第七章 刚体力学习题及解答

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

《刚体力学基础习题》课件

《刚体力学基础习题》课件

03 刚体的转动惯量
CHAPTER
转动惯量的定义与计算
转动惯量的定义
转动惯量是描述刚体转动惯性大小的物理量,其大小与刚体的质量分布和转轴的 位置有关。
转动惯量的计算
对于给定的刚体,可以通过积分计算其转动惯量,对于规则刚体,也可以通过公 式直接计算。
刚体的动量矩
动量矩的定义
动量矩是描述刚体转动动量的物理量 ,其大小等于刚体的动量与转动轴到 质心距离的乘积。
转动惯量与动量矩习题解析
转动惯量
01
描述物体转动惯性大小的物理量,与物体的质量分布和旋转轴
的位置有关。
动量矩
02
描述物体转动动量大小的物理量,等于物体质量与速度矢量的
乘积。
动量矩守恒
03
在没有外力矩作用的情况下,物体的动量矩保持不变。
谢谢
THANKS
04 刚体的动力学应用
CHAPTER
刚体的平动与转动
刚体的平动
刚体在空间中沿某一确定直线作等距离的移动,这种运动称为刚体的平动。
刚体的转动
刚体绕某一定点转动,这种运动称为刚体的转动。
刚体的定点运动
01
刚体的定点运动是指刚体绕通过 某一定点的转轴转动,其上任意 一点都绕该转轴作圆周运动。
02
刚体的定点运动可以分为定轴转 动、定平面转动和定点转动三种 类型。
转动动力学方程
T=Iβ(其中T为扭矩,I为转动惯量,β为角加速度)
复合运动动力学方程
需要将平动和转动动力学方程联立求解。
02 刚体转动的基本定理
CHAPTER
角动量定理
总结词
描述刚体转动时,力矩与角动量变化 量之间的关系。
详细描述

刚体习题和答案

刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。

最新《力学》漆安慎(第二版)答案07章

最新《力学》漆安慎(第二版)答案07章

力学(第二版)漆安慎习题解答第七章刚体力学第七章 刚体力学 一、基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。

⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ二、思考题解答7.1 火车在拐弯时所作的运动是不是平动?答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。

若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。

但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。

7.2 对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体施以外力作用,当合外力为了零,即0i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。

所以,对某一确定点刚体所受合外力的力矩i i iM M r F ==⨯∑∑不一定为零。

由刚体的转动定律M J α=可知,刚体将发生转动。

比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。

《刚体运动习题》课件

《刚体运动习题》课件
详细描述
刚体的转动问题涉及到分析刚体的转动惯量、角速度、角加速度等物理量,以及力和扭矩对刚体转动的影响。通过解决刚体的转动问题,可以了解刚体在转动过程中的运动规律和特点。
刚体的复合运动问题涉及到刚体的平动和转动同时发生的情况。
总结词
刚体的复合运动问题需要综合考虑刚体的平动和转动,分析其相互影响和耦合作用。这类问题通常比较复杂,需要运用力学和运动学的知识进行求解。
总结词
在解答进阶习题时,学生需要具备较强的分析能力和计算能力,能够根据题目要求进行正确的分析和计算,并得出正确的结论。
详细描述
总结词:高难度习题是刚体运动中的高级题目类型,主要考察学生对刚体运动理论的深入理解和应用能力。
感谢您的观看
THANKS
详细描述
刚体的振动问题主要研究刚体在周期性外力作用下的振动现象。
总结词
刚体的振动问题涉及到分析刚体的振动频率、振幅、相位等物理量,以及周期性外力对刚体振动的影响。通过解决刚体的振动问题,可以了解刚体在振动过程中的运动规律和特点,对于工程实践中的振动控制和减振设计具有重要意义。
详细描述
刚体运动的解题方法
03
它基于力学的基本原理和数学工具,如微积分、线性代数和常微分方程等,来推导和求解刚体运动的数学模型。
解析法可以给出精确的解,但有时可能比较复杂,需要较高的数学水平。
解析法是一种通过数学公式和定理来求解刚体运动问题的方法。
几何法是通过图形和几何形状来描述和解决刚体运动问题的方法。
它通过绘制刚体的运动轨迹、速度和加速度等矢量图,以及分析刚体的转动和角速度等来解决问题。
04
建筑结构中的刚体运动是指建筑物在风、地震等外力作用下产生的运动,包括平动、扭转和复合运动等。

