中的重要的数学思想和方法,学会利用化归思想和分类方法,由浅入深,由特殊到一般地研究数学问题,同时培养学生浓厚的数学兴趣和良好的学习品质,提高学生的数学核心素养。
2、重点、难点及关键:本节学习的重点是理解和掌握点到直线的距离公式,熟练地应用公式求点到直线的距离;难点是点到直线的距离公式的推导及对知识、思想方法的反思升华。
本节学习的关键是“怎样想到利用坐标系中的x轴或y轴构造RtΔ,从而推出公式”。
对于这个问题,教材中的处理方法是:直接作辅助线(见教材)。
这样做,无法展现为什么会想到要构造RtΔ这一最需要学生探索的过程,不利于学生完整地理解公式的推导和掌握与之相应的丰富的数学思想方法。
如果照本宣科,则不能摆脱在客观上对学生进行灌注式教学。
事实上,为了真正实现以学生为主体的教学,起关键作用的是设计出有利于学生参与教学的内容组织形式。
因此,我没有像教材中的那样直接作辅助线,而是对教学内容进行剪裁、重组和铺垫,构建出在探索结论过程中侧重于学生能力培养的一系列教学环节,采用将一般转化到特殊的方法,引导学生通过对特殊的直观图形的观察、研究,自己发现隐藏其中的RtΔ,从而解出|PQ|。
在此基础上进一步将特殊问题还原到一般,学生便十分自然地想在坐标系中探寻含PQ的RtΔ,找不到,自然想构造,此时再过P点作x轴或y轴的平行线就显得“瓜熟蒂落,水到渠成”了。
本设计力求以启迪思维为核心,设计出能启发学生思维的“最近发展区”,从而突破关键,导出公式。
高中数学必修二§3.3.3 点到直线的距离公开课教案课件课时训练练习教案课件
3.3.3两条直线的位置关系―点到直线的距离公式三维目标:知识与技能:1. 理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;能力和方法: 会用点到直线距离公式求解两平行线距离王新敞情感和价值:1。
认识事物之间在一定条件下的转化。
用联系的观点看问题王新敞教学重点:点到直线的距离公式王新敞教学难点:点到直线距离公式的理解与应用.教学方法:学导式教 具:多媒体、实物投影仪王新敞教学过程一、情境设置,导入新课:前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,两点间的距离公式。
逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P 到直线l 的距离。
用POWERPOINT 打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学。
要求学生思考一直线上的计算?能否用两点间距离公式进行推导?两条直线方程如下: ⎩⎨⎧=++=++00222111C y B x A C y B x A .二、讲解新课:1.点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为:2200B A C By Ax d +++=王新敞(1)提出问题在平面直角坐标系中,如果已知某点P 的坐标为),(00y x ,直线=0或B =0时,以上公式0:=++C By Ax l ,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?学生可自由讨论。
(2)数行结合,分析问题,提出解决方案学生已有了点到直线的距离的概念,即由点P 到直线l 的距离d 是点P 到直线l 的垂线段的长.这里体现了“画归”思想方法,把一个新问题转化为 一个曾今解决过的问题,一个自己熟悉的问题。
画出图形,分析任务,理清思路,解决问题。
方案一:设点P 到直线l 的垂线段为PQ ,垂足为Q ,由PQ⊥l 可知,直线PQ 的斜率为AB (A ≠0),根据点斜式写出直线PQ 的方程,并由l 与PQ 的方程求出点Q 的坐标;由此根据两点距离公式求出|PQ |,得到点P到直线l 的距离为d 王新敞此方法虽思路自然,但运算较繁.下面我们探讨别一种方法王新敞方案二:设A ≠0,B ≠0,这时l 与x 轴、y 轴都相交,过点P 作x 轴的平行线,交l 于点),(01y x R ;作y 轴的平行线,交l 于点),(20y x S ,由⎩⎨⎧=++=++0020011C By Ax C By x A 得B C Ax y A C By x --=--=0201,. 所以,|P R|=|10x x -|=AC By Ax ++00 |PS |=|20y y -|=BC By Ax ++00 |RS |=AB B A PS PR 2222+=+×|C By Ax ++00|由三角形面积公式可知:d ·|RS |=|P R|·|PS |王新敞所以2200B A CBy Ax d +++=可证明,当A=0时仍适用王新敞这个过程比较繁琐,但同时也使学生在知识,能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《点到直线的距离》教学设计
教材:人教A版高中《数学》必修2第三章第3.3.3节
【教学内容解析】
《点到直线的距离》是人教A版高中《数学》必修2中第三章第3.3.3节的内容. 它既是两点间距离公式的延续,又为导出两平行线间距离公式作了铺垫,具有承上启下的重要作用.
