希望杯第二十三届(2019年) 初二第二试试题
第19届希望杯数学邀请赛初二第二试试题
第十九届“希望杯”全国数学邀请赛初二 第2试一、选择题(本大题共10小题,每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内. 1.将数字“6”旋转180︒,得到数字9;将数字“9”旋转180︒,得数字6;那么将两位数“69” 旋转180︒,得到的数字是( )(A)69 (B)96 (C)66 (D)99【解析】 选A . 2.关于x ,y 的方程组10210x ay bx y ++=⎧⎨-+=⎩,有无数组解,则a ,b 的值为( )(A)0a =,0b = (B)2a =-,1b = (C)2a =,1b =- (D)2a =,1b =【解析】 选B .有无数组解,则要求1121a b ==-,故2a =-,1b =. 3.在平面直角坐标系内,有等腰三角形AOB ,O 是坐标原点,点A 的坐标是(a ,)b ,底边AB 的中线在1、3象限的角平分线上,则点B 的坐标是( )(A)(b ,)a (B)(a -,)b - (C)(a ,)b - (D)(a -,)b【解析】 选A .底边上的中线即对称轴,可见AOB ∆以1、3象限的角平分线为对称轴,则A 、B 关于1、3象限的角平分线对称,从而可知B 的坐标.4.给出两列数:⑴ 1,3,5,7,…,2007;⑵ 1,6,11,16,…,2006,则同时出现在两列数中的数的个数是( )(A)201 (B)200 (C)199 (D)198【解析】 选A .第1列数的第m 个数为21m a m =-,其中1004m ≤;第2列数的第n 个数为54n a n =-,其中402n ≤.同时出现在两列数中的数满足2154m n -=-,即235m n +=,当1m =,6,11, (1001)时n 取整数,这样m 共有201个,故选A .5.If one side of a triangle is 2 times of another side and it has the largest possible area ,then the ratio of its three sides is( )(A)123∶∶ (B)112∶∶ (C)132∶∶ (D)125∶∶(英汉小词典:possible 可能的;area 面积;ratio 比率,比值)【解析】 选D .译文:如果三角形的一条边是另一条边的两倍,且其具有最大的面积,则三条边的比值为多少?由题意知,当此两边夹角为90︒时面积最大,若记两边分别为1和2,5,故选D .6.面值为10元、20元、50元的人民币(每种至少一张)共24张,合计1000元,那么其中面值为20元的人民币有( )张.(A)2或4 (B)4 (C)4或8 (D)2到46之间的任意偶数【解析】 选B .记10元、20元、50元面值的人民币分别有a 张、b 张、c 张,则24a b c ++=,1020a b ++ 501000c =,由此条件可知2425100a b c a b c ++=⎧⎨++=⎩,消去c 可得4320a b +=,即4(5)3ab -=,当2a =时,4b =,此为唯一解.7.由1,2,3这三个数字组成四位数,在每个四位数中,这三个数字至少出现一次,这样的四位数有( )个.(A)33个 (B)36个 (C)37个 (D)39个【解析】 选B .有四个数位,而仅有三个数字,故必有某一个数字出现了两次,记某个数字a 出现了两次,我们先将b 、c 排好,然后剩余的位置放下两个a 即可,这有43⨯种排法,而出现两次的数字可能是b 或c ,故所有情况共有43336⨯⨯=种.8.如图,矩形ABCD 的长9cm AD =,宽3cm AB =,将它折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别是( )(A)5cm,(B)5cm ,3cm (C)6cm(D)5cm ,4cm【解析】 选A .记DE x =,则9AE x =-,由折叠的对称性可知DE BE =,即BE x =. 在Rt ABE ∆中,222AB AE BE +=,即2223(9)x x +-=,得5x =.连接BD 交EF 于点O ,由折叠的特点知BD EF ⊥,易知22310BD AB AD =+=, 则31022BD BO ==. 而5BE =,故2210EO BE BO =-, 从而210EF EO ==9.如图,函数4y mx m =-的图象分别交x 轴、y 轴于点M 、N ,线段MN 上两点A 、B 在x 轴上的垂足分别为1A 、1B ,若114OA OB +>,则1OA A ∆的面积1S 与1OB B ∆的面积2S 的大小关系是( )(A )12S S > (B )12S S = (C )12S S < (D )不确定的【解析】 选C .对于直线4y mx m =-上的任意一点P ,记其横坐标为P x ,则其纵坐标4P P y mx m =-, 其面积211(4)(4)222P P P P P P P m S x y x mx m x x ==-=-, 故22121122(4)(4)2m S S x x x x ⎡⎤-=---⎣⎦221212()4()2m x x x x ⎡⎤=---⎣⎦[]1212()(4)2m x x x x =-+-. 注意到120x x -<,124x x +>,故120S S -<.10. 已知a 是方程3310x x +-=的一个实数根,则直线1y ax a =+-不经过( )(A )第1象限 (B )第2象限 (C )第3象限 (D )第4象限【解析】 选D .实质是判断a 与0、a 与1的大小关系.注意到(0)(1)0f f ⋅<,故01a <<,从而选D .B 1yABMA 1NS 1S 2O二、填空题(本大题共l0小题,每小题4分,共40分.)11. 化简:7()3,得到 .【解析】 填1.原式20082008100410042008200873(15)73()()()137(15)37+==⋅=+.12. 三位数3ab 的2倍等于8ab ,则3ab 等于 . 【解析】 填374.视ab 为一个整体,则2(300)108ab ab +=+,即8592ab =,则74ab =,故3374ab =.13. 当2x >2121x x x x +---,得 . 【解析】 填21x -221(1)211(11)11x x x x x x +--+-+-+-,221(1)211(11)11x x x x x x -----+--=-,2121(11)(11)21x x x x x x x +---=-+-=-14. 已知111()12f x x x x =--++,并且()0f a =,则a 等于 . 【解析】 填2111()12f a a a a =--++111()12a a a =--++(1)1(1)2a a a a a +-=-++2112a a a =-++, 从而必有22a a a +=+,即2a =15. If the sum of a 4-digit natural number and l 7,the difference between it and 72 are all squarenumbers ,then the 4-digit natural number is . (英汉小词典:4-digit natural number 四位自然数;difference 差;square number 完全平方数) 【解析】 填2008.译文:若某个四位自然数与17的和,以及此四位自然数与72的差均为完全平方数,则此四位自然数是 .记此四位自然数为x ,则217x m +=,272x n -=,故2289m n -=,即()()891m n m n +-=⨯. 注意到m n m n +>-,故89m n +=,1m n -=,从而45m =,44n =,故2008x =.16. 将等腰三角形纸片ABC 的底边BC 折起,使点C 落在腰AB 上,这时纸片的不重合部分也是等腰三角形,则A ∠= . 【解析】 填1807︒. 如图所示,C 点翻折之后的位置为'C ,记A x ∠=. 易知''AC CC =,故'ACC x ∠=,''2BCC BC C x ∠=∠=,3ACB x ∠=, 而3ABC ACB x ∠=∠=,从而7180x =︒,解得1807x ︒=.17. 将100只乒乓球放在唧个盒子中,使得每个盒子中的乒乓球的个数都含有数字“8”,如当3n =时,箱子中的乒乓球的数目可以分别为8,8,84;若5n =时,有且只有两个箱子中的乒乓球个数相同,那么各箱子中的乒乓球的个数分别是 . 【解析】 填8、8、18、28、38.考查球的个数最多的盒子其乒乓球个数的最大值是多少.因为有且仅有两个盒子的球的个数相同,故前四个盒子中球的总数的最小值为88182862+++=,则第五个盒子中最多有38个球.注意到“28”之后含有数字“8”的仅有“38”,即第五个盒子中球的个数不能比“38”小,故只能取“38”,从而五个盒子中球的个数只能是8、8、18、28、38.18. 已知一个有序数组(a ,b ,c ,)d ,现按下列方式重新写成数组1(a ,1b ,1c ,1)d ,使1a a b =+,1b b c =+,1c c d =+,1d d a =+,按照这个规律继续写出2(a ,2b ,2c ,2)d ,…,(n a ,n b ,n c ,)n d ,若1000<2000n n n na b c d a b c d+++<+++,则n = .【解析】 填10.11112()a b c d a b c d +++=+++,2x3x2xxxC'CBA2222211112()2()a b c d a b c d a b c d +++=+++=+++, 3333322222()2()a b c d a b c d a b c d +++=+++=+++,…………2()n n n n n a b c d a b c d +++=+++.故100022000n <<,从而10n =.19. 如图,一束光线从点O 射出,照在经过A (1,0)、B (0,1)的镜面上的点D ,经AB 反射后,反射光线又照到竖立在y 轴位置的镜面.要使最后经y 轴再反射的光线恰好通过点A ,则点D的坐标是 .【解析】 填(13,23).作点A 关于y 轴的对称点'A ,则'(1A -,0);作点O 关于AB 的对称点'O ,则'(1O ,1). 连接''A O ,交AB 于点D ,此即所求的点.易知直线AB 的方程为1y x =-+,直线''A O 的方程为1122y x =+,则其交点为1(3D ,2)3.20. 某条直线公路上有1A ,2A ,…,11A 共11个车站,且212i i A A +≤km (1i =,2,3,…,9),317i i A A +≥ km (1i =,2,3,…,8),若11156A A =km ,则101127A A A A += km .【解析】 填34.首先有233217125i i i i i i A A A A A A ++++=-≥-=.注意到111144771010111011()317A A A A A A A A A A A A =+++≥⨯+,即10115A A ≤,而235i i A A ++≥, 故10115A A =.注意到811810101117A A A A A A =+≥,即81012A A ≥,而81012A A ≤,故81012A A =,进而可得1839A A =. y A BO O'A'y A B DEO而1814477878()217A A A A A A A A A A =++≥⨯+,则785A A ≤,而785A A ≥,故785A A =,进而可得5712A A =.同理,455A A =,2412A A =,125A A =. 故10112751251234A A A A +=+++=.三、解答题(本大题共3小题.共40分.) 要求:写出推算过程. 21. (本题满分10分)如图,在ABC ∆中,90ACB ∠=︒,10AC BC ==,CD 是射线,60BCF ∠=︒,点D 在AB 上,AF 、BE 分别垂直于CD (或延长线)于F 、E ,求EF 的长.【解析】 由60BCE ∠=︒可知5CE =,由30ACF ∠=︒可知53FC =而EF FC EC =-,故535EF =.22. (本题满分15分)在直角坐标系中,ABC ∆满足:90C ∠=︒,2AC =,1BC =,点A 、 C 分别在x 轴、y 轴上,当A 点从原点开始在正x 轴上运动时,点 C 随着在正y 轴上运动.(1) 当A 在原点时,求原点O 到点B 的距离OB ; (2) 当OA OC =时,求原点O 到点B 的距离OB ;(3) 求原点O 到点B 的距离OB 的最大值,并确定此时图形应满足什么条件?【解析】 (1) 如图所示,5OB AB ==.60︒FABCD E y 21A BCEO y 21ABC DO(2) 过点O 作BC 的垂线,交BC 的延长线于点D ,如图所示.因为OA OC =,则45OCA ∠=︒, 而90ACB ∠=︒,可知45OCD ∠=︒.易知2OA OC ==1DC DO ==,则2DB DC CB =+=,225OB DB DO =+=(3)取AC 的中点E ,连接BE 、OE ,则22BE BC CE =+1OE =. 而OB OE BE ≤+,故OB 的最大值为12+此时45OEA AEB ∠=∠=︒,而CE OE =,故122.52OCA OEA ∠=∠=︒.23. (本题满分15分)已知m ,n (m n >)是正整数.(1) 若3m 与3n 的末位数字相同,求m n +的最小值; (2) 若3m 与3n 的末两位数字都相同,求m n -的最小值.yx 21A B C EO y 21A BCE O【解析】 (1) 由题意得330(mod10)m n -≡,即3(31)0(mod10)n m n --≡,故31(mod10)m n -≡,从而4m n k -=,故(4)4241216m n k n n k n +=++=+≥⨯+⨯=.(2) 由题意得330(mod100)m n -≡,即3(31)0(mod100)n m n --≡,故31(mod100)m n -≡,从而4m n k -=,故811(mod100)k ≡,当5k =时5811(mod100)≡,此时m n -最小为20.。
