什么是量子霍尔效应-
量子霍尔效应
量子霍尔效应
霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(E.H.Hall,1855-1938)于1879年在研究金属的导电机制时发现的。当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。霍尔效应使用左手定则判断。
发现
霍尔效应在1879年被物理学
家霍尔发现,它定义了磁场和感应
电压之间的关系,这种效应和传统
的电磁感应完全不同。当电流通过
一个位于磁场中的导体的时候,磁
场会对导体中的电子产生一个垂直
于电子运动方向上的作用力,从而
在垂直于导体与磁感线的两个方向
上产生电势差。
虽然这个效应多年前就已经被人们知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。根据设
计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器,广泛应用于电力系统中。
解释
在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场力与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,这个现象称为霍尔效应。而产生的内建电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为a、b、d,磁场垂直ab平面。电流经过ad,电流I=nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH/a。设磁感应强度为B。
量子霍尔效应及其应用
量子霍尔效应及其应用
在物理学的领域中,有一个奇妙的现象叫做“量子霍尔效应”,它为人们探索量子世界带来了新的希望与挑战。
量子霍尔效应是由德国物理学家冯·克尔门和英国物理学家诺贝尔奖得主D·C·泰勒分别在1980年和1982年发现的。它是指在二维电子气中,当磁场强度达到一定值时,电子会在其磁场下形成一系列别具魅力的量子态。这些“量子霍尔态”具有非常特殊的电导性质,它们在电场下无电阻地输运电子,也就是说,电流将不再受到外界干扰而保持流动状态,这就是“量子霍尔效应”的基本原理。
量子霍尔效应有广泛的应用前景,因为它不仅扩展了凝聚态物理理论的边界,而且可以在新型的电子器件中得到应用。例如,由于量子霍尔态具有无电阻输运性质,因此可以为能源传输带来新的可能。此外,在信息领域中,量子霍尔效应还可以用于构造以量子位为基本构件的量子计算机,这将极大地加速未来信息领域的进步。
量子霍尔效应的研究并不容易。首先,由于它发生在极低温度下(接近绝对零度,通常低于1K),因此所使用的实验设备必须
具备非常高的稳定性和准确定量度能力。此外,由于三维杂质和
表面缺陷等因素可能对量子霍尔效应的产生和态的性质产生影响,因此必须避免这些影响,开展高精度的实验和理论研究。
一些著名的物理学家和研究团队已经在多方面开展相应的研究
工作。例如,新加坡国立大学的张首晟教授团队通过改变二维电
子气中的间隔距离来控制量子霍尔效应,首次获得了反常量子霍
尔效应。美国加州大学伯克利分校的拉古达博士和他的同事则发现,在一些拓扑材料中,可以存在一些特殊的量子霍尔边界态,
物理学中的超导和量子霍尔效应
物理学中的超导和量子霍尔效应物理学是探索宇宙奥秘的学科之一,其中超导和量子霍尔效应
是物理学的重要研究方向之一。这两项科学发现都是20世纪物理
学的重大突破,对于推动普通人类社会的发展有着深远的影响。
一、超导原理与应用
超导体是指材料在低温下具有极低电阻的性质,被称为“超导
现象”。该现象的发现让人们对金属导体的物理学产生了新的认识,进而开发出了一系列的超导体材料。超导体有着许多独特的物理
特性,在科学研究和实际应用中有着广泛的应用。
1.超导原理
超导现象的发现最初是在1911年,当时在量子力学出现之前,研究人员Charles-Onnes在他的实验中发现了汞在温度低于4.2K
时,电阻最终降至零,这个现象被称为超导现象。
超导现象的原理主要是由电子对的理论解释的。即在低温下,
基于库伯对互相作用形成了一种不同于普通价格的状态,这种状
态被称作BCS超导态。库伯对以及BCS超导态的概念对量子力学的基础理论有着重要的贡献。
2.超导应用
1972年,高温超导体(Tc≈100K)的突破使超导技术的应用范围被大大扩展。目前,超导技术在高速列车、MRI磁共振成像、重离子加速器、核磁共振、高能物理学和天文学等多个领域得到了广泛的应用。超导技术因其低能耗、高效率、高精度等特点,在现代社会中具有重要地位。
二、量子霍尔效应原理
