电容式位移传感器1
实验一(电容式传感器的位移特性实验)
电容式传感器的位移特性实验一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C=εA/d和相应的结构及测量电路,在ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(变d)和测量液位(变A)等多种电容传感器。
利用电容传感器的动态响应特性和可以非接触测量等特点,可进行动态位移测量。
电容传感器具有结构简单、灵敏度高、分辨力高(可达0.01mm甚至更高)、动态响应好、可进行非接触测量等特点,它可以测量线位移、角位移,高频振动振幅,与电感式比较,电感式是接触测量,只能测低频振幅,电容传感器在测量压力、差压、液位、料位成分含量(如油、粮食中的水份)、非金属涂层、油膜厚度等方面均有应用。
目前半导体电容式压力传感器已在国内外研制成功,正在走向工业化应用。
三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
四、实验步骤:1、按图2-1将电容传感器装于电容传感器实验模板上。
图2-1 电容传感器安装示意图2、将电容传感器连线插入电容传感器实验模板,实验线路见图2-2。
图2-2 电容传感器位移实验接线图3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。
4、接入±15V电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表2-1。
X(mm)V(mv)5、根据表2-1数据计算电容传感器的系统灵敏度S和非线性误差δf。
五、思考题:图2-3为同心圆筒式电容位移传感器结构图,D为屏蔽套筒。
若外圆筒半径R=8mm,内圆柱半径r=7.25mm,外圆筒与内圆柱覆盖部分长度L=16mm。
根据实验所提供的电容传感器尺寸,计算其电容量C O和移动0.5mm时的变化量。
图2-3 同心圆筒式电容位移传感器结构图如有侵权请联系告知删除,感谢你们的配合!。
电容式物位计工作原理
电容式物位计工作原理
电容式物位计是一种基于电容原理的测量仪器,用于测量物体或介质的液位、固体物位或界面位置。
其工作原理是利用两个电极之间的电容变化来反映介质的物位变化。
该装置由测量电极和参考电极组成,通常将测量电极固定在容器壁上,并与介质直接接触,参考电极则可以放置在容器的远离测量电极的地方,或者设计为容器壁的一部分。
在工作时,测量电极通常会被提供一定的电流或电压以激活电路。
当介质的物位发生变化时,测量电极与参考电极之间的电容也会发生变化。
这是因为介质的物位变化会导致测量电极和参考电极之间的电容区域发生变化,从而导致总的电容值的变化。
电容式物位计通过测量电容的变化来确定物位的高度。
通常,电容式物位计通过测量电容的变化和参考电容来计算出介质的物位或界面位置。
这通常是通过测量电容与参考电容之间的差异来实现的。
为了准确地测量电容的变化,电容式物位计通常会校准和校正仪器。
校准可以根据具体的介质和测量要求进行调整,以确保测量的准确性和可靠性。
电容式物位计具有可广泛应用的优点,能够适用于不同介质、不同容器形状和尺寸的物位测量。
它们在工业过程控制和仪表
化系统中得到广泛使用,帮助监测和控制液位或物位变化,保证生产的安全性和效率。
位移传感器的工作原理
位移传感器的工作原理一、引言位移传感器是一种用于测量物体位移或者位置的设备,广泛应用于工业自动化、机械创造、航空航天等领域。
本文将详细介绍位移传感器的工作原理。
二、工作原理位移传感器的工作原理基于不同的物理原理,常见的包括电容式、电感式、光电式、压阻式等。
以下将分别介绍这些工作原理。
1. 电容式位移传感器电容式位移传感器利用电容的变化来测量位移。
它由两个电极组成,当物体挨近或者远离电极时,电容值会发生变化。
通过测量电容值的变化,可以确定物体的位移。
2. 电感式位移传感器电感式位移传感器利用电感的变化来测量位移。
它由线圈和铁芯组成,当物体挨近或者远离线圈时,线圈的电感值会发生变化。
通过测量电感值的变化,可以确定物体的位移。
3. 光电式位移传感器光电式位移传感器利用光的变化来测量位移。
它由光源、光电二极管和接收器组成,当物体挨近或者远离光电二极管时,接收器接收到的光信号强度会发生变化。
通过测量光信号强度的变化,可以确定物体的位移。
4. 压阻式位移传感器压阻式位移传感器利用电阻的变化来测量位移。
