高中数学3.4基本不等式(一)

合集下载

福建省人教版高二数学第三单元教案:3.4基本不等式1

福建省人教版高二数学第三单元教案:3.4基本不等式1

第一课时 3.4基本不等式2a b +≤(一)教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;教学重点:2a b +≤的证明过程;教学难点:理解“当且仅当a=b 时取等号”的数学内涵教学过程:一、复习准备:1. 回顾:二元一次不等式(组)与简单的线形规划问题。

2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?二、讲授新课:1. 教学:基本不等式2a b +≤①探究:图形中的不等关系,将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。

设直角三角形的两条直角边长为a,b 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。

由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

(教师提问→学生思考→师生总结)②思考:证明一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b +≤2a b +≤:用分析法证明:要证 2a b +≥(1), 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。

当且仅当a=b 时,(4)中的等号成立。

⑤练习:已知x 、y 都是正数,求证:(1)yx x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.⑥探究:课本第110页的“探究”:(结论:如果把2b a +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.)2. 小结:①两正数a 、b 的算术平均数与几何平均数成立的条件。

人教高中 数学 必修五 3.4 基本不等式教学设计

人教高中 数学 必修五 3.4  基本不等式教学设计

人教高中数学必修五 3.4 基本不等式教学设计《基本不等式》教学设计教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修5课题:3.4 基本不等式(第一课时)一、教材分析《基本不等式》是高中教材人教A版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一。

就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想。

本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习时再次得到加强。

基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分。

本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式222(,)+≥∈。

a b ab a b R在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式。

其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力。

这就使得不等式的证明成为本节课的核心内容。

二、教学重难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。

教学难点:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值。

三、教学目标《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。

根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些国际数学家大会被誉为是数学界的奥林匹克盛会,每次大会上都会宣布菲尔兹奖获奖名单。

2020版高中数学第3章不等式3.4基本不等式第1课时基本不等式课件新人教A版必修5

2020版高中数学第3章不等式3.4基本不等式第1课时基本不等式课件新人教A版必修5

『规律总结』 在基本不等式应用过程中要注意“一正、二定、三相 等”.
一正,a,b均为正数; 二定,不等式一边为定值; 三相等,不等式中的等号能取到,即a=b有解.
〔跟踪练习 1〕 下列结论中正确的是( C ) A.若 a>0,则(a+1)(1a+1)≥2 B.若 x>0,则 lnx+ln1x≥2 C.若 a+b=1,则 a2+b2≥12 D.若 a+b=1,则 a2+b2≤12
新课标导学
数学
必修⑤ ·人教A版
第三章
不等式
3.4 基本不等式 ab≤a+2 b
第1课时 基本不等式
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
如图是第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的 弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民的热情好 客.那么你能在这个图中找出一些相等关系或不等关系吗?
〔跟踪练习 2〕
(1)已知 a>0,b>0,则1a+1b+2 ab的最小值是( C )
A.2
B.2 2
C.4
D.5
(2)已知 f(x)=x+1x-2(x<0),则 f(x)有( C )
A.最大值为 0
B.最小值为 0
C.最大值为-4
D.最小值为-4
[解析] (1)因为 a>0,b>0,
所以1a+1b+2 ab≥2 a1b+2 ab≥4
[解析] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤(m+2 n)2=(126)2=64, 当且仅当 m=n=8 时,mn 取到最大值 64.∴12mn 的最大值为 32. (2)∵x>2,∴x-2>0, ∴x+x-4 2=x-2+x-4 2+2≥2 x-2·x-4 2+2=6, 当且仅当 x-2=x-4 2,即 x=4 时,等号成立.所以 x+x-4 2的最小值为 6.