八年级数学希望杯第1-22届试题汇总(含答案与提示)
希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
第22届希望杯数学邀请赛初二第2试试题答案
第22届希望杯数学邀请赛初二第2试试题答案1. 选择题1.答案:B2.答案:C3.答案:B4.答案:A5.答案:D6.答案:B7.答案:A8.答案:A9.答案:D10.答案:C2. 填空题1.答案:1302.答案:203.答案:2.54.答案:3205.答案:2043. 解答题1.答案:首先,用余弦定理求出AB的长度:$$ AB^2=AE^2+EB^2-2\\cdot AE\\cdot EB\\cdot\\cos \\angle AEB $$代入已知量:$$ AB^2=6^2+8^2-2\\cdot6\\cdot8\\cdot\\cos35^{\\circ}\\approx83.29 $$ 因此,$AB\\approx9.13$。
接着,设BC交AD于F,由相似三角形比例可得:$$ \\begin{aligned} \\frac{AF}{FD} &= \\frac{AB}{BC} \\\\ \\frac{3-BC}{BC} &= \\frac{9.13}{BC} \\\\ BC &= \\frac{3}{1.304} \\approx 2.30 \\end{aligned} $$因此,$BC\\approx2.30$。
答案为 $9.13+2.30=\\boxed{11.43}$。
2.答案:首先,已知 $\\angle AOC=2\\angle B$,$\\angle OAC=\\angleOCA=30^{\\circ}$,因此 $\\angle ACO=120^{\\circ}-2\\angle B$。
又因 $\\angle BDC=120^{\\circ}$,所以 $\\angle BDE=60^{\\circ}$。
由正弦定理可得:$$ \\frac{BD}{\\sin \\angle BED}=\\frac{ED}{\\sin\\angle BDE} $$代入已知量:$$ \\begin{aligned} BD &= ED\\cdot\\frac{\\sin60^{\\circ}}{\\sin\\angle BED} \\\\ &=ED\\cdot\\frac{\\sin60^{\\circ}}{\\sin(\\angle ACO+\\angle BAC)} \\\\ &=ED\\cdot\\frac{\\sin60^{\\circ}}{\\sin(120^{\\circ}-2\\angle B+\\angle B)} \\\\ &=2ED\\cdot\\frac{\\sin60^{\\circ}}{\\sin(60^{\\circ}+2\\angle B)}\\end{aligned} $$又由相似三角形比例可得:$$ \\begin{aligned} \\frac{ED}{OA+OD} &=\\frac{BD}{OA} \\\\ ED &=\\frac{BD\\cdot OA}{OA+OD} \\\\ &=\\frac{BD\\cdot 2}{2+\\sqrt{3}}\\end{aligned} $$故:$$ \\begin{aligned}&2ED\\cdot\\frac{\\sin60^{\\circ}}{\\sin(60^{\\circ}+2\\angle B)} \\\\=&\\frac{BD\\cdot 2\\cdot2\\cdot\\sin60^{\\circ}}{(2+\\sqrt{3})\\cdot\\sin(60^{\\circ}+2\\angle B)} \\\\ =&\\frac{2\\sqrt{3}}{\\sqrt{3}+1}\\cdot\\frac{\\sin60^{\\circ}}{\\sin(60^{\\cir c}+2\\angle B)} \\end{aligned} $$因为 $\\angle AOC=2\\angle B$,所以 $\\angle AOB=3\\angle B$,故:$$ \\angle BAC=\\frac{1}{2}\\angle BOA=\\frac{1}{2}(180^{\\circ}-3\\angle B)=90^{\\circ}-\\frac{3}{2}\\angle B $$代入可得:$$ \\begin{aligned}&\\frac{2\\sqrt{3}}{\\sqrt{3}+1}\\cdot\\frac{\\sin60^{\\circ}}{\\sin(60^{\\circ }+2\\angle B)} \\\\ =&\\frac{2\\sqrt{3}}{\\sqrt{3}+1}\\cdot\\frac{\\cos(\\frac{3}{2}\\angle B)}{\\sin(150^{\\circ}+\\angle B)} \\end{aligned} $$故:$$BD=\\frac{2\\sqrt{3}}{\\sqrt{3}+1}\\cdot\\frac{\\cos (\\frac{3}{2}\\angle B)}{\\sin(150^{\\circ}+\\angle B)}$$答案为 $\\boxed{\\frac{2\\sqrt{3}}{\\sqrt{3}+1}\\cdot\\frac{\\cos(75^{\\circ})}{\\sin(210^{\\circ})}}$,也可以用三角函数公式化简为 $\\boxed{4-2\\sqrt{3}}$。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。
-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。
-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。
-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。
-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。
-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。
-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。
-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。
-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。
-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。
-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。
-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。
-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。
-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。
-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。
第二十二届”希望杯”全国数学邀请赛__初二__第2试
第二十二届”希望杯”全国数学邀请赛 初二 第2试2011年4月10日 上午9:00至11:00一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正 确答案的英文字母写在每题后面的圆括号内.1. Given A :B =32:3,A =2,C =1029. The size relationship between B and C is (A) B >C (B) B =C (C) B <C (D) uncertain 2. 已知a 2-a =7,则代数式21+-a a .12422+--a a a ÷112-a 的值是 (A) 3 (B)27(C) 4 (D) 5 3. 一个凸四边形的四个内角可以(A) 都是锐角 (B) 都是直角 (C) 都是钝角 (D) 有三个是直角,另一个是锐角或钝角 . 4. 如果直线y =2x +m 与直角坐标系的两坐标轴围成的三角形的面积等于4,则m 的值是 (A) ±3 (B) 3 (C) ±4 (D) 45. 若n +1=20102+20112,则12+n = (A) 2011 (B) 2010 (C) 4022 (D) 40216. 有四个命题:若两个等腰三角形的腰相等,腰上的高也相等,则这两个等腰三角形全等 有一条边相等的两个等腰直角三角形全等● 有一条边和一个锐角对应相等的两个直角三角形全等 ❍ 两边以及另一边上的高对应相等的两个三角形全等 其中,正确的命题有(A) 0个 (B) 1个 (C) 2个 (D) 3个7. 如图1,Rt △ABC 两直角边上的中线分别为AE 和BD , 则AE 2+BD 2与AB 2的比值为(A) 43 (B) 1 (C) 45 (D) 238. As shown in figure 2, ABCD is a rectangle and AD =12, AB =5,P is any point on AD and PE ⊥BD at point E , PF ⊥AC at point F .A BCD 图1figure 2ABCDEFPThen PE +PF has a total length of (A)1348 (B) 1360 (C) 5 (D) 1370 9. 如图3,正方形ABCD 的边AB 在x 轴的正半轴上,C (2,1),D (1,1).反比例函数y =xk的图像与边BC 交于点E ,与边CD 交于点F .已知BE :CE =3:1,则DF :FC 等于(A) 4:1 (B) 3:1 (C) 2:1 (D) 1:110. 如图4,a ,b ,c ,d ,e 分别代表1,2,3,4,5中的一个数. 若b +a +c 及d +a +e 除以3都余1,则不同的填数方法有 (A) 2种 (B) 4种 (C) 8种 (D) 16种 .二、填空题 (每小题4分,共40分)11. 右表为甲、乙两人比赛投篮球的记录, 以命中率(投进球数与投球次数的比值) 来比较投球成绩的好坏,若他们的成绩 一样好.现有以下关系式:a -b =5; a +b =18; ● a :b =2:1; ❍ a :18=2:3; 其中正确的是 (只填序号).12. 已知方程组⎩⎨⎧=-=+542y x y x 的解为⎩⎨⎧==ny m x ,又知点A (m ,n )在反比例函数y =x k的图像上,则k 的值是 .13. 等腰三角形的两个内角的度数之比为a :b (a <b ),若这个三角形是钝角三角形,则ab的取值 范围是 . 14. 定义f (x )=x-11(x ≠1),那么))))2011((((2011 ff f f f 個= .15. 函数y =ax 与函数y =32x +b 的图像如图5所示,则关于x ,y 的方程组⎩⎨⎧=-=-b x y y ax 3230的解是 .16. 若a ,b 是自然数,且a >b ,2011=a (a -1)+b .那么a = ;b = .图3a decb 图417. 一个骰子,六个面上的数字分别是1,2,3,4,5,6.两次掷这个骰子,朝上一面的数依次记为m ,n .则关于x ,y 的方程组⎩⎨⎧=+=+321y x ny mx ,有解的概率为 .18. 如图6边长为2+3的正方形ABCD 内有一点P ,且∠P AB =30︒,P A =2, 在正方形ABCD 的边上有一点Q ,且△P AQ 为等腰三角形,则符合条件 的点Q 有 个.19. 