它由导电材料和弹性体组成,当物体施加压力或者位移时,导电材料的电阻值会发生变化。
通过测量电阻值的变化,可以确定物体的位移。
三、优缺点分析不同类型的位移传感器具有各自的优缺点,下面将对其进行分析。
1. 电容式位移传感器的优缺点优点:测量范围广、精度高、响应速度快、抗干扰能力强。
缺点:对环境温度和湿度敏感,价格较高。
2. 电感式位移传感器的优缺点优点:测量范围广、精度高、抗干扰能力强。
缺点:响应速度较慢,对温度变化敏感。
3. 光电式位移传感器的优缺点优点:测量范围广、精度高、响应速度快。
缺点:对光照强度和环境温度敏感。
4. 压阻式位移传感器的优缺点优点:价格低廉、结构简单、抗震动能力强。
缺点:测量范围较窄、精度较低。
四、应用领域位移传感器广泛应用于各个领域,以下列举几个常见的应用领域。
1. 工业自动化位移传感器在工业自动化中用于测量机械设备的位移、位置和变形,实现对设备运行状态的监测和控制。
电容式位移传感器1
虽然可将频率作为测量系统的输出量, 用以判断被测非电 量的大小, 但此时系统是非线性的, 不易校正, 因此加入鉴频器, 将频率的变化转换为振幅的变化, 经过放大就可以用仪器指示 或记录仪记录下来。调频测量电路原理框图如图 10 所示。
0
1
0
0
(3 3)
当 / 0 1时,
C C0
0
1
0
0
2
0
3
......
(3 4)
略去高次项,得:
C
C0 0
(3 5)
图5 直线位移式
Cx
C0
C
ba
x
C0
1
x a
C x 线性关系
C0 a
(3 14)
2.3 变介电常数型电容传感器
单组式平板形厚度传感器
图6 厚度传感器
图7 厚度传感器的等效电路
设固定极板长度为a、宽度为b、两极板间的距离为δ;被测 物的厚度和它的介电常数分别为δx和ε ,则
C2 C0 C
S
C01
1
0 0
当 / 0 1时,
C1 C01
0
0
2
0
3
......
C2
C01
一种新型电容式位移传感器电路设计
一种新型电容式位移传感器电路设计随着科技的不断进步,电容式位移传感器正被越来越广泛地应用于各种领域,如机械制造、汽车工业、医疗器械等。
本文将介绍一种新型的电容式位移传感器电路设计。
在传统的电容式位移传感器电路中,通常采用了电容变化量与位移之间的线性关系来实现位移测量。
然而,线性关系往往无法完全精确,且传感器精度受温度、湿度等环境因素的影响较大。
为了提高传感器的精度和稳定性,我们设计了一种新型的电容式位移传感器电路。
该电路采用了微处理器和电容变化量的比较器,通过对电容变化量的实时测量和分析,实现对位移的准确测量。
该电路的设计如下:1.传感器结构:传感器由两个金属片组成,分别固定在测量物体和静态基座上。
当测量物体发生位移时,测量物体金属片与静态基座金属片之间的电容值发生变化。
2.接口电路:传感器的金属片与电容检测电路相连接,形成一个电容。
3.电容检测电路:该电路由微处理器和电容变化量的比较器组成。
微处理器用于对电容变化量的实时测量和分析,电容变化量的比较器用于判断位移的正负,并输出相应的信号。
4.微处理器:微处理器是电路的核心部分,负责对电容变化量的测量和分析。
它通过检测电容值的变化来确定位移的大小,并将结果输出给用户。
5.电容变化量的比较器:该比较器用于判断位移的正负,并输出相应的信号。
当位移为正时,比较器输出高电平;当位移为负时,比较器输出低电平。
6.供电电路:为了保证电路的正常工作,需要为电路提供稳定的电源。
7.输出接口:通过输出端口将测量结果传输给用户,用户可以根据测量结果做出相应的操作。
通过该新型的电容式位移传感器电路设计,我们可以大大提高传感器的精度和稳定性。
该电路具有较高的测量精度和抗干扰能力,能够准确测量位移并输出相应的信号。
同时,该电路具有较低的功耗和小尺寸,适用于各种场合的位移测量。
总之,本文介绍的新型电容式位移传感器电路设计,通过引入微处理器和电容变化量的比较器,实现了对位移的准确测量。
电容式传感器的工作原理
电容式传感器的工作原理电容式传感器是一种常用的传感器,它利用电容的变化来实现对物体的测量和检测。
在电容式传感器中,电容的变化与物体的位置、形状、介电常数等因素有关,因此可以应用于各种测量场合。
下面我们将详细介绍电容式传感器的工作原理。
首先,电容式传感器由两个电极构成,它们之间的空间形成一个电容。
当有物体靠近电容式传感器时,物体的介电常数会影响电容的数值,从而引起电容的变化。
