四川省2014年全国初中数学联赛(初二组)初赛试卷

合集下载

四川省全国初中数学联赛初赛

四川省全国初中数学联赛初赛

四川省全国初中数学联赛初赛试卷及解析一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,将你选择的答案的代号填在题后的括号内,每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。

1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是 ( )A 、9504元B 、9600元C 、9900元D 、10000元2、如图,在凸四边形ABCD 中,80,AB BC BD ABC ==∠=︒,则ADC ∠等于( ) A 、80° B 、100° C 、140° D 、160°3、如果方程2240()()x x x m --+=的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是 ( ) A 、04m <≤ B 、3m ≥ C 、4m ≥ D 、34m <≤4、如图,梯形ABCD 中,AB ∥CD ,60306,,,BAD ABC AB AD CD ∠=︒∠=︒==且,那么BD 的长度是 ( )AB 、4 C、 D、5、如果20140a -<<,那么20142014x a x x a -+++-+的最小值是 ( )A 、2014B 、2014a +C 、4028D 、4028a +AABA B6、方程223()x xy y x y ++=+的整数解有 ( ) A 、3组 B 、4组 C 、5组 D 、6组二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角90AOB ∠=︒,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 。

2、已知四个自然数两两的和依次从小到大的次序是:23、28、33、39、x 、y ,则x y += 。

3、已知6x y -=9=的值是 。

四川省2014年全国初中数学联赛(初二组)初赛试卷

四川省2014年全国初中数学联赛(初二组)初赛试卷

四川省2014年全国初中数学联赛(初二组)初赛试卷一、选择题(本小题满分42分,每小题7分)12-的值是 ( )A 、0B、 C 、- D 、42、实数a b c 、、满足01,a bc abc ++==,则a b c 、、中正数的个数是 ()A 、0B 、1C 、2D 、33、在一个圆柱形水池内,有一个进水管和一个出水管,进水管流水速度是出水管流水速度的两倍.开始时有一满池水,出水管开始放水,到池水只有一半池时,打开进水管放水(此时出水管不关)直到放满池水关闭进水管,再由出水管放完池水。

则在这一过程水池中的水量V 随时间t 的变化关系的图像是( )tDt Ct BAt4、如图,在矩形ABCD 中,AB=2,BC=3,AE 是∠BAD 的平分线,EF 垂直于AE ,则AF 的长为( ) A 、、4 C 、5、方程231x x ---=的解的个数为 ( ) A 、1个 B 、2个 C 、3个D 、无数个6、在△ABC 中,∠B 和∠C 的角平分线交点是I ,则∠BIC 是 ( ) A 、锐角 B 、直角 C 、钝角 D 、无法确定二、填空题(本大题满分28分,每小题7分)1、用火柴棍按照如下图所示的规律搭建三角形,“…”表示按照前面的规律一直搭建下去,当搭建到第n 个编号三角形的时候,所用火柴棍的根数是 (用含有n 的式子表示).2、若a 为整数,则关于x 的方程11()a x a -=+ 的所有整数解的和是 .ABCD F E•••3、a b 、为常数,且对任何实数x ,都有222223+1212()()x a b x x x x +=++++成立,则ab = . 4、在长方形纸片ABCD 中,12AB BC ==,,设E 为边BC 的中点,现将纸片折叠,使A E 、重合,则折痕将长方形纸片分成两部分中,较大部分面积与较小部分面积之比的值为 .三、(本大题满分20分)解不等式231x x -<-四、(本大题满分25分)如图,在等腰梯形ABCD 中,A D ∥BC ,35DE BC E DE BD ⊥==于,若,,求梯形ABCD 的面积. BCDAE五、(本大题满分25分)已知正整数a b 、满足233()a b a b +=+,试求a b 、的值.四川省2014年全国初中数学联赛(初二组)初赛试卷答案及其解答指要一、选择题1、C2、B3、B4、D5、D6、C二、填空题1、41n -2、 43、 14、 3三、(本大题满分20分)解不等式231x x -<-指要:分类讨论,脱绝对值符号,结果合并。

