2020版江苏高考数学名师大讲坛一轮复习教程学案:第73课柱、锥、台、球的表面积与体积含解析
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练10
随堂巩固训练(10)1. 已知n ∈{-1,0,1,2,3},若⎝⎛⎭⎫-12n >⎝⎛⎭⎫-15n,则n =__-1或2__. 解析:根据幂函数的性质知y =x-1或y =x 2在区间(-∞,0)上是减函数,故满足⎝⎛⎭⎫-12n>⎝⎛⎭⎫-15n的值只有-1和2. 2. 已知幂函数f(x)=k·x α的图象过点⎝⎛⎭⎫12,22,则f(x)=__x 12__.解析:由幂函数的定义得k =1,再将点⎝⎛⎭⎫12,22代入f(x)=x α,得⎝⎛⎭⎫12α=22,解得α=12,故f(x)=x 12.3. 已知幂函数f(x)=k·x α满足f (9)f (3)=3,则f(x)=__x 12__.解析:由幂函数的定义得k =1.因为f (9)f (3)=3,所以9α3α=3,解得α=12,故f(x)=x 12.4. 若点(a ,9)在函数y =3x 的图象上,则tan aπ6的值为.解析:由题意,得3a =9,解得a =2,所以tan aπ6=tan π3= 3.5. 已知点⎝⎛⎭⎫12,2在幂函数y =f(x)的图象上,点⎝⎛⎭⎫-2,14在幂函数y =g(x)的图象上,则f(2)+g(-1)=__32__.6. 已知函数f(x)=x α(0<α<1),对于下列命题:①若x>1,则f(x)>1;②若0<x<1,则0<f(x)<1;③当x>0时,若f(x 1)>f(x 2),则x 1>x 2;④若0<x 1<x 2,则f (x 1)x 1<f (x 2)x 2.其中正确的命题有__①②③__.(填序号)7. 已知幂函数y =x n m,其中m ,n 是取自集合{1,2,3}中的两个不同值,则该函数为偶函数的概率为__13__.解析:由题意得n m 所有值的集合为{12,13,2,23,3,32},当n m 为2或23时,函数y =x nm为偶函数,所以该函数为偶函数的概率为13.8. 已知函数:①y =x 43;②y =x 32;③y =x -2;④y =x -14,其中既是偶函数又在区间(-∞,0)上为增函数的是__③__.(填序号)解析:①y =x 43=3x 4在区间(-∞,0)上是减函数;②y =x 32=x 3的定义域为[0,+∞),既不是奇函数也不是偶函数;③y =x -2=1x 2的定义域为(-∞,0)∪(0,+∞),在区间(-∞,0)上为增函数且为偶函数;④y =x -14=14x的定义域为(0,+∞),既不是奇函数也不是偶函数,故选③.9. 如图所示的是幂函数y =x a ,y =x b ,y =x c ,y =x d ,y =x 的图象,则实数a ,b ,c ,d 的大小关系为__c>a>b>d__.解析:根据幂函数y =x n的性质,在第一象限内的图象,当n>0时,n 越大,y 递增速度越快,所以c>a>b>0,d<0,故c>a>b>d.10. 已知f(x)=x 1-n 2+2n +3(n =2k ,k ∈Z )的图象在区间[0,+∞)上单调递增,解不等式f(x 2-x)>f(x +3).解析:由题意知1-n 2+2n +3>0,即-n 2+2n +3>0, 解得-1<n<3.又n =2k ,k ∈Z ,所以n =0,2.当n =0或2时,f(x)=x 13,所以函数f(x)在R 上单调递增,所以由f(x 2-x)>f(x +3)得x 2-x>x +3, 解得x<-1或x>3,所以原不等式的解集为(-∞,-1)∪(3,+∞).11. 已知一个幂函数y =f(x)的图象过点(3,427),另一个幂函数y =g(x)的图象过点(-8,-2).(1) 求这两个幂函数的解析式; (2) 判断这两个函数的奇偶性;(3) 作出这两个函数的图象,观察图象直接写出f(x)<g(x)的解集. 解析:(1) 设幂函数f(x)=x a ,g(x)=x b .因为幂函数f(x)与g(x)的图象分别过点(3,427),(-8,-2), 所以427=3a ,-2=(-8)b ,解得a =34,b =13,所以两个函数的解析式为f(x)=x 34与g(x)=x 13. (2) 因为函数f(x)=x 34的定义域是[0,+∞),所以函数f(x)是非奇非偶函数.因为函数g(x)=x 13的定义域为R ,g(-x)=(-x)13=-x 13=-g(x), 所以函数g(x)是奇函数.(3) 作出这两个函数的图象如下,由图象可知,f(x)<g(x)的解集为{x|0<x<1}.12. 已知函数f(x)=x -k 2+k +2(k ∈Z )满足f(2)<f(3). (1) 求k 的值并求出相应的f(x)的解析式;(2) 对于(1)中得到的函数f(x),试判断是否存在q>0,使得函数g(x)=1-qf(x)+(2q -1)x 在区间[-1,2]上的值域为⎣⎡⎦⎤-4,178?若存在,求出实数q 的值;若不存在,请说明理由.解析:(1) 因为f(2)<f(3),所以2-k 2+k +2<3-k 2+k +2,所以lg 2-k 2+k +2<lg 3-k 2+k +2, 即(-k 2+k +2)(lg 2-lg 3)<0. 因为lg 2<lg 3,所以-k 2+k +2>0,解得-1<k<2. 又因为k ∈Z ,所以k =0或k =1. 当k =0或k =1时,-k 2+k +2=2, 所以f(x)=x 2.(2) 假设存在q>0满足题意,则由(1)知g(x)=-qx 2+(2q -1)x +1,x ∈[-1,2]. 因为g(2)=-1,所以两个最值点只能在端点(-1,g(-1))和顶点⎝⎛⎭⎫2q -12q ,4q 2+14q 处取得.又4q 2+14q -g(-1)=4q 2+14q -(2-3q)=(4q -1)24q≥0,所以g(x)max =4q 2+14q =178,g(x)min =g(-1)=2-3q =-4,解得q =2.所以存在q =2满足题意.。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练9含解析
随堂巩固训练(9)1. 若二次函数f(x)=ax 2+bx +c 图象的顶点坐标为(2,-1),与y 轴的交点坐标为(0,11),则a ,b ,c 的值为__3,-12,11__.解析:由题意得解得故a ,b ,c 的值分别为3,-12,11.{-b 2a =2,4a +2b +c =-1,c =11,){a =3,b =-12,c =11.)2. 函数f(x)=x 2-2x -2(x ∈[-2,2])的最小值是__-3__.解析:因为f(x)=x 2-2x -2=(x -1)2-3,所以函数f(x)在区间[-2,1]上单调递减,在区间[1,2]上单调递增,所以f(x)min =f(1)=1-2-2=-3.3. 如果函数f(x)=x 2+px +q 对任意的x 均有f(1+x)=f(1-x)成立,那么f(0)、f(-1)、f(1)从小到大的顺序为__f(1)<f(0)<f(-1)__.解析:由题意得函数f(x)的图象关于直线x =1对称,所以函数在区间(-∞,1]上是减函数,所以f(1)<f(0)<f(-1).4. 若f(x)=x 2+bx +c ,且f(1)=0,f(3)=0,则f(-1)=__8__.解析:由题意得解得所以f(x)=x 2-4x +3,所以f(-1)=1+4{1+b +c =0,9+3b +c =0,){b =-4,c =3,)+3=8.5. 若f(x)=-x 2+(b +2)x +3,x ∈[b ,c]的图象关于直线x =1对称,则c =__2__.解析:由题意,得解得故c 的值为2.{-b +22×(-1)=1,b +c 2=1,){b =0,c =2,)6. 函数f(x)=2x 2-6x +1在区间[-1,1]上的最小值为__-3__,最大值为__9__.7. 已知函数f(x)=|x 2-2ax +b|(x ∈R ),给出下列命题:①f(x)必是偶函数;②当f(0)=f(2)时,f(x)的图象必关于直线x =1对称;③f(x)有最大值|a 2-b|;④若a 2-b ≤0,则f(x)在区间[a ,+∞)上是增函数.其中正确的序号是__④__.解析:当a =0时,函数f(x)为偶函数;当a ≠0时,函数f(x)既不是偶函数,也不是奇函数,故①错误;若f(0)=f(2),则|b|=|4-4a +b|,所以4-4a +b =b 或4-4a +b =-b ,即a =1或b =2a -2.当a =1时,函数f(x)图象的对称轴为直线x =1;当b =2a -2时,函数f(x)图象的对称轴为直线x =a ,故②错误;若a 2-b ≤0,则f(x)=|(x -a)2+b -a 2|=(x -a)2+b -a 2,所以函数在区间[a ,+∞)上是增函数,此时有最小值b -a 2,故③错误,④正确.8. 已知函数f(x)=ax 2+(a 3-a)x +1在区间(-∞,-1]上单调递增,则实数a 的取值范围是__[-,0)__.3解析:当a =0时,函数f(x)=1,不符合题意,舍去;当a ≠0时,{a <0,-a 3-a 2a ≥-1,)解得-≤a<0,故实数a 的取值范围是[-,0).33 9. 已知二次函数f(x)=ax 2+(a 2+b)x +c 的图象开口向上,且f(0)=1,f(1)=0,则实数b 的取值范围是__(-∞,-1)__.解析:由题意得a>0,c =1,a +a 2+b +c =0,所以b =-(a 2+a)-1=--.因(a +12)2 34为a>0,所以b<-1,故实数b 的取值范围为(-∞,-1).10. 函数y =(x +1)(x +2)(x +3)(x +4)+5在区间[-3,3]上的最小值为__4__.解析:因为y =(x +1)(x +2)(x +3)(x +4)+5=[(x +1)(x +4)][(x +2)(x +3)]+5=(x 2+5x +4)(x 2+5x +6)+5=(x 2+5x +5-1)(x 2+5x +5+1)+5=(x 2+5x +5)2+4.设t =x 2+5x +5,则y =t 2+4.因为t =x 2+5x +5=2-,x ∈[-3,3],所以y =t 2+4,t ∈,抛(x +52)54[-54,29]物线开口向上,对称轴为直线t =0,所以y min =4,故y =(x +1)(x +2)(x +3)(x +4)+5在区间[-3,3]上的最小值是4.11. 已知二次函数f(x)=ax 2+bx +c.(1) 若f(-1)=0,试判断函数f(x)的零点个数;(2) 若对x 1,x 2∈R ,且x 1<x 2,f(x 1)≠f(x 2),证明方程f(x)=[f(x 1)+f(x 2)]必有一个实数12根属于(x 1,x 2).解析:(1) 因为f(-1)=0,所以a -b +c =0,即b =a +c.因为Δ=b 2-4ac =(a +c)2-4ac =(a -c)2,所以当a =c 时,Δ=0,函数f(x)有一个零点;当a ≠c 时,Δ>0,函数f(x)有两个零点.(2) 令g(x)=f(x)-[f(x 1)+f(x 2)],则12g(x 1)=f(x 1)-[f(x 1)+f(x 2)]=, 12f (x 1)-f (x 2)2g(x 2)=f(x 2)-[f(x 1)+f(x 2)]=, 12f (x 2)-f (x 1)2所以g(x 1)·g(x 2)=-[f(x 1)-f(x 2)]2.14因为f(x 1)≠f(x 2),所以g(x 1)·g(x 2)<0,所以g(x)=0在区间(x 1,x 2)上必有一个实数根,即方程f(x)=[f(x 1)+f(x 2)]必有一个实数根属于(x 1,x 2).1212. 已知函数f(x)=ax 2-1,a ∈R ,x ∈R ,集合A ={x|f(x)=x},B ={x|f(f(x))=x}且A =B ≠ ,求实数a 的取值范围.解析:①若a =0,则A =B ={-1};②若a ≠0,由A ={x|ax 2-x -1=0}≠,得a ≥-且a ≠0.14集合B 中元素为方程a(ax 2-1)2-1=x ,即a 3x 4-2a 2x 2-x +a -1=0的实数根,所以a 3x 4-2a 2x 2-x +a -1=(ax 2-x -1)(a 2x 2+ax -a +1)=0.因为A =B ,所以a 2x 2+ax -a +1=0无实数根或其根为ax 2-x -1=0的根.由a 2x 2+ax -a +1=0无实数根,得a<,34故a ∈∪;[-14,0)(0,34)当a 2x 2+ax -a +1=0有实数根且为ax 2-x -1=0的根时,因为ax 2-x -1=0,所以ax 2=x +1,所以a 2x 2+ax -a +1=a(x +1)+ax -a +1=0,解得x =-,代入ax 2-x -1=0得a =.12a 34综上所述,实数a 的取值范围是.[-14,34]13. 已知二次函数f(x)=ax 2+bx +1,若f(1)=0,且函数f(x)的值域为[0,+∞).(1) 求a ,b 的值;(2) 若h(x)=2f(x +1)+x|x -m|+2m ,求h(x)的最小值.解析:(1) 显然a ≠0,因为f(1)=0,所以a +b +1=0.又f(x)的值域为[0,+∞),所以Δ=b 2-4a =0.由解得{a +b +1=0,b 2-4a =0,){a =1,b =-2.)(2) 由(1)知f(x)=x 2-2x +1,h(x)=2x 2+x|x -m|+2m ,即h(x)={3x 2-mx +2m ,x ≥m ,x 2+mx +2m , x <m.)①若m ≥0,则h(x)min =min ,{h (m ),h (-m 2)}即h(x)min =min .{2m 2+2m ,-m 24+2m }又2m 2+2m -=≥0,所以当m ≥0时,h(x)min =-+2m ;(-m 24+2m )9m 24m 24②若m<0,则h(x)min =h =2m -.(m 6)m 212综上所述,h(x)min ={2m -m 24, m ≥0,2m -m 212, m <0.)。
苏教版数学高一《圆柱、圆锥、圆台和球》 名师学案
§1.1.2 第2课时圆柱、圆锥、圆台和球学习目标:1.初步理解圆柱、圆锥、圆台和球的概念,掌握它们的生成规律;2.了解圆柱、圆锥、圆台和球中一些常用名称的含义;3.了解一些复杂几何体的组成情况,初步学会用类比的思想分析和解决问题.学习重点:圆柱、圆锥、圆台和球的结构特征.学习难点:圆柱、圆锥、圆台和球的结构特征的概括.学习过程:一、课前准备:自学课本P8~101.基本概念:①圆柱:将,形成的几何体叫做圆柱.圆柱的特点:两底面是,轴截面是,母线.②圆锥:将,形成的几何体叫做圆柱.圆锥的特点:底面是,轴截面是,母线.③圆台:将,形成的几何体叫做圆柱.圆台的特点:两底面是,轴截面是,母线.④球面:形成的曲面叫做球面.的几何体叫做球体(球).⑤旋转面:叫做旋转面.旋转体:叫做旋转体.⑥轴、底面、侧面、母线…2.圆柱的侧面展开图是,圆锥的侧面展开图是,圆台的侧面展开图是.3.将直角三角形绕它的一边旋转一周,形成的几何体一定是圆锥吗?直角梯形绕它的一条腰旋转一周,形成的几何体一定是是圆台吗?为什么?4.一个正方体内接于一个球,过球心作一个截面,下面的几个截面图中,必定错误的是.A.B.C.D.二、合作探究:例1.圆的定义为:;请你把它改写为球面的定义:;你能说出圆面、球体的定义吗?例2.下列命题正确吗?为什么?①圆柱两底面圆周上任意两点的连线是圆柱的母线;②圆台的任意两条母线必相交;③圆台所有的轴截面是全等的等腰梯形;④与圆锥的轴平行的截面是等腰三角形;⑤圆锥的顶点与底面圆周上的任意一点的连线都是母线.例3.边长为5cm的正方形EFGH是圆柱的轴截面, 求从E点沿圆柱的侧面到相对顶点G的最短距离.。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练80
随堂巩固训练(80)1. 一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为 12 . 解析:把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:(红1,红1),(红1,红2),(红2,红1),(红2,红2),(白1,白1),(白1,白2),(白2,白1),(白2,白2),故所求概率为P =816=12. 2. 在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是 310 . 解析:由题意得基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为310. 3. 一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为112 . 解析:基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P =186×6×6=112. 4. 从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片,则两次取出的卡片上的数字之和恰好等于4的概率是 15 . 解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0)共5个,所以数字和恰好等于4的概率是P =525=15. 5. 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 35 . 解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35. 6. 某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是 35. 解析:从“6听饮料中任取2听饮料”这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料”含有9个基本事件,所以检测到不合格饮料的概率为P =915=35. 7. A ={1,2,3},B ={x ∈R|x 2-ax +b =0},a ∈A ,b ∈A ,则A ∩B =B 的概率是 89W. 解析:因为A ∩B =B ,所以B 可能为∅,{1},{2},{3},{1,2},{2,3},{1,3}.当B=∅时,a 2-4b <0,满足条件的a ,b 为a =1,b =1,2,3;a =2,b =2,3;a =3,b =3.当B ={1}时,满足条件的a ,b 为a =2,b =1.当B ={2},{3}时,没有满足条件的a ,b . 当B ={1,2}时,满足条件的a ,b 为a =3,b =2.当B ={2,3},{1,3}时,没有满足条件的a ,b ,所以A ∩B =B 的概率为83×3=89. 8. 将一颗骰子投掷两次分别得到点数a 、b ,则直线ax -by =0与圆(x -2)2+y 2=2相交的概率为 512. 解析:圆心(2,0)到直线ax -by =0的距离d =|2a|a 2+b 2.当d <2时,直线与圆相交,则由d =|2a|a 2+b 2<2,解得b >a.满足题意的b >a ,共有15种情况,因此直线ax -by =0与圆(x -2)2+y 2=2相交的概率为1536=512. 9. 从x 2m -y 2n=1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为 47. 解析:当方程x 2m -y 2n=1表示椭圆、双曲线、抛物线等圆锥曲线时,不能有m <0,n >0,所以方程x 2m -y 2n=1表示椭圆双曲线、抛物线等圆锥曲线的(m ,n)有(2,-1),(3,-1),(2,2),(3,2),(2,3),(3,3),(-1,-1)共7种,其中表示焦点在x 轴上的双曲线时,则m>0,n >0,有(2,2),(3,2),(2,3),(3,3)共4种,所以所求概率P =47. 10. 设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f(x)=x 3+ax -b 在区间[1,2]上有零点的概率为 1116. 解析:因为f(x)=x 3+ax -b ,所以f′(x)=3x 2+a.因为a ∈{1,2,3,4},因此f′(x)>0,所以函数f(x)在区间[1,2]上为增函数. 若存在零点,则⎩⎪⎨⎪⎧f (1)≤0,f (2)≥0,解得a +1≤b ≤8+2a.因此可使函数在区间[1,2]上有零点的有a =1,2≤b ≤10,故b =2,4,8;a =2,3≤b ≤12,故b =4,8,12;a =3,4≤b ≤14,故b =4,8,12;a =4,5≤b ≤16,故b =8,12.根据古典概型可得有零点的概率为1116. 11. 已知A 、B 、C 三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A 、B 、C 三个箱子中各摸出1个球.(1) 若用数组(x ,y ,z)中的x ,y ,z 分别表示从A 、B 、C 三个箱子中摸出的球的号码,请写出数组(x ,y ,z)的所有情形,一共有多少种?(2) 如果请您猜测摸出的这三个球的号码之和,猜中有奖,那么猜什么数获奖的可能性最大?请说明理由.解析:(1) 数组(x ,y ,z)的所有情形为(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.(2) 记“所摸出的三个球号码之和为i ”为事件A i (i =3,4,5,6),易知,事件A 3包含1个基本事件,事件A 4包含3个基本事件,事件A 5包含3个基本事件,事件A 6包含1个基本事件,所以P(A 3)=18,P(A 4)=38,P(A 5)=38,P(A 6)=18,摸出的两球号码之和为4或5的概率相等且最大,故猜4或5获奖的可能性最大.12. 暑假期间,甲、乙两个学生准备以问卷的方式对某城市市民的出行方式进行调查. 如图是这个城市的地铁二号线路图(部分),甲、乙分别从太平街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.(1) 求甲选取问卷调查的站点是太平街站的概率;(2) 求乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率.解析:(1) 由题知,所有的基本事件有3个,甲选取问卷调查的站点是太平街站的基本事件有1个,所以所求事件的概率P =13. (2) 由题知,甲、乙两人选取问卷调查的所有情况如下表:由表格可知,共有9种可能结果,其中甲、乙在相邻的两站进行问卷调查的结果有4种,分别为(A ,B),(B ,A),(B ,C),(C ,B),因此乙选取问卷调查的站点与甲选取问卷调查的站点相邻的概率为49. 13. 某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1) 求应从小学、中学、大学中分别抽取的学校数量;(2) 若从抽取的6所学校中随机抽取2所学校做进一步数据分析.①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解析:(1) 由分层抽样定义知,从小学中抽取的学校数量为6×2121+14+7=3; 从中学中抽取的学校数量为6×1421+14+7=2; 从大学中抽取的学校数量为6×721+14+7=1. 因此,从小学、中学、大学中分别抽取的学校数量分别为3,2,1.(2) ①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,大学记为A 6,则抽取2所学校的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6}共15种.②“从6所学校中抽取的2所学校均为小学”记为事件B,所有可能的结果为{A1,A2},{A1,A3},{A2,A3}共3种,所以P(B)=315=15.。