这种变化可以通过电路进行测量和分析,从而得到物体的位置、形状等信息。
其次,电容式传感器的工作原理基于电容的计算公式,C=ε0εrA/d,其中C为电容的数值,ε0为真空中的介电常数,εr为物体的相对介电常数,A为电极的面积,d为电极之间的距离。
根据这个公式,我们可以看到电容式传感器的变化与物体的介电常数、电极的面积和距离等因素有关。
另外,电容式传感器还可以利用电容的变化来实现非接触式的测量。
由于电容式传感器不需要与物体直接接触,因此可以避免对物体造成损伤,并且可以应用于一些特殊的测量场合。
此外,电容式传感器还可以通过改变电极的布局和结构来实现不同的测量要求。
例如,可以采用平行板电容的结构来实现对平面物体的测量,也可以采用圆形电极的结构来实现对球形物体的测量。
最后,电容式传感器的工作原理还可以应用于一些特殊的领域。
例如,在微机电系统(MEMS)中,电容式传感器可以实现对微小物体的测量,从而应用于微型加速度计、压力传感器等领域。
总的来说,电容式传感器的工作原理是基于电容的变化来实现对物体的测量和检测。
它具有测量精度高、非接触式测量、结构灵活等优点,因此在工业控制、医疗诊断、环境监测等领域有着广泛的应用前景。
希望通过本文的介绍,读者对电容式传感器的工作原理有了更深入的理解。
电容式位移传感器作用
电容式位移传感器作用
电容式位移传感器是一种用于测量物体位移的传感器。
它的作用是通过测量物体与传感器之间的电容变化来确定物体的位移。
当物体移动时,它会改变与传感器之间的电容距离,从而导致电容值的变化。
传感器会将这种电容变化转换成电信号,然后输出给相应的测量设备或控制系统。
电容式位移传感器的作用包括但不限于以下几个方面:
1. 位移测量,通过测量物体与传感器之间的电容变化,可以精确地测量物体的位移,包括线性位移和角位移。
2. 控制系统,电容式位移传感器可以将位移转换成电信号,用于控制系统对物体进行精确的控制,例如自动化生产线上的定位控制和机器人的运动控制等。
3. 监测和安全,在工程和机械设备中,电容式位移传感器可以用于监测物体的位移变化,以确保设备运行在安全范围内,并在必要时触发安全保护措施。
4. 自动化测量,电容式位移传感器可以与自动化测量设备结合
使用,用于工程测量、材料测试和科学研究等领域,提高测量精度
和效率。
总的来说,电容式位移传感器的作用是通过测量物体与传感器
之间的电容变化,实现对物体位移的精确测量和控制,从而在工程、科学研究和工业生产等领域发挥重要作用。
传感器原理及应用第三版王化祥张淑英天津大学课后答案1
传感器技术习题解答【完善版by在水一方】第一章传感器的一般特性1-6题1-1:答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
1-2:答:(1)动态特性是指传感器对随时间变化的输入量的响应特性;(2)描述动态特性的指标:对一阶传感器:时间常数对二阶传感器:固有频率、阻尼比。
1-3:答:传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即A=ΔA/Y FS*100%1-4;答:(1):传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;(2)拟合直线的常用求法有:端基法和最小二乘法。
1-5:答:由一阶传感器频率传递函数w(jw)=K/(1+jωτ),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωτ)2)1/2,从而确定ω,进而求出f=ω/(2π).1-6:答:若某传感器的位移特性曲线方程为y1=a0+a1x+a2x2+a3x3+…….让另一传感器感受相反方向的位移,其特性曲线方程为y2=a0-a1x+a2x2-a3x3+……,则Δy=y1-y2=2(a1x+a3x3+ a5x5……),这种方法称为差动测量法。
其特点输出信号中没有偶次项,从而使线性范围增大,减小了非线性误差,灵敏度也提高了一倍,也消除了零点误差。
1-7:解:Y FS=200-0=200由A=ΔA/Y FS*100%有A=4/200*100%=2%。
精度特级为2.5级。
1-8:解:根据精度定义表达式:A=ΔA/Ay FS*100%,由题意可知:A=1.5%,Y FS=100所以ΔA=A Y FS=1.5因为 1.4<1.5所以合格。
1-9:解:Δhmax=103-98=5Y FS=250-0=250故δH=Δhmax/Y FS*100%=2%故此在该点的迟滞是2%。