普通物理学教程力学课后答案高等教育出版社刚体力学习题解答

普通物理学教程力学课后答案高等教育出版社刚体力学习题解答

第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。

⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。

边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。

⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。

解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。

第七章 刚体力学习题及解答

第七章 刚体力学习题及解答

第七章刚体力学习题及解答7。

1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。

估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。

解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。

(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。

1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。

x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。

解:( 1)( 2) 时,由( 3)当时,由7。

1。

5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。

1.6 收割机拔禾轮上面通常装4到6个压板。

拔禾轮一边旋转,一边随收割机前进。

压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。

2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。

取收割机前进的方向为坐标系正方向7。

1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。

(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。

力学第七章练习题

力学第七章练习题

3解题示例例题5—5 如图5—9所示。

弹簧的质量忽略不计,而倔强系数6.11=k 牛顿/米。

绳子质量忽略不计且不可伸长。

滑轮的半径=R 10厘米,绕其抽转动的转动惯量01.0=I 千克.2米。

空气阻力不计,求质量1=m 千克的物体从静止开始(此时弹簧无伸长)落下1=h 米时的速度大小(h v )。

己知 m N k /6.11=,cm R 10= ,201.0m kg I ⋅=,m h 1=,kg m 1=求 h v例题5一6 一均匀棒长4.0=l 米,质量1=M 千克,可绕通过其上端O 的水平轴转动,质量01.0=m 千克的弹片以速度200=v 米/秒射入棒中,射入处离O 点为0.3米(图5-11)。

求棒与弹片一起转动时的角速度ω,及转过的角度θ。

已知 l 、M 、m 、弹片射入处求ω、θ角动量与刚体转动练习题一. 选择题1. 人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为 A 和 B 。

用 L 和 Ek 分别表示对地心的角动量及其动能的瞬时值,则应有.,)(kB kA B A E E L L A >>.,)(kB kA B A E E L L B <=.,)(kB kA B A E E L L C >=.,)(kB kA B A E E L L D << 解:由角动量守恒 B A L L = 由机械能守恒, 因为势能 pB pA E E < .kB kA E E >∴答案 :(C)2. 由一半径为 R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为 J ,开始时转台以匀角速度ωo 转动,此时有一质量为 m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为图5—9v 21B v B.)(02ωmR J J A + .)()(02ωR m J J B + .)(02ωmRJ C .)(0ωD 解:由角动量守恒 ωω)(020mR J J +=+.02ωωmR J J +=∴ 答案 :(A)3. 如图所示,一静止的均匀细棒,长为 L 、质量为 M ,可绕通过棒的端点且垂直于棒长的光滑固定轴 O 在水平面内转动,转动惯量为1/3 ML2. 一质量为 m 、速率为 v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为1/2 v , 则此时棒的角速度应为.)(ML mv A .23)(ML mv B .35)(ML mv C .47)(MLmv D 解:由角动量守恒 ω23121ML vl m mvl +⋅= .23ML mv =∴ω 答案 :(B )4. 关于力矩有以下几种说法:(1)对某个定轴而言,内力矩不会改变刚体的角动量。

刚体的转动部分习题分析与解答

刚体的转动部分习题分析与解答

动轨迹为一个圆弧。
刚体的定轴转动和平面转动的比较
03
定轴转动和平面转动是刚体转动的两种基本形式,它们在运动
学和动力学上有一些不同之处,如角速度、角加速度等。
03
刚体的动能与势能
刚体的动能
总结词
刚体的动能是指刚体在转动过程中所 具有的能量,与刚体的转动速度和质 量分布有关。
详细描述
刚体的动能计算公式为$E_{k} = frac{1}{2}Iomega^{2}$,其中$I$为刚体的转 动惯量,$omega$为刚体的角速度。转动惯量 是描述刚体质量分布对其转动影响的物理量, 与刚体的质量分布、形状和大小有关。
解答过程
钢球下落过程中,其速度逐渐增大,故其动能在 不断增加。同时,钢球离地面的高度逐渐减小, 故其势能在不断减小。由于钢球下落过程中只有 重力做功,故其机械能守恒。
习题五:关于刚体的机械能守恒的题目
总结词
理解机械能守恒的概念,掌握机械能守恒的条件和机械能守恒的计算方法。
详细描述
机械能守恒是指系统内各种形式的能量在相互转化时总量保持不变。对于刚体系统,只有重力或弹力 做功时机械能守恒。机械能
刚体的势能
总结词
刚体的势能是指刚体在转动过程中相对于某一参考点所具有 的能量。
详细描述
刚体的势能计算公式为$U = -GMmcostheta$,其中$G$为万 有引力常数,$M$和$m$分别为两个质点的质量,$theta$为 两质点连线和垂直于势能参考平面的夹角。对于刚体,势能的 具体值取决于参考点的选择。
实际问题。
习题五解答与解析
要点一
总结词
刚体的角动量守恒
要点二
详细描述
这道题目考察了学生在刚体转动中如何应用角动量守恒的 知识。学生需要理解角动量的概念,知道角动量等于刚体 的转动惯量乘以角速度,并能够根据角动量守恒的条件判 断刚体的运动状态。