【江苏高考】2020版数学名师大讲坛一轮复习教程学案全集(打包103份,含答案)
_第1课__集合及其基本运算1. 理解元素和集合之间的关系;理解集合相等的含义.2. 会求集合的交集、并集、补集.1. 阅读:阅读必修1第5~10页.2. 解悟:①集合中元素的三个性质;②常见数集的符号;③集合相等的定义;④子集、真子集的定义;⑤空集的定义.3. 践习:在教材空白处,完成第7页练习第2、5题;第10页习题第6、7题.基础诊断1. 设集合A ={-1,0,1},B ={0,1,2,3},则A ∩B =__{0,1}__.2. 已知全集U ={1,2,3,4,5},A ={1,2},B ={2,3,4},那么A ∪∁U B =__{1,2,5}__.解析:由题意得∁U B ={1,5}, 所以A ∪∁U B ={1,2,5}.3. 已知全集U ={1,3,5,7,9},A ={1,5,9},B ={3,5,9},则∁U (A ∪B)的子集个数为__2__.解析:由题意得A ∪B ={1,3,5,9}, 所以∁U (A ∪B)={7}, 所以∁U (A ∪B)的子集个数为2.4. 已知集合A ={0,a},B ={0,1,3},若A ∪B ={0,1,2,3},则实数a 的值为__2__.解析:因为A ∪B ={0,1,2,3}, A ={0,a},B ={0,1,3},所以a =2.范例导航考向❶ 利用数轴求集合的交集、并集、补集例1 设集合A =⎩⎨⎧⎭⎬⎫x|132≤2-x≤4,B ={x|x 2+2mx -3m 2<0},m>0.(1) 若m =2,求A ∩B ;(2) 若A ⊇B ,求实数m 的取值范围. 解析:由题意得,集合A ={x|-2≤x ≤5}, 因为m>0,所以B ={x|-3m<x<m}. (1) 当m =2时,B ={x|-6<x<2}, 所以A ∩B ={x|-2≤x<2}.(2) A ={x|-2≤x ≤5},B ={x|-3m<x<m},因为A ⊇B ,所以⎩⎪⎨⎪⎧-3m ≥-2,m ≤5,所以m ≤23,所以0<m ≤23.综上所述,m 的取值范围是⎝⎛⎦⎤0,23.全集I =R ,集合A ={x |y =2x -1},B ={y |y =lg(x 2-2x +2)},则A ∪∁I B =(-∞,0)∪⎣⎡⎭⎫12,+∞. 解析:由题意得,集合A ={x |y =2x -1}=⎩⎨⎧⎭⎬⎫x |x ≥12,集合B ={y |y =lg(x 2-2x +2)}={y |y ≥0},所以∁I B ={y |y <0},所以A ∪∁I B =(-∞,0)∪⎣⎡⎭⎫12,+∞. 考向❷ 对空集的分类讨论例2 已知集合A ={x|-2≤x ≤7},B ={x|m +1<x<2m -1},若B ⊆A ,求实数m 的取值范围.解析:当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围是{}m|m ≤4.已知集合A ={x|x 2-2x -3=0},B ={x|mx -1=0},若B ⊆A ,则m 的值为__0,-1,13__.解析:由题意得,集合A={-1,3}.因为B⊆A,所以当B为∅时,m=0;当B不为∅时,m=-1或m=13.综上,m的值为0,-1,13.例3若集合A={x|ax2+ax+1=0}中只有一个元素,求实数a的值.解析:当a=0时,不合题意,舍去;当a≠0时,由题意得,Δ=a2-4a=0,解得a=4.综上所述,a=4.若集合A={x|ax2+ax+1=0}只有一个子集,求实数a的取值范围.解析:由题意得,集合A为空集.①若a=0,符合题意;②若a≠0,则Δ=a2-4a<0,解得0<a<4.综上,a的取值范围是[0,4).自测反馈1. 设集合A={-1,1,3},B={a+2,a2+4},若A∩B={3},则实数a的值为__1__.解析:因为A∩B={3},所以a+2=3或a2+4=3,解得a=1,此时B={3,5},符合题意,故实数a的值为1.2. 已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系如图所示,则阴影部分表示的集合中的元素有__2__个.解析:由图可知,阴影部分表示的是M∩N.由M={x|-2≤x-1≤2}得M={x|-1≤x≤3}.集合N表示的是正奇数集,所以M∩N={1,3},所以阴影部分所示的集合中的元素共有2个.3. 下面四个命题中,正确命题的序号为__②__.①某班个子较高的同学构成集合A;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程x 2-2x +1=0的解集是{1,1}; ④∅与{∅}表示同一个集合.解析:①集合是指一定范围内某些确定的、不同的对象的全体,个子较高的同学不确定,所以①错误;②正确,集合中的元素具有无序性;③错误,集合中的元素具有互异性;④错误,∅表示不含任何元素的集合,{∅}表示集合中有一个元素∅,而不是空集.4. 已知集合A =⎩⎨⎧⎭⎬⎫1,2,12,集合B ={y|y =x 2,x ∈A},则A ∩B =__{1}__.解析:由题意得,B =⎩⎨⎧⎭⎬⎫1,4,14,所以A ∩B ={1}.1. 集合中元素的性质指确定性、无序性、互异性.2. 要特别注意空集,尤其是在分类讨论中不能遗漏.3. 你还有哪些体悟,写下来:____第2课__集合及其基本运算(2)______1. 熟练掌握集合间的交、并、补集的运算以及求集合的子集.2. 能应用分类讨论的思想解决简单的分类讨论问题.1. 阅读:阅读必修1第11~14页.2. 解悟:①从A∩B=A能得到什么结论?②从A∪B=A能得到什么结论?3. 践习:在教材空白处,完成第13页练习第6题,第14页习题第10、13题.基础诊断1. 集合U={1,2}的子集个数为__4__.解析:根据子集个数的公式可得,子集的个数为22=4.2. 已知全集U={1,2,3,4},集合A={1,2},B={2,4},则集合∁U(A∪B)=__{3}__.解析:由题意得,A∪B={1,2,4},所以∁U(A∪B)={3}.3. (1) 已知集合A={y|y=log2(x-1)},集合B={y|y=2x},则A∩B=__(0,+∞)__;(2) 已知集合A={x|y=log2(x-1)},集合B={y|y=2x},则A∩B=__(1,+∞)__;(3) 已知集合A={(x,y)|y=log2x},集合B={(x,y)|y=x-1},则A∩B=__{(1,0),(2,1)}__.解析:(1) 由题意得,集合A=R,集合B={y|y>0},所以A∩B=(0,+∞).(2) 由题意得,集合A={x|x>1},集合B={y|y>0},所以A∩B=(1,+∞).(3) 令log2x=x-1,解得x=1或x=2,所以y=0或y=1,所以A∩B={(1,0),(2,1)}.4. 已知集合A={0,1,2,3},B={-1,0,2},则集合A∪B中所有元素之和为__5__.解析:因为A∪B={-1,0,1,2,3},所以集合A∪B中所有元素之和为-1+0+1+2+3=5.范例导航考向❶对子集的分类讨论例1已知集合A={2,5},B={x|x2+px+q=0,x∈R}.(1) 若B={5},求p,q的值;(2) 若A∩B=B,求实数p,q满足的条件.解析:(1) 因为B={5},所以方程x2+px+q=0有两个相等的实根5,所以5+5=-p ,5×5=q ,所以p =-10,q =25. (2) 因为A ∩B =B ,所以B ⊆A . 当B =∅时,Δ=p 2-4q <0,即p 2<4q ; 当B ={2}时,可求得p =-4,q =4; 当B ={5}时,可求得p =-10,q =25; 当B ={2,5}时,可求得p =-7,q =10. 综上所述,实数p ,q 满足的条件为p 2<4q 或⎩⎪⎨⎪⎧p =-4,q =4或⎩⎪⎨⎪⎧p =-10,q =25或⎩⎪⎨⎪⎧p =-7,q =10.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1) 当m =3时,求A ∩∁R B ;(2) 若A ∩B ={x |-1<x <4},求实数m 的值. 解析:(1) 当m =3时,B ={x |-1<x <3}, 则∁R B =(-∞,-1]∪[3,+∞). 又因为A =(-1,5], 所以A ∩∁R B =[3,5].(2) 因为A =(-1,5],A ∩B ={x |-1<x <4},所以4是方程-x 2+2x +m =0的一个根, 所以-42+2×4+m =0,解得m =8. 此时集合B ={x |-2<x <4},符合题意. 因此实数m 的值为8.考向❷ 对集合中元素的分类讨论例2 已知集合A ={y|y =-2x ,x ∈[2,3]},B ={x|x 2+3x -a 2-3a>0}.(1) 当a =4时,求A ∩B ;(2) 若A ⊆B ,求实数a 的取值范围. 解析:(1) 由题意得,A =[-8,-4],当a =4时,B =(-∞,-7)∪(4,+∞), 所以A ∩B =[-8,-7).(2) 方程x 2+3x -a 2-3a =0的两根分别为a ,-a -3. ①当a =-a -3,即a =-32时,B =⎝⎛⎭⎫-∞,-32∪(-32,+∞),满足A ⊆B ; ②当a<-a -3,即a<-32时,B =(-∞,a)∪(-a -3,+∞),则a>-4或-a -3<-8,解得-4<a<-32;③当a>-a -3,即a>-32时,B =(-∞,-a -3)∪(a ,+∞), 则a<-8或-a -3>-4,解得-32<a<1.综上所述,实数a 的取值范围是(-4,1).已知集合A ={x|x 2+2x -8>0},B ={y|y =x 2-2x +2,x ∈R},C ={x |(x -a )(x +4)≤0,a ∈R}.(1) 求A ∩B ;(2) 若∁R A ⊆C ,求实数a 的取值范围.解析:(1) 因为x 2+2x -8>0,解得x >2或x <-4, 所以A =(-∞,-4)∪(2,+∞). 因为y =x 2-2x +2=(x -1)2+1≥1, 所以B =[1,+∞), 所以A ∩B =(2,+∞). 综上所述,A ∩B =(2,+∞). (2) 因为A =(-∞,-4)∪(2,+∞), 所以∁R A =[-4,2].因为∁R A ⊆C ,且C ={x |(x -a )(x +4)≤0,a ∈R},所以a ≥2,所以a 的取值范围为[2,+∞).考向❸ 对自变量系数的分类讨论例3 已知集合A ={x|0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x|-12<x ≤2.(1) 若A ⊆B ,求实数a 的取值范围; (2) 若B ⊆A ,求实数a 的取值范围;(3) A 、B 能否相等?若能,求出a 的值;若不能,试说明理由. 解析:对于不等式0<ax +1≤5,当a =0时,0<1<5恒成立,即x ∈R ,集合A =R ; 当a >0时,-1a <x ≤4a ,即集合A ={x |-1a <x ≤4a };当a <0时,4a ≤x <-1a ,即集合A ={x |4a ≤x <-1a }.(1) 若A 是B 的子集,则当a =0时,不满足题意; 当a >0时,需要满足⎩⎨⎧-1a ≥-12,4a≤2,解得a ≥2;当a <0时,需要满足⎩⎨⎧4a >-12,-1a ≤2,解得a <-8. 综上所述,a 的取值范围是(-∞,-8)∪[2,+∞).(2) 若B 是A 的子集,则当a =0时,满足题意; 当a >0时,需要满足⎩⎨⎧-1a ≤-12,4a≥2,解得0<a ≤2;当a <0时,需要满足⎩⎨⎧-1a >2,4a ≤-12,解得-12<a <0.综上所述,a 的取值范围是⎝⎛⎦⎤-12,2. (3) 当A =B 时,需满足A ⊆B 且B ⊆A ,即同时满足(1)和(2),所以a =2.自测反馈1. 设U 为全集,集合A 为U 的子集,则A ∩A =__A__;A ∪A =__A__;A ∩∅=__∅__;A ∪∅=__A__;A ∪∁U A =__U__;A ∩∁U A =__∅__.2. 满足{1,3}∪A={1,3,5}的集合A的个数是__4__.解析:因为{1,3}∪A={1,3,5},所以A={5}或{1,5}或{3,5}或{1,3,5},共有4个.3. 对于集合A,B,我们将集合{x|x∈A,且x∉B}叫作集合A与B的差集,记作A-B.(1) 若A={1,2,3,4,5},B={4,5,6,7,8},则A-B=__{1,2,3}__;B-A =__{6,7,8}__;(2) 如果A-B=∅,那么集合A与B之间的关系是__A⊆B__.4. 已知集合P={y=x2+1},Q={y|y=x2+1},E={x|y=x2+1},F={(x,y)|y=x2+1},则与G={x|x≥1}为同一集合的是__Q__.解析:集合P中y=x2+1就是这个集合中的一个元素;集合Q={y|y=x2+1}={y|y≥1},与集合G为同一集合;集合E={x|y=x2+1}=R;集合F是一个点集,所以与集合G为同一集合的是Q.1. 区分点集和数集在书写上的不同.2. 解题时,注意分类讨论、数形结合等思想方法的运用.3. 你还有哪些体悟,写下来:____第3课__逻辑联结词与量词____1. 能正确对含有一个量词的命题进行否定.2. 能正确判断用“或”“且”“非”联结的命题的真假.1. 阅读:阅读选修21第10~18页.2. 解悟:①含有一个量词的命题的否定分别是什么?②由简单逻辑联结词构成的命题的真假怎么判断?3. 践习:在教材空白处,完成第15页练习第2题;第18页习题第4题.基础诊断2. 命题“∃x ∈R ,2x >0”的否定是__∀x ∈R ,2x ≤0__.3. 下列四个命题:①3≤π;②1≥1;③π≤e ;④2<3或3<2.其中假命题有__1__个. 解析:①②④正确,③错误.4. 已知命题“∃x ∈[1,2],x 2+2x +a ≥0”为真命题,则实数a 的取值范围是__[-8,+∞)__.解析:原命题的否定为∀x ∈[1,2],x 2+2x +a<0.因为y =x 2+2x 在区间[1,2]上单调递增,所以x 2+2x ≤8<-a ,所以a<-8.根据含有逻辑联结词的命题的真假判断,可知原命题中a 的取值范围是a<-8的补集,即a ≥-8,故a 的取值范围是[-8,+∞).范例导航考向❶ 以函数的单调性和值域为背景,求命题的真假所对应参数的取值范围 例1 设命题p :函数f(x)=⎝⎛⎭⎫a -32x是R 上的减函数;命题q :函数g (x )=x 2-4x +3在区间[0,a ]上的值域为[-1,3].若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.解析:因为“p 且q ”为假命题,“p 或q ”为真命题,所以命题p ,q 中有且仅有一个命题为真命题.若命题p 为真,则0<a -32<1,所以32<a <52;若命题q 为真,则g (x )=x 2-4x +3=(x -2)2-1在[0,a ]上的值域为[-1,3],故⎩⎪⎨⎪⎧a ≥2,a 2-4a +3≤3,解得2≤a ≤4. ①若p 真q 假,则⎩⎪⎨⎪⎧32<a <52,a <2或a >4,所以32<a <2;②若p 假q 真,则⎩⎪⎨⎪⎧2≤a ≤4,a ≤32或a ≥52,所以52≤a ≤4.综上所述,实数a 的取值范围为⎝⎛⎭⎫32,2∪⎣⎡⎦⎤52,4.已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.解析:因为函数y =a x 在R 上单调递增, 所以命题p :a >1.因为不等式ax 2-ax +1>0对∀x ∈R 恒成立, 所以a >0且a 2-4a <0,解得0<a <4, 所以命题q :0<a <4.因为“p 且q ”为假,“p 或q ”为真, 所以p ,q 中必是一真一假.若p 真q 假,则⎩⎪⎨⎪⎧a >1,a ≥4,解得a ≥4;若p 假q 真,则⎩⎪⎨⎪⎧0<a ≤1,0<a <4,解得0<a ≤1.综上所述,a 的取值范围为(0,1]∪[4,+∞).考向❷ 以函数的能成立和恒成立为背景,求命题的真假所对应参数的取值范围 例2 已知命题p :∃x ∈R ,|sin x |>a 有解;命题q :∀x ∈R ,ax 2+2ax +4>0恒成立.若命题“p 或q ”是真命题,命题“p 且q ”是假命题,求实数a 的取值范围.解析:命题p :∃x ∈R ,|sin x |>a 有解,则a <1;由命题q 得,a =0或⎩⎪⎨⎪⎧a >0,Δ<0,解得0<a <4,所以命题q :0≤a <4.因为命题“p 或q ”是真命题,命题“p 且q ”是假命题,所以命题p ,q 中有且仅有一个真命题.若p 真q 假,则⎩⎪⎨⎪⎧a <1,a ≥4或a <0,解得a <0;若p 假q 真,则⎩⎪⎨⎪⎧a ≥1,0≤a <4,解得1≤a <4.综上所述,实数a 的取值范围是(-∞,0)∪[1,4).已知m ∈R ,设命题p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0恒成立;命题q :∃x ∈[1,2],log 12(x 2-mx +1)<-1成立,如果“p ∨q ”为真命题,“p ∧q ”为假命题,求实数m的取值范围.解析:若p 为真,则∀x ∈[-1, 1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3, 所以f (x )在区间[-1,1]上的最小值为-3, 所以4m 2-8m ≤-3,解得12≤m ≤32,所以当p 为真时,12≤m ≤32;若q 为真,则∃x ∈[1,2], x 2-mx +1>2成立, 所以∃x ∈[1,2],m <x 2-1x 成立.设g (x )=x 2-1x =x -1x,易知g (x )在区间[1,2]上是增函数, 所以g (x )的最大值为g (2)=32,所以m <32,所以当q 为真时,m <32.因为“p ∨q ”为真命题,“p ∧q ”为假命题, 所以p 与q 必是一真一假,当p 真q 假时,⎩⎨⎧12≤m ≤32,m ≥32,所以m =32;当p 假q 真时,⎩⎨⎧m <12或m >32,m <32,所以m <12.综上所述,m 的取值范围是{m |m <12或m =32}.考向❸ 以圆锥曲线为背景,求命题的真假所对应参数的取值范围例3 已知k 为实常数,命题p :方程x 22k -1+y 2k -1=1表示椭圆;命题q :方程x 24+y 2k -3=1表示双曲线.(1) 若命题p 为真命题,求k 的取值范围;(2) 若命题“p 或q ”为真命题,“p 且q ”为假命题,求k 的取值范围. 解析:(1) 若命题p 为真命题,则⎩⎪⎨⎪⎧2k -1>0,k -1>0,2k -1≠k -1,解得k>1,即k 的取值范围是(1,+∞). (2) 若命题q 为真命题,则k -3<0,即k<3. 因为“p 或q ”为真命题,“p 且q ”为假命题, 所以p ,q 必是一真一假.当p 真q 假时,⎩⎪⎨⎪⎧k>1,k ≥3, 解得k ≥3;当p 假q 真时,⎩⎪⎨⎪⎧k ≤1,k<3,解得k ≤1.综上所述,k 的取值范围是(-∞,1]∪[3,+∞).自测反馈1. 命题“∀x>0,x +1>x ”的否定是.2. 若命题“p 且q ”是假命题,“非q ”是假命题,则p 是__假__命题.(填“真”或“假”)解析:因为“p 且q ”为假命题,则命题p ,q 中必是一真一假.又因为“非q ”是假命题,所以q 为真命题,所以p 为假命题.3. 若命题“∃x ∈R ,x 2+2mx +m ≤0”是真命题,则实数m 的取值范围是__(-∞,0)∪[1,+∞)__.解析:由题意得Δ=4m 2-4m ≥0,解得m ≤0或m ≥1,故实数m 的取值范围是(-∞,0]∪[1,+∞).____第4课__充分条件和必要条件____1. 会分析四种命题之间的相互关系及判断命题的真假.2. 会判断充分条件、必要条件、充要条件.1. 阅读:阅读选修21第5~9页.2. 解悟:①命题的真假性一定是确定的;②四种命题之间有什么关系?③如何判断充分条件、必要条件?3. 践习:在教材空白处,完成第8~9页习题第2、4题.基础诊断1. 若a∈R,则“a=0”是“a(a-1)=0”的__充分不必要__条件.解析:因为a(a-1)=0,解得a=0或a=1,所以“a=0”是“a(a-1)=0”的充分不必要条件.2. 若f(x)是定义在R上的函数,则“f(0)=0”是“函数f(x)为奇函数”的__必要不充分__条件.解析:函数f(x)是奇函数,则f(0)=0一定成立;若f(0)=0,则函数f(x)不一定是奇函数,可能为偶函数,也可能既不是奇函数也不是偶函数.故“f(0)=0”是“函数f(x)为奇函数”的必要不充分条件.3. 已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是__若a+b +c≠3,则a2+b2+c2<3__.4. 在命题“若ac2>bc2,则a>b”及其逆命题、否命题、逆否命题中,真命题共有__2__个.解析:原命题:因为ac2>bc2,c2>0,所以a>b,所以原命题为真命题,所以原命题的逆否命题也为真命题;原命题的逆命题为“若a>b,则ac2>bc2”,当c2=0时,a=b,所以逆命题为假命题,所以原命题的否命题也为假命题.故真命题共有2个.