已知a ,b ,c 为实数,并且对于任意实数x ,恒有 | x +a |+| 2x +b |=| 3x +c |, 则a :b :c = .20. 一个自行车轮胎,若安装在前轮,则行驶5000千米后报废;若安装在后轮,则行驶3000 千米后报废.现有一辆新自行车,在行驶一定路程后,交换前后两轮的轮胎,再继续行驶, 使得两个轮胎同时报废,那么该车最多行驶 千米.三、解答题 每题都要写出推算过程.21. (本题满分10分)平面直角坐标系中,正方形ABCD 四个顶点的坐标分别为(-1,-1),(1,-1),(1,1),(-1,1).设正方形ABCD 在y =| x -a |+a 的图像以上部份的面积为S ,试求S 关于a 的函数关系式,并写出S 的最大值.22. (本题满分15分)图6若直线l :y =x +3交x 轴于点A ,交y 轴于点B .坐标原点O 关于直线l 的对称点O ’在反比例函数y =xk的图像上.(1) 求反比例函数y =xk的解析式; (2) 将直线l 绕点A 逆时针旋转角θ (0︒<θ <45︒),得到直线l ’,l ’交y 轴于点P ,过点P 作x 轴的并行线,与上述反比例函数y =xk的图像交于点Q ,当四边形APQO ’的面积为9-233时,求θ 的值.23. (本题满分15分)给定m (m ≥3)个数字组成的一列数a 1,a 2,…,a m ,其中每一个数a i (i =1,2,…,m )只能是1或0.在这一列数中,如果存在连续的k 个数和另一组连续的k 个数恰好按次序对应相等,则称这一列数是“k 阶可重复的”.例如由7个数组成一列数:0,1,1,0,1,1,0,因为a 1,a 2,a 3,a 4与a 4,a 5,a 6,a 7按次序对应相等,所以称这列数为“4阶可重复的”.(1) 分别判断下面的两列数是否是“5阶可重复的”?如果是,请写出重复的这5个数; 0,0,0,1,1,0,0,1,1,0; 1,1,1,1,1,0,1,1,1,1. (2) 如果一列数a 1,a 2,…,a m 一定是“3阶可重复的”,求m 的最小值.(3) 假设一列数不是“5阶可重复的”且第4个数是1,但若在这列数最后一个数再添加一个0或 1,均可使新的一列数是“5阶可重复的”,那么原来的数列中的最后一个数是什么?说明理由.第二十二届”希望杯”全国数学邀请赛初二第2试答案一选择题(每小题4分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B C D B C B D D二填空题(每小题4分)题号11 12 13 14 15 16 17 18 19 20答案②③④-6 >2 -1/2010 x=1y=245;31 11/12 4 1:2:3 3750【部分试题提示】4、5、8、9、10、b+a+c及d+a+e除以3都余1, (a+b+c+d+e)=1+2+3+4+5=15 则(a+b+c+d+e)+a除以3余2,即a除以3余2,a可以是2或5,不同的填数方法有C(2,1)*c(4,1)*c(2,1)=2*4*2=16种,abcde依次为:21435、21453、24135、24153;23514、23541、25314、25341 51423、51432、54123、54132;52314、52341、53214、5324111、解:∵命中率相同,∴10 15 =a 18a=12.b=18-12=6.a-b=12-6=6,故①错误.a+b=12+6=18,故②正确.a:b=12:6=2:1,故③正确.a:18=12:18=2:3,故④正确.故答案为:②③④.1213、因为等腰三角形的两个内角的度数之比为a:b 所以当∠A和∠B为底角时,a:b=1当∠A为顶角时,因为这个三角形是钝角三角形所以∠A>90°,∠B<45°所以a:b>2同理可知当∠B为顶角时,0<a:b<1/2所以综上所述:0<a:b<1/2或a:b=1或a:b>2。
第二十四届“希望杯”全国数学邀请赛 初二(八年级)第2试试题及答案
第24届“希望杯”全国数学邀请赛初二 第二试2013年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( ) (A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x=and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( ) (A )16小时 (B )7158小时 (C )151516小时 (D )17小时 )10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___ 12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。
八年级数学第3届“希望杯”第2试试题
山东省滨州市无棣县埕口中学八年级数学第3届“希望杯”第2试试题一、选择题(:每题1分,共10分)1.73282-73252= [ ]A .47249B .45829.C .43959D .449692.长方形如图43.已知AB=2,BC=1,则长方形的内接三角形的面积总比数( )小或相等. [ ] A.47; B.1; C.23; D.13. 3.当x=6,y=8时,x 6+y 6+2x 4y 2+2x 2y 4的值是[ ] A .1200000-254000. B .1020000-250400C .1200000-250400.D .1020000-2540004.等腰三角形的周长为a(cm).一腰的中线将周长分成5∶3,则三角形的底边长为[ ]A.6a ;B.35a ;C. 6a 或85a ;D.45a . 5.适合方程222x xy y -++3x 2+6xz+2y+y 2+3z 2+1=0的x 、y 、z 的值适合[ ]A.230200x y z x y z x y z ++=⎧⎪-+=⎨⎪++=⎩;B.3260232x y z x y z x y z +-=-⎧⎪++=⎨⎪-+=⎩;C.32620232x y z x y z x y z +-=-⎧⎪-+=⎨⎪-+=⎩;D.00232x y z x y z x y z -+=⎧⎪-++=⎨⎪-+=⎩6.四边形如图44,AB=32,BC=1, ∠A=∠B=∠C=300,则D 点到AB 的距离是[ ] A.1; B.12; C.14; D.18. 7.在式子|x+1|+|x+2|+|x+3|+|x+4|中,用不同的x 值代入,得到对应的值,在这些对应值中,最小的值是 [ ]A .1B .2.C .3D .48.一个等腰三角形如图45.顶角为A,作∠A 的三等三分线AD ,AE (即∠1=∠2=∠3),若BD=x ,DE=y ,EC=z ,则有 [ ]A .x >y >zB .x=z >y.C .x=z <yD .x=y=z9.已知方程(a+1)x 2+(|a+2|-|a-10|)x+a=5有两个不同的实根,则a 可以是[ ]A .5B .9.C .10D .1110.正方形如图46,AB=1,»BD 和»AC 都是以1为半径的圆弧,则无阴影的两部分的面积的差是[ ] A.12π-; B.14π-; C.13π-; D.16π-.二、填空题(每题1分,共10分)1.方程3361x x=+的所有根的和的值是______________. 2.已知a+b=19921991+,a-b=19921991-,那么ab=________.3.如图47,在△ABC 中,∠ACB=60°,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD=______.4.已知x=121+,那么32355424x x x +++1的值是______. 5.如图48,已知边长为a 的正方形ABCD ,E 为AD 的中点,P 为CE 的中点,那么△BPD 的面积的值是______.6. 已知x+y=4,xy=-4, 那么3333x y x y +-=________. 7.在正△AB C 中(如图49),D 为AC 上一点,E 为AB 上一点,BD ,CE 相交于P ,若四边形ADPE 与△BPC 的面积相等,那么∠BPE=______.8.已知方程x 2-19x-150=0的一个正根为a,那么1a a +++12a a ++++23a a ++++┉+19992000a a +++=____. 9.某校男生若干名住校,若每间宿舍住4名,则还剩20名未住下;若每间宿舍住8名,则一部分宿舍未住满,且无空房,该校共有住校男生______名.10.n 是自然数,19n+14与10n+3都是某个不等于1的自然数d 的倍数,则d=______.三、解答题(写出推理、运算的过程及最后结果,每题5分,共10分)1. 若a ,b ,c ,d >0,证明:在方程21202x a d x cd +++=,21202x b cx da +++=,21202x a bx ab +++=21202x d ax bc +++=中,至少有两个方程有不相等的实数根.2.(1)能否把1,2,…,1992这1992个数分成八组,使得第二组各数之和比第一组各数之和多10,第三组各数之和比第二组各数之和多10,…,最后第八组各数之和比第七组各数之和也多10?请加以说明.(2)把上题中的“分成八组”改为“分成四组”,结论如何?请加以说明.如果能够,请给出一种分组法.答案与提示一、选择题提示:5.等式2x+x 2+x 2y 2+2=-2xy 化简为(x+1)2+(xy+1)2=0.∴x+1=0,xy+1=0.解之得x=-1,y=1.则x+y=0.∴应选(B).6.由题设得:xy=1,x+y=4n+2由2x 2+197xy+2y 2=1993,得2(x+y)2+193xy=1993.将xy=1,x+y=4n+2代入上式得:(4n+2)2=900,即4n+2=30.∴n=7.∴应选(A).7.由∠A=36°,AB=AC ,可得∠B=∠C=72°.∴∠ABD=∠CBD=36°,∠BDC=72°.∴AD=BD=BC .由题意,1=(AB+AD+BD)-(BD+BC+CD)=AB-CD=AC-CD=AD=BD .∴应选(B).8.原方程化为(x 2-2x+1)-5|x-1|+6=0.即|x-1|2-5|x-1|+6=0.∴|x-1|=2,或|x-1|=3.∴x 1=-1,x 2=3,x 3=-2,x 4=4.则x 1+x 2+x 3+x 4=4.∴应选(D).9.连结CB ',∵AB=BB ',∴S △BB 'C =S △ABC =1,又CC '=2BC ∴S △B 'CC '=2S △BB 'C =2.∴S △BB 'C '=3.同理可得S △A 'CC '=8,S △A 'B 'A =6.∴S △A 'B 'C '=3+8+6+1=17.∴应选(D).10.原方程为|3x|=ax+1.(1)若a=3,则|3x|=3x+1.当x ≥0时,3x=3x+1,不成立.(2)若a >3.综上所述,a ≥3时,原方程的根是负数.∴应选(B).另解:(图象解法)设y1=|3x|,y2=ax+1。
希望杯第十三届(2002年)初中二年级第二试试题
