让学生自己去发现我们知道一次函数y

合集下载

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇

《二元一次方程与一次函数》教学设计精选4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《二元一次方程与一次函数》教学设计精选4篇在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

一次函数教学反思

一次函数教学反思

一次函数教学反思
麻江县宣威中学杨涵治
函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图像》奠定基础,并形成用函数观点认识现实世界的能力与意识.
学生第一次利用数形结合的思想去研究一次函数的图像,感到陌生是正常的.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图像是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.
最后,总结以下几点,供各位老师批评:
1,最后的一个练习没有时间,总结的时间没有了。

建议只用一个练习;
2,要注意语速和声音音量的控制,不是声音越大越好,注意上课的语言;
3,怎样能最大限度的了解学生对知识掌握的情况?尤其是大班!要学生扮演,浪费时间。

在时间很紧的情况下,怎样提高课堂讲课的效率,是今后努力的方向;
4,在教学水平的现在阶段,要提高学生的成绩,最好的捷径就是练习!靠练习提高成绩不是长久之际;
5,真正的要形成自己的教学风格,熟悉教材,熟悉学生。

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。

2、直线y = — 2X — 2 不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。

5、过点(0,2)且与直线y=3x平行的直线是:。

6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。

7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

一次函数的教学反思

一次函数的教学反思

一次函数的教学反思这次作者给大家整理了一次函数的教学反思(共含13篇),供大家阅读参考。

篇1:一次函数教学反思教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。

在得出结论之后,让学生能运用“ 两点确定一条直线” ,很快做出一次函数的图像。

在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。

本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。

本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识。

在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。

但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如“ 随着 x 值的增大, y 的值分别如何化?” ,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。

《一次函数》八年级数学教学反思10篇

《一次函数》八年级数学教学反思10篇

《一次函数》八年级数学教学反思10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《一次函数》八年级数学教学反思10篇下面是本店铺分享的《一次函数》八年级数学教学反思10篇(一次函数教后反思),供大家参阅。

一次函数的图象-教学设计

一次函数的图象-教学设计

华东师大版17.3.2《一次函数的图象》教学设计一、内容和内容分析内容:华师大版八年级下册“17.3.2 一次函数的图象和性质”.本节教学内容属于“数与代数”知识领域中的函数部分,函数是刻画和研究现实世界变化规律的重要模型,是中学数学的重要内容之一,而一次函数是函数中最简单最基本的函数类型之一。

本节课是华东师大版教材中第17章第3节第2课时内容,通过前两节的学习,学生初步掌握了一次函数等相关概念,并且经历了列表、描点、连线画图象的过程,简单体会到数形结合的思想。

本节课是在此基础上,通过动手操作接受一次函数图象是直线这一事实,并在实践中体会“两点法”的简便性,同时向学生再次渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现k和b对一次函数图象的影响。