范例导航考向❶对充分条件、必要条件中集合包含关系的理解例1设集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.(1) 若a=3,求A∪B;(2) 设命题p:x∈A;命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.解析:(1) 解不等式x2+2x-3<0,得-3<x<1,即A=(-3,1).当a=3时,由|x+3|<1,解得-4<x<-2,即集合B=(-4,-2),所以A∪B=(-4,1).(2) 因为p是q成立的必要不充分条件,所以集合B是集合A的真子集.又集合A=(-3,1),B=(-a-1,-a+1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是[0,2].设函数y =lg (-x 2+4x -3)的定义域为A ,函数y =2x +1,x ∈(0,m)的值域为B.(1) 当m =2时,求A ∩B ;(2) 若“x ∈A ”是“x ∈B ”的必要不充分条件,求实数m 的取值范围. 解析:(1) 由-x 2+4x -3>0,解得1<x<3, 所以A =(1,3). 因为函数y =2x +1在区间(0,m)上单调递减, 所以y ∈⎝⎛⎭⎫2m +1,2,即B =⎝⎛⎭⎫2m +1,2,所以当m =2时,B =⎝⎛⎭⎫23,2, 所以A ∩B =(1,2). (2) 由题意得m>0.因为“x ∈A ”是“x ∈B ”的必要不充分条件, 所以B A ,即⎝⎛⎭⎫2m +1,2(1,3),所以2m +1≥1,解得0<m ≤1,故实数m 的取值范围为(0,1]. 考向❷ 对集合中元素的分类讨论例2 已知非空集合A ={x|x -2x -(3a +1)<0},B ={x|x -a 2-2x -a<0}.(1) 当a =12时,求∁R B ∩A ;(2) 命题p :x ∈A ;命题q :x ∈B .若q 是p 的必要条件,求实数a 的取值范围. 解析:(1) 当a =12时,A =⎩⎨⎧⎭⎬⎫x |2<x <52,B =⎩⎨⎧⎭⎬⎫x |12<x <94,∁R B ={x |x ≤12或x ≥94},所以∁R B ∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52.(2) 由q 是p 的必要条件可得A ⊆B . 由a 2+2>a ,得B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1},由⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;②当3a +1=2,即a =13时,A =∅,符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13.综上所述,a ∈⎣⎢⎡⎦⎥⎤-12,3-52.已知命题“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题. (1) 求实数m 的取值集合M ;(2) 设不等式(x -a )(x +a -2)<0的解集为N ,若“x ∈N ”是“x ∈M ”的必要条件,求实数a 的取值范围.解析:(1) 由题意知,方程x 2-x -m =0在区间(-1,1)上有解,即m 的取值范围即为函数y =x 2-x 在区间(-1,1)上的值域,易得-14≤m <2,所以M =⎣⎡⎭⎫-14,2. (2) 因为“x ∈N ”是“x ∈M ”的必要条件,所以M ⊆N . 当a =1时,集合N 为空集,不满足题意;当a >2-a ,即a >1时,此时集合N ={x |2-a <x <a },则⎩⎪⎨⎪⎧2-a <-14,a ≥2,解得a >94;当a <2-a ,即a <1时,此时集合N ={x |a <x <2-a },则⎩⎪⎨⎪⎧a <-14,2-a ≥2,解得a <-14.综上所述,实数a 的取值范围为(-∞,-14)∪(94,+∞).考向❸ 对逆否命题的综合运用自测反馈1. “三个数a,b,c成等比数列”是“b2=ac”的__充分不必要__条件.解析:若a,b,c成等比数列,根据等比数列的性质可得b2=ac;若a=0,b=0,c=2,则b2=ac,但a,b,c不成等比数列,所以“三个数a,b,c成等比数列”是“b2=ac”的充分不必要条件.2. “a<b”是“ln a<ln b”的__必要不充分__条件.解析:若a=-2,b=-1,则a<b,但ln a<ln b不成立;因为函数y=ln x在定义域上单调递增,所以当ln a<ln b时,a<b,所以“a<b”是“ln a<ln b”的必要不充分条件.3. 给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cosα<cosβ”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2,x∈R为奇函数”的充要条件.其中正确命题的序号为__③__.解析:①因为函数y=3x是R上的增函数,所以“a>b”是“3a>3b”的充要条件,故①是假命题;②若α=3π2,β=π2,则α>β,但cos α=cos β,充分性不得证,若α=3π2,β=2π,cos α<cos β,但α<β,必要性不得证,所以“α>β”是“cos α<cos β”的既不充分又不必要条件,故②是假命题;③若a =0,则f (x )=x 3,x ∈R ,f (-x )=-f (x ),且定义域关于原点对称,所以函数f (x )是奇函数,若f (x )=x 3+ax (x ∈R)是奇函数,则f (-x )=-f (x )对任意的x ∈R 恒成立,即(-x )3+a (-x )2=-(x 3+ax 2),即ax 2=-ax 2,即a =0,所以“a =0”是“函数f (x )=x 3+ax ,x ∈R 为奇函数”的充要条件,故③是真命题,故填③.4. 记不等式x 2+x -6<0的解集为集合A ,函数y =lg (x -a)的定义域为集合B.若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为__(-∞,-3]__.解析:由x 2+x -6<0得-3<x<2,即A =(-3,2),由x -a>0,得x>a ,即B =(a ,+∞).若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆B ,所以a ≤-3,故实数a 的取值范围为(-∞,-3].1. 否命题既要否定条件,又要否定结论;命题的否定只否定结论.2. 原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆否命题的两个命题的真假性相同.3. 你还有哪些体悟,写下来:第二章 函 数____第5课__函数的概念____1. 体会函数是描述两个变量之间依赖关系的重要数学模型,理解函数的概念.2. 了解构成函数的要素有定义域、对应法则、值域,会求一些简单函数的定义域和值域.3. 了解映射的概念,进一步了解函数是非空数集到非空数集的映射.1. 阅读:必修1第23~27页及第46页.2. 解悟:①读懂函数定义,并思考初中的函数定义与高中课本函数的定义是否相同?《函数》这一章节为何置于《集合》章节之后?②圈画函数定义中的关键词,准确理解函数的概念,并思考式子y 2=x 中变量y 是变量x 的函数吗?为什么?③阅读第46页,思考映射和函数有什么区别和联系? 怎样的映射不是函数,你能举例吗?④函数的三要素有哪些?怎样才能算相同的函数?至少需要满足几个条件?3. 践习:在教材空白处,完成第26~27页练习第4、6、7题.基础诊断1. 下列对应法则f 中,不是从A 到B 的函数的序号是__③__.①A =⎩⎨⎧⎭⎬⎫12,1,32,B ={-6,-3,1},f ⎝⎛⎭⎫12=-6,f(1)=-3,f ⎝⎛⎭⎫32=1; ②A ={1,2,3},B ={7,8,9},f(1)=f(2)=7,f(3)=8; ③A =B ={1,2,3},f(x)=2x -1; ④A =B ={x|x ≥1},f(x)=2x +1;⑤A =Z ,B ={-1,1},当n 为奇数时,f (n )=-1;当n 为偶数时,f (n )=1.解析:根据函数的定义,①②④⑤中,对于集合A 中的每一个元素,在集合B 中都有唯一的元素与它对应;在③中f (3)=5,集合B 中没有元素与集合A 中的3对应,故不是从A 到B 的函数.2. 判断下面说法是否正确.(在括号中画“√”或“”) (1) f(x)=|x|x 与g(x)=⎩⎪⎨⎪⎧1, x ≥0,-1, x<0表示同一函数.()解析:因为函数f(x)的定义域为{x|x ≠0},函数g(x)的定义域为R ,定义域不同,所以表示的不是同一函数,故是错误的.(2) 若两个函数的定义域与值域相同,则这两个函数相同. ()解析:若两个函数的定义域、值域和对应法则都相同,则这两个函数相同,故是错误的.(3) 若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.()解析:若函数f (x )的定义域为{x |1≤x <3},所以1≤2x -1<3,解得1≤x <2,所以函数f (2x -1)的定义域为{x |1≤x <2},故是错误的.(4) 函数y =f (x )的图象与直线x =1的交点最多有1个.( √ )解析:根据函数的定义,对于定义域内的任意一个自变量x ,存在唯一的函数值y 与之对应,所以函数y =f (x )的图象与直线x =1的交点最多有一个.(5) 函数f (x )=x 2+4+1的值域是[1,+∞).()解析:因为x 2≥0,所以x 2+4≥4,所以x 2+4≥2,所以f (x )=x 2+4+1≥3,所以函数f (x )=x 2+4+1的值域是[1,+∞)是错误的.(6) f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.( √ )解析:因为函数f (x )与函数g (x )的定义域、对应法则和值域都相同,故函数f (x )与函数g (x )是同一函数.3. 设一函数的解析式为f(x)=2x +3,它的值域为{-1,2,5,8},则函数f(x)的定义域为__⎩⎨⎧⎭⎬⎫-2,-12,1,52__.解析:当f(x)=-1时,2x +3=-1,解得x =-2; 当f(x)=2时,2x +3=2,解得x =-12;当f(x)=5时,2x +3=5,解得x =1; 当f(x)=8时,2x +3=8,解得x =52,所以函数f(x)的定义域为⎩⎨⎧⎭⎬⎫-2,-12,1,52.4. 函数y =f(x +1)的值域为[3,5],则函数y =2f(x)的值域为__[6,10]__.解析:因为函数y =f(x +1)的值域为[3,5],函数f(x)是将函数f(x +1)的图象向右平移1个单位长度得到的,所以f(x)的值域也为[3,5],所以2f(x)的值域为[6,10].5. 若函数y =ax 2+ax +2的定义域为R ,则a 的取值范围是__[0,8]__.解析:由题意得a =0或⎩⎪⎨⎪⎧a >0,a 2-4a ×2≤0,解得0≤a ≤8,所以a ∈[0,8].范例导航考向❶ 求函数的定义域 例1 求下列函数的定义域:(1) y =12-|x|+x 2-1; (2) y =xlog 12(2-x ).解析:(1) 由题意得⎩⎪⎨⎪⎧2-|x|≠0,x 2-1≥0,解得x ≠±2或x ≥1或x ≤-1,故函数的定义域为(-∞,-2)∪(-2,-1]∪[1,2)∪(2,+∞).(2) 由题意0<2-x<1,解得1<x<2,故函数的定义域为(1,2).已知函数f(x)=2x -11-x,若函数y =g(x)与y =f(x)的图象关于原点对称.记y =g(x)的定义域为A ,不等式x 2-(2a -1)x +a(a -1)≤0的解集为B.若A 是B 的真子集,求实数a 的取值范围.解析:由题意得g(x)=--2x -11+x, 所以⎩⎪⎨⎪⎧1+x ≠0,-2x -11+x ≥0,解得-1<x ≤-12,所以A =⎝⎛⎦⎤-1,-12. 解不等式x 2-(2a -1)x +a(a -1)≤0, 解得a -1≤x ≤a , 即B =[a -1,a]. 因为A 是B 的真子集,所以⎩⎪⎨⎪⎧a -1≤-1,a ≥-12,解得-12≤a ≤0, 故a 的取值范围是⎣⎡⎦⎤-12,0.考向❷ 求函数的值域 例2 求下列函数的值域:(1) y =x 2+2x(x ∈[0,3]); (2) y =2x -3x +1(x ≤-2); (3) y =x -1-2x ; (4) y =log 3x +log x 3-1.解析:(1) 因为y =x 2+2x =(x +1)2-1, 所以该函数在[0,3]上单调递增,所以该函数在[0,3]上的最大值为15,最小值为0, 所以函数的值域为[0,15]. (2) 由题意得y =2x -3x +1=2-5x +1. 因为x ≤-2,所以-1≤1x +1<0, 所以0<-5x +1≤5,所以2<2-5x +1≤7,故该函数的值域为(2,7].(3) 令1-2x =t ,t ≥0,所以x =1-t 22,所以原函数可转化为y =1-t 22-t =-12(t +1)2+1,因为t ≥0,所以函数在[0,+∞)上单调递减, 所以y ≤12,所以原函数的值域为⎝⎛⎦⎤-∞,12. (4) y =log 3x +log x 3-1=log 3x +1log 3x-1,所以若log 3x>0,则log 3x +1log 3x -1≥1,当且仅当log 3x =1log 3x ,即log 3x =1时取等号,此时y ≥1;若log 3x<0,则-⎝⎛⎭⎫-log 3x +1-log 3x -1≤-2-1=-3,当且仅当log 3x =-1时等号成立,此时y ≤-3,所以原函数的值域为(-∞,-3]∪[1,+∞).求下列函数的值域: (1) y =x 2-xx 2-x +1;(2) y =4x 2+8x +136(x +1)(x>-1).解析:(1) 由题意得y =x 2-x x 2-x +1=1-1x 2-x +1=1-1⎝⎛⎭⎫x -122+34. 因为⎝⎛⎭⎫x -122+34≥34, 所以0<1⎝⎛⎭⎫x -122+34≤43,所以-13≤y<1, 故函数的值域为⎣⎡⎭⎫-13,1. (2) 由题意得y =4x 2+8x +136(x +1)=4(x +1)2+96(x +1)=23(x +1)+32(x +1).因为x>-1,所以x +1>0,所以23(x +1)+32(x +1)≥2,当且仅当23(x +1)=32(x +1),即x =12时取等号,故函数的值域为[2,+∞). 考向❸ 函数定义域和值域的综合 例3 已知函数f(x)=1+x +1-x.(1) 求函数f(x)的定义域和值域;(2) 设f(x)=a2{[f(x)]2-2}+f(x)(a 为实数),当a<0时,求f(x)的最大值g(a).解析:(1) 由题意得⎩⎪⎨⎪⎧1+x ≥0,1-x ≥0,解得-1≤x ≤1,所以函数的定义域为[-1,1].又[f(x)]2=2+21-x 2∈[2,4],f(x)≥0, 所以f(x)∈[2,2].(2) f(x)=a2{[f(x)]2-2}+f(x)=a 1-x 2+1+x +1-x ,令t =f(x)=1+x +1-x ,则1-x 2=12t 2-1,所以f(x)=m(t)=a ⎝⎛⎭⎫12t 2-1+t =12at 2+t -a ,t ∈[2,2].由题意知g(a)即为函数m(t)=12at 2+t -a ,t ∈[2,2]的最大值,t =-1a 是抛物线m(t)=12at 2+t -a 的对称轴.因为a<0时,函数y =m(t),t ∈[2,2]的图象是开口向下的抛物线的一段, ①若t =-1a ∈(0,2],即a ≤-22,则g(a)=m(2)=2;②若t =-1a ∈(2,2],即-22<a ≤-12,则g(a)=m ⎝⎛⎭⎫-1a =-a -12a ; ③若t =-1a ∈(2,+∞),即-12<a<0,则g(a)=m(2)=a +2.综上所述,g(a)=⎩⎪⎨⎪⎧a +2, -12<a<0,-a -12a , -22<a ≤-12,2, a ≤-22.自测反馈1. 函数y =ln (x +1)-x 2-3x +4的定义域为(-1,1).解析:由题意得⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得⎩⎪⎨⎪⎧x>-1,-4<x<1,所以-1<x<1,故定义域为(-1,1). 2. 若函数f(x)=3x -5kx 2+4kx +3的定义域为R ,则实数k 的取值范围是__⎣⎡⎭⎫0,34__. 解析:由题意得kx 2+4kx +3=0无解,所以k =0或⎩⎪⎨⎪⎧k ≠0,Δ=16k 2-12k <0, 解得0≤k <34,故实数k 的取值范围是⎣⎡⎭⎫0,34. 3. 若函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域为__(-∞,0)∪⎝⎛⎦⎤12,2__. 解析:因为函数y =2x -1的定义域是(-∞,1)∪[2,5),且在区间(-∞,1)和[2,5)上单调递减,当x ∈(-∞,1)时,y<0;当x ∈[2,5)时,12<y ≤2,即函数的值域为(-∞,0)∪⎝⎛⎦⎤12,2. 4. 若函数y =ax +31-2x的值域为(-∞,-2)∪(-2,+∞),则实数a 的值为__4__. 解析:由题意得ax +31-2x ≠-2,化简得(a -4)x ≠-5,要使x 取任意值时,(a -4)x ≠-5恒成立,所以a =4.故实数a 的值为4.1. 初中函数是看成刻画和描述两个变量之间依赖关系的数学模型,高中将函数定义为建立在两个非空数集上的单值对应,同时高中函数的种类有所增加,如指数函数、对数函数、幂函数、三角函数等.2. 准确理解函数定义中的关键词(非空数集,对应法则,每一个,唯一,定义域)3. 你还有哪些体悟,写下来:____第6课__函数的表示方法____1. 了解构成函数的三要素,进一步理解函数的概念.2. 掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数.3. 掌握求解函数解析式的几种类型及常用方法.4. 了解简单的分段函数,并能简单地应用.1. 阅读:阅读必修1第33~34页.2. 解悟:①函数的表示方法有哪些?回顾例1并比较三种表示方法的优劣;②你能在书本中找到分段函数的定义吗?分段函数是一个函数还是多个函数?③如何求分段函数的值域或最值?④函数的解析式是函数的一种表示方法,那么求函数解析式,你知道哪些方法?3. 践习:在教材空白处,完成第35页练习第3题和习题第2、4题.基础诊断1. 已知函数f(x)=11+x ,g(x)=x 2+2,则f(2)=__13__;g(2)=__6__;f(g(2))=__17__;f(g(x))=__1x +3__.解析:f(2)=11+2=13;g(2)=22+2=6; f(g(2))=f(6)=11+6=17;f(g(x))=11+x 2+2=1x 2+3. 2. 已知函数 f(x)=⎩⎪⎨⎪⎧log 3x , x>0,2x , x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=__14__. 解析:因为f ⎝⎛⎭⎫19=log 319=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=f(-2)=2-2=14. 3. 若f(x +1)=x 2+4x +1,则f(x)=x 2+2x -2.解析:因为f(x +1)=x 2+4x +1,令t =x +1,则x =t -1,所以f(t)=(t -1)2+4(t -1)+1=t 2+2t -2,故f(x)=x 2+2x -2.4. 若等腰三角形的周长是20,底边长y 是一腰长x 的函数,则y =__20-2x ,x ∈(5,10)__.解析:因为△ABC 是等腰三角形且周长为20,△ABC 的周长=2×腰长+底边长,所以20=2x +y ,即y =20-2x.又y<2x<20,解得5<x<10,故y =20-20x ,x ∈(5,10).5. 设二次函数f(x)的最大值是13,f(3)=f(-1)=5,则f(x)的解析式为__f(x)=-2x 2+4x +11__.解析:由题意可设f(x)=a(x -1)2+13,因为f(3)=f(-1)=5,所以a ×(-1-1)2+13=5,解得a =-2,所以f(x)=-2(x -1)2+13=-2x 2+4x +11.范例导航考向❶ 求函数的解析式例1 (1) 已知f(x)是一次函数,且满足3f(x +1)-2f(x -1)=2x +17,求函数f(x)的解析式;(2) 已知函数f(x)满足2f(x)+f ⎝⎛⎭⎫1x =3x ,求函数f(x)的解析式. 解析:(1) 设f(x)=kx +b ,则由题意得3[k(x +1)+b]-2[k(x -1)+b]=2x +17,即kx +5k +b =2x +17,所以⎩⎪⎨⎪⎧k =2,5k +b =17,解得⎩⎪⎨⎪⎧k =2,b =7,所以f(x)=2x +7.(2) 因为2f(x)+f ⎝⎛⎭⎫1x =3x ,① 用1x 代替x ,则2f ⎝⎛⎭⎫1x +f(x)=3x ,② 由①×2-②得,4f(x)-f(x)=6x -3x ,即3f(x)=6x -3x ,所以f(x)=2x -1x.(1) 已知f(x) 为二次函数,且满足f(0)=0,f(x +1)-f(x)=x +1,求函数f(x)的解析式; (2) 设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x 2+x +2,求函数f(x)和g(x)的解析式.解析:(1) 由题意可设f(x)=ax 2+bx. 因为f(x +1)-f(x)=x +1,所以a(x +1)2+b(x +1)-(ax 2+bx)=x +1, 整理得2ax +a +b =x +1,所以⎩⎪⎨⎪⎧2a =1,a +b =1,解得⎩⎨⎧a =12,b =12,所以f(x)=12x 2+12x.(2) 由题意可知f(x)=f(-x),g(-x)=-g(x). 因为f(x)+g(x)=x 2+x +2,① 所以f(-x)+g(-x)=x 2-x +2, 即f(x)-g(x)=x 2-x +2.②由①+②得,2f(x)=2x 2+4,即f(x)=x 2+2, 由①-②得,2g(x)=2x ,即g(x)=x , 所以f(x)=x 2+2,g(x)=x. 考向❷ 分段函数的解析式例2 如图是函数f(x)的图象,OC 段是射线,曲线OBA 是抛物线的一部分,试写出f(x)的函数表达式.