2002年度初二第二试“希望杯”全国数学邀请赛一、选择题:(每小题5分,共50分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内. 1.若a ≠,(A)都是有理数. (B)一个是有理数,另一个是无理数. (C)都是无理数. (D)是有理数还是无理数不能确定.2.已知a>b>c,M=a 2b+b 2c+c 2a,N=ab 2+bc 2+ca 2,则M 与N 的大小关系是( ). (A)M<N (B)M>N (C)M=N (D)不确定的3.上午九点钟的时候,时针与分针成直角,那么下一次时针与分针成直角的时间是( ).(A)9时30分 (B)10时5分; (C)10时5511分 (D)9时32811分 4.有理数a 、b 、c 满足下列条件:a+b+c=0且abc<0,那么111a b c++的值是( ).(A)是正数 (B)是零(C)是负数 (D)不能确定是正数、负数或05.已知a b c ===,其中m>0,那么a,b,c 的大小关系是( ). (A)a>b>c (B)c>a>b; (C)a>c>b (D)b>c>a6.已知△ABC 中,∠A=60°,BC=a,AC=b,AB=c,AP 是BC 边上的中线,则AP 的长是( ).7.(Figure 1) In the parallelogram ABCD,AD=2AB,a point M is mid- point of segment AD,CE ⊥AB,if ∠CEM=40°,then the value of ∠DME it( ). (A)150° (B)140° (C)135° (D)130°8.如图,在四边形ABCD 中,E 、F 分别是两组对边延长线的交点,EG 、FG 分别平分∠BEC 、∠DFC,若∠ADC=60°,∠ABC=80°,则∠EGF 的大小是( ). (A)140° (B)130° (C)120° (D)110°40︒EMDCBA80︒60︒GFEDCBA9.设a i =1989+i,当i 取1,2,3,…,100时,得到100个分式iia (如i=5,则i i a =55198951994=+),在这100个分式中,最简分式的个数是( ).(A)50 (B)58 (C)63 (D)6510.一个长方体的棱长都是正整数,体积是2002, 若对应棱长相等的长方体算作同一种长方体,那么这样的长方体( ) (A)有6种 (B)有12种 (C)有14种 (D)多于16种 二、填空题:(每小题6分,共60分)11.某储蓄所每年工资支出10万元,其他固定支出每年17万元. 对于吸收的存款每年应付2.25%的利息,吸收来的存款全部存到上级银行,可得年利率4.05%的内部核算收入,那么该储蓄所为使内部核算没有亏损, 每年至少应吸收存款____________________________万元.12.化简35361015+--+,最后得_________.13.设x,y 都是有理数,且满足方程11402332x y πππ⎛⎫⎛⎫+++--= ⎪ ⎪⎝⎭⎝⎭,那么x-y 的值是________.14. 1516与3313的大小关系是1516________3313. (填“>”,“<”或“=”)15.If N is natural number,and 6(32)1N N <+<+,then the value of N is______.( natural number 自然数)16.如果1111a b a b+-=-+,那么(2+a)(2+b)+b 2=__________. 17.如图所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点处的数字的平均数,则代数式:1()21()3a b c d e f g h a b c d e f g h +++-++++++-+++=_____.18.2001年某种进口轿车每辆标价40万元人民币,买此种车时还需另外交纳汽车标价的80%的关税,我国加入WTO 后,进口车的关税将逐渐下降.预计到2006年7月1日,关税降到25%,又因为科技的发展使成本降低,到2006年7月1日,该种车的标价降到2001年的65%,那么2006年7月1日后买一辆该种轿车将比2001 年少付人民币______万元.19.在△ABC 中,∠A=40°,H 是△ABC 的垂心,且H 不与B 、C 重合,则∠BHC 的大小等于_______. 20.如图,正九边形ABCDEFGHI 中,AE=1,那么AB+AC 的长是_______.三、解答题:(21题16分,22、23题各12分)要求:写出推算过程.21.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F, BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立? 请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.PQ FED C BA22.已知在等式ax bscx d+=+中,a,b,c,d都是有理数,x是无理数,解答:(1)当a,b,c,d满足什么条件时,s是有理数;(2)当a,b,c,d满足什么条件时,s是无理数.23.在线段AB上,先在A点标注0,在B点标注2002,这称为第一次操作; 然后在AB的中点C处标注020022+=1001,称为第二次操作;又分别在得到的线段AC、BC的中点D、E处标注对应线段两端所标注的数字和的一半,即010012+与100120022+,称为第三次操作;照此下去,那么经过11次操作之后,在线段AB上所有标注的数字的和是多少?2002年度初二第二试“希望杯”全国数学邀请赛答案:一、1.当两数不等时,两数的差为有理数,说明这两数都是有理数,,选(A).2.M-N=(a2b+b2c+c2a)-(ab2+bc2+ca2)= a2b+b2c+c2a-ab2-bc2-ca2=a2(b-c)+b2(c-a)+c2(a-b)∵ a>b>c ∴ b-c>0,c-a<0,a-b>0∵a2(b-c)≥0,b2(c-a)≤0,c2(a-b) ≥0∴a2(b-c)+c2(a-b)> b2(c-a)∴ M-N>0.选(B).3.把时针转动速度以“度/分钟”为单位,360112602=⨯(度/分钟)分针转动速度是36060=6(度/分钟)再成直角所用时间为18180(6)32211÷-=(分钟)所以下一次时针与分针成直角时间是83211分,选(D).4.由abc<0知a、b、c均不为0.∴(ab+c)2=a2+b2+c2+2(ab+bc+ca)=0ab+bc+ca=-12(a2+b2+c+2)<0∴111bc ac aba b c abc++++=>,选(A)5.∵1ab=<,∴a>b;1bc=<, ∴c>b1ac=>,∴a>c ∴ a>c>b.选(C).6.如图延长中线AP到E,使PE=AP,连接EB,可得△ABC≌△APC,∴∠E=∠PAC, BE=AC=b.∴∠PAB+∠E=∠CAB=60°∴∠ABE=120°;作EF⊥AB延长线于F,∴∠EBF=180°-120°=60°∴∠BEF=300∴BF=12BE=12b.在Rt△BEF中,根据勾股定理:EF2=b2+22324b b⎛⎫=⎪⎝⎭.PFECBA在Rt △AEF 中,根据勾股定理=.∴ PA=12AE=12选(B)7.如图,连接CM,作MN ⊥EC 于N.∵ AB ⊥CE ∴MN ∥AB,且MN ∥CD,从N 为梯形AECD 的中位数. 由MN ⊥CE,MN 是EC 边中线,∴△EMC 为等腰△,∴∠ECM=∠MEC=40° ∠EMC=180°-2×40°=100° ∵ ∠ECD=∠AEC=90°,∴∠MCD=90°-40°=50°, 又∵ DC=12AD=DM,∴∠MCD=∠DMC=50°,∴ ∠EMD=∠EMC+∠CMD=100°+50°=150°.选(A) 8. 2∠4=360°-(60°-∠E)-(180°-∠F) =220°+∠E+∠F∵ ∠4=110°+12∠E+12∠F,0011260,38022E F ∠=-∠∠=-∠, ∴∠C=3600-(∠4+∠2+∠3)=3600-1100-12∠E-12∠F-600+12∠E-800+12∠F=360°-110°-60°-80°=110°选(D).9.当i=3n(n ≤33);i=13n(n ≤7);i=17n(n ≤5)这些数时;iia 不是质数, 这样的数共有: 33+7+5=45(个)其中i=13×3=39,i=13×6=78与i=17×3=51时,与i=3n 中的39,78,51重复, 所以不是质数的数共有 45-3=42个.所以100个分式中最简分式的个数是100-42=58个. 选(B).10.∵ x 3=2002=1×2×7×11×13,把1、2、7、11、13组成三数的乘积. 有如下14种: 1×1×2002 1×2×1001 1×7×286 1×11×182 1×13×154 1×14×143 1×22×91 1×26×77 2×7×143 7×11×26 11×2×91 13×2×77 14×11×13 22×7×13 选(C). 二、11.设每年至少应吸收存款x 万元,4.05 2.251017100100x x =++ x=1500万元 应填1500.432180︒60︒GFEDCBA12.原式=.13.1142332x x y yπππ+++=+,3223246x x y yπππ+++=+(32)(23)246x y x yππ+++=+∴3224236x yx y+=⎧⎨+=⎩,得126xy y=⎧⎨==-⎩∴x-y=18.14.1516-3313=316·516-313·1113=313(35·56-1113)=313(33·53·513-1113)=313(153·53-1113)显然,153·513-1113<0, ∴1516-3313<0, 填<.15.6233](5===53+3×52×+3×3×)2)3.取2.449时,原式=969.9,N=969.16.由原已知得 (1+a)(1+b)=(1-a)(1-b)∴ a+b=0原式=4+2a+2b+ab+b2=4+2(a+b)+ab+b2=4+ab+b2=4+b(a+b)=4.应填417. 因为,33d b c a c fa b++++==,,33b d g ac hc d++++==, ∴2()()3a b c d e f g ha b c+++++++++=,设a+b+c+d=m,e+f+g+h=n,∴a+b+c+d=23m n+,∴m=23m n+,∴m=n,即a+b+c+d=e+f+g+h∴11()2211()33a b c d e f g h m na b c d e f g h m n+++-+++-=+++-+++-=2323323234m n m mm n m m--⨯=⨯=--.18.根据题意,得 80652540140139.5100100100⎛⎫⎛⎫+-⨯+= ⎪ ⎪⎝⎭⎝⎭应填39.519.分锐角三角形和钝角三角形两种情况,如图:(1)αHCBAγβ(2)HCBA如图1.由∠A=40°,得∠ABH=50° ∴∠α=40°,∠BHC=180°-α=140°如图2.由∠A=40°,得∠β=50° ∴∠r=∠β=50 ∴ ∠BHC=90°-∠r=90°-50°=40° 应填140°或40°.20.正九边形内角和为(9-2)×1800=12600,每个内角为1400, ∠CAB=(1800-1400)÷2=20连接AH,作HM,GN 分别垂直AE 于M,N.∴ ∠HAM=140°-2 ×20°-40°=60°,∴∠AHM=30° 设AM=EN=x,MN=y四边形HGNM 是矩形,所以HG=y,即正九边形边长为y, 在Rt △AHM 中,∠AHM=∠30°∴ AH=2AM=2x ∴ AB+AC=y+2x而x+y+x=1 ∴ 2x+y=1 ∴ AB+AC=1, 应填1.三、解答题(按参考答案,酌情给分) 21.证明(1)连接PD 、PE 、QD 、QE. 因为 CE ⊥AB,P 是BF 的中点, 所以 △BEF 是直角三角形,且 PE 是Rt △BEF 斜边的中线, 所以 PE=12BF. 又因为 AD ⊥BC,所以 △BDF 是直角三角形,且PD 是Rt △BDF 斜边的中线, 所以 PD=12BF=PE, 所以 点P 在线段DE 的垂直平分线上.同理可证,QD 、QE 分别是Rt △ADC 和Rt △AEC 斜边上的中线,所以 QD=12AC=QE,PQFEDCBA所以 点Q 也在线段DE 的垂直平分线上. 所以 直线PQ 垂直平分线段DE.(2)当△ABC 为钝角三角形时,(1)中的结论仍成立. 如右图,△ABC 是钝角三角形,∠BAC>90°.原题改写为:如右图,在钝角△ABC 中,AD 、CE 分别是BC 、AB 边上的高,DA 与CE 的延长线交于点F,BF 的中点为P,AC 的中点为Q,连接PQ 、DE. 求证:直线PQ 垂直且平分线段DE.证明 连接PD,PE,QD,QE,则PD 、PE 分别是Rt △BDF 和Rt △BEF 的中线, 所以 PD=12BF, PE=12BF, 所以 PD=PE,点P 在线段DE 的垂直平分线上. 同理可证 QD=QE,所以 点Q 在线段DE 的垂直平分线上. 所以 直线PQ 垂直平分线段DE.22.(1)当a=c=0,d ≠0时, s=bd 是有理数. 当c ≠0时,s=()a ad ad cx d b b ax b a c c c cx d cx d c cx d ++--+==++++, 其中:a c 是有理数,cx+d 是无理数,adb c-是有理数.要使s 为有理数,只有adb c-=0,即 bc=ad.综上知,当a=c=0且d ≠0或c ≠0且ac=bd 时,s 是有理数. (2)当c=0,d ≠0,且a ≠0时,s 是无理数.当c ≠0时,s=()a ad ad cx d b b ax b a c c c cx d cx d c cx d ++--+==++++ 其中: a c 是有理数,cx+d 是无理数,adb c-是有理数.所以 当adb c-≠0,即bc ≠ad,s 为无理数.综上知,当c=0,a ≠0,d ≠0或c ≠0,ac ≠bd 时,s 是无理数. 23.设第n 次操作后,线段AB 上所标注的数字和是a n ,那么第n+1次操作后,使得除A 、B 两点外,其他的数字都再加上一次(两边各加上一半),而A 、B 两点的数字, 则再加上它们的一半,即 102002(2002)21001(1)22n n n n a a a a n +=+-++=-≥ 又因为 a 1=2002+0=2002所以 a 2=2a 1-1001=3003所以 a 11=2a 10-1001=2(2a 9-1001)-1001=22·a 9-(2+1)·1001=…=210·a 1-(29+28+27+…+2+1)·1001 =1024.2002-(1024-1).1001=1026025.答:经过11次操作后,在线段AB上标注的所有数字的和为1026025.。
第19届希望杯初二第2试试题及答案