3.4 基本不等式(教案)

3.4 基本不等式(教案)

3.4基本不等式(第一课时)来宾高中数学组:卢红兰教学目标一、知识目标1、探索并了解基本不等式的证明过程;2、了解基本不等式的几何背景;3、会用基本不等式解决简单的最大(小)值问题。

二、能力目标通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法。

三、情感目标通过对基本不等式成立条件的分析,培养分析问题的能力及严谨的数学态度。

教学重、难点重点:1、数形结合的思想理解基本不等式;2、基本不等式成立的条件及应用。

难点:基本不等式成立的条件及应用。

教学过程一、创设情境,引入课题探究一:如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计;将右图中的“风车”抽象成下图,比较4个直角三角形的面积与大正方形的面积,你能找到怎样的不等关系?引导学生从面积的关系去找相等关系或不等关系。

设直角三角形的两条直角边长为a,b 我们考虑4个直角三角形的面积的和是ab S 21=,大正方形的面积为222b a S +=。

由图可知12S S >,即ab b a 222>+.思考一:1、能否取到等号?什么时候取等号?(当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=)2、以上结论能否推广到任意实数a ,b ?总结:重要不等式:一般地,对于任意实数 a 、b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。

你能给出证明吗?思考二:如果用a ,b 去替换ab b a 222≥+中的a ,b 能得到什么结论? 引导:为什么可以替换?a ,b 要满足什么条件?结论:a b +≥)0,0(>>b a ,当且仅当b a =时取等号. 你能给出证明吗?二、数形结合,深化认识展示课题内容:重要不等式.....:若,a b R ∈,则ab b a 222≥+(当且仅当b a =时,等号成立) 基本不等式.....:若,0a b >,则2ba ab +≤(当且仅当b a =时,等号成立)此环节学生提出疑惑,小组解答三、辨析质疑(小组活动)例1. 若0x >,当x 取什么值时,1x x+的值最小?最小值是多少?练1:把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?小结1:当ab 为定值P 时,a b +有最什么值?此时a 、b 应满足什么条件?变式1:若0x <,1x x+有最值吗?如果有,请你求出最值. 变式2:你会求1x x +的最值吗?试一试.例2. 若02x <<,当x 取什么值?(2)x x -值最大?最小值是多少?练2:把18写成两个正数的和,当这两个正数取什么值时,它们的积最小?小结2:当a b + 为定值S 时,ab 有最什么值?此时a 、b 应满足什么条件?四、小结:1、222a b ab +≥当且仅当a b =时“=”成立2、2a b +≥0,0a b >>)当且仅当a b =时“=”成立 思想方法:1、数形结合思想2、换元思想五、作业设计1、基本作业:(1)判断下列推理是否正确:① 函数22(0)y x x x=+>的最小值是( )② 函数y =的最大值是5. ( )③ 函数1sin sin y x x=+的最小值是2. ( )(2)完成同步课时作业2、拓展作业:到阅览室或网上查找基本不等式的几何解释,整理并相互交流.六、板书设计3.4基本不等式1、重要不等式:若,a b R ∈,则ab b a 222≥+(当且仅当b a =时,等号成立)2、基本不等式:若,0a b >,则2b a ab +≤(当且仅当b a =时,等号成立) 思想方法:1、数形结合思想2、换元思想。

高中数学 3.4.1《基本不等式-均值不等式》课件 新人教A版

高中数学 3.4.1《基本不等式-均值不等式》课件 新人教A版


下面几道题的解答可能有错,如果错了, 那么错在哪里? 1 1.已知函数 f ( x) x ,求函数的 x 最小值和此时x的取值.
运用均值不等式的过程中,忽略了“正数” 这个条件.
3 ( x 2) , 2.已知函数 f ( x) x x2 求函数的最小值.
用均值不等式求最值,必须满足“定值”这 个条件.
4 3 求函数y sin 其中 (0, ] sin 2 的最小值。 4 4 解:y sin 2 sin sin sin 4,函数的最小值为4。
用均值不等式求最值,必须注意 “相等” 的条 件. 如果取等的条件不成立,则不能取到该最值.
2 2
1.定理适用范围: 2.强调取“=”的条件:
a, b R
ab
均值定理: 如果a,
b∈R+,那么
(当且仅当a=b 时,式中等号成立)
2 2 证明: ( a ) ( b ) 2 a b ∵
ab ab 2
∴a b 2 ab
ab ab 即: 2
ab ab 当且仅当a=b时 2
在(2)中,矩形的长与宽的和的2倍是一个 常数,求长与宽的乘积的最大值。
规律:
两个正数的积为常数时,它们的和有
最小值; 两个正数的和为常数时,它们的积有
最大值。
2 x 2 x 3 例3.求函数 f ( x) ( x 0) x
的最大
值,及此时x的值。
3 解: f ( x) 1 (2 x ) ,因为x>0, x
2 2
的最小值.
3 2 2
课堂小结
比较两个重要不等式的联系和区别:
a b 2ab ;