解析:当x ≤0时,由图象过点(-2,-2),(0,0)可知,直线OC 的斜率为1,所以射线OC 的函数表达式为y =x(x ≤0);当x>0时,f(x)是二次函数, 所以设f(x)=a(x -1)2+b.由图可知,则⎩⎪⎨⎪⎧a ×(1-1)2+b =-1,a ×(2-1)2+b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,所以f(x)=(x -1)2-1=x 2-2x.故f(x)=⎩⎪⎨⎪⎧x , x<0,x 2-2x , x ≥0.设函数f(x)=|x +1|+|x -2|.(1) 将f(x)写成分段函数,并作出y =f(x)的图象; (2) 解不等式f(x)>5,并求出f(x)的最小值. 解析:(1) 当x +1<0,即x<-1时,x -2<0, 所以f(x)=-x -1-x +2=-2x +1; 当x +1≥0且x -2≤0,即-1≤x ≤2时, f(x)=x +1-x +2=3; 当x -2>0,即x>2时, f(x)=x +1+x -2=2x -1, 所以y =f(x)=⎩⎪⎨⎪⎧1-2x ,x<-1,3, -1≤x ≤2,2x -1, x>2.函数图象为(2) 由题意可知,当x<-1时,1-2x>5,解得x<-2;当x>2时,2x -1>5,解得x>3, 所以f(x)>5的解集为(-∞,-2)∪(3,+∞). 由图可知,f(x)的最小值为3. 考向❸ 由不等式恒成立求函数解析式例3 已知二次函数f(x)=ax 2+bx +c 的图象经过点(-2,0)且不等式2x ≤f(x)≤12x 2+2对∀x ∈R 恒成立.(1) 求函数f (x )的解析式;(2) 若对∀x ∈[-1,1],不等式f (x +t )<f ⎝⎛⎭⎫x 3恒成立,求实数t 的取值范围. 解析:(1) 因为二次函数f (x )=ax 2+bx +c 的图象过点(-2,0), 所以4a -2b +c =0.①因为不等式2x ≤f (x )≤12x 2+2对∀x ∈R 恒成立,所以当x =2时也成立,即4≤4a +2b +c ≤4, 即4a +2b +c =4.②由①②求得b =1,4a +c =2, 所以f (x )=ax 2+x +2-4a , 所以2x ≤ax 2+x +2-4a ≤12x 2+2,即⎩⎪⎨⎪⎧ax 2-x +2-4a ≥0,⎝⎛⎭⎫a -12x 2+x -4a ≤0恒成立,故⎩⎪⎨⎪⎧a >0,Δ=1-4a (2-4a )≤0,a -12<0,Δ=1-4⎝⎛⎭⎫a -12·(-4a )≤0,解得a =14,故c =1,即函数f (x )的解析式为f (x )=14x 2+x +1.(2) 因为对∀x ∈[-1,1],不等式f (x +t )<f ⎝⎛⎭⎫x 3恒成立,即14(x +t +2)2<136(x +6)2恒成立,亦可化得⎝⎛⎭⎫x +t +22-x +66⎝⎛⎭⎫x +t +22+x +66<0, 解得-4x +123<t <-2x 3.又因为x ∈[-1,1],所以-83<t <-23,故实数t 的取值范围为⎝⎛⎭⎫-83,-23. 自测反馈1. 已知函数f(x)的定义域为(0,+∞),且f(x)=2f ⎝⎛⎭⎫1x ·x -1,则f(x)=33. 解析:因为f(x)=2f ⎝⎛⎭⎫1x ·x -1①,用1x 代替x 得f ⎝⎛⎭⎫1x =2f(x)·1x-1②,将②代入①得f(x)=2⎝⎛⎭⎫2f (x )·1x -1·x -1,化简得f(x)=4f(x)-2x -1,即f(x)=23x +13. 2. 若正比例函数f(x)满足f(f(x))=4x ,则f(x)=__±2x__.解析:根据题意可设f(x)=kx ,因为f(f(x))=4x ,所以k(kx)=4x ,即k 2x =4x ,所以k 2=4,解得k =±2,所以f(x)=±2x.3. 已知f(x 2-1)=x 4+x 2-2,则f(x)=__x 2+3x(x ≥-1)__.解析:令x 2-1=t(t ≥-1),则x 2=t +1,所以f(t)=(t +1)2+t +1-2=t 2+3t ,所以f(x)=x 2+3x(x ≥-1).4. 已知实数a ≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a , x<1,-x -2a , x ≥1,若f(1-a)=f(1+a),则实数a 的值为__-34__.解析:因为a ≠0,f(1-a)=f(1+a). 当a>0时,1-a<1<1+a , 则f(1-a)=2(1-a)+a =2-a , f(1+a)=-(1+a)-2a =-1-3a , 所以2-a =-1-3a ,解得a =-32(舍去);当a<0时,1+a<1<1-a ,则f(1-a)=-(1-a)-2a =-a -1,f(1+a)=2(1+a)+a =3a +2,所以-a -1=3a +2,解得a =-34.综上所述,a 的值为-34.5. 已知函数f(x)=⎩⎪⎨⎪⎧-x -1,-1≤x<0,-x +1,0<x ≤1,则f(x)-f(-x)>-1的解集为__⎣⎡⎭⎫-1,-12∪(0,1]__.解析:当-1≤x<0时,0<-x ≤1,所以f(x)-f(-x)=-x -1-(x +1)>-1,即-2x -2>-1,解得x<-12.又因为-1≤x<0,所以-1≤x<-12;当0<x ≤1时,-1≤-x<0,所以f(x)-f(-x)=-x +1-(x -1)>-1, 即-2x +2>-1,解得x<32.又因为0<x ≤1,所以0<x ≤1.综上所述,原不等式的解集为⎣⎡⎭⎫-1,-12∪(0,1].1. 要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域,定义域是使式子有意义的x 的取值范围,同时也要注意变量的实际意义.2. 准确理解分段函数的定义、特点及应用.分段函数是指函数的表达式是分段表示的,它是一个函数.3. 你还有哪些体悟,写下来:___第7课__函数的性质(1)____1. 理解函数的单调性、最大(小)值及其几何意义,能判断或证明一些简单函数的单调性.2. 掌握判断一些简单函数单调性的常用方法.3. 会运用函数图象理解和研究函数的单调性.1. 阅读:必修1第37~39页.2. 解悟:①圈出第37页蓝色框中关于单调函数及单调区间概念中的关键词;②如何求函数的单调区间?有哪些方法?③用定义法判断函数单调性的一般步骤和注意点;④对于基本初等函数,我们一般用什么方法求函数的最值?3. 践习:在教材空白处,完成第40页练习第1、2、5、7、8题.基础诊断1. 函数y =xx -1的单调减区间是__(-∞,1),(1,+∞)__.解析:因为y =x x -1=1+1x -1,所以该函数的单调减区间是(-∞,1),(1,+∞). 2. 已知函数y =f(x)在R 上是增函数,且f (m 2)>f (-m ),则实数m 的取值范围为__(-∞,-1)∪(0,+∞)__.解析:因为y =f (x )在R 上是增函数,且f (m 2)>f (-m ),所以m 2>-m ,即m 2+m >0,解得m >0或m <-1,所以实数m 的取值范围是(-∞,-1)∪(0,+∞).3. 函数y =12x 2-ln x 的单调减区间为__(0,1]__.解析:由题意可知x>0,y′=x -1x ,令y′≤0,则x -1x ≤0,即x 2-1x ≤0,解得-1≤x ≤1且x ≠0.又因为x>0,所以0<x ≤1,故该函数的单调减区间为(0,1].4. 已知函数y =f(x)在R 上是减函数,点A (0,-2),B (-3,2)在其图象上,则不等式-2<f (x )<2的解集为__(-3,0)__.解析:由题意得-2=f (0),2=f (-3),所以-2<f (x )<2,即f (0)<f (x )<f (-3).又因为函数f (x )在R 上是减函数,所以-3<x <0,故该不等式的解集为(-3,0).。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练70
随堂巩固训练(70)1. 已知平面外的一条直线上有两点到这个平面的距离相等,则直线与该平面的位置关系是 平行或相交 .解析:分两种情况:①当A ,B 两点在平面α的同侧时,由于点A ,B 到α的距离相等,所以直线AB 与平面α平行;②当A ,B 两点在平面α的两侧,且AB 的中点C 在平面α内时,点A ,B 到α的距离相等,此时直线AB 与平面α相交.综上,直线与平面平行或相交.2. 已知不重合的直线m ,n ,平面α,β,γ.下列条件能得到α∥β的有 ④ .(填序号) ①m ⊂α,n ⊂α,m ∥β,n ∥β;②m ⊂α,n ⊂β,m ∥β,n ∥α;③n ∥α,n ∥β;④n ⊥α,n ⊥β;⑤γ⊥α,γ⊥β.解析:①②③⑤中α与β均可能相交,④能得到α∥β.3. 已知平面α∥平面β,点A ,C ∈α,点B ,D ∈β,则直线AC ∥直线BD 的充要条件是 ④ .(填序号)①AB ∥CD ;②AD ∥CB ;③AB 与CD 相交;④A ,B ,C ,D 四点共面.解析:因为α∥β,要使AC ∥BD ,则直线AC 与BD 是共面直线,即A ,B ,C ,D 四点必须共面.易知①②③的充分性成立,必要性不成立;④是AC ∥BD 的充要条件.4. 若两平面分别过两平行线中的一条,则这两平面的位置关系是 平行或相交 .5. 已知平面α∥β∥γ,两条直线l ,m 分别和平面α,β,γ相交于点A ,B ,C 与点D ,E ,F ,已知AB =6,DE ∶DF =2∶5,则AC = 15 W.解析:由平行平面的性质定理,知AD ∥BE ∥CF ,所以=,所以AC =×AB =AB AC DE DF DF DE×6=15. 526. 下列命题中正确的是 ③ .(填序号)①若两条直线和同一个平面所成的角相等,则这两条直线平行;②若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行;③若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行;④若两个平面都垂直于第三个平面,则这两个平面平行.解析:①中两条直线可能平行、相交或异面;②中两个平面可能平行或相交;④中两个平面可能平行或相交.7. 设m ,n 是平面α内的两条不同的直线,l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是 ② .(填序号)①m ∥β且l 1∥α;②m ∥l 1且n ∥l 2;③m ∥β且n ∥β;④m ∥β且n ∥l 2.解析:要得到α∥β,必须是一个平面内的两条相交直线分别与另一个平面平行;若两个平面平行,则一个平面内的任意一条直线必平行于另一个平面.故②正确.8. 对于平面α与平面β,有下列条件:①α,β都垂直于平面γ;②α,β都平行于平面γ;③α内不共线的三点到β的距离相等;④l ,m 为两条平行直线,且l ∥α,m ∥β;⑤l ,m 是异面直线,且l ∥α,m ∥α,l ∥β,m ∥β. 则可判定平面α与平面β平行的条件是 ②⑤ .(填序号)解析:由面面平行的判定定理及性质定理知,只有②⑤能判定α∥β.9. 给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n.其中真命题的个数为 1 .解析:①中,α∥β或α与β相交;②中,l ∥m 或l 与m 异面;③正确.故真命题的个数为1.10. 给出下列关于互不相同的直线m ,l ,n 和平面α,β的四个命题:①若m ⊂α,l ∩α=A ,点A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α;③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β.其中真命题的序号是 ①②④ .解析:①②④为真命题;③为假命题,l 与m 可以异面,也可以相交.11. 如图,平面α∥平面β,线段AB 分别交平面α,β于M ,N 两点,线段AD 分别交平面α,β于C ,D 两点,线段BF 分别交平面α,β于F ,E 两点,若AM =9,MN =11,NB =15,S △FMC =78.求△END 的面积.解析:因为平面α∥平面β,平面ADN ∩平面α=CM ,平面ADN ∩平面β=DN ,所以CM ∥DN.同理FM ∥EN ,所以====S △FMC S △END12·FM·MC·sin ∠FMC 12·EN·ND·sin ∠END FM·MC EN·ND BM·AM BN·AN =, (15+11)×915×(11+9)3950所以S △END =100.12. 如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,AD 上,AE =AF =4,现将△AEF 沿线段EF 折起到△A′EF 位置,使得A′C =2.6(1) 求五棱锥A′BCDFE 的体积;(2) 在线段A′C 上是否存在一点M ,使得BM ∥平面A′EF ?若存在,求A′M 的长;若不存在,请说明理由.解析:(1) 如图,连结AC ,交EF 于点H ,连结A′H.因为四边形ABCD 是正方形,AE =AF =4,所以H 是EF 的中点,且EF ⊥AH ,EF ⊥CH ,所以EF ⊥A′H.因为A′H ∩CH =H ,A′H ,CH ⊂平面A′HC ,所以EF ⊥平面A′HC.又EF ⊂平面ABCD ,所以平面A′HC ⊥平面ABCD.过点A′作A′O ⊥HC 且与HC 相交于点O ,则A′O ⊥平面ABCD.因为正方形ABCD 的边长为6,AE =AF =4,故A′H =2,CH =4,22所以cos ∠A′HC ===, A ′H 2+CH 2-A ′C 22A ′H·CH 8+32-242×22×4212所以HO =A′H·cos ∠A′HC =,则A′O =,26所以五棱锥A′BCDFE 的体积V =×(62-×4×4)×=. 131262863(2) 线段A′C 上存在点M ,使得BM ∥平面A′EF ,此时A′M =.证明如下: 62如图,连结OM ,BD ,BM ,DM ,且易知BD 过点O.由(1)知HO =HC ,A′M ==A′C ,146214所以OM ∥A′H.又OM ⊄平面A′EF ,A′H ⊂平面A′EF ,所以OM ∥平面A′EF.因为BD ∥EF ,BD ⊄平面A′EF ,EF ⊂平面A′EF ,所以BD ∥平面A′EF.又BD ∩OM =O ,BD ,OM ⊂平面BDM ,所以平面MBD ∥平面A′EF.因为BM ⊂平面MBD ,所以BM ∥平面A′EF.。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练3
随堂巩固训练(3)1. 命题“θ∈⎣⎡⎦⎤π2,π,使得sinθ+cosθ≥1”的否定是__θ∈⎣⎡⎦⎤π2,π,使得sin__θ+cos__θ<1__.2. 命题“若a>b, 则2a >2b ”的否命题为__若a ≤b ,则2a ≤2b __.3. 命题“x ∈⎝⎛⎭⎫0,π2,sinx<1”的否定是__假__命题.(填“真”或“假”) 解析:命题“x ∈⎝⎛⎭⎫0,π2,sinx<1”的否定是“x ∈⎝⎛⎭⎫0,π2,sinx ≥1”.因为x ∈⎝⎛⎭⎫0,π2,所以sinx ∈(0,1),所以原命题的否定是假命题. 4. 命题p :“若ac =b ,则a 、b 、c 成等比数列”,则命题p 的否命题是__假__命题. (填“真”或“假”)解析:命题p :“若ac =b ,则a ,b ,c 成等比数列”的否命题是“若ac ≠b ,则a ,b ,c 不成等比数列”.举出反例,若a =-2,b =-4,c =-8,满足ac ≠b ,但a ,b ,c 是等比数列,故原命题的否命题是假命题.5. 设x ∈R ,函数y =lg(mx 2-4mx +m +3)有意义,则实数m 的取值范围是__[0,1)__.解析:由题意得x ∈R ,使得mx 2-4mx +m +3>0恒成立.当m =0时,3>0恒成立;当m ≠0时,Δ=(-4m)2-4m(m +3)<0,且m>0,解得0<m<1.综上,实数m 的取值范围是[0,1).6. 若命题“x ∈R ,ax 2+4x +a ≤0”为假命题,则实数a 的取值范围是__(2,+∞)__. 解析:因为“x ∈R ,ax 2+4x +a ≤0”为假命题,则“x ∈R ,ax 2+4x +a>0”为真命题.当a =0时,4x>0,解得x>0,不符合题意;当a ≠0时,⎩⎪⎨⎪⎧Δ=42-4a 2<0,a>0,解得a>2,故实数a 的取值范围是(2,+∞).7. 已知命题p :不等式|x -1|>m 的解集为R ;命题q :f(x)=2-m x在区间(0,+∞)上是减函数.若命题“p 或q ”为真命题,“p 且q ”为假命题,则实数m 的取值范围是__[0,2)__.解析:因为不等式|x -1|>m 的解集为R ,所以m<0,即命题p :m<0;若f(x)=2-m x在区间(0,+∞)上是减函数,则2-m>0,解得m<2,即命题q :m<2.因为命题“p 或q ”为真命题,“p 且q ”为假命题,则命题p ,q 一真一假.若p 真,q 假,则⎩⎪⎨⎪⎧m<0,m ≥2,此时无解;若p 假,q 真,则⎩⎪⎨⎪⎧m ≥0,m<2,解得0≤m<2.综上,实数m 的取值范围是[0,2). 8. 已知命题p :c 2<c ;命题q :对x ∈R ,x 2+4cx +1>0.若p ,q 中有且仅有一个是真命题,则实数c 的取值范围是__⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫12,1__. 解析:由c 2<c ,解得0<c<1,即命题p :0<x<1;因为x ∈R ,x 2+4cx +1>0,所以Δ=16c 2-4<0,解得-12<c<12,即命题q :-12<c<12.因为命题p ,q 中有且仅有一个是真命题,所以若p 真,q 假,则⎩⎪⎨⎪⎧0<c<1,c ≥12或c ≤-12,解得12≤c<1;若p 假,q 真,则⎩⎪⎨⎪⎧c ≥1或c ≤0,-12<c<12,解得-12<c ≤0.综上所述,实数c 的取值范围是⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫12,1. 9. 已知命题p :函数y =log a (1-2x)在定义域上单调递增;命题q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.若“p ∨q ”是真命题,则实数a 的取值范围是__(-2,2]__.解析:因为函数y =log a (1-2x)在定义域上单调递增,所以0<a<1,即命题p :0<a<1;因为不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立,所以a =2或⎩⎪⎨⎪⎧a -2<0,Δ=[2(a -2)]2-4(a -2)×(-4)<0,解得-2<a ≤2,即命题q :-2<a ≤2.因为“p ∨q ”是真命题,所以-2<a ≤2,故实数a 的取值范围是(-2,2].10. 若x ∈[1,2],使得不等式x 2-mx +4>0成立,则实数m 的取值范围是__(-∞,5)__.解析:不等式x 2-mx +4>0可化为mx<x 2+4,即x ∈[1,2],使得m<x 2+4x成立.记函数f(x)=x 2+4x =x +4x ,x ∈[1,2],只需m 小于函数f(x)的最大值.由f′(x)=1-4x 2=0,得x =2,当x ∈[1,2]时,f′(x)<0,函数f(x)单调递减,故最大值为f(1)=5,所以实数m 的取值范围是(-∞,5).11. 设命题p :函数y =kx +1在R 上是增函数;命题q :x ∈R ,x 2+(2k -3)x +1=0,如果“p ∧q ”是假命题,“p ∨q ”是真命题,求实数k 的取值范围.解析:因为函数y =kx +1在R 上是增函数,所以k>0. 因为x ∈R ,x 2+(2k -3)x +1=0,所以方程x 2+(2k -3)x +1=0有解,所以Δ=(2k -3)2-4≥0,解得k ≤12或k ≥52. 因为“p ∧q ”是假命题,“p ∨q ”是真命题,所以命题p ,q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧k>0,12<k<52,解得12<k<52; ②若p 假q 真,则⎩⎪⎨⎪⎧k ≤0,k ≤12或k ≥52,解得k ≤0. 综上所述,实数k 的取值范围为(-∞,0]∪(12,52). 12. 设a 为实数,给出命题p :关于x 的不等式⎝⎛⎭⎫12|x -1|≥a 的解集为;命题q :函数f(x)=lg ⎣⎡⎦⎤ax 2+(a -2)x +98的定义域为R ,若命题“p ∨q ”为真,“p ∧q ”为假,求实数a 的取值范围.解析:若p 为真命题,则由0<⎝⎛⎭⎫12|x -1|≤1,解得a>1,即命题p :a>1.若q 为真命题,则关于x 的不等式ax 2+(a -2)x +98>0的解集为R . 当a =0时,-2x +98>0,即x<916,不符合题意,舍去;当a ≠0时,⎩⎪⎨⎪⎧a>0,Δ=(a -2)2-4a ×98<0, 解得12<a<8,所以命题q :12<a<8. 因为命题“p ∨q ”为真,“p ∧q ”为假,所以p 和q 中有且仅有一个是真命题,所以⎩⎪⎨⎪⎧a>1,a ≤12或a ≥8或⎩⎪⎨⎪⎧a ≤1,12<a<8, 解得a ≥8或12<a ≤1. 综上所述,实数a 的取值范围为[8,+∞)∪⎝⎛⎦⎤12,1. 13. 已知m 为实常数,命题p :方程x 22m -y 2m -6=1表示焦点在y 轴上的椭圆;命题q :方程x 2m +1+y 2m -1=1表示双曲线. (1) 若命题p 为真命题,求实数m 的取值范围;(2) 若命题q 为假命题,求实数m 的取值范围;(3) 若命题“p 或q ”为真命题,命题“p 且q ”为假命题,求实数m 的取值范围.解析:(1) 由题意得⎩⎪⎨⎪⎧m -6<0,2m>0,-(m -6)>2m ,解得0<m<2,故当命题p 为真命题时,实数m的取值范围为(0,2).(2) 若命题q 为真命题,则(m +1)(m -1)<0,解得-1<m<1,故当命题q 为假命题时,实数m 的取值范围为(-∞,-1]∪[1,+∞).(3) 由题意知命题p 与q 一真一假,当p 真q 假时,⎩⎪⎨⎪⎧0<m<2,m ≤-1或m ≥1,解得1≤m<2; 当p 假q 真时,⎩⎪⎨⎪⎧m ≤0或m ≥2,-1<m<1,解得-1<m ≤0. 故实数m 的取值范围是(-1,0]∪[1,2).。
高三数学一轮复习课件立体几何
D
公理2 如果两个平面有一个公共点,那么它们还有其他公共
点,且所有这些公共点的集合是一条过这个公共点的直线.