量子霍尔效应是半导体物理学研究中的一个分支,它是由英国物理学家霍尔发现的一种新颖的电子运动方式,该效应对于新型材料和低功率电子器件的研究有着非常重要的意义。1985年,德国物理学家冯克尔特发现具有特殊晶体结构的二维材料在低温下还可以产生类似量子霍尔效应的现象,这被称为量子霍尔效应。
量子霍尔效应
量子霍尔效应
霍尔效应,它实际上一种电磁效应的。我们给一块半导体通电,在导体外面外加一个与电流方面垂直的磁场,磁场会使半导体中的电子与空穴(可以视为正电荷)受到不同方向的洛伦兹力而在不同方面上聚集,聚集起来的电子和空穴之间会产生电场,此时在半导体两侧产生了垂直于磁场和电流方向的电压,而且在此电压生成的电场力和磁场的洛伦兹力平衡以后,后来的电子和空穴就不在聚集,顺利通过不发生偏移。
这种现象是由美国物理学家霍尔于1879年研究金属导电机制的时候发现的,所以命名为“霍尔效应”,且在实际生活中产生了广泛的应用,根据霍尔效应做成的霍尔器件,就是以磁场为工作媒介,将物体的运动参数转变为数字电压的形式输出,使之具备传感和开关功能。
如:汽车的点火系统,设计人员将霍尔传感器放在分电器内取代机械断电器,用作机械断电器,用作点火脉冲发生器。这种霍尔点火发生器随着转速变化的磁场在带电半导体内产生脉冲电压,控制电控单元的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的环境,同时能够精确的控制点火,具有明显的优势。
什么是量子霍尔效应(二维)
我们上面所说的霍尔效应是在三维的导体中实现的,其中的电子可以在导体中自由运动。现在科学家通过某些手段将电子限制在一个二维平面内,之后添加一个垂直于该平面的磁场,同时沿着二维电子平面一个方向通以电流,此时在二维平面的另一个方向上测量到电压。这种现象称为量子霍尔效应,属于量子力学版的霍尔效应。
该现象是由德国物理学家冯•克利青发现,并因此获得1985年的诺贝尔物理学奖。但是为何在霍尔效应提出100年后才有人发现量子霍尔效应。主要原因是理想的二维电子气难以实现,在半导体技术高速发展之后,人们才能在“金属-氧化物-半导体场效应晶体管”中实现比较理想的二维电子气,而且想要观测到这种现象还需要提供极低温和强磁场环境。
霍尔效应、量子霍尔效应、量子反常霍尔效应及其应用
霍尔效应、量子霍尔效应、量子反常霍尔效应及其应用
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏
转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
应用:
霍尔效应传感器可以作为开/关传感器或者线性传感器,广泛应用于电力系统中。
在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。
根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。
量子霍尔效应
是在极低温和强磁场下,发生的霍尔效应。只是我们测到的霍尔电导是一个个分立的值,而不是连续的值,而且随外加磁场的变化呈现一种振荡的变化。这个就是量子霍尔效应。量子霍尔效应是体系态密度在磁场下量子化的结果,只能在量子力学的框架下解释。量子霍尔效应中对量子电导有贡献的是边界态,也就是说导电电子是在材料的边界上走的。
应用:
可用于位置控制、计量学、遥控、遥调、遥信、遥测
量子反常霍尔效应
即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。
应用:
用在汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。因为汽车的自动化程度越高,微电子电路越多,就越怕电磁干扰。而汽车上有许多灯具和电器件在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路就可以减小这些现象。
量子霍尔效应
量子霍尔效应
量子霍尔效应,指的就是量子力学版本的霍尔效应,霍尔效应呢是一种电磁效应,于1879年,美国物理学家霍尔所发现的,霍尔效应定义了磁场和电压的关系,这个效应早在很多年前就已经被人们所知晓并且理解,现今霍尔效应广泛适用于电磁学领域,霍尔效应传感器应用于电力系统中。
霍尔效应是在研究金属的导电机制时被发现的,当电流垂直在外磁场并通过半导体时,这时载流子便会发生偏转,电流和磁场的方向会产生附加的电场,最后半导体的两端就会产生电势差,这一现象就是霍尔效应,霍尔效应应该用左手来判断。
量子霍尔效应是20世纪以来凝聚态物理领域最重要的科学发现之一,霍尔效应是电磁效应的一种,当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。
什么是“量子霍尔效应”?