第19届希望杯全国数学邀请赛试题·解答初中二年级 第2试一、选择题 (以下每题的四个选项中,仅有一个是正确的,请将你认为是正确答案的英文字母填在每题后面的圆括号)1.将数字“6”旋转180 ,得到数字9;将数学“9”旋转180 ,得到数字6;那么将两位数“69”旋转180 ,得到的数字是( ) A .69B .96C .66D .992.关于x ,y 的方程组10210x ay bx y ++=⎧⎨-+=⎩有无数组解,则a ,b 的值为( )A .0a =,0b =B .2a =-,1b =C .2a =,1b =-D .2a =,1b =3.在平面直角坐标系内,有等腰三角形AOB ,O 是坐标原点,点A 的坐标是()a b ,,底边AB 的中线在1,3象限的角平分线上,则点B 的坐标是( )A .()b a ,B .()a b --,C .()a b -,D .()a b -,4.给出两列数:⑴1,3,5,7,…,2007;⑵1,6,11,16,…,2006,则同时出现在两列数中的数的个数是( ) A .201B .200C .199D .1985.If one side of a triangle is 2 tines of another side and it has the largest possible area ,then the ratio of its three sides is ( ) A .1:2:3B .1:1:2C .1:3:2D .1:2:5(英汉小词:possible 可能的;area 面积;ratio 比率,比值)6.有面值为10元、20元、50元的人民币(至少一张)共24张,合计1000元,那么其中面值为20元的人民币有( )张. A .2或4B .4C .4或8D .2到46之间的任意偶数7.由1,2,3这三个数字组成四位数,在每个四位数中,这三个数字至少出现一次,这样的四位数有( ) A .33个B .36个C .37个D .39个8.如右图,矩形ABCD 的长9AD =厘米,宽3AB =厘米,将它折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别是( ) A .5厘米,10厘米 B .5厘米,3厘米 C .6厘米,10厘米D .5厘米,4厘米93FEABDCCDBA9.如右图,函数4y mx m =-的图像分别交x 轴、y 轴于点M ,N ,线段MN 上两点A ,B 在x 轴上的垂足分别为1A ,1B ,若114OA OB +>,则1OA A △的面积1S 与1OB B △的面积2S 的大小关系是( ) A .12S S > B .12S S =C .12S S <D .不确定的10.已知a 是方程3310x x +-=的一个实数根,则直线1y ax a =+-不经过( )A .第1象限B .第2象限C .第3象限D .第4象限二、填空题11.化简1004200820082008200873153735+⎛⎫ ⎪+⎝⎭,得到 .12.三位数3ab 的2倍等于8ab ,则3ab 等于 .13.当2x >时,化简代数式2121x x x x +-+--,得 .14.已知()11112f x x x x =--++,并且()0f a =,则a 等于 . 15.If the sum of a 4-digit natural number and 17,the difference between it and 72 are allsquare numbers ,then the 4-digit natural number is .(英汉小词典:4-digit natural number 四位自然数;difference 差;square number 完全平方数)16.将等腰三角形纸片ABC 的底边BC 沿着过B 点的直线折叠,使点C 落在腰AB 上,这时纸片的不重合部分也是等腰三角形,则______A ∠=.17.将100只乒乓球放在n 个盒子中,使得每个盒子中的乒乓球的个数都含有数字“8”,如当3n =时,箱子中的乒乓球的数目可以分别为了8,8,84;若5n =时,有且只有两个箱子中的乒乓球个数相同,那么各箱子中的乒乓球的个数分别是 .18.已知一个有序数组()a b c d ,,,,现按下列方式重新写成数组()1111a b c d ,,,,使1a a b =+,1b b c =+,1c c d =+,1d d a =+,按照这个规律继续写出()2222a b c d ,,,,…,()n n n n a b c d ,,,,若10002000n n n na b c d a b c d+++<<+++,则_________n =.19.如右图,一束光线从点O 射出,照在经过()10A ,,()01B ,的镜面上的点D ,经AB 反射后,后经y 轴再反射的光线恰好通过点A ,则点D 的坐标是 .20.某条直线公路上有1A ,2A ,…,11A 共11个车站,且212i i A A +≤千S 2S 1B 2A 1BANOy =mx -4mxy OABxy米()1239i = ,,,,,317i i A A +≥ 千米()1238i = ,,,,,若11156A A =千米,则101127______A A A A +=千米.三、解答题21.如下左图,在ABC △中,90ACB ∠= ,10AC BC ==,CD 是射线,60BCF ∠= ,点D 在AB上,AF ,BE 分别垂直CD (或延长线)于F ,E ,求EF 的长.60oF D EBCA21yxA O CB22.如上右图,在直角坐标系中,ABC △满足:90C ∠=,2AC =,1BC =,点A ,C 分别在x 轴、y 轴上,当A 点从原点开始在x 轴正半轴上运动时,点C 随着在y 轴正半轴上运动.⑴ 当A 在原点时,求原点O 到点B 的距离OB ; ⑵ 当OA OC =时,求原点O 到点B 的距离OB ;⑶ 求原点O 到点B 的距离OB 的最大值,并确定此时图形应满足什么条件?23.已知m ,()n m n >是正整数.⑴ 若3m 与3n 的末位数字相同,求m n +的最小值; ⑵ 若3m 与3n 的末两位数字都相同,求m n -的最小值.参考答案一、选择题 1.A【解析】 把数字“69”看做一个图形,则这是一个中心对称图形,旋转180 之后,与原来的数字相同,即得到数字还是69.选A .2.B【解析】 方程组10210x ay bx y ++=⎧⎨-+=⎩①②2a ⨯+⨯①②,得()()22ab x a +=-+,若20ab +≠,则方程组只有一解,若20ab +=,而20a +≠,则方程组无解, 若方程组有无数组解,则2020.ab a +=⎧⎨+=⎩,解得2a =-,1b =.选B .3.A【解析】 因为OAB △是等腰三角形,O 为顶点,所以OA OB =,又AB 为底边,所以AB 垂直于中线即垂直于直线y x =,不妨设2a =,1b =,画图可知()21A ,关于y x =的对称点为()12,,选A .4.A【解析】 由观察可知,同时出现在两列数中的数是1,11,21,…,2001,即每相邻两个数之间相差10,所以总数是20011120110-+=.选A .5.D译文:若一个三角形的一条边是另一条边的2倍,那么当这个三角形的面积最大时,它的三条边的比值为( ) A .1:2:3B .1:1:2C .1:3:2D .1:2:5【解析】 如右图,使AB 边不动,让12AC AB =绕点A 旋转,则BAC ∠可能为直角,也可能是锐角或钝角,很明显,只有当BAC ∠为直角时,ABC △的面积最大,且两条直角边之比为1:2,结合勾股定理,可知此时三条边由小到大的比值为1:2:5.故选D .6.B【解析】 设10元,20元,50元分别有x ,y ,()24x y -+张,则()102050241000x y x y ++--=,即4030200x y +=,4320x y +=.其中x ,y 都是正整数.由1x ≥知316y ≤,所以1613y ≤≤,所以y 只能从1,2,3,4,5中取.又()345y x =-,其中5x -是正整数,3与4是互质的, 所以y 中一定有一个因数4. 所以y 只能取4.选B7.B【解析】 这样的四位数中的四个数码一定是恰好有两个数码相同,如:1,1,2,3.⑴ 如果相同的数码是1,即四个数码为1,1,2,3,那么当两个1相邻时,有1123,1132,2112,3112,2311,3211共6个数,若两个1不相邻有1213,1312,1231,1321,2131,3121,也是有6个数,即恰好有两个1的四位数有12个,同理,恰好有两个2,与恰好有两个3的四位数都有12个,总共有36个四位数.选B .8.A【解析】 如右图,设ED x =,则9AE x =-,BE ED x ==.在直角ABE △中,得()22239x x +-=,C'C"CBAE AD解得5x =,即5ED =厘米.过E 点作EG BC ⊥交BC 于点G ,5BF DE ==厘米,4BG AE ==厘米, 所以1FG =厘米.在Rt EFG △中,22223110EF EG GF =+=+=厘米, 所以选A .9.A【解析】 设()11A x y ,,()22B x y ,,则114y mx m =-,224y mx m =-.又()1111111422S OA A A x mx m =⋅=-,()2112211422S OB B B x mx m =⋅=-,则()()22121212122S S m x x m x x -=---()()1212142m x x x x =-+-. 由题意,知0m <,12x x <,且124x x +>,所以12S S >.选A10.D【解析】 当0x ≤时,3310x x +-<,所以0x ≤时,原方程无解;同样当13x ≥时,3310x x +->,所以原方程的实数根只能在103⎛⎫ ⎪⎝⎭,之间,因为a 是方程3310x x +-=的一个实数根,所以103a <<.对于直线1y ax a =+-,0a >,10a ->, 所以直线不经过第四象限,选D .二、填空题 11.1【解析】 ()()200820082007200820082008200820082008200831531537357715++==++,所以原式1004100473137⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭.12.374【解析】 由题意知()230010100108a b a b ⨯++=++,化简得1074a b +=,所以原来的三位数是374.13.21x -【解析】 2121x x x x +-+--()()12111211x x x x =-+-++---+()()221111x x =-++--因为2x >,所以110x -->. 所以原式()()111121x x x =-++--=-.14.2±【解析】 ()()()211121212x f x x x x x x x -=--=++++, 所有由()0f a =得220a -=, 也就是22a =,得2a =±.15.2008译文:有一个四位自然数,若加上17或减去72,结果都是完全平方数,则这个自然数是 .【解析】 设这个自然数是a ,由题意得221772a ma n⎧+=⎪⎨-=⎪⎩(m n >,且m ,n 均为自然数) 两式相减得2289m n -=,89是一个质数,所以()()891m n m n +-=⨯, 只有891m n m n +=⎧⎨-=⎩解得4544m n =⎧⎨=⎩.所以245172025172008a =-=-=.16.36【解析】 如右图所示,设折叠后点C 落在D 点,BE 是折痕.则BDE BCE DBC ∠=∠=∠.在等腰ADE △中,若A ∠是顶角,则DE BC ∥,ADE DBC ∠=∠, 由前面已证DBC BDE ∠=∠, 所以得到90ADE BDE ∠=∠= 矛盾;若AED ∠是顶角,则180180A ADE BDE ACB ∠=∠=-∠=-∠ ,180A ACB ∠+∠=,矛盾.所以ADE ∠是顶角,则()221801802180A ADE A A ∠+∠=∠+--∠÷= .解得36A ∠= .17.8,8,18,28,38【解析】 5个盒子中的乒乓球个数都含有数字8,则5个数的个位都为8,或有一个数的十位数为8,但后一种情况不可能.所以每个盒子中各放入8只,再将剩下的60只合理分配在各个箱子中即可,得8,8,18,28,38.18.10【解析】 由已知()11112a b c d a b c d +++=+++即11112a b c d a b c d+++=+++.同理得22224a b c da b c d+++=+++.33338a b c d a b c d +++=+++,……,2n n n n na b c d a b c d+++=+++,CB EDA所以10022000n <<,10n =.19.1233⎛⎫⎪⎝⎭,【解析】 如右图,点O 关于AB 的对称点为()'11O ,,点A 关于y 轴的对称点为()10A '-,,AB 所在的直线的方程为1y x =-+A O ''所在直线的方程为()112y x =-. 