3.4基本不等式 (1)

3.4基本不等式 (1)

重要不等式: 重要不等式: 2 +b2 a
≥ 2ab(a、 ∈R b )
当且仅当a=b时,等号成立. 时 等号成立 当且仅当 基本不等式: 基本不等式:
当且仅当a 时 等号成立. 当且仅当 =b时,等号成立
a+b ab ≤ (a > 0, b > 0) 2
注意: 注意:
适用范围不同 (1)不同点:两个不等式的适用范围不同。 )不同点:两个不等式的适用范围不同。 (2)相同点:当且仅当 )相同点:当且仅当a=b时,等号成立。 时 等号成立。
例题讲解
例2 某工厂要建造一个长方体形无盖贮水 其容积为4800m3,深为 深为3m,如果池底每 池,其容积为 其容积为 深为 如果池底每 平方米的造价为150元,池壁每平方米的的 平方米的造价为 元 池壁每平方米的的 造价为120元,怎样设计水池能使总造价最 造价为 元 怎样设计水池能使总造价最 最低总造价是多少? 低?最低总造价是多少 最低总造价是多少
2
动态演示 几何意义: 几何意义:圆的半径不小于圆内半弦长
你能用这个图得出基本 不等式的几何解释吗? 不等式的几何解释吗?
2.PQ与AO的大小关系怎样? 2.PQ与AO的大小关系怎样? 的大小关系怎样
a +b b 那 2.基本不等式 如 a > 0, > 0, 么 2 ≥ ab 基本不等式 果 均值定理) (均值定理) (当 仅 a = b , " ="号 且 当 时 取 )
x+ y 由 ≥ xy可得:x + y ≥ 2 100 2 ∴ 2( x + y ) ≥ 40
等号当且仅当x = y时成立,
此时x = y = 10
因此这个矩形的长、宽都为10m时, 所用篱笆最短,最短篱笆是40m.

人教版高中数学必修五3.4基本不等式(1)

人教版高中数学必修五3.4基本不等式(1)

课本P100 习题3.4 A组 第2、3题
2012年4月17日星期二
2012年4月17日星期二
分 析 法 ① ②
基本不等式
适用范围:
文字叙述为:两个正数的算术平均数不小于它们的几何平 均数.
2012年4月17日星期二
思考7:你能用这个图得出基本不等式的几何解释吗?
D
A
a OC b B E
几何意义:半径不小于弦长的一半
2012年4月17日星期二
适用范围 文字叙述 “=”成立 条件 两数的平方和 不小于它们积 的2倍 两个正数的算术 平均数不小于它 们的几何平均数
2012年4月17日星期二
小结
2012年4月17日星期二
2、利用基本不等式求最值时,要注意 ①各项皆为正数; ②和或积为定值; ③注意等号成立的条件. 一“正” 二“定” 三“相等”Leabharlann 2012年4月17日星期二
2012年4月17日星期二
基本不等式
理论
重要不等式 基本不等式 三相等
方法
一正、二定、 和定积最大 积定和最小
b
G A F E C
a
H
B
2012年4月17日星期二
D b G F a H E B C A
D a
A
b E(FGH)
C
B 思考3:通过上面的探究,你能得出什么事实呢?
思考4:你能证明这个结论么?
2012年4月17日星期二
作差比较法
注意 1、适用范围: 2、文字叙述为: 两数的平方和不小于它们积的2倍.
§3.4 基本不等式
第一课时
2012年4月17日星期二
这是2002年在北京召开的第24届国际数学家大会会 标.会标根据中国古代数学家赵爽的弦图设计的,颜色的 明暗使它看上去象一个风车,代表中国人民热情好客。