什么是“量子霍尔效应”?
"量子自旋霍尔效应"是指找到了电子自转方向与电流方向之间的规律,利用这个规律可以使电子以新的姿势非常有序地"舞蹈",从而使能量耗散很低。
在特定的量子阱中,在无外磁场的条件下(即保持时间反演对称性的条件下),特定材料制成的绝缘体的表面会产生特殊的边缘态,使得该绝缘体的边缘可以导电,并且这种边缘态电流的方向与电子的自旋方向完全相关,即量子自旋霍尔效应。
如果量子自旋霍尔系统中一个方向的自旋通道能够被抑制。
比如,通过铁磁性,这自然的会导致量子反常霍尔效应。铁磁导体中的霍尔电阻由正比于磁场的正常霍尔效应部分和正比于材料磁化带来的反常霍尔效应部分组成。
量子反常霍尔效应指的是反常霍尔效应部分的量子化。量子自旋霍尔效应的发现极大地促进了量子反常霍尔效应的研究进程。
前期的理论预言指出,量子反常霍尔效应能够通过抑制H gT e系统中的一条自旋通道来实现。
遗憾的是,目前还没有能够在这个材料系统实现铁磁性,即而无法实现量子化反常霍尔效应。
后来又有理论预言指出,将B i2Se3这种拓扑绝缘体材料做薄并且进行磁性掺杂,就有可能能够实现量子霍尔电阻为h/(ve2)的量子反常霍尔效应。
这个理论预言被常翠祖等人通过实验证实。(要在实验上实现量子反常霍尔效应,)常翠祖等人需要战胜一系列非常困难的材料问题。
量子反常霍尔效应要求材料的体导电和表面导电通道完全被抑制掉。
上面理论预言的Bi2Se3体系,由于存在不可避免的Se空位缺陷导致的高浓度的电子型掺杂,不能满足实现量子反常霍尔效应的要求。
为了避免这个问题,他们选择了(B i1-x Sb x)2T e3体系。这个体系中,可以通过改变S b的组分x,他们能够将费米能级调到铁磁性导致的能隙内的电荷中性点上。
量子霍尔效应详解
量子霍尔效应是过去二十年中,凝体物理研究里最重要的成就之一。要解释这个效应,需要用上许多量子物理中最微妙的概念。1998年的诺贝尔物理奖,由美国普林斯顿大学的崔琦(Daniel C. Tsui)、哥伦比亚大学的史特莫(Horst L. Stormer)及史丹佛大学的劳夫林(Robert B. Laughlin)三人获得。得奖理由是“他们发现了一种新形态的量子流体,其中有带分数电荷的激发态”。
在他们三位的新发现之前,物理学者认为除了夸克一类的粒子之外,宇宙中的基本粒子所带的电荷皆为一个电子所带的电荷-e(e=1.6×10-19库伦)的整数倍。而夸克依其类别可带有±1e/3或±2e/3电荷。夸克在一般状况下,只能存在于原子核中,它们不像电子可以自由流动。所以物理学者并不期待在普通凝体系统中,可以看到如夸克般带有分数电子电荷的粒子或激发态。
这个想法在1982年崔琦和史特莫在二维电子系统中,发现分数霍尔效应后受到挑战。一年后劳夫林提出一新颖的理论,认为二维电子系统在强磁场下由于电子之间的电力库伦交互作用,可以形成一种不可压缩的量子液体(incompressible quantum fluid),会展现出分数电荷。分数电荷的出现可说是非常神秘,而且出人意表,其实却可以从已知的量子规则中推导出来。
劳夫林还曾想利用他的理论,解释夸克为什么会带分数电子电荷,虽然这样的想法还没有成功。劳夫林的理论出现后,马上被理论高手判定是正确的想法。不过对很多人而言,他的理论仍很难懂。在那之后五、六年间,许多重要的论文陆续出现,把劳夫林理论中较隐晦的观念阐释得更清楚,也进一步推广他的理论到许多不同的物理状况,使整个理论更为完备。以下扼要说明什么是分数量子霍尔效应,以及其理论解释。