这一节课的任务是:给出已知点的坐标与已知直线的方程,求点到直线的距离,建立点到直线的距离公式.从课型来说,应该属于“问题教学”.以一个问题为载体,学生在教师的引导与帮助下,分析、研究问题,制定解决问题的策略,选择解决问题的方法.
本节课的教学重点是点到直线距离公式的探索与应用;难点是点到直线距离公式的推导.
本节课蕴含特殊到一般,转化与化归,数形结合,函数与方程等丰富的数学思想方法.
【教学目标设置】
1.探索并掌握点到直线的距离公式;学会点到直线距离公式的应用.
2.通过经历公式多种推导方案的设计及比较,领会特殊到一般,转化与化归,数形结合,函数与方程等丰富的数学思想方法.
3.在探索问题的过程中,在运算的比较与优化思考的过程中,感受数学的严谨与统一,感受数学的形式美与简洁美.
【学生学情分析】
学生已经学习了直线的倾斜角和斜率,两点间的距离公式,且具备了相关的几何知识和三角函数知识,如:交点、垂直、三角函数等. 学生对坐标法解决几何问题有初步的认识.
【教学策略分析】
本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学.通过合作交流,类比联想,归纳化归,总结提升,让学生在学习中学会怎样发现问题、分析问题、解决问题.
【教学过程】
一、回顾旧知 引出课题
回顾两点间的距离公式,同时,引出课题——点到直线的距离.
【设计意图】平面图形最基本的要素是点和线.在研究了两点间距离公式后,很自然地会去研究点线间的距离,当然还可以更深入地去探究两平行线间的距离.这三个距离公式是一脉相承的,因此,这样引入自然、贴切,符合学生的认知规律.
二、特例探路 巧作铺垫
引例:已知点(2,1)P ,直线l 的方程为290x y +-=,求点P 到直线l 的距离。
【教学方式】自主探究,引导发现,归纳启发.
【设计意图】从具体的例子出发求距离,相对来说,计算量更小,学生有更充裕的时间去发现解法的多样性,为后续求抽象的点线距离做好准备.
预计会出现以下几种解法.
方法1:直接法
如图1,过P 作PQ l ⊥于Q .
Step1. 求出直线PQ 的方程:230x y --=;
Step2. 联立直线,PQ l 的方程,求出交点Q 的坐标(3,3);
Step3. 求出距离||5PQ =.
方法2:解三角形法
过P 点作x 轴的平行线与直线l 的交点为R ,如图2,在Rt PQR ∆中, Step1. 求出点P 到直线l 的水平距离||5PR =;
Step2. 在Rt PQR ∆中,1tan ||2l PRQ k ∠==
,5sin PRQ ∴∠=; Step3.故||sin 5PQ PR PRQ =∠=.
方法3:等面积法
如图3,在图2的基础上,过点P 作//PS y 轴交直线l 于点S .
Step1. 求出Rt SPR ∆
的三条边长:5||5,||,||22
PR PS RS ===; Step2.
利用等面积法求出斜边上的高||||||PR PS PQ RS
⋅=
=三、公式推导,殊途同归 问题一般化:已知点00(,)P x y ,直线l 的方程为220(0)Ax By C A B ++=+≠,如何用00,,,x y A ,B C 表示点P 到直线l 的距离?
【教学方式】类比引例方法,学生分组解决,上台展示结果,教师点评补充.
【设计意图】进行方案比较,在比较中,再次领会各种方案的思想方法,比较它们的优缺点,选择合适的方案执行. 并培养学生的观察能力、表达能力和归纳总结能力.
四、公式记忆,学以致用
教师引导学生验证当0A =或0B =的特殊情况,以及当点00(,)P x y 在直线l 上时,也符合一般的距离公式.
最后得到点到直线的距离公式d =
. 引导学生分析公式的结构特点,找到记忆公式的方法.
【设计意图】强化公式记忆,明确公式的适用范围.
例1.求点(1,2)P -到下列直线的距离.
(1)210y x =-+ (2)32x =
解:(1)直线方程化为一般式2100x y +-=,则
d ==
(2)方法1(几何法) 25|1|=33d =-- 方法2(公式法)
53
d =
= 例2.已知点(1,3),(3,1),(1,0)A B C -,求ABC ∆的面积.。