刚体力学习题

刚体力学习题
解:设小球运动到最低点时,其质心速 度为v,绕质心转动的角速度为ω,由机械
能守恒: m (R g r) 1 2m 2 1 2 v (5 2m 2 )r 2
只滚不滑条件: ω=v/r, 代入上式, 求得 v 170(Rr)g 在最低点应用质心运动定理:Nmg m2/vR (r)
N m [ g v 2 /R ( r ) ] m ( g 1 7 g 0 ) 2 7 3 m g
ra
x
h
⑴圆锥体为匀质, ρ=C, m d m L 2 a 2 0 Lx2 d x1 3 a2L
xcx dd m m a 2 a x 23 L d /3 /x L 2L 3 3 0 Lx3d x4 3L
⑵ 0 ( 1 L h ) 0 ( 1 L L x ) L 0 x , d m 0 a 2 x 3 d / L 3 x
7.4.2 质量为2.97kg,长为1.0m的匀质等截面细杆可绕水平光滑的轴 线o转动,最初杆静止于铅直方向。一弹片质量为10g,以水平速度 200m/s射出并嵌入杆的下端,和杆一起运动,求杆的最大摆角θ
解:将子弹、杆构成的物体系作为研究
o
对象,整个过程可分为两个阶段研究:
第一阶段,子弹与杆发生完全非弹性碰 获得共同的角速度ω,此过程时间极短,
时,框架质心的线速度vc及框架作用于支点的压力N.
A
解:正方形框架对支点o的转动惯量:
o
I Ic o 4 I(c1 1 2 m 4m 2( l2 l)m 2 l4 2I)c 4 3m m 22 llIo7 3m2lE0 p=
据机械能守恒定律:
B
B A
4 m 2 l g 1 2Io 21 2(7 3m 2)l2,
隔离木板, 其受力及运动情况如图示,其中a为板对地

普通物理学第二版第七章课后习题答案

普通物理学第二版第七章课后习题答案

第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s 估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转[解 答](1)22(30001200)1/601.57(rad /s )t 12ωπβ⨯-⨯===V V(2)222220()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45o 时,(3)转过90o时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==v(2)45θ=o时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v R πθωω=+==∴==⨯v v v得(3)当90θ=o时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45o 时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D点相同。

所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。

第7章 刚体力学习题课

第7章 刚体力学习题课
EP 0
Cm
h
mg 1 2 hm2 v1 2I11 21 2I22 2
不打滑:有 vR1 1R2 2
考虑到: I11 2m 1R1 2 I21 2m 2R2 2
得 v2
mgh
m1 m2 2m
解二:应用牛顿第二定律和转动定律
A: T1R1I11
(1)
m1, R1
A
T O 1
1
T1 m2, R2
解:在剪断的瞬间:
Fix0, FiymgT
acy
mg T m
(质心运动定理)
T
L 2
1 12
mL2
(转动定理)
acy
L
2
解得:
a
cy
3 4
g
F
1 4
mg
例12.如图,知A: m,l,质量均匀,开始时水平静止
B:m , , A竖直时被碰,然后
滑行距离S.
m
A
l
O
求 :碰后A的质心可达高度h.
第7章 刚体力学习题课
例2.均匀细棒 oA 可绕通过其一端 o 而与棒垂直
的水平固定光滑轴转动,如图所示.今使棒从水
平位置由静止开始自由下落,在棒摆动到竖直位
置的过程中,下列情况哪一种说法是正确的?
( A)
(A) 角速度从小到大,角加速度从大到小.
(B) 角速度从小到大,角加速度从小到大.
(C) 角速度从大到小,角
aR
I 1 MR2 2
(4)
m2
M,R
T1 m1
m1g T 2
m1
M,R
T1
m2
T2
联立方程,求解得:a Nhomakorabeam1g