霍尔效应和量子霍尔效应
霍尔效应和量子霍尔效应
霍尔效应和量子霍尔效应是材料物理学中重要的研究课题,两者
都与电子在材料中的运动和自旋相关。在本文中,首先将介绍经典霍
尔效应的原理和应用,然后将讨论量子霍尔效应及其在拓扑物理学中
的重要性。
霍尔效应是指当电流通过处于磁场中的材料时,会在材料横向产
生一定的电势差。这种现象最早由爱德华·霍尔于1879年发现,被称
为霍尔效应。经典霍尔效应的原理是基于洛伦兹力和量子力学的带结构。当电流通过材料中的载流子时,在磁场作用下,洛伦兹力将使得
载流子偏离轨道,导致在材料的边缘形成电势差。这个电势差正比于
电流和磁场的乘积,也与载流子的电荷和速度有关。
经典霍尔效应的应用非常广泛。例如,在电子器件中,霍尔元件
常用于测量磁场的强度和方向。霍尔传感器是一种基于霍尔效应的传
感器,它能够对磁场进行测量,并将磁场信号转化为电压信号。此外,霍尔效应也被广泛应用于磁共振成像(MRI)中,用于诊断和研究人体
内部结构。
与经典霍尔效应相比,量子霍尔效应是在低温和强磁场条件下观察到的一种现象。量子霍尔效应的研究始于20世纪80年代,它是拓扑物理学的一项重要发现,因此被称为拓扑相变。量子霍尔效应的核心是量子霍尔态。当材料的电子能带被填满到某一整数倍的数量时,会出现能隙,这种能隙中的边界态被称为霍尔边界态。霍尔边界态只能存在于系统边界,因此不受杂质散射的影响,具有极高的迁移率和相干性。
量子霍尔效应的研究对拓扑物理学有重要意义。拓扑绝缘体是一种特殊的量子态,它在外部条件不发生变化的情况下保持不变,这和常规的绝缘体和导体的区别非常大。拓扑绝缘体具有霍尔边界态,这些态对材料的边缘非常敏感。因此,量子霍尔效应为研究拓扑绝缘体和拓扑超导体提供了基础。
量子霍尔效应
量子霍尔效应
量子霍尔效应是一种特殊的量子现象,它发生在二维电子气体中的霍尔系统中。在强磁场作用下,电子在垂直于磁场方向的空间上形成二维层状结构(即量子阱),并且在此结构中存在禁闭的能级。当外加一定的电场时,电子会产生沿着磁场方向的漂移,而垂直于磁场方向的速度分量仍然受到限制。
在量子霍尔效应中,当电子填满最低的能级(称为填满能级)时,存在一种特殊的电导现象,称为整数量子霍尔效应。在这种情况下,电导随着外加电场的增加而逐渐增加,直到达到一个固定的整数倍(即平台),然后保持恒定,直到下一个填满能级被占据。
整数量子霍尔效应的发现是1980年代中期的一项重大科学突破,这一发现奠定了凝聚态物理学中拓扑材料研究的基础,并带动了其他许多有关量子物理的研究。量子霍尔效应在现代电子学和量子计算中具有重要的应用潜力。
反常霍尔效应和量子反常霍尔效应
反常霍尔效应和量子反常霍尔效应
反常霍尔效应和量子反常霍尔效应是固态物理中两个重要的现象,两者结合了磁场效应、电子运动以及晶格结构等多种因素,对于开展材料物理研究有着重要的意义。
一、反常霍尔效应
反常霍尔效应即指在磁场中,电导率发生非线性变化的现象,通常被分为两种类型:
1. 非金属中的反常霍尔效应:非金属材料中的反常霍尔效应又被称为“正常”反常霍尔效应,表现为沿磁场方向的电流密度不随电场强度而呈线性变化,其导电机理是由于能带弯曲所致。