由()1112y x y x =-+⎧⎪⎨=+⎪⎩解得1323x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以点D 的坐标为1233⎛⎫⎪⎝⎭,.20.34【解析】 因为1101447710A A A A A A A A =++,317i i A A +≥(千米)所以11017513A A =×≥(千米).又11156A A =(千米),所以10115A A ≤(千米). 有81117A A ≥(千米),81012A A ≤(千米), 所以10115A A ≥(千米). 于是只有10115A A =(千米). 同理125A A =(千米).而1734A A ≥(千米),所以2729A A ≥(千米), 又210565546A A =--=(千米),71017A A ≥(千米), 所以2729A A ≤(千米). 所以2729A A =(千米) 所以10112734A A A A +=(千米).三、解答题 21.【解析】 在Rt ACF △和Rt CBE △中,AC BC =,906030ACF ∠=-= ,30CBE ∠= ,即ACF CBE ∠=∠,所以ACF CBE △≌△,5CE AF ==,53BE CF ==. 所以()531EF CF CE =-=-.22.【解析】 ⑴ 当A 点在原点时,如下左图,AC 在y 轴上BC y ⊥轴,所以点B 的坐标是()12,, 于是225OB x y =+=;y xB AOO'A'12x y AO BC321DyxA O CB⑵ 当OA OC =时,如上右图,OAC △是等腰三角形,且2AC =, 所以2OA OC ==,1245∠=∠= ,从点B ,C 分别作x 轴,y 辆的垂线,两条直线交于点D ,所以345∠= , 因为1BC =,所以22CD BD ==, 得B 点的坐标是23222⎛⎫⎪⎪⎝⎭,. 所以22232522OB ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑶ 如右图,取AC 的中点E ,连结OE ,BE , 在Rt AOC △中,OE 是斜边AC 上的中线, 所以112OE AC ==.在ACB △中,1BC =,112CE AC ==,90BCE ∠= ,所以2BE =.若点O ,E ,B 不在一条直线上,则12OB OE EB <+=+.若点O ,E ,B 在一条直线上,则12OB OE EB =+=+.所以当O ,E ,B 三点在一条直线上时,取得最大值,最大值为12+.23.【解析】 ⑴ 由已知得33m n -是10的倍数,即()33331m n n m n --=-是10的倍数.又3n 与10的互质的,所以只能是31m n --是10的倍数. 令m n s -=,所以只要3s 的末位数字是1即可, 显然4381=满足条件,所以m n -的最小值是4; 取1n =,则5m =,此时m n +最小,最小值为6. ⑵ 由⑴的思路得33m n -是100的倍数, 即()33331m n n m n --=-是100的倍数,又3n 与1000是互质的,所以只能是31m n --是100的倍数. 令m n r -=,所以只要3r 的末位数字是01即可, 因为3r 末位数字为1,所以r -一定是4的倍数,令4r t =(t 是正整数),所以43381r t t ==的末两位数是01.EyxA O CB。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
【精编范文】希望杯数学竞赛试题-word范文模板 (9页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==希望杯数学竞赛试题篇一:最全希望杯数学竞赛真题及答案“希望杯”全国数学竞赛(第1-23届)第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题........................................ 003-0052.希望杯第一届(1990年)初中一年级第二试试题........................................ 010-0123.希望杯第二届(1991年)初中一年级第一试试题........................................ 018-0204.希望杯第二届(1991年)初中一年级第二试试题........................................ 024-0265.希望杯第三届(1992年)初中一年级第一试试题........................................ 032-0326.希望杯第三届(1992年)初中一年级第二试试题........................................ 038-0407.希望杯第四届(1993年)初中一年级第一试试题........................................ 048-0508.希望杯第四届(1993年)初中一年级第二试试题........................................ 056-0589.希望杯第五届(1994年)初中一年级第一试试题........................................ 064-066题 ..................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题 ...................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题 ...................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题 ...................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题 ...................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题 ...................................... 111-11316.希望杯第八届(1997年)初中一年级第二试试题 ...................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题 ...................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题 ...................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题 ...................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题 ...................................... 148-15121.希望杯第十一届(201X年)初中一年级第一试试题 .................................. 159-16122.希望杯第十一届(201X年)初中一年级第二试试题 .................................. 167-16923.希望杯第十二届(201X年)初中一年级第一试试题 .................................. 171-17424.希望杯第十二届(201X年)初中一年级第二试试题 .................................. 176-17825.希望杯第十三届(201X年)初中一年级第一试试题 .................................. 182-184题 .................................. 186-18927.希望杯第十四届(201X年)初中一年级第一试试题 .................................. 193-19628.希望杯第十四届(201X年)初中一年级第二试试题 .................................. 198-20029.希望杯第十五届(201X年)初中一年级第一试试题 (203)30.希望杯第十五届(201X年)初中一年级第二试试题 (204)31.希望杯第十六届(201X年)初中一年级第一试试题 .................................. 213-21832.希望杯第十六届(201X年)初中一年级第二试试题 (204)33.希望杯第十七届(201X年)初中一年级第一试试题 .................................. 228-23334.希望杯第十七届(201X年)初中一年级第二试试题 .................................. 234-23835.希望杯第十八届(201X年)初中一年级第一试试题 .................................. 242-24626.希望杯第十八届(201X年)初中一年级第二试试题 .................................. 248-25137.希望杯第十九届(201X年)初中一年级第一试试题 .................................. 252-25638.希望杯第十九届(201X年)初中一年级第二试试题 .................................. 257-26239.希望杯第二十届(201X年)初中一年级第一试试题 .................................. 263-26620.希望杯第二十届(201X年)初中一年级第二试试题 .................................. 267-271。
第希望杯初二第2试试题及答案
第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。
希望杯数学八年级竞赛真题及答案(1-23届)
1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。
历年初中希望杯数学竞赛试题大全
历年初中希望杯数学竞赛试题大全 ][真诚为您服务试试题希望杯”全国数学邀请赛初二第2· 2009年第20届“次· 161· [4-30]★详细简介请参考下载页]· [竞赛 2试试题届“希望杯”全国数学邀请赛初一第年第· 200920 次· 153· [4-28]详细简介请参考下载页★]· [竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第· 2009 · 76次· [4-17]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1· 2009年第20届“希望杯次· 133· [4-7]对不起,尚无简介☆]竞赛· [ 试试题全国数学邀请赛初一第1届“希望杯”20· 2009年第· 122次· [4-7]详细简介请参考下载页★]· [竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次· 44· [9-9]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初一第19· 2008年第届次· 203· [9-4]详细简介请参考下载页★]· [竞赛 1”“19· 2008年第届希望杯全国数学邀请赛初一第试试题次· 169· [9-4]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第219年第届“希望杯”· 2008 次· 156· [9-2]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 2008年第19届· 146次· [9-2]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第18· 2007年第· 101次· [9-2]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“18· 2007年第届希望杯次· 95· [9-2]详细简介请参考下载页★]竞赛· [ 试试题”全国数学邀请赛初二第2· 2006年第17届“希望杯次· 76· [9-2]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第届· 2006年第17 · 