高中数学 3.4基本不等式

高中数学 3.4基本不等式

3.4.1基本不等式(1)学校:临清二中 学科:数学 编写人:郑敏杰 审稿人: 丁良之 1 【教学目标】1学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a bab +≤的证明过程; 【教学难点】 基本不等式2a bab +≤等号成立条件【教学过程】 1.课题导入 基本不等式2a bab +≤的几何背景: 探究:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色 的明暗使它看上去象一个风车,代表中国人民热情好客。

2 合作探究(1)问题 1:你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关。

系)提问2:我们把“风车”造型抽象成图在正方形ABCD 中有4个全等的直角三角形.设直角三角形的长为a 、b ,那么正方形的边长为多少?面积为多少呢?22a b +提问3:那4个直角三角形的面积和呢?生答:2ab提问4:好,根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,222a b ab +≥。

什么时候这两部分面积相等呢?生答:当直角三角形变成等腰直角三角形,即a b =时,正方形EFGH 变成一个点,这时有222a b ab +=结论:(板书)一般地,对于任意实数 a 、b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。

提问5:你能给出它的证明吗? (学生尝试证明后口答,老师板书)证明: 222222(),()0,()0,a b ab a b a b a b a b a b +-=-≠->=-=当时,当时, 所以 222a b ab +≥ 注意强调 当且仅当a b =时, 222a b ab +=(2)特别地,如果0,0,,a b a b a b >>+≥、可得,也可写成(0,0)2a ba b +≤>>,引导学生利用不等式的性质推导 (板书,请学生上台板演):要证:0,0)2a ba b +≥>> ① 即证 a b +≥ ② 要证②,只要证 a b +- 0≥ ③要证③,只要证 ( - )20≥ ④ 显然, ④是成立的,当且仅当a b =时, ④的等号成立 (3)观察图形3.4-3,得到不等式①的几何解释2a b +≤探究:课本中的“探究”在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。

人教版高中数学必修五同课异构课件:3.4 基本不等式.1 探究导学课型

人教版高中数学必修五同课异构课件:3.4 基本不等式.1 探究导学课型
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
2
2
2
(2)当a,b异号时,不等式 a b ab 成立吗? 2
提示:一定不成立,因为当a,b异号时,ab<0,所以 无意
ab
义,故不等式一定不成立.
【探究总结】对基本不等式的四点说明
(1)“当且仅当”的含义是a=b⇔ a b ab. (2)基本不等式的几何意义是:圆的2半径不小于垂直于直径的
半弦长.
(3)基本不等式亦可表述为:两个正数的算术平均数不小于它
们的几何平均数.
(4)基本不等式
与不等式a2+b2≥2ab成立的条件不
同,前者是a,ba∈Rb+, 后ab者是a,b∈R. 2
【拓展延伸】基本不等式的常用结论
(1)当x>0时,x+ 1 ≥2;当x<0时,x+ 1 ≤-2.
(2)当ab>0时, x
【拓展延伸】基本不等式的推广
设ai∈R+(i=1,2,…,n),这n个数:
(1)算术平均数An= (2)几何平均数Gn=
a1
a2
n
an
.
(3)调和平均数Hn= n a1 a2 an .
n
.
(4)平方平均数Qn= 1 1 1
a1 a2
an
则以上平均值的关系a是12 :aH22n≤Gn≤anA2n.≤Qn. n

高中数学必修五3.4.1 基本不等式的证明教学课件共18张PPT

高中数学必修五3.4.1 基本不等式的证明教学课件共18张PPT

C
S=ab
c=2(a+b)