2. 金属中的反常霍尔效应:金属中的反常霍尔效应表现为在磁场中产生自旋反转,以此影响自由电子的运动轨迹,导致电子在材料内部形成电荷积累,从而产生反常霍尔电势。这种自旋反转同时也会导致自旋集体行为的出现,反常霍尔现象因此往往被认为是自旋流产生效应的一种。
二、量子反常霍尔效应
量子反常霍尔效应是在二维强磁场下,电导率呈现分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数分子分母的分数变化,即在化学势谷的外围区域形成能带。
量子反常霍尔效应是由于较低维度信仰张量的几何性质使其在磁场下的行为不同于其在零磁场下的行为而产生的。这种现象在半导体材料中尤其常见,能够广泛应用于电子输运,物理学和开发新型电子器件。
总之,反常霍尔效应和量子反常霍尔效应是国内外物理研究中的
热点,其发现为我们的科学技术进步创新注入了源源不断的动力,也为我们认识自然规律和科学本质提供了新的方向和思路。
量子霍尔效应的研究与应用
量子霍尔效应的研究与应用
量子霍尔效应(Quantum Hall Effect,QHE)是固体物理学中的一个重要现象,它在二维电子系统中展现出的非常特殊的电导行为引发了学术界的广泛兴趣。本文将探讨量子霍尔效应的研究与应用,并着重介绍其在量子计算和拓扑绝缘体领域的应用。
1. 量子霍尔效应的发现
量子霍尔效应最早由德国学者Klaus von Klitzing在1980年发现。他发现当二
维电子系统处于极低温和强磁场的条件下,电阻率沿垂直于磁场方向呈现定值,这个定值与电流与电压的比值之间存在着极为特殊的关系。这个新发现引发了科学界的震惊,被誉为“到目前为止最精确的测量”。
2. 量子霍尔效应的理论基础
量子霍尔效应的理论基础是基于量子力学的行为描述。在强磁场下,能量的分
布与电子的运动状态密切相关,而磁场的空间调制则会引起电子运动的特殊分布。这种特殊分布会导致电子在晶格上的散射受到限制,使得电子无法通过传统方式散射,从而阻止了电子的电导行为。量子霍尔效应通过量子力学力场的调制实现了这一限制。
3. 量子霍尔效应的实验观测
随着量子霍尔效应的理论发展,科学家们开始尝试通过实验验证这一效应。实
验证明,当二维电子系统经过强磁场处理后,可以观察到电子在能带之间的分数量子霍尔效应(Fractional Quantum Hall Effect,FQHE),即电子在晶格上呈现出分
数的电荷。这一现象的发现被授予诺贝尔物理学奖,进一步验证了量子霍尔效应的存在和重要性。
4. 量子霍尔效应在量子计算中的应用
由于量子霍尔效应在极低温和强磁场条件下出现,它为量子计算提供了理想的平台。量子计算是一种利用量子力学规律来进行计算的新兴计算方式,相比传统计算机具有更高的运算速度和存储密度。量子霍尔效应中的分数化电子能级可以用来构建量子比特(Qubit),成为实现量子计算的基础。
量子霍尔效应
简介
量子霍尔效应是过去二十年中,凝体物理研究里最重要的成就之一。要解释这个效应,需要用上许多量子物理中最微妙的概念。1998年的诺贝尔物理奖,由美国普林斯顿大学的崔琦(Daniel C. Tsui)、哥伦比亚大学的史特莫(Horst L. Stormer)及史丹佛大学的劳夫林(Robert B. Laughlin)三人获得。得奖理由是“他们发现了一种新形态的量子流体,其中有带分数电荷的激发态”。