大学物理-刚体力学习题解答

大学物理-刚体力学习题解答

1大学物理-刚体力学习题解答一、选择题1、 B,r v⨯=ω 2、 C, 3 、B, 4 、C, 5、 B, 平轴的力矩和为零,θθsin 2cos lmgNl =,所以2)tan (θmg N =。

6 、B, 7、 A, 32202mgR rdr R mrgrgdm M Rf μππμμ===⎰⎰ 8、 B ,在碰撞过程中,小球和摆对O 轴的角动量守恒,所以有1011sin 100mlv l v m=θ,220v v = 二、填空题1.t 108-==θω ,10-==θβ ,所以s rad s t 62.0==ω;22.010s rad s t -==β; s m R v m R s t 35.0,2.0====ω;()25.0,2.05s m R a m R s t -====βτ;()225.0,2.018s m R a m R s t n ====ω 2s m 18-⋅。

2.刚体对转轴转动惯性大小的量度;2I r dm =⎰;质量、质量分布、转轴的位置。

3.mLv 。

4.()()k t mgv j gt v i v j gt t v i t v v r L αααααcos 21sin cos 21sin cos 200020000-=-+⨯⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=⨯=;k t mgv dt L d αcos 00-=;k t mgv dtL d Mαcos 00-==。

5.角动量;04ω 。

6.同时到达。

7.32g。

8.20012I ω。

三、计算题,1、设1m 向下运动,2m 向上运动,对两物体应用牛顿定律列方程有:1111m g T m a -=,2222T m g m a -=,对鼓轮应用转动定律有:11220T r T r -= ,(因为鼓轮的质量忽略不计) 设鼓轮的角加速度为β,则有:11a r β= ,22a r β= 。

联立求解以上各式得:21122221122m r m r g m r m r β-=+ ;若1m 向上运动,2m 向下运动,则 2211221122m r m r g m r m r β-=+ 。

第七章-刚体力学I

第七章-刚体力学I

弧长
s r
y
et
线速度
切向加速度 法向加速度
vt r
at r
an vt r
2
r O
2

s
x
r
注: r 的原点必须在转轴上.
三、角速度矢量
角速度是矢量,其方向沿转轴且与


刚体转动方向成右手螺旋系统.
若刚体同时参与两个轴的转动,则 合成角速度按平行四边形法则进行合成.
k
r1
r2

v1 v 2 r
2.转轴为非对称轴
如图, k 对O点同样有
L1 r1 m 1 v 1 m 2v2 L 2 r2 L L1 L 2
L1 r1m 1 v 1 L 2 r2 m 2 v 2
轴与屏幕垂直.
y
2 1
r A
y
rB
B
x
x
O
刚体平面运动 = 基点B的平动 + 绕B点轴定轴转动
rB ( t ) x B ( t )i y B ( t ) j
(t )
3. 平面运动的刚体上任意一点的速度
y
平面上A点相对于Oxy系的位置矢量
r rB r
*注:角速度总是与无限小角位移相联系, 无限小角位移是矢量, 所以角速度也是矢量.
A'
O
A''
2




而有限角位移不是矢量.
O
1
A
角速度和角加速度在直角坐标系的正交分解式为
x i y j z k
d dt x i y j z k

刚体力学习题

刚体力学习题

1 2 l l mg mg sin I 2 2 2 2 1 1 2 l 2 I ml m ml 12 3 2
由上得
C
hc
o
3g (1 sin ) l

22

角加速度:
3g (1 sin ) l
d d d d 3 g cos d 2l dt d dt
o
1 2 mgS 0 m 2
解得
m
3 gl 3 2gS l
讨论:当l >6S时, >0, 表示碰后棒向右摆; 当l <6S时, <0, 表示碰后棒向左摆。
25
例题 匀质杆:长为l、质量M,可绕水平光滑固 定轴o转动,开始时杆竖直下垂。质量为m的子弹以 水平速度o射入杆上的A点,并嵌在杆中,oA=2l/3, 求:(1)子弹射入后瞬间杆的角速度; (2)杆能转过的最 大角度。
l ( 3 M 4m )
o
2l 3

mo A
9
2 l 3
例题 长为2L、质量为m的匀质细杆,静止在粗糙 的水平桌面上,杆与桌面间的摩擦系数为µ 。两个质量、 速率均为m和的小球在水平面内与杆的两端同时发生 完全非弹性碰撞(设碰撞时间极短), 如图所示。求:
(1)两小球与杆刚碰后,这一系统的角速度为多少? (2)杆经多少时间停止转动?(不计两小球的质量引起 的摩擦力矩)
解 (1)杆+子弹:竖直位置,外力(轴o处的力和 重力)均不产生力矩,故碰撞过程中角动量守恒:
2l 1 2l 2 2 mo [ Ml m( ) ] 3 3 3
解得
o
2l 3