P l且P l
作用 1、用来判定两平面是否相交; 2、画两个相交平面的交线; 即: A , A 直线AB为交线. B , B 3、证明多点共线. 练习2: 已知ΔABC在平面α外, AB、AC、BC的延长线分别与 平面α交于点M、N、P三
C1 D1 E B F C A A1 D B1
例2 :
已知正方体的棱长为a , M 为 AB 的中点, N为 BB1的中点,求 A1M 与 C1 N 所成角的余弦值。 解:如图,取A1B1的中点E, 连BE, 有BE∥ A1M 取CC1的中点G,连BG. 有BG∥ C1N
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有两个面互相平行, 其余各面都是四边形, 并且每相邻两个四边形 的公共边都互相平行。
侧棱
E’ F’ A’
D’ B’
C’
底 面
E
D
F
A
侧面
C
B
顶点
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有一个面是多 边形,其余各面都 是有一个公共顶点 侧棱 的三角形。
a′
θ
O
平 移
若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b
90] 异面直线所成角θ 的取值范围: (0,
4.求异面直线所成的角:
求两条异面直线所成角的步骤:
1.选点,引平行线找到所求的角; 2.把该角放入三角形; 3.根据边角关系计算,求角. 例1.正方体ABCD-A1B1C1D1 中,E,F分别是BB1,CC1的中 点,求AE,BF所成的角
2020版江苏高考数学名师大讲坛一轮复习教程:基础夯滚天天练(共60练含答案)
目录高考数学一轮复习基础夯滚天天练(1) 集合的基本运算高考数学一轮复习基础夯滚天天练(2) 命题和逻辑联结词高考数学一轮复习基础夯滚天天练(3) 充分条件和必要条件高考数学一轮复习基础夯滚天天练(4) 函数及其表示方法高考数学一轮复习基础夯滚天天练(5) 函数的解析式和定义域高考数学一轮复习基础夯滚天天练(6) 函数的值域和最值高考数学一轮复习基础夯滚天天练(7) 函数的单调性和奇偶性高考数学一轮复习基础夯滚天天练(8) 函数的图象高考数学一轮复习基础夯滚天天练(9) 二次函数高考数学一轮复习基础夯滚天天练(10) 函数的应用高考数学一轮复习基础夯滚天天练(11) 指数与对数高考数学一轮复习基础夯滚天天练(12) 幂函数、指数函数与对数函数高考数学一轮复习基础夯滚天天练(13) 函数与方程高考数学一轮复习基础夯滚天天练(14) 导数的概念及运算高考数学一轮复习基础夯滚天天练(15) 导数在研究函数中的简单应用高考数学一轮复习基础夯滚天天练(16) 同角三角函数的关系及诱导公式高考数学一轮复习基础夯滚天天练(17) 三角函数的图象高考数学一轮复习基础夯滚天天练(18) 三角函数的性质(1)高考数学一轮复习基础夯滚天天练(19) 三角函数的性质(2)高考数学一轮复习基础夯滚天天练(20) 和差倍角的三角函数高考数学一轮复习基础夯滚天天练(21) 正弦定理和余弦定理高考数学一轮复习基础夯滚天天练(22) 三角函数及解三角形高考数学一轮复习基础夯滚天天练(23) 一元二次不等式高考数学一轮复习基础夯滚天天练(24) 简单的线性规划高考数学一轮复习基础夯滚天天练(25) 基本不等式及其应用高考数学一轮复习基础夯滚天天练(26) 直线的斜率和直线的方程高考数学一轮复习基础夯滚天天练(27) 两条直线的位置关系高考数学一轮复习基础夯滚天天练(28) 圆的方程高考数学一轮复习基础夯滚天天练(29) 直线与圆、圆与圆的位置关系高考数学一轮复习基础夯滚天天练(30) 直线与圆的综合运用高考数学一轮复习基础夯滚天天练(31) 椭圆(1)高考数学一轮复习基础夯滚天天练(32) 椭圆(2)高考数学一轮复习基础夯滚天天练(33) 双曲线高考数学一轮复习基础夯滚天天练(34) 抛物线高考数学一轮复习基础夯滚天天练(35) 圆锥曲线高考数学一轮复习基础夯滚天天练(36) 向量的概念与线性运算高考数学一轮复习基础夯滚天天练(37) 平面向量的基本定理与坐标运算高考数学一轮复习基础夯滚天天练(38) 平面向量的数量积高考数学一轮复习基础夯滚天天练(39) 平面向量的应用高考数学一轮复习基础夯滚天天练(40) 复数的概念、几何意义及运算高考数学一轮复习基础夯滚天天练(41) 数列的概念高考数学一轮复习基础夯滚天天练(42) 等差数列高考数学一轮复习基础夯滚天天练(43) 等比数列高考数学一轮复习基础夯滚天天练(44) 等差数列与等比数列高考数学一轮复习基础夯滚天天练(45) 数列的通项与求和高考数学一轮复习基础夯滚天天练(46) 数列综合题高考数学一轮复习基础夯滚天天练(47) 平面的基本性质、空间两直线高考数学一轮复习基础夯滚天天练(48) 直线与平面的位置关系高考数学一轮复习基础夯滚天天练(49) 平面与平面的位置关系高考数学一轮复习基础夯滚天天练(50) 柱、锥、台、球的表面积与体积高考数学一轮复习基础夯滚天天练(51) 空间线面关系的判断、推证与计算高考数学一轮复习基础夯滚天天练(52) 抽样方法与总体估计高考数学一轮复习基础夯滚天天练(53) 算法的含义与流程图高考数学一轮复习基础夯滚天天练(54) 基本算法语句高考数学一轮复习基础夯滚天天练(55) 随机事件的概率、古典概型高考数学一轮复习基础夯滚天天练(56) 几何概型高考数学一轮复习基础夯滚天天练(57) 合情推理与演绎推理高考数学一轮复习基础夯滚天天练(58) 直接证明与间接证明高考数学一轮复习基础夯滚天天练(59) 热点知识练(1)高考数学一轮复习基础夯滚天天练(60) 热点知识练(2)参考答案121滴水穿石·数学一轮基础夯滚天天练>>>高考数学一轮复习基础夯滚天天练(1)集合的基本运算班级________姓名____________学号______成绩______日期____月____日一、填空题1. 已知集合A={0,1,2,3},B={2,3,4,5},则A∪B中元素的个数为________.2. 设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=________________________________________________________________________.3. 已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩∁U B =________.4. 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则∁U A∩∁U B=________.5. 设集合S={x||x-2|>3},T={x|a<x<a+8},S∪T=R,则实数a的取值范围是________.6. 已知集合A={-1,2,2a+1},B={-4,3},且A∩B={3},则a=________.7. 已知集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},若A∩B={-3},则A∪B =________________.8. 已知集合P={-1,2}与M={x|kx+1=0}满足P∪M=P,则实数k的值所组成的集合是______________.9. 已知集合A ={x|y =log 2(x 2-1)},B =⎩⎨⎧⎭⎬⎫y|y =⎝⎛⎭⎫12x -1,则A ∩B =______________.10.集合B ={y ∈R |y =2x ,x ∈A },则A ∩B=________.11. 定义集合运算:A*B ={z|z =x·y ,x ∈A ,y ∈B}.设A ={1,2},B ={0,2},则集合A*B 的所有元素之和为________.12. A ,B 是非空集合,定义A ×B =.若A ={x|y =x 2-3x},B ={y|y =3x },则A ×B =________.13. 若x ∈A ,且11-x∈A ,则称集合A 为“和谐集”.已知集合M ={-2,-1,-12,0,1,12,23,2,3},则集合M 的子集中,“和谐集”的个数为________.14. 若集合{a ,b ,c ,d}={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d)的个数是________.二、 解答题15. 已知集合M ={x|2x -4=0},N ={x|x 2+3x +m =0}.(1) 当m =2时,求M ∩N ,M ∪N ;(2) 若M ∩N =M ,求集合N.高考数学一轮复习基础夯滚天天练(2)命题和逻辑联结词班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 命题的否定是____________________________.2. 已知命题“x ∈R ,使得x 2+(a -1)x +1<0”是假命题,则实数a 的取值范围是________.3. 设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则“p ∧q ”为________命题.(填“真”或“假”)4. 给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为________.5. 已知命题p :x ≤0,x 2+2x -3≥0,则命题p 的否定是__________________________.6. 已知命题p :x 2-2x -3<0;命题q :1x -2<0.则x 的取值范围是________.7. 已知命题p :“a =1”是“x>0,x +a x ≥2”的充要条件;则下列命题正确的是________.(填序号)8. 命题“存在一个无理数,它的平方是有理数”的否定是________________________________________________________________________.9. 下列四个命题:①若一个命题的逆命题为真,则这个命题的逆否命题一定为真;②“a>b”与“a+c>b+c”不等价;③“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”;④若一个命题的否命题为真,则这个命题的逆命题一定为真.其中不正确的是________.(填序号)10. 则a的取值范围是________.11. 则实数a的最小值为________.12. 如果不等式(a-2)x2+2(a-2)x-4<0对于恒成立,那么a的取值范围为________.13. 若命题“,2x2-3ax+9<0”为假命题,则实数a的取值范围为________________________________________________________________________.二、解答题14. 给定两个命题,p:对任意实数x,ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数解.如果p与q中有且仅有一个为真命题,求实数a的取值范围.高考数学一轮复习基础夯滚天天练(3)充分条件和必要条件班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 设x ∈R ,则“x >12”是“2x 2+x -1>0”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)2. “ac 2>bc 2”是“a>b”成立的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)3. “x<-1”是“x 2-1>0”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)4. 已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是________________.5. “M>N”是“log 2M>log 2N”成立的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)6. 若a ,b 为实数,则“0<ab<1”是“b<1a”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)7. 方程x 2k +1+y 2k -5=1表示双曲线的充要条件是____________. 8. 设p ,q 是两个命题,若p 是q 的充分不必要条件,那么非p 是非q 的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)9. “a =1”是“函数f(x)=2x -a 2x +a在其定义域上为奇函数”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)10. “x<2”是“x 2-x -2<0”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)11. 不等式1x -1<1的解集记为p ,关于x 的不等式x 2+(a -1)x -a>0的解集记为q ,已知p 是q 的充分不必要条件,则实数a 的取值范围是________.12. 已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是______________.13. 已知p :12≤x ≤1,q :(x -a)(x -a -1)>0,若p 是的充分不必要条件,则实数a 的取值范围是________.14. 下列四个命题: ①“,x 2-x +1≤0”的否定;②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >12”的充分不必要条件; ④“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”.其中真命题的序号是________.二、 解答题15. 若f(x)是R 上的减函数,且f (0)=3,f (3)=-1,设P ={x ||f (x +t )-1|<2},Q ={x |f (x )<-1}.若“x ∈Q ”是“x ∈P ”的必要不充分条件,求实数t 的取值范围.高考数学一轮复习基础夯滚天天练(4)函数及其表示方法班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 有以下判断:其中判断正确的序号是________.①f(x)=|x|x 与g(x)=⎩⎪⎨⎪⎧1, x ≥0,-1, x<0表示同一函数; ②函数y =f(x)的图象与直线x =1的交点最多有1个;③f(x)=x 2-2x +1与g(t)=t 2-2t +1是同一函数;④若f(x)=|x -1|-|x|,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0.2. 下列四组中的f(x),g(x)表示同一个函数的是________.(填序号)①f(x)=1,g(x)=x 0; ②f(x)=x -1,g(x)=x 2x -1; ③f(x)=x 2,g(x)=(x)4; ④f(x)=x 3,g(x)=3. 若f(x)=x 2+bx +c ,且f(1)=0,f(3)=0,则f(-1)=________.4. 设函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x , x>1,则f(f(3))=________.5. 已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b =________.6. 函数y =f(x)的图象与直线x =a(a 为常数)交点的个数为________.7. 已知f(x)是定义在R 上的奇函数,当x <0时f (x )=log 2(2-x ),则f (0)+f (2)的值为________.8. 已知函数f(x)=⎩⎪⎨⎪⎧-x 2, x ≥0,x 2+2x , x<0,则不等式f(f(x))≤3的解集为____________.9. 已知函数f(x)的图象如图所示,则它的一个解析式是________________.10. 已知f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,-2x , x<0,若f(m)=10,则m =________. 11. 已知f(2x +1)=x 2-2x ,则f(3)=________.12. 已知下列四组函数:①f(x)=lg x 2,g(x)=2lg x ;②f(x)=x -2,g(x)=x 2-4x +4;③f(x)=1x -1,g(x)=x +1x 2-1; ④f(x)=x ,g(x)=log a a x (a>0且a ≠1).其中表示同一个函数的为________.(填序号)13. 已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是________.二、 解答题14. 在边长为2的正方形ABCD 的边上有动点M ,从点B 开始,沿折线BCDA 向点A 运动,设点M 运动的距离为x ,△ABM 的面积为S.(1) 求函数S =f(x)的解析式、定义域和值域;(2) 求f(f(3))的值.高考数学一轮复习基础夯滚天天练(5)函数的解析式和定义域班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 函数y =2x -x 2的定义域是________________.2. 函数y =16-x -x 2的定义域是________________.3. 已知实数m ≠0,函数f(x)=⎩⎪⎨⎪⎧3x -m , x ≤2,-x -2m , x>2,若f(2-m)=f(2+m),则实数m 的值为________________.4. 若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”.那么函数解析式为y =2x 2+1,值域为{3,19}的“孪生函数”共有________种.5. 已知f(x)为一次函数,且f(f(x))=4x -1,则函数f(x)的解析式为f(x)=________________________________________________________________________.6. 已知二次函数y =f(x)满足条件f(x +1)-f(x)=2x ,f(0)=1,则f(x)的表达式为f(x)=____________.7. 函数的定义域是________________.8. 函数y =x (x -1)+x 的定义域是________________.9. 若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=________.10. 已知函数y =f(x +1)的定义域是[-2,3],则函数y =f(2x -1)的定义域为________.11. 函数f(x)=lg (2x -3x )的定义域是________.12. 若函数y =f(x)的定义域是[0,8],则函数g(x)=f (2x )ln x的定义域是________________________________________________________________________.13. 若函数f(x)=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.14. 已知二次函数y =f(x)(x ∈R )的图象过点(0,-3),且f (x )>0的解集为(1,3),则f (x )的解析式为f (x )=________________.二、 解答题15. 如图所示,有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,且上底CD 的端点在圆周上,写出梯形周长y 关于腰长x 的函数关系式,并求出它的定义域.高考数学一轮复习基础夯滚天天练(6)函数的值域和最值班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 函数y =x -x +1的值域为__________.2. 函数y =4-x 2的值域是________.3. 函数y =x 2+3x +1的值域是____________________.4. 函数y =x -x 的值域为________.5. 函数f(x)=2x -12x +1的值域为________.6. 已知函数y =x 2-2x +3⎝⎛⎭⎫0≤x ≤32,则函数的最大值和最小值的积是________.7. 函数f(x)=⎩⎪⎨⎪⎧2x , x ≤0,-x 2+1, x>0的值域为________.8. 函数f(x)=log 2(4-x 2)的值域为________.9. 设函数f(x)=⎩⎨⎧2x+a ,x>2,x +a 2,x ≤2,若函数f(x)的值域为R ,则实数a 的取值范围是__________________.10. 函数f(x)=⎩⎪⎨⎪⎧2x , x ≥0,-2-x , x<0的值域是________________.11. 已知函数y =ax 2+2x +1的值域为[0,+∞),则实数a 的取值范围是________.12. 已知函数f(x)=x 2-1,g(x)=-x ,令φ(x)=max [f(x),g(x)](即f(x)和g(x)中的较大者),则φ(x)的最小值为________.13. 已知函数f(x)=x +p x +1(x>-1,p 为正常数),g(x)=⎝⎛⎭⎫12-x 2+2(x ∈R )有相同值域,则p =________.14. 下列几个命题:①函数f(x)=(x)2与g(x)=x 表示的是同一个函数;②若函数f(x)的定义域为[1,2],则函数f(x +1)的定义域为[2,3];③若函数f(x)的值域是[1,2],则函数f(x +1)的值域为[2,3];④若函数f(x)=x 2+mx +1是偶函数,则函数f(x)的单调减区间为(-∞,0]; ⑤函数f(x)=lg (x 2+1+x)既不是奇函数,也不是偶函数.其中正确的命题有________个.二、 解答题15. 已知f(x)=2+log 3x ,x ∈[1,9],求函数y =[f(x)]2+f(x 2)的值域.高考数学一轮复习基础夯滚天天练(7)函数的单调性和奇偶性班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 在函数:①y =cos x ;②y =sin x ;③y =ln x ;④y =x 2+1中,既是偶函数又存在零点的是________.(填序号)2. 已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是________________.3. 函数y =1-x 1+x的单调减区间为________________.4. 已知函数f(x)=2x 2-mx +3,当x ∈(-2,+∞)时是增函数,当x ∈(-∞,-2)时是减函数,则f(1)=________.5. 已知函数f(x)是减函数,且f(x)>0,则在函数:①y =1f (x );②y =2f(x);③y =[f(x)]2;中为增函数的是________.(填序号)6. 设函数f(x)是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.7. 若f(x)在区间(0,+∞)上是减函数,则f(x 2+x +1)和f ⎝⎛⎭⎫34的大小关系为______________.8. 已知函数f(x)是奇函数,且x ∈(0,+∞)时的解析式是f(x)=lg (x +1),则x ∈(-∞,0)时,f(x)=________________.9. 已知函数f(x)=⎩⎪⎨⎪⎧e x -k , x ≤0,(1-k )x +k , x>0是R 上的增函数,则实数k 的取值范围是________.10. 已知f(x)=ax 2+bx 是定义在[a -1,2a]上的偶函数,那么a +b 的值是________.11. 函数f(x)=x 5+sin x +1(x ∈R ),若f (a )=2,则f (-a )=________.12. 已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),则f (8)的值为________.13. 已知y =log a (2-ax)在区间[0,1]上是关于x 的减函数,则a 的取值范围是________.14. 若f(x)=ax +1x +2在区间(-2,+∞)上是增函数,则a 的取值范围是________.二、 解答题15. 已知函数f(x)=x 2+a x(x ≠0,a ∈R ). (1) 判断函数f (x )的奇偶性;(2) 若函数f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.高考数学一轮复习基础夯滚天天练(8)函数的图象班级________姓名____________学号______成绩______日期____月____日一、填空题1. 函数y=x 43的图象大致是________.(填序号)①②③④2. 某班四个同学在同一坐标系中,作了两个函数的图象,其中能够作为函数y=ax2+bx与y=ax+b(a≠0,b≠0)的图象的是________.(填序号)①②③④3. 函数y=a x-a(a>0,a≠1)的图象可能是________.(填序号)①②③④4. 函数y=1-|1-x|的图象与x轴所围成的封闭图形的面积为________.5. 已知a>0且a≠1,函数y=|a x-2|与y=3a的图象有两个交点,则a的取值范围是____________.6. 若函数y=4x+a2x的图象关于原点对称,则实数a的值为________.7. 已知函数y =log a (x +b)的图象如图所示,则a b =________.8. 函数y =log 2|x +1|的图象关于直线________对称.9. 函数f(x)=x|x +a|+b 是奇函数的充要条件是________.10. 已知0<a<1,则函数f(x)=a x -|log a x|的零点个数为________.11. 设函数f(x)=⎩⎪⎨⎪⎧2x -4, x>0,-x -3, x<0.若f(a)>f(1),则实数a 的取值范围是____________.12. 将函数y =2x 的图象向左平移一个单位长度,得到图象C 1,再将C 1向上平移一个单位长度得到图象C 2,则C 2的解析式为____________.13. 已知函数f(x)=32x -(k +1)·3x +2,当x ∈R 时,函数f (x )恒为正值,则k 的取值范围是________________.二、 解答题14. 分别作出函数f(x),g(x)的图象,并利用图象回答问题.(1) f(x)=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x>1,g(x)=log 2x ,求方程f(x)=g(x)的解的个数; (2) f(x)=x +1,g(x)=log 2(-x),求不等式f(x)>g(x)的解集.