传感器原理与应用习题第4章电容式传感器 (1)
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么?答:(1)变极距型电容传感器:在微位移检测中应用最广。
(2)变面积型电容传感器:适合测量较大的直线位移和角位移。
(3)变介质型电容传感器:可用于非导电散材物料的物位测量。
4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。
采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。
由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。
4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题?答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。
解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。
4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。
4-6 简述电容测厚仪的工作原理及测试步骤。
4-7 试计算图P4-1所示各电容传感元件的总电容表达式。
4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。
简要说明电容式位移传感器的工作原理
简要说明电容式位移传感器的工作原理
电容式位移传感器是一种常用的位移测量设备,其工作原理是基于电容的变化来测量物体的位移。
具体来说,电容式位移传感器由一个固定电极和一个移动电极组成。
移动电极与被测物体相连,当被测物体发生位移时,移动电极也随之移动,导致电容值发生变化。
电容是指两个导体之间的电场能量,其大小与两个导体之间的距离和导体面积有关。
因此,当被测物体发生位移时,移动电极与固定电极之间的距离会发生变化,导致电容值的变化。
电容式位移传感器通过测量电容值的变化来确定被测物体的位移大小。
电容式位移传感器的精度受到电容值变化的影响,因此需要使用高质量的电容材料。
同时,传感器的结构也需要考虑到传感器的稳定性和耐用性。
一般来说,电容式位移传感器采用金属材料制成,其结构紧凑、稳定可靠,并且能够耐受一定的外部环境影响。
除了电容式位移传感器外,还有其他类型的位移传感器,如压电式位移传感器、电感式位移传感器等。
不同类型的传感器具有不同的优缺点,需要根据具体应用场景的需求来选择合适的传感器。
电容式位移传感器是一种常用的位移测量设备,其通过测量电容值的变化来测量被测物体的位移大小。
在实际应用中,需要选用高质量的电容材料和稳定可靠的结构,以确保传感器的精度和稳定性。
电容式传感器工作原理、特点和测量电路
当
C C0
d d0
[ 1
1
d
]
d0
d / d0时,1则上式可按级数展开,故得
2
3
C C0
d d0
[1
d d0
d d0
d d0
...]
4.2 电容式传感器的灵敏度及非线性
由上式可见,输出电容的相对变化量ΔC/C与输
入位移Δd之间呈非线性关系。当 略去高次项,得到近似的线性:
d/d时0 ,可1
4.1电容式传感器的工作原理和结构
电容式传感器可分为变极距型、变面积型和变介 质型三种类型。
在实际使用时,电容式传感器常以改变改变平行 板间距d来进行测量,因为这样获得的测量灵敏度 高于改变其他参数的电容传感器的灵敏度。
改变平行板间距d的传感器可以测量微米数量级 的位移,而改变面积A的传感器只适用于测量厘米 数量级的位移。
4.1电容式传感器的工作原理和结构
当动极板相对于定极板延长度a方向平移Δx时,
可得:
CCC00drbx
式中 为
C0 0rb为a初d始电容。电容相对变化量
C x C0 a
很明显,这种形式的传感器其电容量C与水平位
移Δx是线性关系,因而其量程不受线性范围的限
制,适合于测量较大的直线位移和角位移。它的灵
当差动式平板电容器动极板位移Δd时,电容器C0的
间隙d1变为d0-Δd,电容器C2的间隙d2变为d0+Δd则
C1
C
0
1
1 d
d0
C2
C0
1 1 d
d0
4.2 电容式传感器的灵敏度及非线性
在 d/d时0 ,1则按级数展开:
C 1C 0[1 dd 0( dd 0)2( dd 0)3...]