6m o l ( 3 M 4m )

力学答案——漆安慎,07章

力学答案——漆安慎,07章

v' = ω r =
vG = v B = ω AB = 10 × 1.5 = 15m / s ,方向指向右下方,与水
平方向成 45º;
2000×2π 60
× 1.5 = 314m / s
⑵桨尖相对地面的速度:v = v '+ v机地 ,飞机相对地面的速度与 螺旋桨相对飞机的速度总是垂直的, v机地 = 所以, v =

dm
3 L3

ρ0
L
L
0
x 3 dx = 3 4 L
证明:⑴取图示坐标,在坐标 x 处取一线元, dm = 对 y 轴的转动惯量为: dI =
m l
m l
dx ,它
x l/2
x 2 dx ,
-l/2
y dx
⑵ρ =
h −x ρ 0 (1 − L ) = ρ 0 (1 − LL )=
x
整个细杆对 y 轴的转动惯量:
n1 =
0.909 v 2πR
=
0.909×166×103 2×3.14×0.26
= 9.24 × 10 4 rev / h = 1.54 × 10 3 rev / min
7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置。 ⑴圆 锥体为匀质;⑵密度为 h 的函数:ρ=ρ0(1-h/L),ρ0 为正常数。 解:建立图示坐标 o-x,据对称性分析, L 质心必在 x 轴上,在 x 坐标处取一厚为 dx o r a x 2 的质元 dm=ρπr dx,∵r/a=x/L,r=ax/L h ∴ dm=ρπa2x2dx/L2 ⑴圆锥体为匀质,即ρ为常数, 总质量: m = dm =
1 且与杆垂直的轴线的转动惯量等于 12 ml ;⑵用积分法证明:质量 2

刚体习题及答案知识讲解

刚体习题及答案知识讲解
➢ 撞击前后系统的动量是否守恒?为什么? ➢ 动能是否守恒?为什么? ➢ 角动量是否守恒?为什么? (2)子弹和轮开始一起运动时,
轮的角速度是多少?
θ A v0 cos
v0 sin
R
例6.一块质量为M=1kg 的木板,高L=0.6m,可以其一边为轴自 由转动。最初板自由下垂.今有一质量m=10g的子弹,垂直击中 木板A点,l=0.36m,子弹击中前速度为500m/s,穿出后的速度 为200m/s, 求: (1) 子弹给予木板的冲量
解法一: 用转动定律求解
在恒力矩和摩擦力矩作用下,0—10s内有:
M M r J1
1 1t1
M
Mr
J
ω1 t1
移去恒力矩后,0—90s内有:
Mr J2
0 1 2t2
Mr
J
2
t2
J Mt1t2
1(t1 t2 )
54kg m2
解题过程尽可能用文字式,最后再带入数字。
解法二:
0-10s: 0-90s:
m 的匀质圆盘,此圆盘具有光滑水平轴,然后在下端系一质量也 为 m的物体,如图。求当物体由静止下落h 时的速度v。
例11.如图所示,一均匀细杆长为 l ,质量为 m,平放在摩擦系数
为μ的水平桌面上,设开始时杆以角速度 ω0 绕过中心 o 且垂直于
桌面的轴转动,试求:
0
(1)作用在杆上的摩擦力矩;
(2)经过多长时间杆才会停止转动。
人 : Mg T 2 Ma
物:
1
1
T1 - 2 Mg = 2 Ma
轮: (T2 T1)R J
a R
2 a 7g
o
T2
T1
A Ba
Mg 1

力学习题-第7章刚体(上含答案)

力学习题-第7章刚体(上含答案)