本节课内容为探索下节课一次函数的性质作准备。

同时它的研究方法具有一般性和代表性,为后面研究反比例函数和二次函数奠定了基础。

基于上述分析,确定本节教学本节教学重点如下:1.会熟练作出一次函数的图象;2.理解一次函数解析式中k,b的取值对函数图象的影响;二、目标和目标解析1.理解用描点画出一次函数的图象一般步骤,经历描点法画函数图象的全过程,巩固并掌握描点法画函数图象的一般方法,掌握一次函数图象形状,培养良好的动手操作能力.2.掌握一次函数图象及其特征,培养学生观察、比较、探究、分析、归纳、概括的能力,学会数形结合地研究函数问题的方法.3.进一步体会并理解数形结合思想.三、问题诊断分析1.教师教学可能存在的问题:(1)直接帮助学生用描点法画出一次函数图象,没有让学生亲身经历画图过程;(2)没有提前准备好网络画板用动态演示的方法让学生再次观察图象变化;(3)不能设计合理的探究方案,适当引导学生小组合作去观察、体会、归纳、概括出一次函数的图象特征;(4)过分强调知识的获得,忽略了数形结合数学思想方法的渗透.2.学生学习中可能出现的问题:(1)识图读图能力不强,不能发现并全面概括出函数的图象特征;(2)个别学生互助合作学习的热情和参与探索的积极性不高.鉴于上述分析,确定本节的教学难点是:通过设计合理有效的数学实验,激活学生的数学思维,引导观察、归纳函数的图象特征探讨k,b对一次函数图象的影响,渗透数形结合的数学思想方法.四、教学支持条件设计教学中,为使能较好地帮助学生深入理解一次函数的图象特征,利用网络画板的画图和动画功能,直观、形象地展现函数图象的变化规律,发现k,b对一次函数图象的影响、体会数形结合思想,激发学生参与的积极性,提高分析和解决问题的能力.五、教学过程设计导言上节课我们与一次函数初次相识,我们知道认识了一个新事物就更想再深入了解它的性质和应用,而函数图象正是能帮助我们了解函数方方面面性质的一个有力工具,所以今天我将带领大家一同来探讨一次函数的图象问题.活动一:导学诱思问题1一次函数的概念是什么?能否将黑板上有一次函数的卡片挑出来?问题2用描点法画图的一般步骤是什么?活动方式:教师提出问题,由学生口答之后,通过生生互评、师生共评,纠正出现的问题.设计目的:从提问复习入手,承接上一节课的内容,同时引出本节课的内容,既起到复习巩固的作用,又激发学生的学习兴趣,同时为本节课的学习奠定基础.活动二:自主探究问题1选一个你喜欢的一次函数,并用描点法画出该函数图象.问题2 观察你所画的一次函数图象是什么形状?问题3 几个点确定一条直线?有没有简单的一次函数图象的作图方法?活动方式:学生动手画图,自主探究,之后教师提问,学生回答.设计目的:让学生在动手作图的过程中从“形”的角度感知一次函数的图象的形状,发挥学生的主动性,锻炼学生动手操作能力,激发学生学习兴趣.活动三:合作探究提出问题:对于一次函数y=kx+b(k,b为常数,k≠0),常数k和b的取值分别对一次函数的图象有什么影响?活动方式:教师展示多个一次函数图象,师生共同观察,发现不同之处.设计目的:引导学生从“形”的角度观察多个一次函数图象的不同之处,同时从“数”的角度发现解析式的不同之处,由此提出问题.解决问题:设计数学实验.数学试验1:当b相同,k不同时 (第1,3,5组完成)合作要求:组长先确定一个b值,每位组员再各自确定一个k值,依次在同一个坐标纸中画出对应函数图象.数学试验2:当k相同,b不同时(第2,4,6组完成)合作要求:组长先确定一个k值,每位组员再各自确定一个b值,依次在同一个坐标纸中画出对应函数图象.规律总结:当b相同,k不同时,观察函数图象发现:相同点:与y轴交点相同,都为(0,b).不同点:直线的方向不同,倾斜程度不同.在直线y=k1x+b1与直线y=k2x+b2中,如果b1= b2,k1≠k2,那么这两条直线与y轴相交于同一个点.当k相同,b不同时,观察函数图象发现:相同点:直线的倾斜程度一样,直线相互平行.不同点:直线与y轴交点不同.在直线y=k1x+b1与直线y=k2x+b2中,如果k1 = k2,b1 ≠b2,那么这两条直线平行.活动方式:小组合作,先作图,再看图,总结结论,小组代表通过学生平板用“学生讲”的方式展示交流,随后教师借助平板网络画板进行动态演示.设计目的:让学生充分感受图形特点,找到规律,锻炼学生动手操作、观察、归纳、合作探究的能力,体会数学充满探究性和创造性,小组代表展示交流,培养学生的表现力和语言表达能力,教师动画演示,再次渗透“数形结合”思想.活动四:达标检测1.已知一次函数y=kx+b的图象与y=x的图象平行,那么它必过点()A.(-1 , 0)B.(2 , -1)C.(2 , 1)D.(0 , -1)2.已知点(k , b)在第四象限内,则一次函数y=-kx+b的图象大致是()A. B. C. D.3.在平面直角坐标系中,将直线l1:y=-2x-2平移后得到直线l2:y=-2x+4,则下列平移作法中,正确的是()A.将直线l1向上平移6个单位 B.将直线l1向上平移3个单位C.将直线l1向上平移2个单位 D.将直线l1向上平移4个单位4.一次函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知函数y=3x+3的图象与x轴交点的坐标是()A.(1 , 0) B.(-1 , 0) C.(0 , 1) D.(0 , -1)活动方式:学生利用平板,在线作答,完成后提交答案,教师根据后台数据精准讲解.设计目的:学生在前面学习的基础上进行练习,一方面对所学内容加以巩固,另一方面让学生将所学知识学会应用。