电容式压力传感器的工作原理
电容式压力传感器的工作原理
电容式压力传感器的工作原理是基于电容器的原理。
它由一个金属薄膜弯曲而成的膜片和一个固定金属板组成。
当外部施加压力时,膜片会产生形变,导致膜片与固定金属板之间的距离发生变化。
由于电容器的电容与电极之间的距离有关,这种形变会引起电容值的变化。
当施加压力时,电容值会增大或减小。
传感器内部会有一个电容测量电路,用于测量电容器的电容值。
该电路通常由振荡电路和计数器组成。
振荡电路将电容传感器连接到一个参考电压源,并产生一个频率直接与电容值成正比的输出信号。
计数器用于测量振荡信号的周期,并将其转换为与压力成正比的数字输出。
通过对电容传感器的电容值进行测量和计算,可以确定外部施加的压力大小。
这种传感器能够测量压力范围广阔,并具有较高的精度和灵敏度。
电容式压力传感器广泛应用于工业控制、汽车领域、医疗设备等领域中的压力测量和控制。
电容式传感器工作原理
电容式传感器工作原理电容式传感器是一种常见的传感器类型,它能够通过测量电容的变化来感知目标物体的位置、形状、材料等信息。
在许多工业和消费类电子产品中都有广泛的应用,比如触摸屏、接近开关、液位传感器等。
那么,电容式传感器是如何工作的呢?接下来,我们将详细介绍电容式传感器的工作原理。
首先,我们需要了解电容的基本概念。
电容是指物体存储电荷的能力,它是电容式传感器工作的基础。
当两个导体之间存在电压差时,它们之间会形成电场,而电容则是描述这种电场储存能量的物理量。
电容的大小与导体之间的距离、形状、介电常数等因素有关。
在电容式传感器中,通常会使用两个导体之间的电容来感知目标物体的变化。
当目标物体靠近或离开传感器时,导体之间的距离或介电常数会发生变化,从而导致电容的变化。
传感器会通过测量电容的变化来判断目标物体的位置、形状或其他属性。
除了直接测量电容的变化,电容式传感器还可以通过改变电容的方式来实现传感效果。
比如,通过改变传感电极的形状、布局或介电材料,可以使电容随着目标物体的变化而变化,从而实现对目标物体的感知。
此外,电容式传感器还可以利用外部电路来实现对电容变化的测量。
通过将传感电容组成的电路与振荡电路、计数器、微处理器等器件相结合,可以实现对电容变化的精确测量和数据处理,从而实现对目标物体的准确感知和控制。
总的来说,电容式传感器通过测量电容的变化来实现对目标物体的感知。
它利用电场的基本原理,通过改变电容或测量电容变化来实现对目标物体位置、形状、材料等信息的获取。
在实际应用中,电容式传感器具有灵敏度高、响应速度快、结构简单、成本低等优点,因此在许多领域都有着广泛的应用前景。
通过本文的介绍,相信读者对电容式传感器的工作原理有了更清晰的了解。
电容式传感器作为一种重要的传感器类型,在未来的发展中将会有更广泛的应用和更深入的研究。
希望本文能够为读者提供有益的信息,谢谢阅读!。
传感器1
每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。
按测量目分类
组合型传感器:是由不同单个变换装置组合而构成的传感器。
应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。
按作用形式分类
按作用形式可分为主动型和被动型传感器。
主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型。雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。
物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的。
化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的。
生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。
按其构成分类
基本型传感器:是一种最基本的单个变换装置。
用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。
热电阻传感器
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。 传感器(图6)
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。
电容式传感器位移特性实验报告
电容式传感器位移特性实验报告篇一:实验十一电容式传感器的位移特性实验实验十一电容式传感器的位移特性实验一、实验目的:了解电容传感器的结构及特点二、实验仪器:电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源三、实验原理:电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。