76次· [9-2]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第2希望杯· 2005年第16届“”次· 65· [9-1]详细简介请参考下载页★]· [竞赛 1试试题全国数学邀请赛初二第届· 2005年第16“希望杯”次· 52· [9-1]详细简介请参考下载页★]· [竞赛试试题全国数学邀请赛初二第希望杯”2· 2004年第15届“次· 47· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第115届“希望杯”年第· 2004 次· 38· [9-1]详细简介请参考下载页★]· [竞赛 2试试题希望杯”全国数学邀请赛初二第届· 2003年第14“次· 30· [9-1]详细简介请参考下载页★]竞赛· [ 1试试题希望杯届“”全国数学邀请赛初二第年第· 200314 · 26次· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题全国数学邀请赛初二第希望杯届年第· 200213“”· 31次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第1”年第13届“希望杯· 2002 次· 23· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第· 2001年第12届· 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第112年第届“希望杯”· 2001 · 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题2“届希望杯”全国数学邀请赛初二第11· 2000年第次· 15· [9-1]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1“· 2000年第11届希望杯次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第210届“希望杯”· 1999年第次· 13· [9-1]详细简介请参考下载页★]· [竞赛试试题1希望杯”全国数学邀请赛初二第· 1999年第10届“次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第9· 1998年第届次· 11· [8-29]详细简介请参考下载页★]· [竞赛 1”“9· 1998年第届希望杯全国数学邀请赛初二第试试题次· 10· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第28年第届“希望杯”· 1997 次· 13· [8-29]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 1997年第8届· 10次· [8-29]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第7· 1996年第· 11次· [8-29]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“7· 1996年第届希望杯次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初二第2· 1995年第6届“次· 14· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第16届“希望杯”· 1995年第次· 14· [8-29]★详细简介请参考下载页]· [竞赛 2试试题希望杯”全国数学邀请赛初二第5· 1994年第届“次· 12· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“届希望杯”全国数学邀请赛初二第· 1994年第5 · 12次· [8-29](每一、选择题 :年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题 [] Ax 1.303小题分,共分)使等式成立的的值是.是]· [竞赛试试题初二第2”年第4届“希望杯全国数学邀请赛· 1993 次· 9· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第14届“希望杯”· 1993年第次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题2希望杯”全国数学邀请赛初二第· 1992年第3届“次· 11· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第3· 1992年第届次· 9· [8-29]详细简介请参考下载页★]· [竞赛 2”“2· 1991年第届希望杯全国数学邀请赛初二第试试题· 14次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1年第· 19912届“希望杯次· 12· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第21届“希望杯”· 1990年第· 13次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1希望杯· 1990年第1届“次· 11· [8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题:“1990年第一届希望杯() 倍,那么这个角是 1.一个角等于它的余角的5分)共10]竞赛· [ 2试试题全国数学邀请赛初一第希望杯届年第· 200718“”· 94次· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初一第118届“希望杯”· 2007年第次· 42· [8-28]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初一第2· 2006年第17届“次· 41· [8-28]详细简介请参考下载页★]竞赛· [ 试试题1希望杯”全国数学邀请赛初一第“· 2006年第17届次· 43· [8-28]试第1全国数学邀请赛初一希望杯年第十七届2006“”……中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
2019-2020学年八年级数学第1届“希望杯”第2试试题.docx
2019-2020 学年八年级数学第 1届“希望杯”第 2试试题一、选择题 : (每题 1分,共 5分)1.等腰三角形周长是 24cm,一腰中线将周长分成 5∶3的两部分,那么这个三角形的底边长是 [ ]A.7.5B. 12. C . 4.D. 12或42. 已知 P= 19881989199019911( 1989) 2,那么P的值是[ ]A. 1987B. 1988. C. 1989D. 19903.a>b> c,x>y> z,M=ax+by+cz,N=az+by+cx,P=ay+bz+cx ,Q=az+bx+cy,则 []A. M> P> N且 M> Q>N. B .N> P> M且 N> Q> MC. P> M> Q且 P> N>Q. D .Q> M> P且 Q> N> P∠ CDA∶∠ ABC=2∶ 1,AD∶CB=1∶3 , 则∠ BDA=[] 4.凸四边形 ABCD中,∠ DAB=∠ BCD=90,A. 30°B. 45°. C . 60° .D.不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割 []A.是不存在的 . B .恰有一种 . C.有有限多种,但不只是一种.D .有无穷多种二、填空题 : (每题 1分,共 5分)1.△ ABC中,∠∠ B=90°,∠ C的平分线与 AB交于 L,∠ C的外角平分线与BA的延长线交于 N.已知 CL=3,则 CN=______.2.若 a 1(ab2)20 ,那么111的值是 _____.ab(a1)(b1)(a1990)( b1990)3.已知 a, b, c满足 a+b+c=0, abc=8 ,则 c的取值范围是 ______.4. ABC中 ,∠ B=300,AB=5 ,BC=3 , 三个两两互相外切的圆全在△ABC中,这三个圆面积之和的最大值的整数部分是______.a b c ab ac bc abc 5.设 a,b,c 是非零整数 , 那么b c ab ac bc abc 的值等于a _________.三、解答 : (每 5分,共 15分)1.从自然数 1, 2,3⋯, 354中任取 178个数,:其中必有两个数,它的差是177.2.平面上有两个相等的正方形ABCD和A' B' C' D',且正方形 A' B' C' D'的点 A'在正方形 ABCD的中心.当正方形 A' B'C'D' A',两个正方形的重合部分的面必然是一个定.个?明你的判断.3.用 1, 9, 9,0四个数成的所有可能的四位数中,每一个的四位数与自然数 n之和被 7除余数都不 1,将所有足上述条件的自然数n由小到大排成一列n1< n2< n3<n4⋯⋯,求: n1· n2之.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B) 或 (D) .又:底为 4时,腰长是 10.符合题意.故选(C) .=19882+3× 1988+1-1989 2=(1988+1) 2+1988-1989 2=19883.只需选 a=1,b=0,c=-1 ,x=1,y=0,z=-1 代入,由于这时 M=2,N=-2,P=-1 ,Q=-1.从而选 (A) .4.由图 6可知:当∠ BDA=60°时,∠ CDB5.如图 7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选 (D) .二、填空题提示:1.如图8:∠ NLC=∠ B+∠1=∠ CAB-90° +∠ 1=∠ CAB-∠3 =∠ N.∴ NC=LC=3.5.当 a, b, c均正,7.当 a, b, c不均正,-1 .三、解答177个:(1 ,178) , (2 ,179) ,(3 ,180) ,⋯,1.法一把 1到 354的自然数分成(177 , 354) .的中,任一内的两个数之差177.从 1~354中任取 178个数,即是从 177个中取出 178个数,因而至少有两个数出自同一个.也即至少有两个数之差是 177.从而明了任取的 178个数中,必有两个数,它的差是177.法二从 1到 354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1, 2,⋯, 176 177种之一.因而 178个数中,至少有两个数a, b的余数相同,也即至少有两个数a, b之差是177的倍数,即×177.又因 1~ 354中,任两数之差小于2× 177=354.所以两个不相等的数a,b之差必177.即.∴从自然数 1,2,3,⋯, 354中任取 178个数,其中必有两个数,它的差是177.2.如图 9,重合部分面积S A'EBF是一个定值.证明:连 A'B, A' C,由 A'为正方形 ABCD的中心,知∠A' BE=∠ A' CF=45°.又,当 A' B'与 A' B重合时,必有 A' D'与 A' C重合,故知∠ EA' B=∠FA' C.在△ A' FC和△ A' EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990 ,1909, 1099, 9091, 9109,9910 , 9901, 9 019, 9190.其中1990=7 ×284+2,1909=7 ×272+5.1099=7× 157,9091=7 × 1298+5,9109=7 × 1301+2,9910=7× 1415+5, 9901=7× 1414+3,9019=7× 1288+3, 9190=7× 1312+6.即它们被 7除的余数分别为 2, 5,0, 5, 2,5, 3, 3,6.即余数只有 0,2, 3, 5,6五种.它们加 1, 2, 3都可能有余 1的情形出现.如0+1≡ 1, 6+2≡ 1, 5+3≡ (mod7) .而加 4之后成为: 4, 6 ,7, 9, 10,没有一个被 7除余 1,所以 4是最小的 n.又:加 5, 6有: 5+3≡ 1,6+2≡ 1.(mod7) 而加 7之后成为 7,9,10,12, 13.没有一个被 7除余 1.所以 7是次小的 n.即n 1=4, n2=7∴n 1× n2=4× 7=28.。
数学同步练习题考试题试卷教案第19届希望杯数学邀请赛初二第2试试题及答案