高考数学一轮复习基础夯滚天天练(9)二次函数班级________姓名____________学号______成绩______日期____月____日一、填空题1. 若a,b,c成等比数列,则函数y=ax2+bx+c的图象与x轴的交点的个数为________.2. 已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则5a-b=________.3. 若函数y=x2-2x+a在区间[0,3]上的最小值是4,则a=________;若最大值是4,则a=________.4. 若函数y=|x-a-3|+b,x∈[a,b]的图象关于直线x=3对称,则b=________.5. 已知函数f(x)=3(x-2)2+5,且|x1-2|>|x2-2|,则f(x1)________f(x2).(填“>”“<”或“=”)6. 若函数y=mx2+x+5在[-2,+∞)上是增函数,则m的取值范围是________.7. 设x,y是关于m的方程m2-2am+a+6=0的两个实根,则(x-1)2+(y-1)2的最小值是________.8. 已知函数f(x)=x2-4x,x∈[1,5],则函数f(x)的值域是________.9. 已知函数f(x)=x2-2x,x∈[a,b]的值域为[-1,3],则b-a的取值范围是________.10. 若函数f(x)=(a2-2a-3)x2+(a-3)x+1的定义域和值域都为R,则a的取值范围是________.11. 已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]上有一个最大值-5,则a=________.12. 已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3),又f(x)+6a=0有两个相等的根,则f(x)=________________.13. 已知命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为;命题q:函数y=(2a2-a)x为增函数.若命题“p∨q”为真命题,则实数a的取值范围是________________________________________________________________________.二、解答题14. 已知函数f(x)=x2+ax+3.(1) 当x∈R时,f(x)≥a恒成立,求a的取值范围;(2) 当x∈[-2,2]时,f(x)≥a恒成立,求a的取值范围.高考数学一轮复习基础夯滚天天练(10)函数的应用班级________姓名____________学号______成绩______日期____月____日一、填空题1. 某出租车公司规定“打的”收费标准如下:3千米以内为起步价8元(即行程不超过3千米,一律收费8元),若超过3千米,除起步价外,超过部分再按1.5元每千米收费计价,若某乘客与司机约定按四舍五入以元计费不找零钱,该乘客下车时乘车里程数为7.4千米,则乘客应付的车费是________元.2. 已知矩形的周长为1,它的面积S与矩形的长x之间的函数关系中,定义域为________.3. 某商场出售一种商品,每天可卖1 000件,每件可获利4元,据经验,若每件少卖0.1元,则每天可多卖出100件,为获得最好的经济利益每件单价应降低________元.4. 某厂生产中所需的一些配件可以外购,也可以自己生产.如果外购,每个价格是1.10元;如果自己生产,那么每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,那么决定此配件外购还是自产的转折点是________件.(即生产多少件以上自产合算)5. 某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)的最低产量是________台.6. 购买手机的“全球通”卡,使用时须付“基本月租费”(每月需交的固定费用)50元,在市内通话时每分钟另收话费0.40元;购买“神州行”卡,使用时不收“基本月租费”,但在市内通话时每分钟话费为0.60元.若某用户每月手机费预算为120元,则他购买________卡才合算.7. 如图,灌溉渠的横截面是等腰梯形,底宽2m,边坡的倾角为45°,水深h m,则横截面中有水面积S(m2)与水深h(m)的函数关系式为____________.8. 某企业生产的新产品必须先靠广告来打开销路,该产品的广告效益应该是产品的销售额与广告费之间的差.如果销售额与广告费的算术平方根成正比,根据对市场进行抽样调查的结果显示:每付出100元的广告费,所得的销售额是1 000元,那么该企业应该投入________元广告费,才能获得最大的广告效应.9. 某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进________份,才能使每月所获的利润最大.10. 一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为__________________________________,该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资)二、解答题11. 近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网.这种供电设备的安装费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=k20x+100(x≥0,k为常数).记F为该企业安装这种太阳能供电设备的费用与该企业15年共将消耗的电费之和.(1) 解释C(0)的实际意义,并建立F关于x的函数关系式;(2) 当x为多少平方米时,F取得最小值?最小值是多少万元?12. 随着机构改革工作的深入进行,各单位要裁员增效.有一家公司现有职员2a人(140<2a<420,且a为偶数),每人每年可创利b万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b万元,但公司需付下岗职员每人每年0.4b万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?高考数学一轮复习基础夯滚天天练(11)指数与对数一、 填空题1.2. 计算:(log 32+log 92)·(log 43+log 83)=________.3的值为________.4. 计算:lg 25+lg 2·lg 50+(lg 2)2=________.5. 设则a ,b ,c 的大小关系是________.6. 方程log 3(x 2-10)=1+log 3x 的解是________.7. 设f(x)=⎩⎪⎨⎪⎧2e x -1, x<2,lg (x 2-1), x ≥2,则f(f(2))=________.8. 计算:⎝⎛⎭⎫lg 14-lg 25÷=________.9. 方程4x -2x +1-3=0的解是________________.10. 关于x 的不等式的解集为________.11. 已知3a =5b =c ,且1a +1b=2,则c =________.12. 不等式log 2(2x -1)<log 2(-x +5)的解集为________.13. 给出下列结论,其中正确的是________.(填序号)①当a<0时,(a 2)32=a 3; ②n a n =|a|(n>1,n ∈N *,n 为偶数);③函数f (x )=(x -2)12-(3x -7)0的定义域是⎩⎨⎧⎭⎬⎫x |x ≥2且x ≠73; ④若2x =16,3y =127,则x +y =7.14. 已知函数f(x)=2|x|-2,不等式x[f(x)+f(-x)]>0的解集是________________________________________________________________________.二、 解答题15. 求值或化简:(1) lg 8+lg 125-lg 2-lg 5lg 10·lg 0.1;(2),求的值.16. 已知函数f(x)=log a(a x-1),a>0,a≠1.求证:(1) 函数f(x)的图象在y轴的一侧;(2) 函数f(x)图象上任意两点连线的斜率都大于0.高考数学一轮复习基础夯滚天天练(12)幂函数、指数函数与对数函数班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 如果幂函数f(x)=x a 的图象经过点(2,4),那么函数f(x)的单调增区间为________.2. 函数f(x)=ln x +1-x 的定义域为________.3. 若函数f(x)=log a x(0<a<1)在区间[a ,2a]上的最大值是最小值的3倍,则a =________.4. 要使函数f(x)=3x +1+t 的图象不经过第二象限,则实数t 的取值范围为________.5. 若函数f(x)=a x -1(a>0,a ≠1)的定义域和值域都是[0,2],则实数a =________.6. 已知函数f(x)=x 12,且f(2x -1)<f(3x),则x 的取值范围是________.7. 若函数y =(log 0.5a)x 在R 上为增函数,则a 的取值范围是________.8. 设函数f(x)=⎩⎪⎨⎪⎧-x +a ,x<1,2x , x ≥1的最小值为2,则实数a 的取值范围是________.9. 函数f(x)=的值域为________.10. 若log a 12a -1<1,则a 的取值范围是________.11. 在下列四个图象中,能够表示函数y =a x 与y =-log a x(a>0,a ≠1)在同一个平面直角坐标系的图象的可能是________.(填序号)①②③④12. 若函数f(x)=log a (2x 2+x)(a>0,a ≠1)在区间⎝⎛⎭⎫0,12内恒有f(x)>0,则函数f(x)的单调增区间是________.13. 函数y =a x -2+1(a>0,a ≠1)恒过定点________.14. 若函数f(x)=在[-1,1]上是单调增函数,则实数a 的取值范围是________________.二、 解答题15. 已知函数f(x)=log a (3-ax).(1) 当x ∈[0,2]时,函数f(x)恒有意义,求实数a 的取值范围;(2) 是否存在这样的实数a ,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,求出a 的值;如果不存在,请说明理由.16. 已知函数f(x)=x ⎝⎛⎭⎫13x -1+12.(1) 判断该函数的奇偶性;(2) 求证:该函数在定义域上恒大于0.高考数学一轮复习基础夯滚天天练(13)函数与方程班级________ 姓名____________ 学号______ 成绩______ 日期____月____日 一、 填空题1. 已知函数f(x)的图象是连续不断的,x ,f(x)的对应关系如下表:则函数f(x)一定存在零点的区间有________.(填序号)①区间[1,2];②区间[2,3];③区间[3,4];④区间[4,5];⑤区间[5,6].2. 已知函数f(x)=ax +b 的零点是3,那么函数g(x)=bx 2+ax 的零点是________.3. 已知函数f(x)=2mx +4,若存在x 0∈[-2,1],使f(x 0)=0,则实数m 的取值范围是________________.4. 已知函数f(x)=ln x +x -2的零点所在的区间为(k ,k +1)(其中k 为整数),则k 的值为________.5. 已知函数f(x)=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________.6. 已知定义在R 上的函数f (x )=(x 2-3x +2)g (x )+3x -4,其中y =g (x )是一条连续曲线,则方程f (x )=0在区间________范围内必有实数根.(填序号)①(0,1);②(1,2);③(2,3);④(3,4).7. 若函数f(x)=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1, -1<x<2,则函数g(x)=f(x)-x 的零点为________.8. 函数f(x)=2x +x 3-2在区间(0,1)上的零点的个数为________.9. 若对于任意的x ∈[a ,2a],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为________.10. 已知函数f(x)=log 2x +a 在区间(2,4)上有零点,则实数a 的取值范围是________.11. 若函数y =x +5x -a在(-1,+∞)上单调递减,则实数a 的取值范围是________.12. 若关于x 的方程lg (mx)·lg (mx 2)=4的所有解都大于1,则实数m 的取值范围是________.13. 已知函数f(x)=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)2, x<2, 若关于x 的方程f(x)=k 有三个不同的实数根,则实数k 的取值范围为________.14. 若函数y =⎝⎛⎭⎫12|1-x|+m 的图象与x 轴有公共点,则实数m 的取值范围是________.二、 解答题15. 已知关于x 的二次函数f(x)=x 2+(2t -1)x +1-2t. (1) 求证:对于任意t ∈R ,方程f (x )=1必有实数根;(2) 若12<t <34,求证:方程f (x )=0在区间(-1,0)及⎝⎛⎭⎫0,12上各有一个实数根.16. 已知函数f(x)=log4(4x+1)+kx(x∈R)是偶函数.(1) 求k的值;(2) 若方程f(x)-m=0有解,求m的取值范围.高考数学一轮复习基础夯滚天天练(14)导数的概念及运算班级________ 姓名____________ 学号______ 成绩______ 日期____月____日一、 填空题1. 已知函数f(x)=1+1x ,则f(x)在区间[1,2],⎣⎡⎦⎤12,1上的平均变化率分别为________.2. 若f′(x)是函数f(x)=13x 3+2x +1的导函数,则f′(1)=________.3. 函数f(x)=x 2sin x 的导数为f′(x)=________________.4. 函数f(x)=cos x 在点⎝⎛⎭⎫π3,12处的切线方程为____________________.5. 已知曲线y =4x -x 2上两点A(4,0),B(3,3),若曲线上一点P 处的切线恰好与弦AB 平行,则点P 的坐标为________.6. 若直线y =12x +b 是曲线y =ln x(x>0)的一条切线,则实数b 的值为________.7. 函数y =x e x 在其极值点处的切线方程为________________.8. 过点(0,2)且与曲线y =-x 3相切的直线方程是________________.9. 若直线y =kx +1与曲线y =x 3+ax +b 相切于点(1,3),则b 的值为________.10. 设P 是曲线f(x)=13x 3-x 2-3x -3上的一个动点,则过点P 的切线中斜率最小的切线的方程为________________.11. 曲线y =x -cos x 在点⎝⎛⎭⎫π2,π2处的切线方程为________________.12. 若曲线C 1:y 1=ax 3-6x 2+12x 在x =1处的切线与曲线C 2:y 2=e x 在x =1处的切线垂直,则实数a 的值为________.二、 解答题13. 设函数f(x)=ax -bx ,曲线y =f(x)在点(2,f(2))处的切线方程为7x -4y -12=0.(1) 求函数f(x)的解析式;(2) 求证:曲线y =f(x)上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.14. 设直线是曲线C :y =ln xx在点(1,0)处的切线. (1) 求切线的方程;(2) 求证:除切点(1,0)之外,曲线C 在直线的下方.。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第79课随机事件与概率 含解析
第79课 随机事件与概率1. 了解必然事件、不可能事件、随机事件的概念.2. 掌握概率的统计定义及概率与频率的关系,会求一些简单的随机事件的概率.1. 阅读:必修3第93~99页.2. 解悟:①随机事件;②频率与概率;③若随机事件A 在n 次试验中发生了m 次,则当试验次数n 很大时,可以将事件A 发生的频率m n 作为事件A 的概率的近似值,即P(A)≈m n. 3. 践习:在教材空白处,完成第97~ 98页习题第1~5题.基础诊断1. 袋中有形状、大小都相同的 4 个球,其中 1 个白球,1 个红球,2 个黄球.从中一次随机摸出 2个球,则这 2 个球颜色不同的概率为 56. 解析:记白球为A ,红球为B ,黄球为C 1,C 2,则一次取出2个球,基本事件为(A ,B),(A ,C 1),(A ,C 2),(B ,C 1),(B ,C 2),(C 1,C 2)共6个,其中2个球颜色不同的事件有5个,所以所求的概率P =56. 2. 同时抛掷三枚质地均匀、大小相同的硬币一次,则至少有两枚硬币正面向上的概率为 12. 解析:由题意得所有的基本事件为(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反),共8个,则至少有两枚硬币正面向上的概率为12. 3. 为强化学生的安全意识,某校拟在星期一至星期五的五天中随机选择两天进行紧急疏散演练,则选择的两天恰好为连续两天的概率是 5. 解析:由题意可知共有10个基本事件,其中是连续两天的事件有4个,故恰好为连续两天的概率P =410=25. 4. 某校从2名男生和3名女生中随机选出3名学生做义工,则选出的学生中男女生都有的概率为 910. 解析:记2名男生为A 1,A 2,3名女生为B 1,B 2,B 3,则从中随机选出3名学生做义工的基本事件为(A 1,A 2,B 1),(A 1,A 2,B 2),(A 1,A 2,B 3),(A 1,B 1,B 2),(A 1,B 1,B 3),(A 1,B 2,B 3),(A 2,B 1,B 2),(A 2,B 1,B 3),(A 2,B 2,B 3),(B 1,B 2,B 3),共10个,其中选出的学生中男女生都有的基本事件有9个,故所求的概率P =910. 范例导航考向❶ 随机事件的概念例1 一个口袋中装有5个白球与3个黑球,从中任意取出1个球.(1) “取出的球是红球”是什么事件,它的概率是多少?(2) “取出的球是黑球”是什么事件,它的概率是多少?(3) “取出的球是白球或黑球”是什么事件,它的概率是多少?解析:(1) 由于口袋中没有红球,所以“取出的球是红球”是不可能事件,它的概率为0.(2) 由已知从口袋中取出1个球,可能是白球,也可能是黑球,故“取出的球是黑球”是随机事件,它的概率为38. (3) 由于口袋里装的是白、黑两种颜色的球,因此“取出的球是白球或是黑球”是必然事件,它的概率为1.甲、乙两盒中各有除颜色外完全相同的2个红球和1个白球,现从两盒中随机各取1个球,则至少有1个红球的概率为 9. 解析:从两盒中随机各取1个球,共有3×3=9(个)基本事件,其中没有1个红球的事件有1种,则至少有1个红球的概率P =1-19=89. 考向❷ 枚举法求随机事件的概率例2 体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的成绩如下:(1) 从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;(2) 测试成绩为“优”的3名男生记为a 1,a 2,a 3,2名女生记为b 1,b 2.现从这5人中任选2人参加学校的某项体育比赛.①写出所有等可能的基本事件;②求参赛学生中恰有1名女生的概率.解析:(1) 记“测试成绩为良或中”为事件A ,“测试成绩为良”为事件A 1,“测试成绩为中”为事件A 2,则P(A 1)=1950,P(A 2)=2350. 因为当事件A 1,A 2任意一个发生时,事件A 发生,所以P(A)=P(A 1+A 2)=P(A 1)+P(A 2)=1950+2350=2125. (2) ①有10个基本事件:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2).②记“参赛学生中恰好有1名女生”为事件B. 在上述等可能的10个基本事件中,事件B 包含了(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6个,故所求的概率为P(B)=610=35.从集合{1,2,3}中随机取一个元素,记为a ,从集合{2,3,4}中随机取一个元素,记为b ,则a ≤b 的概率为 9. 解析:列出所有情况:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),共9种,其中满足a ≤b 的情况有8种,故所求的概率P =89. 考向❸ 掷骰子问题例3 将一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的面的点数依次为,y.(1) 求≠y 的概率;(2) 求+y<6的概率.解析:先后抛掷两次,共有6×6=36(种)不同的结果,它们是等可能的基本事件.(1) 设“≠y ”为事件A ,事件A 包含30个基本事件,则P(A)=3036=56.(2) 设“+y<6”为事件B ,则事件B 包含10个基本事件,则P(B)=1036=518.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,y ,则y =2的概率为 112. 解析:先后抛掷两次,共6×6=36(种)不同的情况,设“y =2”为事件A ,事件A 包含3个基本事件,则P(A)=336=112. 自测反馈1. 从2个白球,2个红球,1个黄球这5个球中随机取出两个球,则取出的2个球中恰有1个红球的概率是 35. 解析:记2个白球为白1,白2,2个红球为红1,红2,1个黄球为黄1,则从中随机取出2个球的基本事件有:(白1,白2),(白1,红1),(白1,红2),(白1,黄1),(白2,红1),(白2,红2),(白2,黄1),(红1,红2),(红1,黄1),(红2,黄1),共10个,2个球中恰有1个红球的基本事件共有6个,故所求概率P =610=35. 2. 电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是 25. 解析:从5个版块中任选2个主题共有10个基本事件,而“立德树人”主题被该队选中包含4个基本事件,故所求的概率P =410=25. 3. 从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是 25. 解析:从5个数中随机抽取2个不同的数共有10个基本事件,而这2个数的和为偶数的基本事件有4个,故所求的概率P =410=25. 4. 甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负. 则一次游戏中甲胜出的概率是14.解析:一次游戏中,甲、乙、丙出的手势都有2种,所以共23=8(个)基本事件,而甲胜出的基本事件有“甲黑,乙白,丙白”“甲白,乙黑,丙黑”共2个,故所求的概率.1. 了解随机事件、必然事件、不可能事件的概念及其概率的求解方法.2. 频率与概率之间的联系:频率是概率的近似值,概率是频率的稳定值,随着试验次数的增加,频率会在概率附近波动并趋于稳定.3. 你还有哪些体悟,写下;:。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练73