八年级数学上人教版《一次函数》教案

八年级数学上人教版《一次函数》教案

《一次函数》教案一、教学目标1.掌握一次函数的概念、性质和图像特点,能够根据给定条件求出一次函数的表达式。

2.理解并掌握一次函数的单调性,能够利用单调性解决实际问题。

3.通过实例分析和小组讨论,培养学生分析和解决问题的能力,发展学生的创新思维。

4.通过与同伴合作、交流,培养积极参与和良好的学习习惯。

二、教学重点与难点重点:一次函数的概念、性质和图像特点,以及一次函数的单调性。

难点:根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。

三、教学方法与手段1.借助实例引入一次函数的概念,通过小组讨论和教师点拨,帮助学生理解并掌握一次函数的概念和性质。

2.利用多媒体技术展示一次函数的图像,通过直观的图像帮助学生理解一次函数的单调性。

3.通过小组讨论和教师点拨,引导学生利用一次函数的单调性解决实际问题。

四、教学环节设计1.导入新课:通过实例引入一次函数的概念,引导学生理解一次函数的意义和实际应用。

2.新课学习:通过小组讨论和教师点拨,帮助学生掌握一次函数的概念、性质和图像特点,并通过实例分析帮助学生理解一次函数的单调性及其应用。

3.练习巩固:通过小组活动和教师点拨,引导学生根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。

4.归纳小结:总结本节课所学的知识点,强调重点和难点内容。

5.作业布置:布置相关练习题,帮助学生巩固所学知识。

五、教学反思1.通过本节课的教学,要达到的教学目标是否达到?对于哪些学生需要加强指导?哪些学生需要给予更多的关注?2.在教学过程中,哪些环节处理得比较好?哪些地方需要改进?如何改进?3.在教学过程中,是否有效地运用了多媒体技术?是否有助于提高教学效果?如果有所改进,效果会更好吗?。

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇篇一:一次函数的优秀教学设计篇一课题:14.2.2 一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c•的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.篇二:一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。

一次函数数学教案优秀5篇

一次函数数学教案优秀5篇

一次函数数学教案优秀5篇一次函数数学教案(精选篇1)教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:•分)变化的函数关系式,并画出函数图象.y=例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=•20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本P119练习.三、课堂,发展潜能由学生自我本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:练习:一次函数数学教案(精选篇2)一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

一次函数的图像和性质教学反思(2篇)

一次函数的图像和性质教学反思(2篇)