第十九届“希望杯”全国数学邀请赛初二 第2试一、选择题(本大题共10小题,每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1. 将数字“6”旋转180︒,得到数字9;将数字“9”旋转180︒,得数字6;那么将两位数“69”旋转180︒,得到的数字是() (A)69(B)96(C)66(D)99 【解析】 选A . 2.关于x ,y 的方程组10210x ay bx y ++=⎧⎨-+=⎩,有无数组解,则a ,b 的值为()(A)0a =,0b =(B)2a =-,1b =(C)2a =,1b =-(D)2a =,1b =【解析】 选B .有无数组解,则要求1121a b ==-,故2a =-,1b =. 3.在平面直角坐标系内,有等腰三角形AOB ,O 是坐标原点,点A 的坐标是(a ,)b ,底边AB 的中线在1、3象限的角平分线上,则点B 的坐标是()(A)(b ,)a (B)(a -,)b -(C)(a ,)b -(D)(a -,)b【解析】 选A .底边上的中线即对称轴,可见AOB ∆以1、3象限的角平分线为对称轴,则A 、B 关于1、3象限的角平分线对称,从而可知B 的坐标.4. 给出两列数:⑴1,3,5,7,…,2007;⑵1,6,11,16,…,2006,则同时出现在两列数中的数的个数是()(A)201(B)200(C)199(D)198 【解析】 选A .第1列数的第m 个数为21m a m =-,其中1004m ≤;第2列数的第n 个数为54n a n =-,其中402n ≤.同时出现在两列数中的数满足2154m n -=-,即235m n +=,当1m =,6,11,…1001时n 取整数,这样m 共有201个,故选A .5.Ifonesideofatriangleis2timesofanothersideandithasthelargestpossiblearea ,thentheratioofitsthreesides is()(A)123∶∶(B)112∶∶(C)12(D)12(英汉小词典:possible 可能的;area 面积;ratio 比率,比值)【解析】 选D . 译文:如果三角形的一条边是另一条边的两倍,且其具有最大的面积,则三条边的比值为多少?由题意知,当此两边夹角为90︒时面积最大,若记两边分别为1和2,,故选D .6.面值为10元、20元、50元的人民币(每种至少一张)共24张,合计1000元,那么其中面值为20元的人民币有()张.(A)2或4(B)4(C)4或8(D)2到46之间的任意偶数【解析】 选B .记10元、20元、50元面值的人民币分别有a 张、b 张、c 张,则24a b c ++=,1020a b ++501000c =,由此条件可知2425100a b c a b c ++=⎧⎨++=⎩,消去c 可得4320a b +=,即4(5)3ab -=,当2a =时,4b =,此为唯一解.7.由1,2,3这三个数字组成四位数,在每个四位数中,这三个数字至少出现一次,这样的四位数有()个.(A)33个 (B)36个 (C)37个 (D)39个【解析】 选B .有四个数位,而仅有三个数字,故必有某一个数字出现了两次,记某个数字a 出现了两次,我们先将b 、c 排好,然后剩余的位置放下两个a 即可,这有43⨯种排法,而出现两次的数字可能是b 或c ,故所有情况共有43336⨯⨯=种.8. 如图,矩形ABCD 的长9cm AD =,宽3cm AB =,将它折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别是()(A)5cm(B)5cm ,3cm (C)6cm(D)5cm ,4cm【解析】 选A .记DE x =,则9AE x =-,由折叠的对称性可知DE BE =,即BE x =.在Rt ABE ∆中,222AB AE BE +=,即2223(9)x x +-=,得5x =.连接BD 交EF 于点O ,由折叠的特点知BD EF ⊥,易知BD =,则2BD BO ==. 而5BE =,故EO ==从而2EF EO ==9.如图,函数4y mx m =-的图象分别交x 轴、y 轴于点M、93DC A BA B C D E F 39-x xA B CDx E O FN ,线段MN 上两点A 、B 在x 轴上的垂足分别为1A 、1B ,若114OA OB +>,则1OA A ∆的面积1S 与1OB B ∆的面积2S 的大小关系是()(A )12S S >(B )12S S =(C )12S S <(D )不确定的【解析】 选C .对于直线4y mx m =-上的任意一点P ,记其横坐标为P x ,则其纵坐标4P P y mx m =-, 其面积211(4)(4)222P P P P P P P m S x y x mx m x x ==-=-, 故22121122(4)(4)2m S S x x x x ⎡⎤-=---⎣⎦221212()4()2m x x x x ⎡⎤=---⎣⎦[]1212()(4)2m x x x x =-+-. 注意到120x x -<,124x x +>,故120S S -<.10. 已知a 是方程3310x x +-=的一个实数根,则直线1y ax a =+-不经过()(A )第1象限 (B )第2象限 (C )第3象限 (D )第4象限【解析】 选D .实质是判断a 与0、a 与1的大小关系.注意到(0)(1)0f f ⋅<,故01a <<,从而选D .二、填空题(本大题共l0小题,每小题4分,共40分.)11. 化简:7()3.【解析】 填1.原式10041004773()()()1337=⋅=.12. 三位数3ab 的2倍等于8ab ,则3ab 等于. 【解析】 填374.视ab 为一个整体,则2(300)108ab ab +=+,即8592ab =,则74ab =,故3374ab =.13. 当2x >,得.【解析】 填1,1,1)1)+=14. 已知111()12f x x x x =--++,并且()0f a =,则a 等于. 【解析】填111()12f a a a a =--++111()12a a a =--++(1)1(1)2a a a a a +-=-++2112a a a =-++, 从而必有22a a a +=+,即a =15. Ifthesumofa4-digitnaturalnumberandl7,thedifferencebetweenitand72areallsquarenumbers ,thenthe4-digitnaturalnumberis .(英汉小词典:4-digitnaturalnumber 四位自然数;difference 差;squarenumber 完全平方数)【解析】 填2008.译文:若某个四位自然数与17的和,以及此四位自然数与72的差均为完全平方数,则此四位自然数是.记此四位自然数为x ,则217x m +=,272x n -=,故2289m n -=,即()()891m n m n +-=⨯. 注意到m n m n +>-,故89m n +=,1m n -=,从而45m =,44n =,故2008x =.16. 将等腰三角形纸片ABC 的底边BC 折起,使点C 落在腰AB 上,这时纸片的不重合部分也是等腰三角形,则A ∠=. 【解析】 填1807︒. 如图所示,C 点翻折之后的位置为'C ,记A x ∠=. 易知''AC CC =,故'ACC x ∠=,''2BCC BC C x ∠=∠=,3ACB x ∠=, 而3ABC ACB x ∠=∠=,从而7180x =︒,解得1807x ︒=.17. 将100只乒乓球放在唧个盒子中,使得每个盒子中的乒乓球的个数都含有数字“8”,如当3n =时,箱子中的乒乓球的数目可以分别为8,8,84;若5n =时,有且只有两个箱子中的乒乓球个数相同,那么各箱子中的乒乓球的个数分别是.【解析】 填8、8、18、28、38.考查球的个数最多的盒子其乒乓球个数的最大值是多少.因为有且仅有两个盒子的球的个数相同,故前四个盒子中球的总数的最小值为88182862+++=,则第五个盒子中最多有38个球.注意到“28”之后含有数字“8”的仅有“38”,即第五个盒子中球的个数不能比“38”小,故只能取“38”,从而五个盒子中球的个数只能是8、8、18、28、38.18. 已知一个有序数组(a ,b ,c ,)d ,现按下列方式重新写成数组1(a ,1b ,1c ,1)d ,使1a a b =+,2x3x 2xxxC'CBA1b b c =+,1c c d =+,1d d a =+,按照这个规律继续写出2(a ,2b ,2c ,2)d ,…,(n a ,n b ,n c ,)n d ,若1000<2000n n n na b c d a b c d+++<+++,则n =.【解析】 填10.11112()a b c d a b c d +++=+++,2222211112()2()a b c d a b c d a b c d +++=+++=+++, 3333322222()2()a b c d a b c d a b c d +++=+++=+++,…………2()n n n n n a b c d a b c d +++=+++.故100022000n <<,从而10n =.19. 如图,一束光线从点O 射出,照在经过A (1,0)、B (0,1)的镜面上的点D ,经AB 反射后,反射光线又照到竖立在y 轴位置的镜面.要使最后经y 轴再反射的光线恰好通过点A ,则点D的坐标是.【解析】 填(13,23).作点A 关于y 轴的对称点'A ,则'(1A -,0);作点O 关于AB 的对称点'O ,则'(1O ,1).连接''A O ,交AB 于点D ,此即所求的点.易知直线AB 的方程为1y x =-+,直线''A O 的方程为1122y x =+,则其交点为1(3D ,2)3.20. 某条直线公路上有1A ,2A ,…,11A 共11个车站,且212i i A A +≤km (1i =,2,3,…,9),317i i A A +≥km (1i =,2,3,…,8),若11156A A =km ,则101127A A A A +=km .【解析】 填34.首先有233217125i i i i i i A A A A A A ++++=-≥-=.注意到111144771010111011()317A A A A A A A A A A A A =+++≥⨯+,即10115A A ≤,而235i i A A ++≥, 故10115A A =.注意到811810101117A A A A A A =+≥,即81012A A ≥,而81012A A ≤,故81012A A =,进而可得1839A A =. 而1814477878()217A A A A A A A A A A =++≥⨯+,则785A A ≤,而785A A ≥,故785A A =,进而可得5712A A =.同理,455A A =,2412A A =,125A A =. 故10112751251234A A A A +=+++=.三、解答题(本大题共3小题.共40分.)要求:写出推算过程. 21. (本题满分10分)如图,在ABC ∆中,90ACB ∠=︒,10AC BC ==,CD 是射线, 60BCF ∠=︒,点D 在AB 上,AF 、BE 分别垂直于CD (或延长线)于F 、E ,求EF 的长. 【解析】 由60BCE ∠=︒可知5CE =,由30ACF ∠=︒可知FC =而EF FC EC =-,故5EF =.22. (本题满分15分)在直角坐标系中,ABC ∆满足:90C ∠=︒,2AC =,1BC =,点A 、C 分别在x 轴、y 轴上,当A 点从原点开始在正x 轴上运动时,点 C 随着在正y 轴上运动.(1)当A 在原点时,求原点O 到点B 的距离OB ; (2)当OA OC =时,求原点O 到点B 的距离OB ;(3)求原点O 到点B 的距离OB 的最大值,并确定此时图形应满足什么条件?【解析】 (1)如图所示,OB AB ==.(2) 过点O 作BC 的垂线,交BC 的延长线于点D ,如图所示.因为OA OC =,则45OCA ∠=︒, 而90ACB ∠=︒,可知45OCD ∠=︒.易知OA OC ==,1DC DO ==,则2DB DC CB =+=,OB =60︒FABCDED(3)取AC 的中点E ,连接BE 、OE,则BE =1OE =. 而OB OE BE ≤+,故OB的最大值为1此时45OEA AEB ∠=∠=︒,而CE OE =,故122.52OCA OEA ∠=∠=︒.23. (本题满分15分)已知m ,n (m n >)是正整数.(1)若3m 与3n 的末位数字相同,求m n +的最小值; (2)若3m 与3n 的末两位数字都相同,求m n -的最小值.【解析】 (1) 由题意得330(mod10)m n -≡,即3(31)0(mod10)n m n --≡,故31(mod10)m n -≡,从而4m n k -=,故(4)4241216m n k n n k n +=++=+≥⨯+⨯=.(2) 由题意得330(mod100)m n -≡,即3(31)0(mod100)n m n --≡,故31(mod100)m n -≡,从而4m n k -=,故811(mod100)k ≡,当5k =时5811(mod100)≡,此时m n -最小为20.。