二次函数知识点总结及典型题目

合集下载

初三数学《二次函数》知识点总结和经典习题(附答案)

初三数学《二次函数》知识点总结和经典习题(附答案)

初三数学 二次函数 知识点总结

一、二次函数概念:

1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.

2. 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.

二、二次函数的基本形式

1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c

=+

上加下减。 3. ()

2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

三、二次函数图象的平移

1. 平移步骤:

⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,

; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2

y a x h k =-+与2y ax bx c =++的比较

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

从解析式上看,()2

y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得

二次函数知识点梳理及经典练习(超详细)

二次函数知识点梳理及经典练习(超详细)

⼆次函数知识点梳理及经典练习(超详细)⼆次函数知识点梳理及经典练习

【知识点梳理】

⼀、基本概念:

1.⼆次函数的概念:⼀般地,形如2

y ax bx c

=++(a b c

a≠)的函数,叫做

,,是常数,0⼆次函数。这⾥需要强调:和⼀元⼆次⽅程类似,⼆次项系数0

a≠,⽽b c

,可以为零.⼆次函数的定义域是全体实数.

2. ⼆次函数2

=++的结构特征:

y ax bx c

⑴等号左边是函数,右边是关于⾃变量x的⼆次式,x的最⾼次数是2.

⑵a b c

,,是常数,a是⼆次项系数,b是⼀次项系数,c是常数项.

⼆、⼆次函数基本形式

1. ⼆次函数基本形式:2

=的性质:

y ax

a 的绝对值越⼤,抛物线的开⼝越⼩

y ax c

=+的性质:(上加下减)

3. ()2

y a x h =-的性质:(左加右减)

4.()2

y a x h k =-+的性质:

三、⼆次函数图象的平移 1. 平移步骤:

⽅法1:⑴将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,;⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移⽅法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

⽅法2:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,

c bx ax y ++=2

变成m c bx ax y +++=2

(或m c bx ax y -++=2

⑵c bx ax y ++=2

沿轴平移:向左(右)平移m 个单位, c bx ax y ++=2变成 c m x b m x a y ++++=)()(2

(完整版)二次函数知识点总结和题型总结

(完整版)二次函数知识点总结和题型总结

二次函数知识点总结和题型总结

一、二次函数概念:

1.二次函数的概念:一般地,形如2

y ax bx c =++(a b c ,

,是常数,0a ≠)的函 数,叫做二次函数。

这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式

2. 二次函数

2

y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.

⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:

例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。 二、二次函数的基本形式

1. 二次函数基本形式:2

y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式

y=ax 2

+bx+c 则最值为4ac-b 24a

1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )

A.第一象限

B.第二象限

C.第三象限

D.第四象限

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习

专题一:二次函数的图象与性质

本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.

考点1.二次函数图象的对称轴和顶点坐标

二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,2

44ac b a

-).

例 1 已知,在同一直角坐标系中,反比例函数5

y x

=与二次函数22y x x c =-++的图像交于点(1)A m -,.

(1)求m 、c 的值;

(2)求二次函数图像的对称轴和顶点坐标.

考点2.抛物线与a 、b 、c 的关系

抛物线y=ax 2

+bx+c 中,当a>0时,开口向上,在对称轴x=-2b

a

的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.

例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )

A .第一、二、三象限

B .第一、二、四象限

C .第二、三、四象限

D .第一、三、四象限

考点3.二次函数的平移

当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.

例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-

二次函数全部知识点及典型例题(全)

二次函数全部知识点及典型例题(全)

二次函数

一.复习

1.函数的概念:

一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.

对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释:

对于函数的概念,应从以下几个方面去理解:

(1)函数的实质,揭示了两个变量之间的对应关系;

(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;

(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.

2.函数的三种表示方法

表示函数的方法,常见的有以下三种:

(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.

(2)列表法:用一个表格表达函数关系的方法.

(3)图象法:用图象表达两个变量之间的关系的方法.

要点诠释:

函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.

对照表如下:

二.二次函数的概念

一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.

若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数

专题一:二次函数的图象与性质

考点1.二次函数图象的对称轴和顶点坐标

二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b

a

,244ac b a -).

例 1 已知,在同一直角坐标系中,反比例函数5

y x

=与二次函数22y x x c =-++的图像交于点(1)A m -,.

(1)求m 、c 的值;

(2)求二次函数图像的对称轴和顶点坐标.

考点2.抛物线与a 、b 、c 的关系

抛物线y=ax 2

+bx+c 中,当a>0时,开口向上,在对称轴x=-2b

a

的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.

例2 已知2

y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )

A .第一、二、三象限

B .第一、二、四象限

C .第二、三、四象限

D .第一、三、四象限

考点3.二次函数的平移

当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.