物品放天平左边称砝码显示重量为a
物品放天平右边称砝码显示重量为b
2.主动引导 激发需求
物品放天平左边称砝码显示重量为a,放右边
称砝码显示重量为b,那么这个物品的实际重量是 多少? M | l1 | l2 |
M
| l1 | l2 |
3.合作活动 提炼建模
活动 1 如图 5,请同学们先将一个正方形纸片沿它 们的对角线对折,然后用剪刀沿纸片对角线剪开,分成 两个全等的等腰直角三角形纸片. (课前请同学们预先 准备)
3.合作活动 提炼建模
活动 2 完成活动 1 后, 请同桌两位同学各取一个等
a b 腰直角三角形纸片(纸片的面积分别为 , ) ,按如图 2 2 a +b 6 所示拼接成面积为 的多边形纸片. 2
3.合作活动 提炼建模
活动 3 完成活动 2 后,再请同桌两位同学合作,将
a +b 拼接成面积为 的多边形纸片按图 7 中虚线裁剪,去 2
普通高中课程标准实验教科书 数学(必修 5)
3.4 基本不等式的证明
1.自主阅读 提出问题
【阅读材料】五世纪,欧洲大地上贵族发起大规模 的圈地运动,其中有一种观点认为 “所圈矩形形状的地 的周长越长,则所圈地面积越大”. 你认同此观点吗?能从此观点中抽象出什么数学 问题吗?
A
a
D
b
b
B
a
ab ≥ ab . a b ≥ 2 ab , 2 ab 所以, 如果 a, b 是正数, 那么 ab ≤ (当 2
且仅当 a=b 时取“=”). 当 a ≥ 0 ,b ≥ 0 时,这个不等式仍然成立.

人教版高中数学必修5第三章第四节《基本不等式(一)》课件

人教版高中数学必修5第三章第四节《基本不等式(一)》课件

x 3 解: 1 1 y x ( x - 3) 3 x 3 x -3 1 2 ( x 3) 3 5 x 3
二定
1 当且仅当x 3 , 即x 4时,函数有最小值, x 3 最小值为5。
1 例2、( 3 )若 0 x , 求函数 y x (1 2 x )的最大值。 2 1 解: ∵0<x< 2, ∴1-2x>0.
2 2
此不等式称为重要不等式
1、基本不等式的引出
如果a 0, b 0, 我们用 a , b分别代替a, b, 可得到什么结论?
替换后得到:( 即:
a ) ( b ) ≥2 a b
2 2
a b≥2 ab
基本不等式
ab 即: ≥ ab 2 (a 0, b 0,当且仅当a b时取等)
只要证
(___ a ___) b ≥0
2
显然, 上式是成立的.当且仅当a=b时取等。
a b ≥2ab
2 2
ab ≥ ab 2
a>0,b>0
适用范围 文字叙述 “=”成立条件
a,b∈R
两数的平方和不 两个正数的算术平均数不 小于它们积的2倍 小于它们的几何平均数
a=b
a=b
例1 、( 1 )已知a 0, b 0, ab 36, 求a b的最小值。
3 解: 0 x 3 - 2 x 0 2 2x 3 2x 2 9 y 2 2 x (3 2 x ) 2 ( ) 2 2 3 3 当且仅当2 x 3 2 x即x ( 0, )时取等 4 2
例2、( 4 )函数f ( x ) x 2
2
1 x 2

3.4.1--基本不等式的证明

3.4.1--基本不等式的证明

2 sin2 x
k
,
k
Z
)的
最小值.
问题: 左边的解法
正确吗?
2sin 22 x s源自n2x22
y
sin 2
x
2 sin 2
x
的最小值为2
2
小结:
1.今天这堂课你有哪些收获? 2.应用基本不等式要注意哪些问题呢?
应用基本不等式原则: 一正、二定、三相等
活学活用
1.设a,b为正数,则b a 的最小值为_____.
解:根据基本不等式 y x2 1 2x 当 且 仅 当 x 2 1时 , 即 x 1时 取 到 最 小 值 2 .
(当且仅当a=b时,等号成立)
在童话世界中,有这样一个故事:有一天, 年轻、聪明的王子想买商人手中的宝石,于是 商人拿出一个制造不精确的天平,他会怎么办 呢?
(1)直接称得重量a卖出; (2)调换后称得重量b卖出;
(3)以重量a b 卖出. 2
王子会接受吗?你能帮助他吗?
结论1: 基本不等式:
探究
你能用四块相同的三角板拼成一个赵爽弦图吗?
探究:
问题1: 如果设直角三角形的两条直角边分别 为a、b. 你能用a、b来表示正方形ABCD的 面积和四个全等的直角三角形的面积和吗?
问题2:正方形ABCD的 面积和四个全等的直 角三角形的面积和之 间有怎样的大小关系 呢?
结论1:重要不等式
a 2 b 22 a b(a R ,b R )
ab
2 a 1 的最小值为_____.
a
2.若x > 0,当x=___时,y x 2 有最小值,最小值为___. x
变式1:若x > 1,当x=__时, y x 2 有最 值,其值为__. x 1