在他们三位的新发现之前,物理学者认为除了夸克一类的粒子之外,宇宙中的基本粒子所带的电荷皆为一个电子所带的电荷-e(e=1.6×10-19库伦)的整数倍。而夸克依其类别可带有±1e/3或±2e/3电荷。夸克在一般状况下,只能存在于原子核中,它们不像电子可以自由流动。所以物理学者并不期待在普通凝体系统中,可以看到如夸克般带有分数电子电荷的粒子或激发态。
这个想法在1982年崔琦和史特莫在二维电子系统中,发现分数霍尔效应后受到挑战。一年后劳夫林提出一新颖的理论,认为二维电子系统在强磁场下由于电子之间的电力库伦交互作用,可以形成一种不可压缩的量子液体(incompressible quantum fluid),会展现出分数电荷。分数电荷的出现可说是非常神秘,而且出人意表,其实却可以从已知的量子规则中推导出来。
劳夫林还曾想利用他的理论,解释夸克为什么会带分数电子电荷,虽然这样的想法还没有成功。劳夫林的理论出现后,马上被理论高手判定是正确的想法。不过对很多人而言,他的理论仍很难懂。在那之后五、六年间,许多重要的论文陆续出现,把劳夫林理论中较隐晦的观念阐释得更清楚,也进一步推广他的理论到许多不同的物理状况,使整个理论更为完备。以下扼要说明什么是分数量子霍尔效应,以及其理论解释。
整数量子霍尔效应解释
整数量子霍尔效应是一种奇特的量子效应,它表明在磁场作用下,电子在二维电子气中形成的准粒子(称为霍尔子)具有整数电荷。当磁场强度达到临界值时,霍尔子会表现出量子行为,如量子霍尔效应,即它们的电荷载流子性质发生了改变。这种量子效应在材料科学、电子学和物理学研究中具有重要的应用价值。
量子霍尔效应实验
量子霍尔效应实验
量子霍尔效应(Quantum Hall Effect,QHE)是量子力学效应在固体物理中的一种重要体现。它在1980年由德国物理学家Klaus von Klitzing首次发现,并因此获得了1985年度诺贝尔物理学奖。量子霍尔效应是一种特殊的电导现象,只出现在低温(通常在几个开尔文度以下)且高磁场下,并且在宏观尺度下呈现出量子行为。
要进行量子霍尔效应的实验,我们需要准备一些基本的器材和实验装置。首先,我们需要一个高强度磁场,以及一个低温实验室,因为量子霍尔效应只发生在低温和高磁场条件下。为了产生高磁场,可以使用超导磁体或者霍尔效应样品上方通过电磁铁来产生。对于低温实验室,我们通常使用液氦或者冷却剂来降低温度。
实验中,我们选择一个具有高度二维结构的样品,例如硅、石墨烯或者半导体材料。这些材料具有良好的载流子导电性,且可以在高磁场下表现出量子特性。通过光刻技术,我们可以制备出微米尺寸的霍尔效应器件,通常为一个狭窄的长条形导体,具有两个平行的侧边和一个中间导电区域。
在实验准备阶段,我们首先将样品安装在低温实验室中,并将磁场调整到所需的强度。然后,我们将用导线连接样品的两个侧边并施加电压,以产生电流。同时,我们还需要将样品的纵向电压测量引线连接到样品的中间导电区域。
在实验过程中,我们可以通过改变磁场强度或者样品温度来观察量子霍尔效应。通常实验中使用的磁场强度可以达到数特斯拉(T),而
样品温度可以冷却到几开尔文的低温。通过在一定范围内调节磁场强度,我们可以观察到电阻率的一系列突跃现象,这些突跃点对应着电
量子自旋霍尔效应
量子自旋霍尔效应