利用平板电容器原理:C??Sd??0??r?Sd(11-1)0真空介电常数,εr介质相对介电常数,由式中,S为极板面积,d为极板间距离,ε此可以看出当被测物理量使S、d 或εr发生变化时,电容量C随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。
所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。
这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。
四、实验内容与步骤1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。
2.将电容传感器模块的输出UO接到数显直流电压表。
3.接入±15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(选择2V档)。
(Rw确定后不能改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔记下位移量X与输出电压值V的变化,填入下表11-1五、实验报告:1.根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。
六、实验数据曲线图:VX篇二:电涡流传感器的位移特性实验报告实验十九电涡流传感器的位移特性实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。
二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表三、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
电容位移传感器 原理
电容位移传感器原理
电容位移传感器是一种常用的测量物体位移或位移变化的传感器。
其工作原理基于电容的变化。
在传感器中,将一个固定的电容作为基准电容,并将传感器与被测物体相连,使得被测物体成为可变电容。
通过测量可变电容与基准电容之间的差异,可以确定被测物体的位移情况。
当被测物体发生位移时,与之相连的电容也发生了变化。
电容的变化可以通过测量电容器的容量或电介质的介电常数来确定。
传感器中通常会使用一个射频信号来以一定频率充电,并测量充电和放电过程中电容的变化。
电容值的变化与被测物体的位移成正比。
由于电容的变化通常较小,所以传感器一般会采用灵敏度较高的测量电路来测量电容的变化。
传感器输出的信号可以是电容的绝对值,也可以是相对于初始状态的变化量。
为了减少干扰,传感器通常会进行屏蔽,以保证测量的精度和准确性。
同时,传感器还需要进行校准,以消除因实际物理环境变化引起的误差。
电容位移传感器具有精度高、响应快、非接触式等优点,广泛应用于工业自动化、机械装配、汽车制造等领域。
它对于位移的测量能力在微米级别,可满足精密测量的要求。
位移传感器的工作原理
位移传感器的工作原理标题:位移传感器的工作原理引言概述:位移传感器是一种用于测量物体位置变化的装置,广泛应用于工业自动化、机械创造、航空航天等领域。
本文将详细介绍位移传感器的工作原理,包括其基本原理、工作方式、应用场景和优势。
一、基本原理1.1 电容位移传感器电容位移传感器利用电容量的变化来测量物体的位移。
它由两个电极构成,当物体挨近电极时,电容量增加;当物体远离电极时,电容量减小。
传感器通过测量电容量的变化来确定物体的位移。
1.2 感应位移传感器感应位移传感器利用感应原理测量物体的位移。
它包含一个线圈和一个金属杆,当物体挨近线圈时,金属杆的电磁感应会导致线圈中的电流发生变化。
传感器通过测量电流变化来确定物体的位移。
1.3 光电位移传感器光电位移传感器利用光电效应测量物体的位移。
它由一个光源和一个光敏元件构成,当物体挨近光敏元件时,光敏元件接收到的光强度会发生变化。
传感器通过测量光强度的变化来确定物体的位移。
二、工作方式2.1 绝对位移传感器绝对位移传感器可以直接测量物体的绝对位置。
它们通常使用编码器或者光栅来实现,能够提供高精度和高分辨率的位移测量。
2.2 相对位移传感器相对位移传感器只能测量物体的相对位置变化。
它们通常使用差动变压器或者磁敏元件来实现,适合于需要监测物体相对运动的场景。
2.3 数字位移传感器数字位移传感器可以将位移信号转换为数字信号输出。
它们通常采用AD转换器将摹拟信号转换为数字信号,具有高精度和抗干扰能力。
三、应用场景3.1 机械创造位移传感器广泛应用于机械创造领域,用于测量机械零件的位移、位置和变形。
它们可以提供实时监测和反馈,保证机械系统的精度和稳定性。
3.2 自动化控制位移传感器在自动化控制系统中起着重要作用,用于测量和控制机器人、自动化设备和生产线的位移和位置。
它们可以实现精确的运动控制和定位。
3.3 航空航天位移传感器在航空航天领域被广泛应用,用于测量航空器和航天器的位移和变形。
位移传感器的工作原理
位移传感器的工作原理
电阻式位移传感器是最早被广泛应用的一种位移传感器。