第七章刚体单元测验题一、选择题1.长为l 的不均匀细杆的线密度λ=bx ,x 为离杆的一端O 的距离,b 为常数.该杆对过O 端并垂直于杆的轴的转动惯量是A.22bl ; B.32bl ; C.33bl ; D.44bl 答案:D解:转动惯量:2J dJ x dm==⎰⎰其中,bxdxdx dm ==λ积分得:4==420∫bl bxdx x J l2.半径为R 、质量为m 的均质圆盘可绕过其中心且与盘面垂直的铅垂轴转动,圆盘对此转轴的转动惯量为A.2mR ;B.221mR ;C.232mR ;D.3mR 答案:B解:距离转轴r 、宽度为dr 的小圆环的转动惯量为222)2(==r dr r Rm dmr dJ ππ整个圆盘的转动惯量为2=)2(==22200∫∫mR r dr r R m dJ J RR ππ3.半径为R 、质量为m 的均质圆盘可绕过其中心且与盘面垂直的铅垂轴转动,圆盘与水平面间的摩擦系数为μ,则圆盘受到的摩擦力矩大小为A.μmgR μ21;C.mgR μ32;D.2mgR μ答案:C解:距离转轴r 、宽度为dr 的小圆环所受摩擦力对转轴的力矩为:r g dr r RmdM )2(=2ππμ总的摩擦力对转轴的力矩:32=)2(==2200∫∫mgR gr dr r R m dM M R Rμππμ4.一块边长为a 、质量为m 0的正三角形薄板对过其一边的轴的转动惯量为A.20=a m J ;B.2021=a m J ;C.2031=a m J ;D.2081=a m J 答案:D 解:如图建立坐标系在x dx 、平行于y 轴的细条质元,其质量为:23dm ydx xdx ρρ==该细条质元绕一边的转动惯量为:2)2dJ a x dm =-积分得所求转动惯量:3222001)238J dJ x xdx m a ρ ==-=⎰⎰.5.下列关于定轴转动刚体的运动特点,正确的是A.刚体(非转轴)上的任一质点都作平面圆周运动.B.刚体(非转轴)上的不同质点转动速度大小相等.C.刚体上距离转轴近的质点转动角速度小、距离转轴远的质点转动角速度大.D.质量小的刚体转动得快、质量大的刚体转动得慢.答案:A二、填空题1.如图,质量分别为m 1=200g 、m 2=250g 的两个物体用不可伸长的轻绳相连,绳子套在质量m 0=100g ,半径r =10cm 的质量均匀的圆盘形滑轮上,绳的质量及滑轮轴承处、物体与桌面间的摩擦均可忽略不计,绳与滑轮之间无滑动.m 1的加速度a =m/s2.(结果保留一位小数).3.8~4.0)解:设滑轮转动的角加速度为α对1m 应用牛顿第二定律:111T m g F m a-=对2m 应用牛顿第二定律:am F T 22=对0m 应用转动定律:12T T F r F r J α-=其中,定滑轮的转动惯量:2012J m r =绳与滑轮无滑动条件:a r α=联立解得:210122 3.9m s 22m g a m m m ==++三、判断题1.刚体转动有限大的角位移可以看做矢量答案:错2.刚体转动无限小的角位移可以看做矢量答案:对3.定轴转动刚体的转动动能等于其质心运动的动能答案:错4.定轴转动刚体的转动动能与其转动角速度的平方成正比答案:对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章刚体力学习题及解答7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0.1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上.x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影.解:( 1)( 2)时,由( 3)当时,由7.1.5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同。

所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1.2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。

取收割机前进的方向为坐标系正方向7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min.(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹.解:取地球为基本参考系,飞机为运动参考系。

( 1)研究桨头相对于运动参考系的运动:( 2)研究桨头相对于基本参考系的运动:由于桨头同时参与两个运动:匀速直线运动和匀速圆周运动。

故桨头轨迹应是一个圆柱螺旋线。

7.1.8 桑塔纳汽车时速为166km/h.车轮滚动半径为0.26m.自发动机至驱动轮的转速比为0.909.问发动机转速为每分多少转.解:设发动机转速为,驱动轮的转速为。

由题意:(1)汽车的速率为(2)( 2)代入(1)7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置.(1)圆锥体为均质;(2)密度为h的函数:为正常数 .解:建立如图坐标 O-x,由对称轴分析知质心在x轴上。

由得:( 1)质量( 2)质量7.2.3 长度为的均质杆,令其竖直地立于光滑的桌面上,然后放开手,由于杆不可能绝对沿铅直方向,故随即到下.求杆子的上端点运动的轨迹(选定坐标系,并求出轨迹的方程式).解:建立坐标系,水平方向为轴,竖直方向为轴.杆上端坐标为(x,y),杆受重力、地面对杆竖直向上的支承力,无水平方向力。