随堂巩固训练(73) 1. 如果过球的球心的截面圆的面积扩大为原来的4倍,那么球的体积扩大为原来的 8 倍. 解析:根据球的体积公式可知,球的体积扩大为原来的8倍 2. 将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是 3π3 . 解析:由题意可知,圆锥的底面周长为2π,则底面半径为1,圆锥的高为3,所以圆锥的体积为13×π×12×3=3π3. 3. 已知正四棱锥的侧棱长为23,侧棱与底面所成的角为60°,则该棱锥的体积为 6 .解析:由题意得正四棱锥的高h =23sin 60°=3,底面正方形的对角线长为23,所以底面积S =2×12×23×3=6,所以体积V =13×6×3=6. 4. 已知圆锥的高为4,母线长为5,则该圆锥侧面展开图的中心角为 6π5,侧面积为 15π .解析:因为圆锥的高为4,母线长为5,所以圆锥的底面半径为3,则底面周长为6π,所以中心角为6π5,侧面积为12×6π×5=15π 5. 底面边长为2m ,高为1m 的正三棱锥的表面积为 33 m 2.解析:如图,在正三棱锥SABC 中,D 为顶点S 在底面BCA 内的射影,则D 为正三角形ABC 的垂心,过点C 作CH ⊥AB 于点H ,连结SH ,则SD ⊥HC 且HD =13CH =33.在Rt △SHD 中,SH =SD 2+HD 2=233,则S △SAB =12×AB ×SH =233,S △ABC =34×AB 2=3,所以S 表面积=S △ABC +3S △SAB =33(m 2).6. 设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是 32. 解析:设甲、乙两圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,则r 1r 2=32.因为侧面积相等,所以h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32.7. 如图,正方形ABCD 的边长为a ,E ,F 分别是边AB ,BC 的中点,沿DE ,EF ,FD 将△DAE ,△EBF ,△FCD 折起来,使A ,B ,C 三点重合于点S ,则三棱锥SDEF 的外接球的体积为 6πa 38W. 解析:由题意图形折叠为三棱锥,且由点S 出发的三条棱两两垂直,SD=a ,SE =SF =a 2,以SD ,SE ,SF 为边补成长方体,则长方体的对角线即为球的直径,2r =a 2+a 24+a 24=62a ,r =64a ,外接球的体积为V =43πr 3=6πa 38. 8. 圆柱形容器内盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径是 4 cm .解析:设球的半径为r ,则V 水=8πr 2,V 球=3×43πr 3=4πr 3.放入球后,水面高为6r ,则πr 2·6r =8πr 2+4πr 3,解得r =4.9. 在三棱锥ABCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥的体积为 66. 解析:由题意得12AB·AC =22,12AD·AC =32,12AB·AD =62,所以AB =2,AC =1,AD =3,所以V =13AD·S △ABC =66. 10. 如图,三棱柱ABCA 1B 1C 1的所有棱长均为a , ∠A 1AB =∠A 1AC =60°,则其全面积为 ⎝⎛⎭⎫332+1a 2 . 解析:因为在斜三棱柱ABCA 1B 1C 1中,∠A 1AB =∠A 1AC =60°,所以A 1A 在平面ABC 内的射影是∠BAC 的平分线.作A 1H ⊥平面ABC ,延长AH 交BC 于点D ,因为△ABC 是边长为a 的等边三角形,所以AD ⊥BC.因为A 1H ⊥BC ,AD ∩A 1H =H ,所以BC ⊥平面AA 1H.因为AA 1⊂平面AA 1H ,所以AA 1⊥BC.因为AA 1∥BB 1,所以BB 1⊥BC ,因此四边形BB 1C 1C 是矩形,所以S 矩形BB 1C 1C =a 2.连结A 1B ,则△AA 1B 是正三角形,所以S 四边形ABB 1A 1=34a 2×2=32a 2. 同理S 四边形AA 1C 1C =32a 2. 又S 底=34a 2,所以S 全=a 2+32a 2×2+34a 2×2=⎝⎛⎭⎫332+1a 2. 11. 一个正三棱台的上、下底面边长分别是3cm 和6cm , 高是 32cm . (1) 求三棱台的斜高;(2) 求三棱台的侧面积和表面积.解析:(1) 设O 1,O 分别为正三棱台ABCA 1B 1C 1的上、下底面正三角形的重心,如图所示,则O 1O =32.过点O 1,O ,分别作O 1D 1⊥B 1C 1,OD ⊥BC ,垂足分别为D 1,D ,则D 1D为三棱台的斜高.过点D 1作D 1E ⊥AD ,垂足为E ,则D 1E =O 1O =32. 因为O 1D 1=13×332=32,OD =13×33=3, 则DE =OD -O 1D 1=3-32=32. 在Rt △D 1ED 中,D 1D =D 1E 2+ED 2=⎝⎛⎭⎫322+⎝⎛⎭⎫32= 3. 故三棱台的斜高为3cm .(2) 设c ,c′分别为上、下底面的周长,h′为斜高,S 侧=12(c +c′)h′=12×(3×3+3×6)×3=2732(cm 2), S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2). 故三棱台的侧面积为2732cm 2,表面积为9934cm 2. 12. 在直角梯形ABCD 中,AB ∥CD ,AB =2BC =4,CD =3,E 为AB 的中点,过点E 作 EF ⊥CD ,垂足为F(如图1),将此梯形沿EF 折成一个直二面角AEFC(如图2).(1) 求证:BF ∥平面ACD ;(2) 求多面体ADFCBE 的体积.图1图2解析:(1) 连结EC ,交BF 于点O ,取AC 的中点P ,连结PO ,PD ,可得PO ∥AE ,且PO =12AE. 因为DF ∥AE ,且DF =12AE , 所以DF ∥PO ,且DF =PO ,所以四边形DPOF 为平行四边形,所以FO ∥PD ,即BF ∥PD.又PD ⊂平面ACD ,BF ⊄平面ACD ,所以BF ∥平面ACD.(2) 因为二面角AEFC 是直二面角,且AE ⊥EF ,所以AE ⊥平面BCFE.又BC ⊂平面BCFE ,所以AE ⊥BC.又BC ⊥BE ,BE ∩AE =E ,BE ,AE ⊂平面AEB ,所以BC ⊥平面AEB ,所以BC 是三棱锥CABE 的高.同理可证CF 是四棱锥CAEFD 的高,所以多面体ADFCBE 的体积V =V CABE +V CAEFD =13×12×2×2×2+13×12×(1+2)×2×2=103. 13. 如图,A 1A 是圆柱的母线,AB 是圆柱底面圆的直径,C 是底面圆周上异于A ,B 两点的任意一点,A 1A =AB =2.(1) 求证:BC ⊥平面A 1AC ;(2) 求三棱锥A 1ABC 体积的最大值.解析:(1) 因为C 是底面圆周上异于A ,B 两点的任意一点,AB 是圆柱底面圆的直径,所以BC ⊥AC.因为AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC.因为AA 1∩AC =A ,AA 1,AC ⊂平面AA 1C ,所以BC ⊥平面AA 1C.(2) 设AC =x(0<x<2),则在Rt △ACB 中,BC =4-x 2,故V A 1ABC =13S △ABC ×AA 1=13×12×AC ×BC ×AA 1=13x ×4-x 2=13-(x 2-2)2+4(0<x<2).因为0<x<2,所以0<x 2<4,所以当x 2=2,即x =2时,三棱锥A 1ABC 的体积最大,其最大值为23.。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练11
Earlybird2020 版江苏高考数学名师大讲坛一轮复习 教程:随堂巩固训练 10 随堂巩固训练(11)1. 计算: (π-4)2+π=__4__. 解析:原式=|π-4|+π=4-π+π=4.22770.511 -2. 求值:(0.027)3+(125) 3-(29 ) +10-2=____. 1095 5 1 1解析:原式= + - + = .100 3 3 100 101a 2 b2a-1b-1-3. 化简:÷( b a ) 3=__6a__.1b - 3 a -2 21 11 a 2ba -1b -22721 2 1 11 12 -解析:原式=÷3=(a + ·b + )÷(a -1- b - -1)- =a b÷(ab)=61 2 2 3 2 2223b - a - ba123(2)6a.12 11 11 54. 化简:(a b )×(-3a b )÷ a6)=__-9a__.3(6b3 2232 1 1 1 1 5解析:原式=-9a + - b + - =-9a. 3 2 6 2 3 65. 关于 x 的不等式 2x 2+x ≤4 的解集为__[-2,1]__. 解 析:由题意得 2x 2+x ≤22,所以 x 2+x ≤2,解得-2≤x ≤1,故原不等式的解集为[- 2,1].11 1 3+2 6381+60 62 ( -6. 计算:(4 )+6 6 ) +3-2-(1.03)0×(-2 )=__ __.3161 3 1 (3+2)2 6 6 13 6解析:原式=+(6-)-+-8 )=++5+2 +=(3)2-(2)2 (- 6 616 2 3 164 81+60 6.167. 给出下列等式:3 6a3=2a;3 -2=6 (-2)2;-34 2=4 (-3)4 ×2,其中一定成立的有__0__个.解析:3 6a3=a3 6≠2a ,故错误;6 (-2)2=6 22=3 22=3 2≠3 -2,故错误;4 (-3)4 ×2=4 34 ×2=34 2≠-34 2,故错误,所以一定成立的有0 个.8. 方程22x+3·2x-1-1=0 的解是__x=-1__.3 1解析:令2x=t(t>0),则原方程化为t2+t-1=0,解得t=或t=-2(舍去),所以2x=2 21,解得x=-1,故原方程的解是x=-1.2a-b 59. 已知a,b 是方程x2-6x+4=0 的两根,且a>b>0,则=__ __.a+b 5213 4 2 1-0.510. 计算:[(38 ) 3-(5 ÷(0.02)-×(0.32)÷0.0629 ) +(0.008)-2]3 2Earlybird50.25.8491 0004 2 6252121解析:原式=[( ) -( ) +() ÷× 10 ]÷(10 000)3 50324279 8 4 7 14 2 1=(÷-10)+25 × × 9 3 5 2 217 2=(- +2)×2= .9941a 3-8a 3b2 23 ba × 3 a 211. 化简:÷(a - - a )×.(式中字母都是正数) 2325a × 3 a4b 3+23 ab +a3111a 3[(a 3)3-(2b 3)3]1 1 a 3-2b 32 1(a × a 3) 2解析:原式=÷×1111111a(a 3)2+a 3× (2b 3)+(2b 3)2(a 2 × a 3)55a6111a=a (a -2b )××33311 1a 3-2b 3a 61 2=a×a ×a =a 2.3312. 解下列方程:1+3-x (1) =3; 1+3x1x(2) (4)-2-x +1-8=0.1 1+t解析:(1) 令 3x =t(t>0),则原方程为 =3,1+t1解得 t = 或 t =-1(舍去),31所以3x=,即x=-1.31x(2) 令(2 )=t(t>0),则原方程为t2-2t-8=0,解得t=4 或t=-2(舍去),1x所以(2 )=4,即x=-2.13. 利用指数的运算法则,解下列方程:(1) 43x+2=256×81-x; (2) 2x+2-6×2x-1-8=0. 解析:(1) 因为43x+2=256×81-x,所以26x+4=28×23-3x,所以6x+4=11-3x,7所以x=.9(2) 因为2x+2-6×2x-1-8=0,所以4×2x-3×2x-8=0,所以2x=8,所以x=3.Earlybird。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第75课基本算法语句 Word版含解析
第75课基本算法语句(1)1. 了解用伪代码表示的几种基本算法语句:赋值语句、输出语句、条件语句、循环语句.2. 能用自然语言、流程图和伪代码表示算法,会用“While循环”“For循环”或“Do循环”语句实施循环.1. 阅读:必修3第17~21页.2. 解悟:①伪代码的含义;②赋值语句、输入语句、输出语句、条件语句、循环语句的一般形式;③“If-Then-Else”语句嵌套及实现功能;④三种循环语句的区别.3. 践习:重解第20~21页例2和例3.在教材空白处,完成第21页练习第2、3题.基础诊断1. 下列语句:①m←x3-x2;②T←T×I;③32←A;④A←A+2;⑤p←[(7x+3)x-5]x +1.其中为赋值语句的是①②④⑤.(填序号)解析:因为③中左边为数字,故不是赋值语句,①②④⑤均为赋值语句.2. 执行如图所示的程序,则输出的结果为26.解析:由题意得S=1+1+3+5+7+9=26,故输出的结果为26.3. 执行如图所示的伪代码,则输出的结果为11.解析:由题意可得I=1满足条件I<7,S=3;I=3满足条件I<7,S=7;I=5满足条件I<7,S=11;I=7,不满足条件I<7,退出循环,故输出的结果为11.4. 执行如图所示的伪代码,则输出的结果为21.解析:P=1+2×(1+4+7+10)-6×4=21.范例导航考向❶ 区别赋值语句与输入、输出语句例1 读如下两段伪代码,完成下面题目:运行如图1和图2所示的程序,若输出的结果相同,则图乙中输入的x 的值为 0 . 解析:由图1知运算后输出的x 的值为6,所以图2中输入的x =0.执行如图所示的伪代码,当输入a 1,b 1,c 1,a 2,b 2,c 2分别为1,1,35,2,4,94时,输出的x = 23 ,y = 12 W.解析:x =4×35-1×941×4-2×1=23,y =1×94-2×351×4-2×1=12. 考向❷ 区别While 、Do 、For 三种循环语句例2 用伪代码设计计算1×3×5×7×…×99,分别用While 语句、Do 语句和For 语句写出伪代码.解析:While 语句如图1,Do 语句如图2,For 语句如图3.1. 执行如图所示算法的伪代码,则输出x的值为16.解析:共进行四次循环,第一次S=1;第二次S=1+3=4;第三次S=4+5=9;第四次S=9+7=16,所以输出的S的值为16.2. 执行如图所示的算法,则输出的i的值是7.解析:该伪代码运行三次循环,第一次i=3,S=2×3=6;第二次i=5,S=6×5=30;第三次i=7,S=30×7=210,退出循环,所以输出的i的值为7.自测反馈1. 执行下面的伪代码,输出的结果是25.解析:第一次循环x=1;第二次循环x=4;第三次循环x=25,退出循环,故输出的结果为25.2. 阅读如图所示的伪代码,若使这个算法执行的是-1+3-5+7-9的计算结果,则a 的初始值x=1.3. 执行如图所示的伪代码后,输出的结果是28.解析:该伪代码运行三次:第一次x =6,i =4;第二次x =14,i =7;第三次x =28,i =10.退出循环,故输出的结果是28.4. 根据如图所示的伪代码,输出的结果为 100 .解析:由题意得T =1+3+5+…+19=10×(1+19)2=100,故输出的结果为100. 5. 根据如图所示的伪代码,最后输出的S 的值为 145 .解析:该伪代码的算法功能就是求等差数列1,4,7,…,28的和,故输出的结果是145.1. 了解顺序结构、选择结构和循环结构这三种结构的特点及实现功能.2. While 、Do 、For 三种循环语句,在启动循环与中止循环时,是如何实现的?结合例2理解体悟.3. 你还有哪些体悟,请写下来:。
2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练60
随堂巩固训练(60)1. 数列23,-45,67,-89,…的第10项是 -2021. 解析:由题意得,数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 2. 若a n =n -1n +1,则数列{a n }是 递增 数列.(填“递减”“递增”或“常”) 解析:设f(n)=n -1n +1,则f′(n)=2(n +1)2>0,所以函数f(n)在n ∈N *上单调递增,所以数列{a n }是递增数列.3. 若a n =n 2+λn +3(其中λ为实常数),n ∈N *,且数列{a n }为单调递增数列,则实数λ的取值范围是 (-3,+∞) .解析:方法一(函数观点):因为数列{a n }为单调递增数列,所以a n +1>a n ,即(n +1)2+λ(n +1)+3>n 2+λn +3,化简为λ>-2n -1对一切n ∈N *恒成立,所以λ>-3.方法二(数形结合法):因为数列{a n }为单调递增数列,所以a 1<a 2,要保证a 1<a 2成立,二次函数f (x )=x 2+λx +3的对称轴x =-λ2应位于1和2中点的左侧,即-λ2<32,即λ>-3. 4. 已知a 1=1,a n =n(a n +1-a n )(n ∈N *),则数列{a n }的通项公式a n = n .解析:因为a n =n (a n +1-a n ),所以a n +1a n =n +1n ,所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×32×21×1=n ,故数列{a n }的通项公式为a n =n . 5. 若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018= 3 . 解析:由题意得a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,所以数列{a n }具有周期性,T =6,所以a 2 018=a 336×6+2=a 2=3.6. 已知数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21= 72W. 解析:因为a n +a n +1=12,a 2=2,所以a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数,所以S 21=11×⎝⎛⎭⎫-32+10×2=72. 7. 在数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7= 1 .解析:由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8. 已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n = 2n -1 .解析:当n =1时,S 1=a 1=2a 1-1,则a 1=1;当n ≥2时,a n =S n -S n -1=2a n -n -2a n-1+(n -1),即a n =2a n -1+1,所以a n +1=2(a n -1+1),所以数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,所以a n +1=2·2n -1=2n ,所以a n =2n -1.9. 对于数列{a n },定义数列{b n }满足b n =a n +1-a n (n ∈N *),且b n +1-b n =1 (n ∈N *),a 3=1,a 4=-1,则a 1= 8 .解析:因为b 3=a 4-a 3=-1-1=-2,所以b 2=a 3-a 2=b 3-1=-3,所以b 1=a 2-a 1=b 2-1=-4,三式相加可得a 4-a 1=-9,所以a 1=a 4+9=8.10. 已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则该数列{a n }的前2 019项的乘积a 1·a 2·a 3·…·a 2 019= 3 W.解析:由题意得a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1,所以数列{a n }是以4为周期的数列,2 019=4×504+3,a 1a 2a 3a 4=1,所以前2 019项的乘积为1504·a 1a 2a 3=3.11. 已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1) 求a 1,a 2,a 3,a 4的值;(2) 求数列{a n }的通项公式.解析:(1) 由题意得,a 1=12a 21+12a 1, 解得a 1=1,S 2=a 1+a 2=12a 22+12a 2,解得a 2=2. 同理,a 3=3,a 4=4.(2) S n =a n 2+12a 2n,① 当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .12. 已知数列{a n }的前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1) 求数列{b n }的通项公式;(2) 判断数列{c n }的单调性.解析:(1) 由题意得a 1=2,a n =S n -S n -1=2n -1(n ≥2),所以a n =⎩⎪⎨⎪⎧2, n =1,2n -1, n ≥2, 所以b n =⎩⎨⎧23,n =1,1n , n ≥2. (2) 因为c n =T 2n +1-T n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1,所以c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, 所以数列{c n }是递减数列.13. 设数列{a n }的前n 项和为S n ,已知a 1=a(a ≠3),a n +1=S n +3n ,n ∈N *.(1) 设b n =S n -3n ,求数列{b n }的通项公式;(2) 若a n +1≥a n ,n ∈N *,求a 的取值范围.解析:(1) 依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,则S n +1-3n +1=2(S n -3n ),即b n +1=2b n .又b 1=S 1-3=a -3,所以b n =(a -3)·2n -1,n ∈N *.(2) 由(1)知S n =3n +(a -3)2n -1,n ∈N *,所以当n ≥2时,a n =S n -S n -1=3n +(a -3)·2n -1-3n -1-(a -3)·2n -2=2×3n -1+(a -3)·2n-2,当n =1时,a 1=a 不适合上式,故a n =⎩⎪⎨⎪⎧a , n =1,2×3n -1+(a -3)·2n -2, n ≥2. 当n ≥2时,a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎡⎦⎤12·⎝⎛⎭⎫32n -2+a -3. 若a n +1≥a n ,则12+a -3≥0,解得a ≥-9. 又a 2=a 1+3>a 1且a ≠3, 综上,a 的取值范围是[-9,3)∪(3,+∞).。
【精品】2020版江苏高考数学名师大讲坛一轮复习教程学案:第72课平行与垂直的综合应用
第72课 平行与垂直的综合应用1. 掌握空间中线面平行,面面平行;线面垂直,面面垂直的判定定理与性质定理.2. 运用空间中线面平行,面面平行;线面垂直,面面垂直的判定定理与性质定理证明空间几何图形的平行与垂直关系.1. 阅读:必修2第32~49页.2. 解悟:①回忆线面平行与垂直的判定定理和性质定理;②回忆面面平行与垂直的判定理和性质定理;③结合上述定理的基本图形用文字及数学符号语言来叙述定理内容;④用图表的形式来列出平行与垂直的关系图.3. 践习:在教材空白处,完成第41页习题第1、2、3、5、6、7题;第49页练习第1、2、3题.基础诊断1. 已知PA ⊥矩形ABCD 所在平面,M ,N 分别是AB 和PC 的中点,则MN 与平面PAD 的位置关系为 平行 .解析:如图,取PD 的中点E ,连结AE ,EN.因为E ,N 分别是PD ,PC 的中点,所以NE ∥CD 且NE =12CD.因为M 是AB 的中点,所以AM =12CD ,AM ∥CD ,所以EN ∥AM ,EN =AM ,所以四边形AMNE 是平行四边形,所以MN ∥AE.因为AE ⊂平面PAD ,MN ⊄平面PAD ,所以MN ∥平面PAD ,故MN 与平面PAD 的关系为平行.2. 已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β. 其中真命题的个数为 2 .解析:①若α∥β,因为直线l ⊥平面α,所以直线l ⊥平面β.因为m ⊂β,所以l ⊥m ,故①为真命题;②当α⊥β时,因为直线l ⊥平面α,所以直线l ∥平面β或l ⊂β,所以l 与m 可能相交或异面,故②为假命题;③因为l ∥m ,直线l ⊥平面α,所以直线m ⊥平面α.因为m ⊂β,所以α⊥β,故③为真命题,故真命题的个数为2.3. 下面是空间线面位置关系中传递性的部分相关命题: ①与两条平行线中一条平行的平面必与另一条直线平行; ②与两条平行线中一条垂直的平面必与另一条直线垂直; ③与两条垂直直线中一条平行的平面必与另一条直线垂直; ④与两条垂直直线中一条垂直的平面必与另一条直线平行; ⑤与两个平行平面中一个平面平行的直线与另一个平面平行; ⑥与两个平行平面中一个平面垂直的直线必与另一个平面垂直; ⑦与两个垂直平面中一个平面平行的直线必与另一个平面垂直; ⑧与两个垂直平面中一个平面垂直的直线必与另一个平面平行.其中正确的命题的序号是②⑥.解析:依题意,作长方体ABCDA1B1C1D1的图形如下:对于①,由图可知,AB∥CD,AB∥平面DCC1D1,但CD⊂平面DCC1D1,故①错误;对于②,由线面垂直的性质定理得与两条平行直线中一条垂直的平面与另一条直线垂直,故②正确;对于③,由图可知,AD⊥CD,CD∥平面A1B1C1D1,但AD∥平面A1B1C1D1,故③错误;对于④,由图可知,AD⊥CD,AD⊥平面D1C1CD,但CD⊂平面D1C1CD,故④错误;对于⑤,与两个平行平面中一个平面平行的直线,可能在另一个平面或与另一个平面平行,故⑤错误;对于⑥,由面面平行的性质得,与两个平行平面中一个平面垂直的直线必与另一个平面垂直,故⑥正确;对于⑦,由图可知,平面DCC1D1⊥平面ABCD,AB∥平面DCC1D1,但AB⊂平面ABCD,故⑦错误;对于⑧,由图可知,平面DCC1D1⊥平面ABCD,AD⊥平面DCC1D1,但AD⊂平面ABCD,故⑧错误.故正确命题的序号为②⑥.4. 设α、β、γ是三个不同的平面,l、m、n是三条不同的直线,则m⊥β的一个充分条件为②③.①α⊥β,α∩β=l,m⊥l;②n⊥α,n⊥β,m⊥α;③α∩γ=m,α⊥β,γ⊥β;④m⊥α,α⊥γ,β⊥γ.解析:①因为α⊥β,α∩β=l,m⊥l.若m⊂β,则m与平面β不垂直,故①错误;②因为n⊥α,m⊥α,所以m∥n.因为n⊥β,所以m⊥β,故②正确;③因为α∩γ=m,α⊥β,γ⊥β,所以由直线与平面垂直的判定定理得m⊥β,故③正确;④因为m⊥α,α⊥γ,β⊥γ,所以m 与β平行或m⊂β或m与β相交,故④错误,故填②③.范例导航考向❶线面、面面平行与垂直关系的相互转化例1如图,已知在空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.(1) 求证:AB⊥平面CDE;(2) 求证:平面CDE⊥平面ABC;(3) 若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE,并给出证明.解析:(1) 因为BC =AC ,E 为AB 的中点, 所以AB ⊥CE.因为AD =BD ,E 为AB 的中点,所以AB ⊥DE. 因为CE ∩DE =E ,CE ,DE ⊂平面CDE , 所以AB ⊥平面CDE.(2) 由(1)知AB ⊥平面CDE , 因为AB ⊂平面ABC ,所以平面CDE ⊥平面ABC.(3) 当AF =2FE 时,GF ∥平面CDE.证明如下: 取DC 的中点H ,连结AH ,EH ,FG. 因为G 为△ADC 的重心,所以点G 在AH 上,且AG =2GH. 因为AF =2FE ,所以FG ∥EH.因为FG ⊄平面CDE ,EH ⊂平面CDE , 所以GF ∥平面CDE.如图,已知在四棱锥PABCD 中,底面ABCD 是∠A =60°,边长为a 的菱形,PD ⊥底面ABCD ,且PD =CD ,M ,N 分别是棱AD ,PC 的中点.(1) 证明:DN ∥平面PMB ;(2) 证明:平面PMB ⊥平面PAD ; (3) 求点A 到平面PMB 的距离.解析:(1) 取PB 的中点Q ,连结MQ ,NQ. 因为Q ,N 分别是棱PB ,PC 的中点, 所以QN ∥BC ,且QN =12BC.因为M 是AD 的中点, 所以MD =12BC ,且MD ∥BC ,所以MD ∥QN 且MD =QN , 所以四边形MDNQ 是平行四边形.因为MQ ⊂平面PMB ,DN ⊄平面PMB , 所以DN ∥平面PMB.(2) 因为PD ⊥底面ABCD ,MB ⊂平面ABCD , 所以PD ⊥MB.因为底面ABCD 是∠A =60°,边长为a 的菱形,且M 为AD 的中点,所以MB ⊥AD. 又AD ∩PD =D ,AD ,PD ⊂平面PAD , 所以MB ⊥平面PAD. 因为MB ⊂平面PMB , 所以平面PMB ⊥平面PAD. (3) 因为M 是AD 的中点,所以点A 与点D 到平面PMB 的距离相等. 过点D 作DH ⊥PM ,垂足为H. 由(2)知平面PMB ⊥平面PAD.因为平面PMB ∩平面PAD =PM , 所以DH ⊥平面PMB ,故DH 是点D 到平面PMB 的距离, 在Rt △PDM 中,DH =PD ×MD PM = a 2×a52a =55a ,所以点A 到平面PMB 的距离为55a. 