例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2

-2

图1

专题练习一

1.对于抛物线y=13-x 2+

二次函数知识点、考点、典型例题及练习(附解析)

二次函数知识点、考点、典型例题及练习(附解析)

二次函数知识点、考点、典型例题及练习(附解析)

一、二次函数知识点

一、二次函数概念:

1.二次函数的概念:一般地,形如2

y ax bx c

=++(a b c

a≠)的函数,叫做

,,是常数,0

二次函数。这里需要强调:和一元二次方程类似,二次项系数0

a≠,而b c

,可以为零.二次函数的定义域是全体实数.

2. 二次函数2

=++的结构特征:

y ax bx c

⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

⑵a b c

,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式

1. 二次函数基本形式:2

=的性质:

y ax

a 的绝对值越大,抛物线的开口越小。

y ax c

=+的性质:

上加下减。

3. ()2

y a x h =-的性质:

左加右减。

4. ()2

y a x h k =-+的性质:

1. 平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,;

⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

2. 平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:

⑴c bx ax y ++=2

沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2

变成

m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2

二次函数知识点总结及相关典型题目

二次函数知识点总结及相关典型题目

二次函数知识点总结 第一部分 基础知识

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.

2.二次函数2ax y =的性质

(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .

3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2

h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法

二次函数知识点总结及相关典型题目(含答案)

二次函数知识点总结及相关典型题目(含答案)

二次函数知识点总结及相关典型题目

第一部分 基础知识

1.定义:一般地,如果c b a c bx ax y ,,(2

++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2

ax y =的性质

(1)抛物线2

ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2

ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2

ax y =)(0≠a . 3.二次函数 c bx ax y ++=2

的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

③()2

h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2

.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法

(1)公式法:a b ac a b x a c bx ax y 44222

二次函数知识点总结及相关典型题目

二次函数知识点总结及相关典型题目

二次函数知识点总结及相关典型题目

第一部分 基础知识

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.

2.二次函数2ax y =的性质

(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a

b h 4422

-=

-

=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2

h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2

.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好)

知识点一:二次函数的概念和图像 1、二次函数的概念

一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于a

b

x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴

(2)求抛物线c bx ax y ++=2与坐标轴的交点:

当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3,

(1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图;

(2)求图象与坐标轴交点构成的三角形的面积:

(3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0

二次函数知识点总结与相关典型题目

二次函数知识点总结与相关典型题目

二次函数知识点总结及相关典型题目

第一部分 基础知识

1.定义:一般地,如果c b a c bx ax y ,,(2

++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2

ax y =的性质

(1)抛物线2

ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2

ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2

ax y =)(0≠a . 3.二次函数 c bx ax y ++=2

的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

③()2

h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2

.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法

二次函数知识点总结和相关典型题目

二次函数知识点总结和相关典型题目

二次函数知识点总结及相关典型题目

第一部分 基础知识

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.

2.二次函数2ax y =的性质

(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2

ax y =)(0≠a .

3.二次函数 c bx ax y ++=2

的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

5.二次函数由特殊到一般,可分为以下几种形式:①2

ax y =;②k ax y +=2

;③()2

h x a y -=;④

()k h x a y +-=2

;⑤c bx ax y ++=2.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法

二次函数知识点归纳及有关典型题目

二次函数知识点归纳及有关典型题目

二次函数知识点总结及相关典型题目

第一部分 二次函数基础知识 ✧ 相关概念及定义

➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,

,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,

可以为零.二次函数的定义域是全体实数. ➢ 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.

⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换

➢ 二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中a

b a

c k a b h 4422

-=-=,. ➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

;③()2h x a y -=;④

()k h x a y +-=2

;⑤c bx ax y ++=2.

✧ 二次函数解析式的表示方法

➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); ➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

➢ 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛

物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

二次函数知识点、考点、典型试题集锦(带详细解析答案)

二次函数知识点、考点、典型试题集锦(带详细解析答案)

二次函数知识点、考点、典型试题集锦(带详细解析答案)

考点1:二次函数的图象和性质

一、考点讲解:

1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.

2.二次函数的图象及性质:

⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。

⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a

-),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2b

a ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2

b a ,y 随x 的增大而减小,x <-2b a ,y 随x 的增大而增大.

⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2b a 时,函数有最大值2

44ac b a -。 3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.

⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.

二次函数知识点、考点、典型试题集锦(带详细解析答案)

二次函数知识点、考点、典型试题集锦(带详细解析答案)

二次函数知识点、考点、典型试题集锦(带详细解析答案)

考点1:二次函数的图象和性质

一、考点讲解:

1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.