由(质心运动定理)质心在杆的中点,沿水平方向质心加速度为零。

开始静止,杆质心无水平方向移动。

由杆在下落每一瞬时的几何关系可得:即杆上端运动轨迹方程为:•( 1)用积分法证明:质量为m长为的均质细杆对通过中心且与杆垂直的轴线的转动惯量等于.解:建立水平方向 o—x坐标( 2)用积分法证明:质量为m、半径为R的均质薄圆盘对通过中心且在盘面内的转动轴的转动惯量为.解:令或利用公式7.3.2 图示实验用的摆,,,,,近似认为圆形部分为均质圆盘,长杆部分为均质细杆.求对过悬点且与摆面垂直的轴线的转动惯量.解:将摆分为两部分:均匀细杆(),均匀圆柱()则== (用平行轴定理)I=0.14+2.51=2.657.3.3 在质量为M半径为R的均质圆盘上挖出半径为r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量.解:设未挖两个圆孔时大圆盘转动惯量为 I。

如图半径为r的小圆盘转动惯量为和。

则有()7.3.5 一转动系统的转动惯量为,转速为,两制动闸瓦对轮的压力都为392N,闸瓦与轮缘间的摩擦系数为,轮半径为,从开始制动到静止需要用多少时间?解 :7.3.6 均质杆可绕支点O转动,当与杆垂直的冲力作用某点A时,支点O对杆的作用力并不因此冲力之作用而发生变化,则A点称为打击中心.设杆长为L,求打击中心与支点的距离.解 :杆不受作用时,支点O对杆的作用力,方向竖直向上,大小为杆的重量。

依题意,当杆受力时,不变。

建立如图坐标系,轴垂直纸面向外。

由质心运动定理得:(方向投影)(质心在杆中点)(1)由转动定理得:(2)有角量与线量的关系(3)( 1)(2)(3)联立求解7.3.7 现在用阿特伍德机测滑轮转动惯量.用轻线且尽可能润滑轮轴.两端悬挂重物质量各为,且.滑轮半径为.自静止始,释放重物后并测得内下降.滑轮转动惯量是多少?解 :分析受力。

建立坐标系,竖直向下为轴正方向,水平向左为轴正方向。

轴垂直纸面向里。

根据牛顿第二定律,转动定理,角量与线量关系可列标量方程组:已知求解上列方程组:7.3.8 斜面倾角为,位于斜面顶端的卷扬机鼓轮半径为R,转动惯量为I,受到驱动力矩M,通过绳索牵引斜面上质量为m的物体,物体与斜面间的摩擦系数为,求重物上滑的加速度.绳与斜面平行,不计绳质量.解 : 分析受力及坐标如图。

轴垂直纸面向外。

列标量方程组:(1)(2)(3)(4)解得:7.3.9 利用图中所示装置测一轮盘的转动惯量,悬线和轴的距离为r.为减小因不计轴承摩擦力矩而产生的误差,先悬挂质量较小的重物,从距地面高度处由静止开始下落,落地时间为,然后悬挂质量较大的重物,同样由高度下落,所需时间为,根据这些数据确定轮盘的转动惯量.近似认为两种情况下摩擦力矩相同.解 :分析受力及坐标如图。

轴垂直纸面向里。

列方程:解得即7.4.1 扇形装置如图,可绕光滑的铅直轴线O转动,其转动惯量I为.装置的一端有槽,槽内有弹簧,槽的中心轴线与转轴的垂直距离为r.在槽内装有一小球,质量为m,开始时用细线固定,只弹簧处于压缩状态.现用燃火柴烧断细线,小球以速度弹出.求转动装置的反冲角速度.在弹射过程中,由小球和转动装置构成的系统动能守恒否?总机械能守恒否?为什么?(弹簧质量不计)解 : 取小球和转动装置为物体系,建立顺时针为转动正方向。

在弹射过程中,物体系相对于转动轴未受外力矩,故可知物体受对转轴的角动量守恒。

有动能不守恒,原因是弹性力对系统作正功,物体系动能增加。

总机械能守恒。

原因是此过程中无耗散力做功。

应有守恒关系式:7.4.2 质量为2.97kg,长为1.0m的均质等截面细杆可绕水平光滑的轴线O转动,最初杆静止于铅直方向.一弹片质量为10kg,以水平速度200m/s射出并嵌入杆的下端,和杆一起运动,求杆的最大摆角.解 : 取子弹和杆为物体系。