高中数学(人教版必修5)第三章不等式3.4 基本不等式 第1课时

高中数学(人教版必修5)第三章不等式3.4 基本不等式 第1课时

第三章 3.4 第1课时一、选择题1.函数f (x )=xx +1的最大值为( )A.25 B .12C.22D .1[答案] B[解析] 令t =x (t ≥0),则x =t 2, ∴f (x )=x x +1=tt 2+1.当t =0时,f (x )=0; 当t >0时,f (x )=1t 2+1t =1t +1t .∵t +1t ≥2,∴0<1t +1t ≤12.∴f (x )的最大值为12.2.若a ≥0,b ≥0,且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3[答案] C[解析] ∵a ≥0,b ≥0,且a +b =2, ∴b =2-a (0≤a ≤2),∴ab =a (2-a )=-a 2+2a =-(a -1)2+1. ∵0≤a ≤2,∴0≤ab ≤1,故A 、B 错误; a 2+b 2=a 2+(2-a )2=2a 2-4a +4 =2(a -1)2+2.∵0≤a ≤2,∴2≤a 2+b 2≤4.故选C.3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( )A.12B .a 2+b 2C .2abD .a[答案] B[解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <12,又∵a 2+b 2≥2ab ,∴最大数一定不是a 和2ab , ∵1=a +b >2ab , ∴ab <14,∴a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12.故选B.解法二:特值检验法:取a =13,b =23,则2ab =49,a 2+b 2=59,∵59>12>49>13,∴a 2+b 2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D .14[答案] B[解析] 根据题意得3a ·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B.5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于( )A .1B .3C .2D .4[答案] C[解析] 1a +1b =12⎝⎛⎭⎫1a +1b (a +b ) =1+12⎝⎛⎭⎫b a +a b ≥2,等号在a =b =1时成立.6.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是( )A .0B .1C .2D .4[答案] D[解析] 由等差、等比数列的性质得 (a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy+2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题7.若0<x <1,则x (1-x )的最大值为________. [答案] 14[解析] ∵0<x <1,∴1-x >0, ∴x (1-x )≤[x +(1-x )2]2=14,等号在x =1-x ,即x =12时成立,∴所求最大值为14.8.已知t >0,则函数y =t 2-4t +1t 的最小值是________.[答案] -2[解析] ∵t >0,∴y =t 2-4t +14=t +1t -4≥2t ·1t -4=-2,当且仅当t =1t,即t =1时,等号成立.三、解答题 9.已知x >0,y >0.(1)若2x +5y =20,求u =lg x +lg y 的最大值; (2)若lg x +lg y =2,求5x +2y 的最小值. [解析] (1)∵x >0,y >0,由基本不等式,得2x +5y ≥22x ·5y =210·xy . 又∵2x +5y =20, ∴20≥210·xy , ∴xy ≤10,∴xy ≤10, 当且仅当2x =5y 时,等号成立.由⎩⎪⎨⎪⎧2x =5y 2x +5y =20, 解得⎩⎪⎨⎪⎧x =5y =2.∴当x =5,y =2时,xy 有最大值10. 这样u =lg x +lg y =lg(xy )≤lg10=1. ∴当x =5,y =2时,u max =1. (2)由已知,得x ·y =100, 5x +2y ≥210xy =2103=2010.∴当且仅当5x =2y =103,即当x =210, y =510时,等号成立. 所以5x +2y 的最小值为2010.10.