一次函数的图像和性质教学反思我今天讲课的课题是一次函数的图像和性质,我们是集体备课后形成的教案,我把目标定位为:1、理解正比例函数和一次函数的意义。

2、会画一次函数的图像,并结合图像和表达式理解一次函数的性质。

3、能根据已知条件确定一次函数的表达式。

下面对这节课反思如下:1、上课仍然改不了以前的好多习惯,不放心学生,总想包办代替,自己讲的多,留给学生的时间和空间少。

2、学生展示的少,老师没有放手给学生,没有让学生去经历知识的获取过程。

3、起点过高,把学生的基础估计过高,不能面对的多数学生。

没有本着低起点,小步伐,慢节奏的方式方法进行教学。

4、数形结合不够,应该从图像入手让学生经历画图像和观察图像的过程,并且根据图像去解决一些问题。

5、用展台展示不太清晰,没有让学生画在黑板上效果好。

6、教师应该把课堂还给学生,让学生多做多讲。

不可以有老师太多的讲解。

7、中考备课要讲究实效,不可以走过场,作秀,那只能是事倍功半。

8、要仔细钻研教材和课标,以及考试说明,备好课。

这是上好课的前提。

9、没有注重方法的总结。

总之,还有诸多地方需要改进,我会在今后的教学中加以注意。

一次函数的图像和性质教学反思(2)一次函数是高中数学中的重要内容之一,也是学生接触的第一种函数。

它是一种简单且容易理解的函数,因此在教学过程中,老师和学生往往容易忽视其中蕴含的深层次的数学思想和性质。

本文将从教学反思的角度,探讨一次函数的图像和性质的教学内容,并结合具体的教学案例,分析教学中容易出现的问题和解决方法。

一、教学内容的选择和设计在教学一次函数的图像和性质之前,首先需要学生具备对一次函数的定义和基本性质的理解。

然后,可以引入一次函数的图像,并让学生通过观察图像来总结一次函数的性质。

最后,引入一次函数的一些特殊情况和应用,扩展学生的数学视野。

1. 引入一次函数的定义和基本性质在引入一次函数的定义和基本性质时,应该注重启发学生的思维,培养学生的数学思维能力。

数学八年级下册一次函数

数学八年级下册一次函数

数学八年级下册一次函数
摘要:
一、一次函数的定义与性质
1.一次函数的定义
2.一次函数的性质
二、一次函数的图像与解析式
1.一次函数的图像
2.一次函数的解析式
三、一次函数的应用
1.函数与实际问题的联系
2.一次函数在实际问题中的应用
四、一次函数的学习意义与方法
1.一次函数的学习意义
2.一次函数的学习方法
正文:
数学八年级下册一次函数是初中数学中非常重要的内容。

一次函数是初中学生接触到的第一个基本函数,也是以后学习其他函数的基础。

一次函数的定义是指形如y=kx+b(k≠0,k、b为常数)的函数,其中x叫做自变量,y叫做因变量。

自变量x的取值范围是全体实数,而因变量y的取值范围则是函数的值域。

一次函数的性质包括:函数图像是一条直线,函数的值随着自变量的增大而增大或减小;当x=0时,y=b,即函数图象与y轴的交点
为(0,b)。

一次函数的图像与解析式密切相关。

解析式是函数图像的数学表达式,而图像则是解析式的几何表示。

在数学中,我们可以通过解析式来绘制函数图像,也可以通过函数图像来推导解析式。

一次函数在实际问题中有广泛的应用。

例如,我们可以通过一次函数来描述物体的运动轨迹,也可以通过一次函数来预测未来的发展趋势。

在解决实际问题时,我们需要根据问题的具体情境,选择合适的一次函数模型,并通过计算或测量来确定函数的参数。

学习一次函数不仅可以帮助我们更好地理解数学知识,也可以提高我们的逻辑思维能力和问题解决能力。

一次函数的教学案例分析

一次函数的教学案例分析

一次函数的教学案例秀屿区石城学校谢金城案例:一次函数的教学我们知道一次函数y=kx+b(k≠0)的图象是一条直线,这是针对x为任意实数而言,但实际生活中受x取值范围的限制,画出的一次函数图象不全是直线。

我在复习时讲到一次函数y=kx+b(k≠0)的图象是一条直线,突然一位女生举手,示意要发言。

我停下来让她先说,她说:“老师,你说的不完全对,一次函数的图象有可能是线段。

”我就让她举个例子。

她马上用书上的例题来说:“拖拉机开始工作时,油箱中原有油40升,如果每小时耗油5升,则油箱中的余油量Q(升)与工作时间t(小时)之间的函数图象是一条线段。

1.接着我就向全班同学,提出以下问题:怎样画这条线段,该如何取点?2.我:“为什么这时的图像是条线段,我们说一次函数的图像是一条线段对吗?”3.停顿一会儿,赞成是一条直线的请举手。

4.你们为什么说它的图像是一条直线,而不一条线段,请说明理由。

5.生:对于一次函数的解析式来说,x可以取全体实数,所以它的图像一定是一条真线,而刚才举的实像只是实验它的自变量x受到了限制所以它是一条线段,从严格意义上说不是一次函数,只是一次函数在实际中的应用,是用一次函数来分析问题。

6.能不能举出图像是一条射线,而与一次函数有关的例子。

全班同学顿时热情高涨,这时一位胆怯,且成绩不好的同学也在下面嘟哝着。

我走到她身边,鼓励她发言:“汽车离总站4千米,现以60千米/小时的平均速度继续前进t小时,则汽车离总站的距离s(千米)与t(小时)之间的函数图象是一条射线。

同学们为她鼓掌喝彩,在热烈的气氛中我们继续一次函数图象的复习……分析:新的教育理念是善于引导学生去“发现”、“探索”、“解决问题”、“发现问题的一般性与特殊性的关系”。