量子自旋霍尔效应(Quantum Spin Hall Effect,QSHE)是一种先进的电子回路系统,它可以拆分和分开质子和轻子的电流,从而实现一种新的层次的编程功能。QSHE从来都不是从理论上推断出来的,而是从实验中发现。实验发现,在一种量子隧道效应中,电子输运有可逆性,即一个电子态可以由另一态恢复,即量子自旋霍尔过程。
自旋霍尔效应最初被想象为量子现象,但实际上它的物理原理是经典力学中的旋转变换。在量子自旋霍尔效应中,量子器件的两个格子中的质子电荷的平均转矩和旋转速度平衡态存在条件是它们分别与另一格子中的电子质量成比例,而质子荷量和电子荷量之间互相相反却保持一定比例,这显示出电子质量在系统中起着保护作用,而电子质量和质子质量之间互斥,从而抵御它们之间的磁矩水平和动能水平的干扰,使它们进入一个低能量状态,从而形成一个电子回路的平衡状态。
理论上,量子自旋霍尔效应可以在一些量子比特(qubits)上进行一些非常高效的信息处理,而这些量子比特可以分离质子和轻子电流。这可以实现电子信息处理器,从而开发出新一代电子设备、传感器和智能终端,它们能够更好地服务于科学研究、医疗诊断、数据传输等业务领域,从而构建未来的社会基础设施和世界基础设施。
因此,量子自旋霍尔效应技术是一个令人兴奋的朝阳之星,它可能会成为真正的量子计算的基础,推动量子信息技术取得新的进展。它将量子系统的“隐藏”秩序和空间结构显示出来,并通过它来控制量子系统,能够驱动具有挑战性的研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是量子霍尔效应?
2018年12月17日复旦大学物理学系修发贤课题组在《自然》杂志上刊发了他们的研究成果:在拓扑半金属砷化铬纳米片中观测到由外尔轨道形成的新型三维量子霍尔效应。该项研究成果我国科学家首次在三维空间中发现量子的霍尔效应。
什么是霍尔效应
在中学物理课本我们都学过霍尔效应,它实际上一种电磁效应的。我们给一块半导体通电,在导体外面外加一个与电流方面垂直的磁场,磁场会使半导体中的电子与空穴(可以视为正电荷)受到不同方向的洛伦兹力而在不同方面上聚集,聚集起来的电子和空穴之间会产生电场,此时在半导体两侧产生了垂直于磁场和电流方向的电压,而且在此电压生成的电场力和磁场的洛伦兹力平衡以后,后来的电子和空穴就不在聚集,顺利通过不发生偏移。
这种现象是由美国物理学家霍尔于1879年研究金属导电机制的时候发现的,所以命名为“霍尔效应”,且在实际生活中产生了广泛的应用,根据霍尔效应做成的霍尔器件,就是以磁场为工作媒介,将物体的运动参数转变为数字电压的形式输出,使之具备传感和开关功能。
如:汽车的点火系统,设计人员将霍尔传感器放在分电器内取代机械断电器,用作机械断电器,用作点火脉冲发生器。这种霍尔点火发生器随着转速变化的磁场在带电半导体内产生脉冲电压,控制电控单元的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的环境,同时能够精确的控制点火,具有明显的优势。
什么是量子霍尔效应(二维)
我们上面所说的霍尔效应是在三维的导体中实现的,其中的电子可以在导体中自由运动。现在科学家通过某些手段将电子限制在一个二维平面内,之后添加一个垂直于该平面的磁场,同时沿着二维电子平面一个方向通以电流,此时在二维平面的另一个方向上测量到电压。这种现象称为量子霍尔效应,属于量子力学版的霍尔效应。
该现象是由德国物理学家冯•克利青发现,并因此获得1985年的诺贝尔物理学奖。但是为