2014年全国初中数学竞赛试题参考答案及评分标准

2014年全国初中数学竞赛试题参考答案及评分标准

2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。

所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。

2014年全国初中数学竞赛预赛试题及答案

2014年全国初中数学竞赛预赛试题及答案

2014 年全国初中数学竞赛预赛试题及参考答案(竞赛时间:2014年3月2日上午9:00--11:00)一、选择题(共 6 小题,每小题 6 分,共36 分)以下每小题均给出了代号为A ,B,C,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0 分)1.若是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的自然数,则(A)2013 答】D.B)2014的值为【】C)2015 (D)0解:最大的负整数是-1,1;绝对值最小的有理数是0, •••=0;倒数等于它本身的自然数是1=1.=0.2. 已知实数满足则代数式的值是【A )(B)3 (C)(D)7 答】A.解:两式相减得3.如图,将表面展开图(图1)还原为正方体,按图2 所示摆放,那么,图1 中的线段MN 在图 2 中的对应线段是【】A) B)C)D)【答】C . 解:将图1中的平 面图折成正方体,MN 和线段c 重合.不妨设 图1中完整的正方形 为完整面,△ AMN 和 △ ABM 所在的面为组 合面,则△ AMN 和与AM 重合,MN 与线段c 重合.△ ABM 所在的面为两个相邻的组合面,比较图 2,首先确定B 点,所以线段d4. 已知二次函数的图象如图所示,则下列7 个代数式12 / 75)3个 (C ) 4个】 (D) 4个以上答】C.解:由图象可得:抛物线与轴有两个交点,=118 /75即21 / 75. 从图象可得,抛物线对称轴在直线=1 的左边.因此7 个代数式中,其值为正的式子的个数为 4 个.5.如图,Rt A OAB的顶点O与坐标原点重合,/ AO=90°,AO=2BQ当A(x>0)的图象上移动点在反比例函数时, B 点坐标满足的函数解析式为【】x<0)B) x<0)C) x<0)D)x<0)答】B.轴的垂线那么28 / 756.如图,四边形ABHK 是边长为6 的正方形,点C、D 在边AB 上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP, E、F分别为MN、QR的中点,连接EF,设EF 的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6【答】B.解:设KH 中点为S ,连接PE 、ES SF 、PF 、PS ,可证明四边形 PESF 为平行四边形,••• G 为PS 的中点,即在点P 运动过程中,G 始终为PS 的中点,所 以G 的运行轨迹为△ CSD 的中位线,••• CD=AB — AC — BD=6 — 1 — 1 = 4 , •••点 G 移动的路径长为=2.、填空题(共6小题,每小题6分,共36 分)A【答】原式=8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为个为红色玻璃球的概率为___________ ,那么,随机摸出一答】解:设口袋中蓝色玻璃球有个,依题意,得=10,所以P (摸出一个红色玻璃球)9. 若【答】8.10. _______________________________________ 如图,在Rt A OAB 中,/ AOB=30° AB=2,将Rt△ OAB 绕O 点顺时针旋转90°得到Rt△ OCD,则AB扫过的面积为______________________________________ .【答】解:T Rt A OAB 中,/ AOB=30°, AB=2,,BO=DO=4,AO=CO=阴影部分面11. 如图,在矩形ABCD中,AB=3, BC=4,点E是AD上一个动点,把△ BAE沿BE向矩形内部折叠,当点A的对应点A i恰落在/ BCD的平分线上时, CA i= __________答】.解:过A i 作A i M 丄BC,垂足为M,设CM=A i M=x,贝U BM=4 —X, 在Rt△ A i BM 中,E=A i M =•••在等腰Rt△ A i CM 中,C A i =12. 已知a、b、c、d是四个不同的整数,且满足a+b+c+d =5,若m是关于x 的方程(x—a)(x—b)(x—c)(x —d) =2014 中大于a、b、c、d 的一个整数根,贝U m的值为_______ .【答】20.解:•••( m—a)( m—b)( m—c)( m—d) =2014,且a、b、c、d 是四个不同的整数,由于m是大于a、b、c、d的一个整数根,二(m—a)、( m—b)、( m—c)、( m —d)是四个不同的正整数. v2014=1 >2X19>53, /•( m—a) + (m—b) + (m—c) + (m—d) =1+2+19+53=75.又v a+b+c+d =5,二m =20.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13. 某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?解:设购买小笔记本x本,大笔记本y本,钢笔z支,易知0< x w 69, 0< y w 49, 0< z w 34,••• x, y, z均为正整数,>0,即0V z< 14••• z只能取14,9和4. (8)分① 当z 为14 时,=2,=28.② 当z 为9 时,=26,=18.③ 当z 为 4 时,=50 ,=8.综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支• ............................................................ 14分14. 如图,在矩形ABCD中, AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6.(1)若点P是边AD上的一个动点(不与点A、D重合),设DP为x,四边形AEHP勺面积为y,试求y与x的函数解析式;(2) 若AE=2EB①求圆心在直线BC上,且与直线DE AB都相切的。