它们是由一
根金属线绕在一根细长的电绝缘丝上构成的。
金属线上的电阻与位置成正比。
当物体移动时,导线的长度将发生变化,从而改变电阻的值。
通过测
量电阻的变化,可以确定物体的位移。
电容式位移传感器是基于电容变化的原理工作的。
它们由一个固定电
容板和一个浮动电容板组成。
固定电容板与物体相连,浮动电容板与感兴
趣的物体相连。
当物体移动时,浮动电容板的位置将发生变化,从而改变
了电容值。
通过测量电容的变化,可以得知物体的位移。
激光位移传感器是利用激光束的干涉原理来测量物体位移的。
这种位
移传感器包括一个激光源和一个接收器。
激光束在物体上形成一个光栅,
当物体移动时,光栅的形状将发生变化,导致激光束在接收器上形成干涉
图案。
通过分析干涉图案的变化,可以得到物体的位移信息。
光栅位移传感器是一种使用光栅来测量物体位移的传感器。
光栅位移
传感器由一个光源和一个接收器组成。
光栅具有平行的光栅线。
当物体移
动时,光栅线将被遮挡或透过,从而改变光的强度。
通过测量光强的变化,可以确定物体的位移。
总的来说,位移传感器的工作原理是通过测量其中一种物理量的变化
来确定物体的位移。
每种位移传感器都有各自的利弊和适用范围。
选取合
适的位移传感器取决于具体的应用需求和测量精度要求。
位移传感器资料
位移传感器资料整理一定义位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。
电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。
二分类2.1 按运动分类型直线位移传感器和角度位移传感器2.2 按材料分类a.金属膜位移传感器b.导电位移传感器c.光电式位移传感器d.磁敏式位移传感器e.金属玻璃铀传感器f.绕线式位移传感器g.电位器位移传感器2.3 广义分类A 机械式1)模拟式电位器式,电阻应变式,电容式,螺旋管电感式,差动变压式,涡流式,光电式,霍尔器件式,微波式,超声波式2)数字式光栅式和磁栅式B 接近式电容式,涡流式,霍尔效应式,光电式,热释电式,多普勒式,电磁感应式,微波式,超声波式C 转速式一般有光电式D 多普勒式E 液位式浮子式,平衡浮筒式,压差电容式,导电式,超声波式,放射式F 流量及流量式 电磁式,涡流式,超声波式,热导式,激光式,光纤式,浮子式,涡轮式,空间滤波式G 激光位移式三 原理及适用范围1. 机械位移传感器a.电位器式如图3.1.1所示为电位器的一般结构。
图3.1.2所示,电位器上电刷将电阻体电阻分成R 12和R 23,输出电压为U 12。
改变电刷的接触位置R 12亦随之改变,输出电压U 12也随着改变。
b.电容式常用的有变极距和变面积两种。
下面以变极距式电容传感器为例(如图3.1.3所示)进行说明。
可动极板移动引起d 发生变化,由C=εA/d 只要测出电容变化量C ∆就可以求出位移变化量d ∆。
c.螺旋管式电感位移传感器原理:螺旋管中铁芯的位移引起电感的变化,从而通过电感的变化量可求出位移的变化量。
24N AL lπμ=(其中l 为插入线圈的铁芯长度)图3.1.2 电位器电路图3.1.1 电位器的一般结构图3.1.3 变极距式电容传感器原理螺旋管电感位移传感器检测位移从数毫米到数百毫米,缺点是灵敏度低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ab
x
0
x
( 3 15 )
单组式平板形线位移传感器
图8 线位移传感器
图9 线位移传感器等效电路
设极板宽度为b,板间无介质ε2 时,传感器的电容量为:
C0 1 bl d1 d 2 ( 3 16 )
插入介质ε2 后的电容量为:
C C A C B Biblioteka x3 0 0 02
100 %
( 3 11)
减小
灵敏度:
K
C
2
C0
( 3 12 )
提高一倍
0
2.2
变面积型电容传感器 角位移变面积型
当 0,
C0
S
θ
动片
当 0,
S 1
( 3 13 )
C C 0 C
r
≈1。
当被测参数变化使得式(3-1)中的S,δ或ε发生
变化时, 电容量C也随之变化。如果保持其中两个参
数不变, 而仅改变其中一个参数, 就可把该参数的变
化转换为电容量的变化, 通过测量电路就可转换为
电量输出。
2 . 电容式传感器的类型和特性
以电容器为敏感元件,将机械位移量转换为电容量变 化的传感器称为电容式传感器。
(3 - 22)
如果传感器是一只平板电容, 则Cx =εA/d, 代入式(3 - 22), 有
U
0
U
c
i
A
d
(3 - 23)
U 式中“-”号表示输出电压 0 的相位与电源电压反相。 式
(3 - 23)说明运算放大器的输出电压与极板间距离 d 呈线性 关系。运算放大器电路解决了单个变极板间距离式电容传感 器的非线性问题。但要求Zi及K足够大。为保证仪器精度, 还 要求电源电压 1 的幅值和固定电容C值稳定。 U
电容的相对变化量为:
C C0
1
0
0