2.二次函数的图象及性质:

⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。

⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a

;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2b a

,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-

2b a ,y 随x 的增大而减小,x <-2b a

,y 随x 的增大而增大. ⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2b a

时,函数有最大值244ac b a

-。 3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.

⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点总结及典型题目

一.定义:

一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点.

二.二次函数2ax y =的性质

(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;

②当0

(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . y=ax2 (a ≠0)可以经过

补0看做二次函数的一般式,顶点式和双根式,即: y=ax2+0x+0, y=a(x-0)2+0, y=a(x-0)(x-0).

例题精析:

1. 二次函数的概念,二次函数y =ax 2 (a ≠0)的图象性质

二次函数的一般式为y =ax 2+bx +c(a ≠0)。强调a ≠0.而常数b 、c 可以为0,当b ,c 同时为0时,抛物线为y =ax 2(a ≠0)。此时,抛物线顶点为(0,0),对称轴是y 轴,即直线x =0。

例:已知函数4

m m 2x )2m (y -++=是关于x 的二次函数,求:

(1)满足条件的m 值;

(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小? 解: (1)使4

m m 2x

)2m (y -++=是关于x 的二次函数,则m 2+m -4=2,且m +2≠0,即:

m 2+m -4=2,m +2≠0,解得;m =2或m =-3,m ≠-2 (2)抛物线有最低点的条件是它开口向上,即m +2>0, (3)函数有最大值的条件是抛物线开口向下,即m +2<0。

练习:已知函数m

m 2x

)1m (y ++=是二次函数,其图象开口方向向下,则m =_____,顶点为_____,当

x_____0时,y 随x 的增大而增大,当x_____0时,y 随x 的增大而减小。

2、用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律

抛物线的一般式与顶点式的互化关系:y=ax2+bx+c———→y=a(x+b

2a)

2+

4ac-b2

4a

平移规律如下图:

练习:(1)抛物线y=x2+bx+c的图象向左平移2个单位。再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。

(2)通过配方,求抛物线y=1

2x

2-4x+5的开口方向、对称轴及顶点坐标,再画出图象。

3.知识点串联,综合应用。

例:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax2相交于

B、C两点,已知B点坐标为(1,1)。

(1)求直线和抛物线的解析式;

(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。

点评:(1)直线AB过点A(2,0),B(1,1),代入解析式y=kx+b,可确定k、b,抛物线y=ax2过点B(1,1),代人可确定a。

求得:直线解析式为y=-x+2,抛物线解析式为y=x2。

(2)由y=-x+2与y=x2,先求抛物线与直线的另一个交点C的坐标为(-2,4),S△OBC=S△ABC-S△OAB=3。

∵S△AOD=S△OBC,且OA=2

∴D的纵坐标为3

又∵D在抛物线y=x2上,

∴x2=3,即x=± 3 ∴D(-3,3)或(3,3)

练习:函数y=ax2(a≠0)与直线y=2x-3交于点A(1,b),求:

(1)a和b的值;

(2)求抛物线y=ax2的顶点和对称轴;

(3)x取何值时,二次函数y=ax2中的y随x的增大而增大,

(4)求抛物线与直线y=-2两交点及抛物线的顶点所构成的三角形面积。

课堂作业

一、填空。

1.若二次函数y=(m+1)x2+m2-2m-3的图象经过原点,则m=______。

2.函数y=3x2与直线y=kx+3的交点为(2,b),则k=______,b=______。

3.抛物线y =-13(x -1)2+2可以由抛物线y =-1

3x 2向______方向平移______个单位,再向______方向平

移______个单位得到。

4.用配方法把y =-12x 2+x -5

2化为y =a(x -h)2+k 的形式为y =__________________,其开口方向______,

对称轴为______,顶点坐标为______。 二、选择。

1.函数y =(m -n)x 2+mx +n 是二次函数的条件是( ) A .m 、n 是常数,且m ≠0 B .m 、n 是常数,且m ≠n C. m 、n 是常数,且n ≠0

D. m 、n 可以为任意实数

2.直线y =mx +1与抛物线y =2x 2-8x +k +8相交于点(3,4),则m 、k 值为( )

A .⎩⎨⎧m =1k =3

B .⎩⎨⎧m =-1

k =2

C. ⎩⎨⎧m =1k =2

D. ⎩⎨⎧m =2

k =1

3.下列图象中,当ab >0时,函数y =ax 2与y =ax +b 的图象是( )

三、解答题 1.函数

(1)当a 取什么值时,它为二次函数。 (2)当a 取什么值时,它为一次函数。

3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中a

b a

c k a b h 4422

-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2

ax y =;②k ax y +=2

;③()2

h x a y -=;④

()k h x a y +-=2

;⑤c bx ax y ++=2.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口

相关文档
最新文档