2014年全国中学生数学能力竞赛八年级(初赛)试题

2014年全国中学生数学能力竞赛八年级(初赛)试题

2014年全国中学生数学能力竞赛八年级(初赛)试题试题总分:120分 时间:120分钟一 画龙点睛(本题共8小题,每题3分,共计24分)1.数学家发明了一个魔术盒,当任意数对(a,b)放入其中是,会得到一个新的数:a 2+b+1,例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中后,得到的数是______。

2.在古代的算书中,经常以诗歌的形式来把一些实际生活背景的题目写出来.下面就有这样一道题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”那么这个客栈有______间房,一共来了______名客人。

3如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到矩形的边时,点P 的坐标为4. 若n 满足(n-2014)2+(2015-n)2=1,则(2015-n )(n-2014)= 。

5. 观察下面一列有规律的数:32,83,154,245,356,487,…… 根据此规律可知第10个数应是 。

6. 如图,在△ABC 中,BC 边不动,点A 竖直向上运动,∠A 越来越小,∠B ,∠C 越来越大.若∠A 减小x °,∠B 增加y °,∠C 增加z °,则x ,y ,z 之间的关系是 。

第6题 第7题7. 如图,在三角形ABC 中,点D,E,F 分别是线段BC,AD 、CE 的中点是 且△ABC 的面积为4cm 2,则△BEF 的面积= 。

8.某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少应付给超市元。

二一锤定音(本大题共4小题,每小题3分,共计12分)9.根据图中箭头的指向规律,从2014到2014再到2015,箭头的方向是以下图示中的()。

2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准

2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准

2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C2、B3、B4、D5、D6、C二、填空题(本题满分28分,每小题7分)1、41n -2、43、14、3三、(本大题满分20分)解不等式13|2|-<-x x解:(1)当2<x 时,不等式化为132-<-x x ,解此不等式得43>x 故此时243<<x ;(10分) (2)当2≥x 时,不等式化为132-<-x x ,解此不等式得21->x 故此时2≥x . (15分) 综上所述,不等式的解为:34x >.(20分)四、(本大题满分25分) 如图,在等腰梯形ABCD 中,//AD BC ,DE BC ⊥于E .若3,5DE BD ==, 求梯形ABCD 的面积.解:在直角△BDE 中,由勾股定理有:422=-=DE BD BE ;(5分)过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF ,则ACFD 是平行四边形,故CF =AD ,DF AC BD ==,所以DE 是等腰△DBF 底边上的高,故28BF BE ==(15分) 所以1221)(21=⋅=+=DE BF DE AD BC S ABCD (25分).五、(本大题满分25分)已知正整数a 、b 满足332)(b a b a +=+,试求a 、b 的值.解:由已知得b a b ab a +=+-22,(5分)则2)1()1()(222=-+-+-b a b a .(10分)因为a 、b 均为正整数,故01≥-a ,01≥-b ,(1)当a=b 时,1)1()1(22=-=-b a ,即a =b=2;(15分)(2)当a b ≠时,2()1a b -=,从而2(1)1a -=且2(1)0b -=;或者2(1)0a -=且2(1)1b -=; 所以,2,1a b ==,或者1,2a b ==.(20分)综上所述,所求,a b 的值是:2a b ==;或者1,2a b ==;或者2,1a b ==.(25分)。

历年初联真题

历年初联真题

2014年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( )A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( )A .47B .59C .916D .12253.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE =( )A B C D 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12 B .25 C .23 D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x+=,则1{}{}x x +=( )A .12B .3C .1(32- D .16.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为( )A .4-B .2-C .11)2D 1二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =__ __. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值.二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠, AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.FB一.(本题满分20分)同(A )卷第一题.二.(本题满分25分)如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P . (1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?2013年全国初中数学联合竞赛试题第一试一、选择题(本题满分42分,每小题7分)1.计算=( )(A 1 (B )1 (C (D )22.满足等式()2221m m m ---=的所有实数m 的和为( )(A )3 (B )4 (C )5 (D )63.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=,ABC ∠的平分线交圆O 于点D ,若CD =AB=( )(A )2 (B(C )(D )34.不定方程23725170x xy x y +---=的全部正整数角(x,y )的组数为( ) (A )1 (B )2 (C )3 (D )45矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在线段BC 上,且BF :FC=1:2, AF 分别与DE ,DB 交于点M ,N ,则MN=( )(A )7 (B )14 (C )28 (D )286.设n 为正整数,若不超过n 的正整数中质数的个数等于合个数,则称n 为“好数”,那么,所有“好数”之和为( ) (A )33 (B )34 (C )2013 (D )2014 二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++=2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= 3.在ABC 中,60,75,10A C AB ∠=∠==,D ,E ,F 分别在AB ,BC ,CA 上,则DEF的周长最小值为4.如果实数,,x y z 满足()2228x y z xy yz zx ++-++=,用A 表示,,x y y z z x ---的最大值,则A 的最大值为第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d ad bc +=+=-=求()()2222ab c d ++的值。