这要求老师在教学中要激发学生主动参与的意识,当学生在主动学习中受挫折时,老师应及时指导学生自我调节。

作为老师,要树立“以学生为主体,以教师为主导,以学生为本”的教学思想,实现教师从“演员”到“导演”,学生从“观众”到“演员”的转变。

《一次函数与正比例函数》教学反思示例

《一次函数与正比例函数》教学反思示例

《一次函数与正比例函数》教学反思示例《一次函数与正比例函数》教学反思示例「篇一」一次函数与正比例函数作为函数中最简单、应用最为广泛的函数,本节课我力图通过问题情境的创设,例题的设计,学生活动的安排,使学生能深刻地感受到数学与生活的联系。

本节课开始以教师乘车从渭南到故市这一问题情境,拉近了师生的距离,同时能使学生感受到生活处处可见函数的影子。

由于小组之间有一个竞争机制在里面(评选出本节课的最佳合作小组),在探究活动中,学生探究的积极性相对比较高,参与率高,达到了学生积极参与的目的。

在选题中,由于选题典型且由易到难,逐层递进,有利于学生的思考。

本节课力求让所有学生积极参与,因此在各小组得分差距很大的情况下(3、6小组尚无得分),我采取了激励措施,将较易的题留给他们,并对回答对的同学掌声鼓励,极大地调动了这两个小组同学的积极性。

对于学习目标的呈现也有利于学生学完本节课之后对自己的检测、对照、小结,当堂目标检测学生完成也相对较好。

总体上,本节课体现了以学生为主体,以问题为载体,以小组活动为核心展开,教师的亲和力也拉近了师生之间的距离,及时鼓励评价学生,课前语和结束语激励学生学知识学做人。

本节课的不足之处:1、本节课放的还不够开,可能是由于课堂容量较大,担心任务是否能按时完成,因而部分题没有留充分思考、交流的空间,显得处理问题有些着急。

2、小组的合作学习尚且还处于形式化倾向,学生小组间的对学、群学体现不明显。

今后需要做的:1、尽可能放手学生,留给学生充分的思考交流的空间,使学生能在知识的生成上获得发展。

2、加强小组间的实质性合作,尽可能做到对学、群学相结合,实现兵教兵、兵练兵,使学生真正成为课堂的主人,知识的主人。

3、小组展示中尽可能让学生小组成员都积极参与,培养他们的团体意识。

《一次函数与正比例函数》教学反思示例「篇二」这节课是正比例函数的第一课时,它的设计和教学很关键。

我把目标定为以下三点:使学生经历从实例中认识成正比例关系的过程,初步理解正比例函数的概念,学会根据正比例函数的概念判断两个量是不是成正比例。

《一次函数和正比例函数》教学设计

《一次函数和正比例函数》教学设计

《一次函数与正比例函数》教学设计一、教学目标知识与技能:理解正比例函数和一次函数的概念,弄清它们的联系与区别.通过结合实际列出函数解析式.过程与方法:通过理解一次函数的过程,培养学生观察、比较、归纳、总结的水平,培养学生从实际问题中抽象函数概念的水平,即数学建模思想.情感态度价值观:通过结合实际列出函数解析式,并利用函数知识解决实际问题,使学生感受到数学来源于生活,服务于生活,发展学生的数学应用水平,通过增强小组合作交流,培养学生的团结协作的水平.二、教学重、难点重点:准确理解正比例函数和一次函数的概念和它们之间的关系.能使用一次函数知识解决相关问题.难点:能结合实际准确求出一次函数的解析式.抽象思维水平的培养.三、教学流程安排活动一:创设情境,导入新课通过行程问题,复习函数概念.本节课我们将学习一种具体的初等函数,这种函数在现实生活中随处可见,让我们一起来找一找.教师给出导学单,学生分组活动,让学生在合作交流中发现知识,然后分享学习成果.1.某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:你能写出x与y之间的关系式吗?2.某辆汽车中原有汽油60升,汽车每行驶50千米耗油6升.若汽车行驶路程x千米,油箱耗油量y升.(1)完成以下表格.(2)汽车每行驶1 km耗油多少L?(3)你能写出耗油量y(L )与汽车行驶路程x(km)之间的关系式吗?(4)你能写出油箱剩余油量z ( L )与汽车行驶路程x( km)之间的关系式吗?设计意图:从学生熟悉的问题入手,由这些简单的实例持续体会从现实世界中抽象数学模型,建立数学关系的方法.通过填表让学生理解变量间的对应规律,体会从特殊到一般的数学思想方法.活动二:合作交流明确概念1.学生独立思考,通过让学生观察、比较、归纳、总结,让学生自主发现这些函数的特征,为得出一次函数的概念做准备.教师根据学生的回答引出一次函数和正比例函数的概念.请两位学生代表用字母拼出一次函数的表达式.一次函数:若两个变量 x、y之间的关系能够表示成y=kx+b(k,b为常数,k ≠0)的形式,则称 y是x的一次函数.(x为自变量,y为因变量)当b=0时,称y= kx是x的正比例函数2.通过游戏找出一次函数,再次强化一次函数概念及特点.教师着重强调:(1)它们自变量的指数都为一次,一次项都是自变量与一个常数乘积的形式.(2)正比例函数是特殊的一次函数.活动三:使用概念 回归实际例1 已知 y=(m-2) +n-2(1)m,n 为何值时,y 是x 的一次函数?(2)m,n 为何值时,y 是x 的正比例函数?例2 写出以下各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)某水池有水15 m3,现打开进水管进水,进水速度为5 m3/h, xh 后这个水池内有水ym3.例3 例自2019年1月1日起,我国居民个人劳务报酬所得税预扣欲缴税款的计算方法是:每次收入不超过800元的,预扣欲缴税款为0,每次收入超过800元但不超过4000元,预扣欲缴税款=(每次收入-800)x20%。