考向❷ 垂直关系与线面角的探求例2 如图,在四棱锥ABCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1) 证明:AC ⊥平面BCDE ;(2) 求直线AE 与平面ABC 所成角的正切值.解析:(1) 连结BD.由DE =BE =1,CD =2,得BD =BC = 2. 因为AC =2,AB =2,所以AB 2=AC 2+BC 2,即AC ⊥BC.又平面ABC ⊥平面BCDE ,且平面ABC ∩平面BCDE =BC , 所以AC ⊥平面BCDE.(2) 在直角梯形BCDE 中,由BD =BC =2,DC =2,得BD ⊥BC.又平面ABC ⊥平面BCDE ,且平面ABC ∩平面BCDE =BC ,所以BD ⊥平面ABC. 作EF ∥BD 交CB 的延长线于点F ,连结AF , 则EF ⊥平面ABC ,所以∠EAF 是直线AE 与平面ABC 所成的角,且EF ⊥AF.在Rt △BEF 中,因为EB =1,∠EBF =45°,所以EF =BF =22. 在Rt △AFC 中,AC =2,FC =322,所以AF =AC 2+FC 2=262, 在Rt △AEF 中, 所以tan ∠EAF =EF FA =1313.如图,已知在△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AFAD=λ(0<λ<1).(1) 求证:不论λ为何值,恒有平面BEF ⊥平面ABC ; (2) 当λ为何值时,平面BEF ⊥平面ACD ?解析:(1) 因为AB ⊥平面BCD ,CD ⊂平面BCD , 所以AB ⊥CD.因为CD ⊥BC ,且AB ∩BC =B ,AB ,BC ⊂平面ABC , 所以CD ⊥平面ABC. 又AE AC =AFAD=λ(0<λ<1), 所以不论λ为何值,恒有EF ∥CD , 所以EF ⊥平面ABC. 又EF ⊂平面BEF ,所以不论λ为何值,恒有平面BEF ⊥平面ABC. (2) 由(1)知EF ⊥BE ,又平面BEF ⊥平面ACD ,平面BEF ∩平面ACD =EF ,BE ⊂平面BEF , 所以BE ⊥平面ACD ,所以BE ⊥AC.因为BC =CD =1,∠BCD =90°,∠ADB =60°, AB ⊥平面BCD ,所以BD =2,AB =2tan 60°=6, 所以AC =AB 2+BC 2=7.在Rt △ABC 中,由AB 2=AE·AC 得AE =677,所以λ=AE AC =67,故当λ=67时,平面BEF ⊥平面ACD.自测反馈1. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的 必要不充分 条件.解析:当α⊥β,且m 在平面α内时,m 与β可能相交也可能平行,故充分性不成立;当m ⊥β,m ⊂α时,由面面垂直判定定理可得α⊥β,故必要性成立,故“α⊥β”是“m ⊥β”的必要不充分条件.2. 设α和β为两个不重合的平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的等价条件是l 与α内的两条直线垂直. 其中真命题的序号是 ①② . 解析:①由平面与平面平行的判定定理可得①正确;②由直线与平面平行的判定定理可得②正确;③α内两直线互相垂直,不能推得两平面互相垂直,故③错误;④直线l 与α垂直的等价条件是l 与α内的两条相交直线垂直,故④错误.故填①②.3. 如图,平面ABC ⊥平面BCD ,∠BAC =∠BDC =90°,且AB =AC =a ,则AD = a.解析:取BC 的中点E ,连结AE ,DE. 因为AB =AC =a , 所以AE ⊥BC.又平面ABC ⊥平面BCD , 平面ABC ∩平面BCD =BC , 所以AE ⊥平面BCD. 因为DE ⊂平面BCD ,所以AE ⊥DE.计算得BC =2a ,AE =22a , DE =12BC =22a ,所以AD =AE 2+DE 2=a.1. 线面、面面的平行和垂直关系的相互转化,常常能帮助探究定向.如,例1.2. 当题设条件中给定一些数量关系(长度)时,往往要先通过计算,确定各个面的形状,进而发现其中的位置关系(垂直、平行、中点等).如,例2.3. 你还有哪些体悟,请写下来:。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第2课__集合及其基本运算(2) 含解析
____第2课__集合及其基本运算(2)______1. 熟练掌握集合间的交、并、补集的运算以及求集合的子集.2. 能应用分类讨论的思想解决简单的分类讨论问题.1. 阅读:阅读必修1第11~14页.2. 解悟:①从A∩B=A能得到什么结论?②从A∪B=A能得到什么结论?3. 践习:在教材空白处,完成第13页练习第6题,第14页习题第10、13题.基础诊断1. 集合U={1,2}的子集个数为__4__.解析:根据子集个数的公式可得,子集的个数为22=4.2. 已知全集U={1,2,3,4},集合A={1,2},B={2,4},则集合∁U(A∪B)=__{3}__.解析:由题意得,A∪B={1,2,4},所以∁U(A∪B)={3}.3. (1) 已知集合A={y|y=log2(-1)},集合B={y|y=2},则A∩B=__(0,+∞)__;(2) 已知集合A={|y=log2(-1)},集合B={y|y=2},则A∩B=__(1,+∞)__;(3) 已知集合A={(,y)|y=log2},集合B={(,y)|y=-1},则A∩B=__{(1,0),(2,1)}__.解析:(1) 由题意得,集合A=R,集合B={y|y>0},所以A∩B=(0,+∞).(2) 由题意得,集合A={|>1},集合B={y|y>0},所以A∩B=(1,+∞).(3) 令log2=-1,解得=1或=2,所以y=0或y=1,所以A∩B={(1,0),(2,1)}.4. 已知集合A={0,1,2,3},B={-1,0,2},则集合A∪B中所有元素之和为__5__.解析:因为A∪B={-1,0,1,2,3},所以集合A∪B中所有元素之和为-1+0+1+2+3=5.范例导航考向❶对子集的分类讨论例1 已知集合A={2,5},B={|2+p+q=0,∈R}.(1) 若B={5},求p,q的值;(2) 若A∩B=B,求实数p,q满足的条件.解析:(1) 因为B={5},所以方程2+p+q=0有两个相等的实根5,所以5+5=-p,5×5=q,所以p=-10,q=25.(2) 因为A∩B=B,所以B⊆A.当B =∅时,Δ=p 2-4q <0,即p 2<4q ;当B ={2}时,可求得p =-4,q =4;当B ={5}时,可求得p =-10,q =25;当B ={2,5}时,可求得p =-7,q =10.综上所述,实数p ,q 满足的条件为p 2<4q 或⎩⎨⎧p =-4,q =4或⎩⎨⎧p =-10,q =25或⎩⎨⎧p=-7,q =10.已知函数f ()=6x +1-1的定义域为集合A ,函数g ()=lg(-2+2+m )的定义域为集合B .(1) 当m =3时,求A ∩∁R B ;(2) 若A ∩B ={|-1<<4},求实数m 的值.解析:(1) 当m =3时,B ={|-1<<3},则∁R B =(-∞,-1]∪[3,+∞).又因为A =(-1,5],所以A ∩∁R B =[3,5].(2) 因为A =(-1,5],A ∩B ={|-1<<4},所以4是方程-2+2+m =0的一个根, 所以-42+2×4+m =0,解得m =8.此时集合B ={|-2<<4},符合题意.因此实数m 的值为8.考向❷ 对集合中元素的分类讨论例2 已知集合A ={y|y =-2,∈[2,3]},B ={|2+3-a 2-3a>0}.(1) 当a =4时,求A ∩B ;(2) 若A ⊆B ,求实数a 的取值范围.解析:(1) 由题意得,A =[-8,-4],当a =4时,B =(-∞,-7)∪(4,+∞),所以A ∩B =[-8,-7).(2) 方程2+3-a 2-3a =0的两根分别为a ,-a -3.①当a =-a -3,即a =-32时,B =⎝⎛⎭⎪⎫-∞,-32∪(-32,+∞),满足A ⊆B ; ②当a<-a -3,即a<-32时, B =(-∞,a)∪(-a -3,+∞),则a>-4或-a -3<-8,解得-4<a<-32; ③当a>-a -3,即a>-32时, B =(-∞,-a -3)∪(a ,+∞),则a<-8或-a -3>-4,解得-32<a<1. 综上所述,实数a 的取值范围是(-4,1).已知集合A ={|2+2-8>0},B ={y|y =2-2+2,∈R},C ={|(-a )(+4)≤0,a ∈R}.(1) 求A ∩B ;(2) 若∁R A ⊆C ,求实数a 的取值范围.解析:(1) 因为2+2-8>0,解得>2或<-4,所以A =(-∞,-4)∪(2,+∞).因为y =2-2+2=(-1)2+1≥1,所以B =[1,+∞),所以A ∩B =(2,+∞).综上所述,A ∩B =(2,+∞).(2) 因为A =(-∞,-4)∪(2,+∞),所以∁R A =[-4,2].因为∁R A ⊆C ,且C ={|(-a )(+4)≤0,a ∈R},所以a ≥2,所以a 的取值范围为[2,+∞). 考向❸ 对自变量系数的分类讨论例3 已知集合A ={|0<a +1≤5},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|-12<x ≤2. (1) 若A ⊆B ,求实数a 的取值范围;(2) 若B ⊆A ,求实数a 的取值范围;(3) A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.解析:对于不等式0<a +1≤5,当a =0时,0<1<5恒成立,即∈R ,集合A =R ;当a >0时,-1a <≤4a,即集合A ={|-1a <≤4a }; 当a <0时,4a ≤<-1a ,即集合A ={|4a≤<-1a }. (1) 若A 是B 的子集,则当a =0时,不满足题意;当a >0时,需要满足⎩⎪⎨⎪⎧-1a ≥-12,4a ≤2,解得a ≥2; 当a <0时,需要满足⎩⎪⎨⎪⎧4a >-12,-1a ≤2,解得a <-8. 综上所述,a 的取值范围是(-∞,-8)∪[2,+∞). (2) 若B 是A 的子集,则当a =0时,满足题意;当a >0时,需要满足⎩⎪⎨⎪⎧-1a ≤-12,4a ≥2,解得0<a ≤2; 当a <0时,需要满足⎩⎪⎨⎪⎧-1a >2,4a ≤-12,解得-12<a <0. 综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤-12,2. (3) 当A =B 时,需满足A ⊆B 且B ⊆A ,即同时满足(1)和(2),所以a =2.自测反馈1. 设U 为全集,集合A 为U 的子集,则A ∩A =__A__;A ∪A =__A__;A ∩∅=__∅__;A ∪∅=__A__;A ∪∁U A =__U__;A ∩∁U A =__∅__.2. 满足{1,3}∪A ={1,3,5}的集合A 的个数是__4__.解析:因为{1,3}∪A ={1,3,5},所以A ={5}或{1,5}或{3,5}或{1,3,5},共有4个.3. 对于集合A ,B ,我们将集合{|∈A ,且∉B}叫作集合A 与B 的差集,记作A -B.(1) 若A ={1,2,3,4,5},B ={4,5,6,7,8},则A -B =__{1,2,3}__;B -A =__{6,7,8}__;(2) 如果A-B=∅,那么集合A与B之间的关系是__A⊆B__.4. 已知集合P={y=2+1},Q={y|y=2+1},E={|y=2+1},F={(,y)|y=2+1},则与G ={|≥1}为同一集合的是__Q__.解析:集合P中y=2+1就是这个集合中的一个元素;集合Q={y|y=2+1}={y|y≥1},与集合G为同一集合;集合E={|y=2+1}=R;集合F是一个点集,所以与集合G为同一集合的是Q.1. 区分点集和数集在书写上的不同.2. 解题时,注意分类讨论、数形结合等思想方法的运用.3. 你还有哪些体悟,写下;:。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第60课数列的概念及简单表示 Word版含解析
姓名,年级:时间:第60课数列的概念及简单表示1. 数列的概念及数列与函数的关系(A级要求).2。
数列的几种简单表示方法(列表、图象、通项公式)(A级要求).1。
阅读:必修5第31~34页。
2。
解悟:①读懂数列的定义,并与函数的定义作比较;②写出数列的通项公式,就是寻找a n与n的对应关系a n=f(n);③重解第33页例3,体会方法。
3. 践习:在教材空白处,完成第34页习题第7、8、9题.基础诊断1. 数列1,2,7,错误!,错误!,…中的第26项为2错误!.解析:因为a1=1=错误!,a2=2=错误!,a3=错误!,a4=错误!,a5=错误!,所以a n=,3n-2,所以a26=错误!=错误!=2错误!.2。
下列四个图形中,着色三角形的个数依次构成一个数列{a n}的前4项,则这个数列的一个通项公式为a n=3n-1.(1)(2) (3) (4)解析:由图可知前4个图中着色三角形的个数分别为1,3,32,33,…,猜想第n个图的着色三角形的个数为3n-1,所以这个数列的通项公式为a n=3n-1。
3. 已知在数列{a n}中,a1=错误!,a n=1-错误!(n≥2),则a16=错误!。
解析:由题意知a2=1-错误!=-1,a3=1-错误!=2,a4=1-错误!=错误!,所以此数列是以3为周期的周期数列,所以a16=a3×5+1=a1=错误!。
4. 已知数列{a n}的前n项和S n=n2+1,则a n=错误!。
解析:当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+1-[(n-1)2+1]=2n-1,故a=错误!n范例导航考向❶数列的通项公式例1 根据数列的前几项,写出下列各数列的一个通项公式:(1) -1,7,-13,19,…;解析:(1) 数列中各项的符号可通过(-1)n表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n=(-1)n(6n-5).(2) 1,0,错误!,0,错误!,0,错误!,…;解析:(2)分母依次为1,2,3,4,5,6,7,…,分子依次为1,0,1,0,1,0,1,…,把数列改写成错误!,错误!,错误!,错误!,错误!,错误!,错误!,…,因此数列的一个通项公式为a n=错误!。
2020版江苏高考数学名师大讲坛一轮复习教程学案:第83课合 情 推 理 Word版含解析
姓名,年级:时间:第83课合情推理1. 能利用归纳和类比进行简单的推理,了解合情推理在数学发现中的作用。
2. 会运用所学知识对结论进行判断和证明.1。
阅读:选修12第27~31页(理科阅读选修22相应内容)。
2. 解悟:①合情推理,归纳推理和类比推理的过程分别是怎样的?各有哪些特点?②归纳推理和类比推理得到的结论一定是正确的吗?体会并认识合情推理在数学发现中的作用.3. 在教材空白处,完成选修12第33页练习第3、4题,第35页练习第2、3题(理科完成选修22相应任务)。
基础诊断1. 数列1,3,7,13,x,31,…中的x=21 。
2. 设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8成等差数列。
类比以上结论有:设等比数列{b n}的前n项积为T n,则T4,错误!,错误!成等比数列.解析:设等比数列{b n}的公比为q,首项为b1,则T4=b错误!q6,T8=b错误! q28,T12=b错误!q66,所以错误!=b错误!q22,错误!=b错误!q38,即错误!错误!=T4·错误!,故T4,错误!,错误!成等比数列。
3. 已知x∈(0,+∞),观察下列各式:x+错误!≥2,x+错误!=错误!+错误!+错误!≥3,x+错误!=错误!+错误!+错误!+错误!≥4,…,类比得:x +错误!≥n+1(n∈N*),则a=n n.解析:当n=1时,a=1;当n=2时,a=22=4;当n=3时,a=33=27,…,所以当x+错误!≥n+1(n∈N*)时,a=n n.4。
在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则错误!=错误!,推广到空间可以得到类似结论:已知正四面体PABC的内切球体积为V1,外接球体积为V2,则错误!=错误!。
解析:如图,正四面体PABC,D为底面三角形ABC的中心,设正四面体的棱长为a,则AD=错误!a,PD=错误!a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第73课 柱、锥、台、球的表面积和体积1. 掌握柱、锥、台、球的结构特征以及表面积和体积的计算公式.2. 能求简单几何体的表面积和体积.1. 阅读:必修2第53~65页.2. 解悟:①研读直棱柱、正棱锥、正棱台的定义;②教材第53页中的直棱柱、正棱锥和第54页中圆柱、圆锥、圆台都是用侧面展开图的方法推导侧面积公式的,你在解题中能运用这些方法吗?③教材第59页例1中的几何体的体积是通过正六棱柱与圆柱体的体积之差计算的,这就是常用的“割补法”.3. 践习:在教材空白处,完成第60页练习;第63~64页习题.基础诊断1. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为3. 解析:因为圆锥的底面积为π,所以圆锥底面的半径为1,所以其底面的周长为2π.因为圆锥的侧面积为2π,所以12×2πl =2π,解得l =2,所以圆锥的母线长为2,所以圆锥的高为22-12=3,故该圆锥的体积为13×π×3=3π3.2. 如图,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是6.解析:由题意知该多面体为正四棱锥,如图所示,底面边长为1,侧棱长为1,斜高SE =32,连结顶点和底面的中心即为高,所以SO =⎝⎛⎭⎫322-⎝⎛⎭⎫122=22,所以体积为13×1×1×22=26,故该多面体的体积为26.3. 已知正四棱柱的底面边长为2,高为3,则该正四棱柱的外接球的表面积为 17π . 解析:由题意知该正四棱柱的外接球的直径就是正四棱柱的对角线的长,所以球的直径为22+22+32=17,所以球的表面积为4π×⎝⎛⎭⎫1722=17π. 4. 已知某四面体的六条棱中,有五条棱长都等于a ,则该四面体体积的最大值为 a 38W.解析:如图所示,在四面体ABCD 中,若AB =BC =CD =AC =BD =a ,AD =x ,取AD 的中点P ,BC 的中点E ,连结BP ,EP ,CP.易证AD ⊥平面BPC ,所以V ABCD =13S △BPC ×AD =13×12×a ×a 2-x 24-a 24×x =112a ×(3a 2-x 2)x 2=112a ×-⎝⎛⎭⎫x 2-3a 222+9a 44≤a 38,当且仅当x 2=3a 22,即x =62a 时取等号,所以该四面体体积的最大值为a 38.范例导航考向❶ 用侧面展开图的方法,将空间问题化归为平面问题例1 如图,已知正三棱柱ABCA 1B 1C 1的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为 10 .解析:方法一:将两个正三棱柱都沿AA 1剪开后展开,如图1,则最短路线长为l =(2×3)2+82=10.方法二:将正三棱柱侧面展开如图2所示,设该质点绕三棱柱侧面一周时交AA 1于点M ,则第一周的最短路线为AM ,第二周的最短路线为MA 1,所求最短路线的长即求AM +A 1M 的最小值,如图2,取点A 关于A″的对称点A′,连结A′A 1,交A″A″1于点M 0,连结A′M ,由三角形的三边不等关系知A 1M +A′M ≥A 1A′=(2×3)2+82=10.图1 图2已知圆台上底面的半径为1,下底面的半径为4,母线AB =12,从AB 的中点M 拉一条绳子绕圆台侧面转到点A.(1) 求绳子的最短长度;(2) 求当绳子最短时,上底圆周上的点到绳子的最短距离.解析:(1) 将圆台补形成圆锥,并将圆锥侧面展开成如图所示的扇形. 取A 1B 1的中点M 1,AM 1就是绳子的最短长度. 设∠ASA 1=α,则BB 1︵=απ·SB180°=2π,①AA 1︵=απ·(SB +12)180°=8π.②②-①得α=90°. 将α=90°代入①,解得SB =4.在△ASM 1中,SA =16,SM 1=4+6=10, ∠ASA 1=90°,所以AM 21=102+162=356,所以AM 1=289, 即绳子的最短长度为289.(2) 过点S 作SQ ⊥AM 1,交BB 1︵于点P ,交AM 1于点Q ,则PQ 的长度即为所求. 在Rt △ASM 1中,SQ =SA·SM 1AM 1=16×10289=808989.PQ =SQ -SP =808989-4,所以当绳子最短时,上底圆周上的点到绳子的最短距离为808989-4.考向❷ 折叠问题中线面关系、数量关系的变与不变,等体积法求锥体体积例2 如图1所示,在直角梯形ABEF 中(图中数字表示线段的长度),将直角梯形DCEF 沿CD 折起,使平面DCEF ⊥平面ABCD ,连结部分线段后围成一个空间几何体,如图2所示.(1) 求证:BE ∥平面ADF ; (2) 求三棱锥FBCE 的体积.图1图2解析:(1) 方法一:取DF的中点G,连结AG,EG.易证四边形ABEG为平行四边形,所以BE∥AG.因为BE⊄平面ADF,AG⊂平面ADF,所以BE∥平面ADF.方法二:由题意得BC∥AD,CE∥DF,折叠之后平行关系不变.因为BC∥AD,BC⊄平面ADF,AD⊂平面ADF,所以BC∥平面ADF.同理CE∥平面ADF.因为BC∩CE=C,BC,CE⊂平面BCE,所以平面BCE∥平面ADF.因为BE⊂平面BCE,BE⊄平面ADF,所以BE∥平面ADF.(2) 方法一:因为平面DCEF⊥平面ABCD,平面DCEF∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,所以BC⊥平面DCEF.因为DC=CE=1,所以S△CEF=12CE×DC=12,所以V FBCE=V BCEF=13×BC×S△CEF=16.方法二:由题意得CD⊥BC,CD⊥CE,BC∩CE=C,BC,CE⊂平面BCE,所以CD⊥平面BCE.因为DF∥CE,所以点F到平面BCE的距离等于点D到平面BCE的距离,距离为1,因为BC=CE=1,S△BCE=12BC×CE=12,所以V FBCE=13×CD×S△BCE=16.方法三:如图,过点E作EH⊥FC,垂足为H,由图可知BC⊥CD.因为平面DCEF⊥平面ABCD,平面DCEF∩平面ABCD=CD,BC⊥DC,BC⊂平面ABCD,所以BC⊥平面DCEF.因为EH⊂平面DCEF,所以BC⊥EH.因为FC ∩BC =C ,FC ,BC ⊂平面FBC , 所以EH ⊥平面BCF.因为BC ⊥FC ,FC =DC 2+DF 2=5, 所以S △BCF =12BC ×CF =52.在△CEF 中,由等面积法可得EH =15, 所以V FBCE =V EBCF =13×EH ×S BCF =16.如图,已知在多面体ABCDEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则这个多面体的体积为 4 .解析:方法一:如图1,将所求多面体补成一个正方体,而所求多面体的体积是正方体体积的一半,所以V ABCDEFG =12V 正方体=12×2×2×2=4.方法二:如图2,连结BD ,BG ,则V ABCDEFG =V BADGC +V BEFGD =13S 梯形ADGC ·AB +13S 梯形EFGD ·BE =13×(1+2)×2×12×2+13×(1+2)×2×12×2=2+2=4. 图1图2自测反馈1. 在长方体ABCDA 1B 1C 1D 1中,AB =AD =3cm ,AA 1=2cm ,则四棱锥ABB 1D 1D 的体积为 6 cm 3.解析:如图,连结AC 交BD 于点O ,则AC ⊥BD.因为D 1D ⊥AC ,BD ∩D 1D =D ,所以AC ⊥平面BDD 1B 1,所以AO 是四棱锥ABB 1D 1D 的高.因为AO =12AC =322,S 矩形B 1BDD 1=2×32=62,所以V ABB 1D 1D =13×322×62=6.2. 如图,在三棱柱A 1B 1C 1ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥FADE 的体积为V 1,三棱柱A 1B 1C 1ABC 的体积为V 2,则V 1∶V 2= 1∶24 .解析:设三棱柱A 1B 1C 1ABC 的高为h ,底面三角形ABC 的面积为S.因为D ,E ,F 分别是AB ,AC ,A 1A 的中点,所以△AED ∽△ACB ,AF =12AA 1,所以S △AED =14S △ABC ,则V 1=13×14S ×12h =124Sh ,V 2=Sh ,所以V 1V 2=124.3. 已知圆台的母线长为4cm ,母线与轴的夹角为30°,上底面半径是下底面半径的12,则这个圆台的侧面积是 24π cm 2.解析:如图是将圆台还原为圆锥后的轴截面.由题意知AC =4cm ,∠ASO =30°,O 1C =12OA. 设O 1C =r ,则OA =2r.因为O 1C SC =OASA=sin 30°,所以SC =2r ,SA =4r ,所以AC =SA -SC =2r =4,解得r =2,所以圆台的侧面积为π(r +2r)×4=π(2+4)×4=24π.4. 已知正三棱锥的底面边长为2,侧棱长为433,则它的体积为 3 .解析:因为正三棱锥的底面边长为2,所以底面正三角形的高为2×32=3,所以底面中心到三角形顶点的距离为233.因为正三棱锥的侧棱长为433,所以正三棱锥的高为⎝⎛⎭⎫4332-⎝⎛⎭⎫2332=2,所以该三棱锥的体积为13×12×2×3×2=233.5. 如图,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,其中∠BAC =30°,求该几何体的体积.解析:过点C 作CD ⊥AB ,垂足为D ,在半圆中可得∠BCA =90°,∠BAC =30°,AB =2R ,所以AC =3R ,BC =R ,CD =32R , 所以AD =(3R )2-⎝⎛⎭⎫32R 2=32R , 所以BD =2R -32R =R2,所以V 球=4π3R 3,V 圆锥AD =13π⎝⎛⎭⎫32R 2×32R =3π8R 3,V 圆锥BD =13π⎝⎛⎭⎫32R 2×R 2=π8R 3,所以V 几何体=4π3R 3-3π8R 3-π8R 3=5π6R 3.1. 用侧面展开图的方法解决相关问题,是空间问题平面化思想的应用.关键是要搞清楚展开图的形状,及其数量关系.如,例1及其跟踪练习.例1跟踪练习中的“补台成锥”,自测反馈第5题的组合几何体,“割补法”是解决此类问题的常用方法.2. 处理折叠问题,如例2中,折痕CD 左右两部分仍是平面图形,其中的数量关系、位置关系没有变化,而两部分元素之间的平行、垂直等位置关系和相互间的数量关系.3. 你还有哪些体悟,请写下来:。