分两个过程。

过程 1:子弹嵌入前一瞬时开始到完全嵌入时为止。

此过程时间极短,可视为在原地完成。

此时受力为,为转轴对杆的支承力,对于轴,外力矩为零。

有角动量守恒。

规定逆时针为转轴正方向。

得:解得:过程 2:由过程1末为始到物体系摆至最高点为止。

此过程中一切耗散力做功为零。

故物体系机械能守恒。

取杆的最低点为重力势能零点。

有解得7.4.3 一质量为,速度为的子弹沿水平面击中并嵌入一质量为,长度为的棒的端点,速度与棒垂直,棒原来静止于光滑的水平面上.子弹击中棒后共同运动,求棒和子弹绕垂直于平面的轴的角速度等于多少?取与为物体系。

此物体系在水平面内不变外力矩。

故角动量守恒,规定逆时针为转动正方向。

设嵌入后物体系共同质心为,到棒右端距离为,棒自身质心为。

由有物体系对点的角动量守恒可得:解得7.4.4某典型脉冲星,半径为几千米,质量与太阳的质量大致相等,转动角速率很大.试估算周期为50ms的脉冲星的转动动能.(自己查找太阳质量的数据)解 :7.5.1 10m高的烟囱因底部损坏而倒下来,求其上端到达地面时的线速度.设倒塌时底部未移动.可近似认为烟囱为细均质杆.7.5.2 用四根质量各为m长度各为的均质细杆制成正方形框架,可绕其一边的中点在竖直平面内转动,支点O是光滑的.最初,框架处于静止且AB边沿竖直方向,释放后向下摆动,求当AB边达到水平时,框架质心的线速度以及框架作用于支点的压力N.解 : 框架对 O点的转动惯量:在框架摆动过程中,仅受重力和支点的支撑力,重力为保守力,支撑力不做功,故此过程中框架的机械能守恒。

取过框架中心的水平线为重力势能零点:有解得:框架转到 AB水平位置时,故支点 O对框架的作用力,仅有法向分量。

由质心运动定理得:框架作用支点的力 N与是作用力与反作用力。

7.5.3 由长为,质量各为m的均质细杆制成正方形框架,其中一角连于光滑水平转轴O,转轴与框架所在平面垂直.最初,对角线OP处于水平,然后从静止开始向下摆动.求对角线OP与水平成时P点的速度,并求此时框架对支点的作用力.解 :框架对O点转动惯量由机械能守恒:先求支点 O对框架作用力,由转动定理由质心运动定理:投影得:解得:设 N与方向夹角为,则7.5.4 质量为m长为的均质杆,其B端放在桌面上,A端用手支住,使杆成水平.突然释放A端,在此瞬时,求:( 1)杆质心的加速度,( 2)杆B端所受的力.解: 取杆为隔离体,受力分析及建立坐标如图。

规定顺时针为转动正方向。

依据质心运动定理有:(1)依据转动定理:(2)依据角量与线量关系:(3)此外,(4)由联立上述四个方程求得:7.5.5 下面是均质圆柱体在水平地面上作无滑滚动的几种情况,求地面对圆柱体的静摩擦力f.( 1)沿圆柱体上缘作用以水平拉力F,柱体作加速滚动.( 2)水平拉力F通过圆柱体中心轴线,柱体作加速滚动.( 3)不受任何主动力的拉动或推动,柱体作匀速滚动.( 4)在主动力偶矩的驱动下作加速滚动.设柱体半径为R.解 :取均匀圆柱体为隔离体,建立坐标系,水平向右为轴正方向,轴垂直纸面向里。

假设方向水平向右。

( 1)得(符号表示实际方向与假设方向相反)( 2)得(符号表示实际方向与假设方向相同)( 3)得(符号表示实际方向与假设方向相反)7.5.6 板的质量为M,受水平力F的作用,沿水平面运动.板与水平面间的摩擦系数为.在板上放一半径为R质量为的实心圆柱,此圆柱只滚动不滑动.求板的加速度.解: 设所求板对地的加速度为a,(方向与相同)。

以板为参照系(非惯性系)。

取圆柱体为隔离体,分析受力如图,轴垂直纸面向里。

依质心运动定律有:(1)依据转动定理有:(2)依据角量与线量关系有:(3)此外:(4)(5)取板为隔离体,受力如图,并建立如图坐标系。

相关文档
最新文档