求函数y =x 2+a +1x 2+a 的最小值,其中a >0.[解析] 当0<a ≤1时, y =x 2+a +1x 2+a≥2, 当且仅当x =±1-a 时,y min =2. 当a >1时,令x 2+a =t (t ≥a ), 则有y =f (t )=t +1t.设t 2>t 1≥a >1,则f (t 2)-f (t 1)=(t 2-t 1)(t 1t 2-1)t 1t 2>0,∴f (t )在[a ,+∞)上是增函数. ∴y min =f (a )=a +1a,此时x =0.综上,当0<a ≤1,x =±1-a 时,y min =2;当a >1,x =0时,y min =a +1a.一、选择题1.设a 、b ∈R ,且ab >0.则下列不等式中,恒成立的是 ( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD .b a +a b≥2[答案] D[解析] a =b 时,A 不成立;a 、b <0时,B 、C 都不成立,故选D.2.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是 ( ) A .a 2+b 2 B .2ab C .2ab D .a +b[答案] D[解析] 解法一:∵0<a <1,0<b <1, ∴a 2+b 2>2ab ,a +b >2ab ,a >a 2,b >b 2, ∴a +b >a 2+b 2,故选D.解法二:取a =12,b =13,则a 2+b 2=1336,2ab =63,2ab =13,a +b =56,显然56最大.3.某工厂第一年产量为A ,第二年的增长率为a, 第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2[答案] B[解析] ∵这两年的平均增长率为x ∴A (1+x )2=A (1+a )(1+b ),∴(1+x )2=(1+a )(1+b ),由题设a >0,b >0. ∴1+x =(1+a )(1+b )≤(1+a )+(1+b )2=1+a +b 2,∴x ≤a +b 2,等号在1+a =1+b 即a =b 时成立.∴选B.4.(2013·山西忻州一中高二期中)a =(x -1,2),b =(4,y )(x 、y 为正数),若a ⊥b ,则xy 的最大值是( )A.12 B .-12C .1D .-1[答案] A[解析] 由已知得4(x -1)+2y =0,即2x +y =2.∴xy =x (2-2x )=2x (2-2x )2≤12×(2x +2-2x 2)2=12,等号成立时2x =2-2x ,即x =12,y =1,∴xy 的最大值为12.二、填空题5.已知2x +3y =2(x >0,y >0),则xy 的最小值是________.[答案] 6 [解析] 2x +3y≥26xy,∴26xy≤2,∴xy ≥6. 6.已知x <54,则函数y =4x -2+14x -5的最大值是________.[答案] 1[解析] ∵x <54,∴4x -5<0,y =4x -2+14x -5=4x -5+14x -5+3=3-⎣⎡⎦⎤(5-4x )+15-4x≤3-2=1, 等号在5-4x =15-4x,即x =1时成立. 三、解答题7.已知直角三角形两条直角边的和等于10 cm ,求面积最大时斜边的长. [解析] 设一条直角边长为x cm ,(0<x <10),则另一条直角边长为(10-x )cm , 面积s =12x (10-x )≤12[x +(10-x )2]2=252(cm 2)等号在x =10-x 即x =5时成立,∴面积最大时斜边长L =x 2+(10-x )2=52+52=52(cm).8.某商场预计全年分批购入每台2 000元的电视机共3 600台.每批都购入x 台(x 是自然数)且每批均需付运费400元.贮存购入的电视机全年所需付的保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金可以支付这笔费用,请问,能否恰当安排每批进货数量,使资金够用?写出你的结论,并说明理由.[解析] 设总费用为y 元(y >0),且将题中正比例函数的比例系数设为k ,则y =3 600x ×400+k (2 000x ),依条件,当x =400时,y =43 600,可得k =5%,故有y =1 440 000x +100x≥21 440 000x·100x =24 000(元).当且仅当1 440 000x =100x ,即x =120时取等号.所以只需每批购入120台,可使资金够用.。

人教高中数学-必修五-3.4-基本不等式(第一课时)赛课一等奖(共14张PPT)