( 3 3)
0
当 / 0 1时,
2 3 C ...... 1 C0 0 0 0 0
图10 调频测量电路原理框图
图 10 中调频振荡器的振荡频率为
f 1 2 ( LC )
1 2
(3 - 19)
式中: L——振荡回路的电感;
C——振荡回路的总电容,C=C1+C2+C0±ΔC。 其中,
C1为振荡回路固有电容; C2为传感器引线分布电容;
C0±ΔC为传感器的电容。
当被测信号为0时, ΔC =0, 则C =C1+C2+C0, 所以振荡 器有一个固有频率f0,
0
0 rS
2 0
2 0
( 3 7)
传感器的灵敏度为:
K C
0 rS
2 0
1
2 0
( 3 7)
差动式变间隙型电容传感器 初始位置时,
1 2
0
C0
S
0
动极板上移:
1 0 , 2 0
S
电容式位移传感器
一、 电容式传感器的工作原理及特性
1.基本工作原理
平行极板电容器的电容量为:
C
S
0 r S
( 3 1)
S ——极板的遮盖面积,单位为m2;
ε ——极板间介质的介电系数; δ ——两平行极板间的距离,单位为m; ε 0 ——真空的介电常数,ε 0 =8.854×10-12 F/m; ε r ——极板间介质的相对介电常数,对于空气介质,ε
电 容式传感器
变间隙型
变面积型
变介质型
2.1 变极距型电容传感器
图1 变极距型电容传感器
设动片未移动时极板间距为δ0 S 初始电容量为: C0 0 下极板上移:
C
S 0
S
0
S
0
0
C0
0
( 3 2)
的电压、电流或者频率。电容转换电路有调频电路、运算放
大器式电路、二极管双T型交流电桥、脉冲宽度调制电路等。 1、 调频测量电路
调频测量电路把电容式传感器作为振荡器谐振回路的一
部分。当输入量导致电容量发生变化时, 振荡器的振荡频率 就发生变化。
虽然可将频率作为测量系统的输出量, 用以判断被测非电 量的大小, 但此时系统是非线性的, 不易校正, 因此加入鉴频器, 将频率的变化转换为振幅的变化, 经过放大就可以用仪器指示 或记录仪记录下来。调频测量电路原理框图如图 10 所示。
x C 0 1 a ( 3 14 )
C C0
x a
线性关系
2.3 变介电常数型电容传感器
单组式平板形厚度传感器
图6 厚度传感器
图7 厚度传感器的等效电路
设固定极板长度为a、宽度为b、两极板间的距离为δ;被测 物的厚度和它的介电常数分别为δx和ε ,则
C C1 C 2 C 3
1
f0=
2 [( C 1 C 2 C 0 ) L ]
1 2
(3 - 20)
当被测信号不为 0 时, ΔC≠0, 振荡器频率有相应变化, 此时频率为
f 1 2 [( c1 c 2 c 0 ) L ]
1 2
f0 f
(3 - 21)
调频电容传感器测量电路具有较高灵敏度, 可以测至 0.01 μm级位移变化量。频率输出易于用数字仪器测量和 与计算机通讯, 抗干扰能力强, 可以发送、接收以实现遥测 遥控。
定片
C 0 1
C C0
图4 角位移式
显然:电容Cθ 与角位移θ 呈线性关系。
板状线位移变面积型
当其中一个极板发生x位移后, 改变了两极板间的遮盖面积S , 电容量C同样随之变化。
图5 直线位移式
C x C 0 C
b a x
图2 差动式变间隙型
1
C 1 C 0 C C 0 1 0 0
C 2 C 0 C C 0 1 0 0
S
1
当 / 0 1时,
C 1 C 0 1 ...... 0 0 0
电容量的相对变化为 :
C C0 2 4 2 ( ) ( ) ( 3 9) 1 0 0 0
C C0 2
略去高次项:
( 3 10 )
0
非线性误差为:
r
100 %
1 d1
1
d2
b l x
1 d1 d2
( 3 17 )
2
1
所以 C
C0C0
x
1
1 2 1 2
( 3 18 )
l d1 d2
该式表明:电容量C与位移x成线性关系。
二、 电容式传感器的测量电路
电容式传感器中电容值以及电容变化值都十分微小, 这 样微小的电容量还不能直接为目前的显示仪表所显示, 也很 难为记录仪所接受, 不便于传输。这就必须借助于测量电路 检出这一微小电容增量, 并将其转换成与其成单值函数关系
2、 运算放大器式电路
图11 运算放大器电路原理图
运算放大器的放大倍数K非常大, 而且输入阻抗Zi很高。 运算放大器的这一特点可以使其作为电容式传感器的比较理 想的测量电路。 图 11是运算放大器式电路原理图。Cx 为电容 式传感器, 是交流电源电压, 是输出信号电压, Σ是虚地 U0 Ui 点。 由运算放大器工作原理可得
2 3
C 2 C 0 1 ...... 0 0 0
2 3
3 C C 1 C 2 C 02 2 ...... ( 3 8) 0 0
( 3 4)
略去高次项,得:
C C0
( 3 5)
0
所以变极距型电容传感器在设计时要考虑满足 Δδ<<δ0的条件。且一般Δδ只能在极小的范围内变化。
非线性误差与Δ δ /δ 0有关。其表达式为:
( r
0
)
K
2
0
C
100 %
1
( 3 6)