《函数》教学反思

《函数》教学反思

《函数》教学反思《函数》教学反思1这节课主要让学生理解并掌握不等式的定义,不等式的解,不等式的解集,解不等式的意义,会把解集在数轴上表示出来。

以学生课外预习为前提开展教学的。

课本中的实际问题情境创设,都是由学生课外自学来完成,从而给予学生更多的学习思考时间,研究这些问题,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型。

教学中要突出知识之间的内在联系。

不等式与方程一样,都是反映客观事物变化规律及其关系的模型。

在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、甄别,从而得出一元一次不等式、不等式的解与解集的意义。

引导学生类比等式及方程的有关知识,于知识的迁移过程中较好地体悟所学的内容。

学生数学语言概括能力,互助学习,合作学习的能力得到提高,数形结合思想渗透较好教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。

因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。

这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想象力和思维力,再加上多媒体的运用,使学生真正成为学习的主体。

但是,课后及作业中出现以下错误1、不大于,不小于,弄不清楚;2、用不等式表示某些语句,个别学生读不懂题意;3、用不等式解决简单的.实际问题,出现错误较多;4、不能较好的运用所学知识解决相关问题。

5、一些解题中的细节要注意,例如用数轴来表示解集时,折线向左向右学生没有真正是什么意思,什么时候用实心圆点还是空心圆圈没有区别等等。

6、课堂教学时间,多听学生讲出他们自己的的理解和解题思路,有利于培养学生的数学语言表达能力。

今后教学中,要注重基础知识的学习,满足学生多样化的学习需求的同时,注意学生各方面能力的培养和学习习惯的培养。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

让学生自己去发现我们知道一次函数y=kx+b的图象是一条直线
让学生自己去发现:我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=.例:求点P(1,2)到直线y=x﹣的距离d时,先将y=化为5x﹣12y ﹣2=0,再由上述距离公式求得d==.
解答下列问题:
如图2,已知直线y=﹣与x轴交于点A,与y轴交于点B,
抛物线y=x2﹣4x+5上的一点M(3,2).
(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.
解:(1)将直线AB变为:4x+3y+12=0,
又M(3,2),则点M到直线AB的距离d==6;
(2)假设抛物线上存在点P,使得△PAB的面积最小,
设P坐标为(a,a2﹣4a+5),
∵y=3a2﹣8a+27中,△=64﹣12×27=﹣260<0,
∴y=3a2﹣8a+27中函数值恒大于0,
∴点M到直线AB的距离d==,
又函数y=3a2﹣8a+27,当a=时,ymin=,
∴dmin==,此时P坐标为(,);
又y=﹣x﹣4,令x=0求出y=﹣4,令y=0求出x=﹣3,OA=3,OB=4,
∴在Rt△AOB中,根据勾股定理得:AB==5,
S△PAB的最小值为×5×=.。

相关文档
最新文档