人教高中数学-必修五-3.4-基本不等式(第一课时)赛课一等奖(共14张PPT)
正数 负数
其实这样的相等关系和不相等关系还有很多,今天, 让我们一起去探索两个非常重要的不等式。
探索新知
正方形ABCD
四个直角三角形
结论交给你,解释靠自己! 动手吧!回答问题!
探索新知
证明:
“作差法”
把已有的知识进行变形,是我们 数学研究中推陈出新的重要方法
探索新知
快 快 动 手 吧 !
探索新知
剖析新知
比对分析、加深理解 基本不等式1: 基本不等式2: 相同点:
不同点: 两个不等式适用的范围不同
学以致用,小试牛刀
例:请判断下列表述的正误。
(基本不等式的灵活使用) (基本不等式的适用范围) (基本不等式的取等条件)
× ×
学以致用,小试牛刀
强调环证境明:
取等条件
温习回顾
今天你学到了什么?
3. 教材 98页习题3 再来欣赏另一种利用几何图形来证明 定理2的方法吧!
数无形不直观 形无数难入微
—华罗庚
剖析新知
我们把这个基本不等式也经常称作均值不等式
不等式说明:
多角度理解不等式:
1.从平均数的角度: 两正数的 算术平均数 大于或等于它们的 几何平均数 2.从数列的角度: 两正数的 等差中项 大于或等于它们的 等比中项
生活背景、引入新课
10元钱吃早饭,你会怎么选?
A.两个肉松面包 + 一杯牛奶 (8元) B.一份米粉 (6元) C.麦当劳的一份早餐套餐 (10元)
比较:价钱谁贵谁便宜?营养谁多谁少?
同学们:比较事物间的相等关系和不相等关系是我们一种天生的非常重要的 逻辑思维能力,在我们的数学中存在许许多多的相等关系和不相等的关系, 例如:
1.两个非常重要的基本不等式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提问4:你能给出它的证明吗?
讲授新课
a b 2ab
2 2
注意:
(1) 当且仅当a b, a b 2ab ;
2 2
( 2) 特别地, 如果 a 0, b 0, 用 a和 b代替 ab a、b, 可得a b 2 ab , 也可写成 ab 2 (a 0, b 0).
讲授新课
ab ab 2
ab 我们常把 叫做正数a , b的算术平 2 均数,把 ab 做正数a , b的几何平均数 .
讲授新课
例1. 已知 a, b, c为两两不相等的实数,
求证:a b c ab bc ca .
2 2 2
讲授新课
例1. 已知 a, b, c为两两不相等的实数,
求证:a b c ab bc ca .
2 2 2
练习. 已知 a 0, b 0, c 0,
bc ac ab 求证: a b c. a b c
讲授新课
例2.
讲授新课
例3.
授新课
例4.
讲授新课
例5.
讲授新课
例5.
练习.教材P.100练习第1、2题.
课堂小结
比较两个重要不等式的联系和区别:
a b 2ab ;
2 2
ab ab (a 0, b 0) . 2
课后作业
1. 阅读教材P.97-P.100;
2.《习案》作业三十一.
提问2:那4个直角三角形的面积和是多
少呢?
D F C G A H E B
引入新课 提问3:根据观察4个直角三角形的面积
和正方形的面积,我们可得容易得到一个 不等式 a 2 b 2 2ab ,什么时候这两部 分面积相等呢? D F C G A H E B
讲授新课
一般地,对于任意实数a、b,我们有 2 2 a b 2ab ,当且仅当a=b时,等号 成立.
3.4基本不等式:
ab ab 2
引入新课 提问1:我们把“风车”造型抽象成下图.
在正方形ABCD中有4个全等的直角三角形. 设直角三角形的两条直角边的长为a、b, 那么正方形的边长为多少?面积为多少呢?
D F C G A H E B
引入新课 提问1:我们把“风车”造型抽象成下图.
在正方形ABCD中有4个全等的直角三角形. 设直角三角形的两条直角边的长为a、b, 那么正方形的边长为多少?面积为多少呢?
讲授新课 提问5:观察右图,你能得到不等式
ab ab (a 0, b 0) 2 的几何解释吗?
D
C
A
E
Grammar
金手指考试网 / 2016年金手指驾驶员考试科目一 科目四 元贝驾考网 科目一科目四仿真考试题C1
相关文档
最新文档