初中数学联赛(初联)历年真题

初中数学联赛(初联)历年真题

2014年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( )A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( )A .47B .59C .916D .1225 3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE =( )A .2B C D 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12 B .25 C .23 D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x+=,则1{}{}x x +=( )A .12B .3-C .1(32- D .16.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为( )A .4-B .2C .11)2D 1二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =__ __. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值.二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠,AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.FB一.(本题满分20分)同(A )卷第一题.二.(本题满分25分)如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性质P . (1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?2013年全国初中数学联合竞赛试题第一试一、选择题(本题满分42分,每小题7分)1.计算=( )(A 1- (B )1 (C (D )22.满足等式()2221m m m ---=的所有实数m 的和为( )(A )3 (B )4 (C )5 (D )63.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=o,ABC ∠的平分线交圆O 于点D ,若CD =AB=( )(A )2 (B(C )(D )34.不定方程23725170x xy x y +---=的全部正整数角(x,y )的组数为( ) (A )1 (B )2 (C )3 (D )45矩形ABCD 的边长AD=3,AB=2,E 为AB 的中点,F 在线段BC 上,且BF :FC=1:2, AF 分别与DE ,DB 交于点M ,N ,则MN=( )(A )7 (B )14 (C )28 (D )286.设n 为正整数,若不超过n 的正整数中质数的个数等于合个数,则称n 为“好数”,那么,所有“好数”之和为( ) (A )33 (B )34 (C )2013 (D )2014 二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++=2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= 3.在ABC V 中,60,75,10A C AB ∠=∠==oo,D ,E ,F 分别在AB ,BC ,CA 上,则DEF V 的周长最小值为4.如果实数,,x y z 满足()2228x y z xy yz zx ++-++=,用A 表示,,x y y z z x ---的最大值,则A 的最大值为第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d ad bc +=+=-=求()()2222ab c d ++的值。

全国初中数学联赛四川初赛试卷及参考答案

全国初中数学联赛四川初赛试卷及参考答案

全国初中数学联赛四川初赛试卷(3月21日下午2:30━4:30或3月22日上午9:00━11:00) 学校___________________年级___________班 姓名_________________ 题 号 一 二 三 四 五 合计 得 分 评卷人 复核人一、选择题(本大题满分42分,每小题7分)1、若121≤≤-x ,则式子1449612222++++-++-x x x x x x 等于( ) (A )-4x +3 (B )5 (C )2x +3 (D )4x +32、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x 、y 、z ,则zy x 111++的值为( ) (A )1 (B )32 (C )21 (D )31 3、已知a 为非负整数,关于x 的方程0412=+---a x a x 至少有一个整数根,则a 可能取值的个数为( )(A )4 (B )3 (C )2 (D ) 14、如图,设△ABC 和△CDE 都是正三角形,且∠EBD =62o ,则∠AEB 的度数是( )(A )124o (B )122o(C )120o (D )118o5、如图,直线x =1是二次函数y =ax 2+bx +c 的图象的对称轴,则有( )(A )a +b +c >0 (B )b >a +c(C )abc <0 (D )c >2b6、已知x 、y 、z 是三个非负实数,满足3x +2y +z =5,x +y -z =2,若S =2x +y -z ,则S 的最大值与最小值的和为( )(A )5 (B )6(C )7 (D )8二、填空题(本大题满分28分,每小题7分)1、已知a 是方程x 2-5x +1=0的一个根,则44-+a a 的个位数字为_____________.2、在凸四边形ABCD 中,对角线AC 、BD 交于O 点,若S △OAD =4,S △OBC =9,则凸四边形ABCD 面积的最小值为__________________.3、实数x 、y 满足x 2-2x -4y =5,记t =x -2y ,则t 的取值范围为___________________.4、如图,△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于E,F是OE的中点.如果BD//CF,BC=25,则线段CD的长度为__________________.三、(本大题满分20分)已知方程x2+ax-b=0的根是a和c,方程x2+cx+d=0的根是b和d.其中,a、b、c、d为不同实数,求a、b、c、d的值.四、(本大题满分25分)如图,四边形A1A2A3A4内接于一圆,△A1A2A3的内心是I1,△A2A3A4的内心是I2,△A3A4A1的内心是I3.求证:(1)A2、I1、I2、A3四点共圆;(2)∠I1I2I3=90o.五、(本大题满分25分)如图,将3枚相同硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放1枚硬币).求所放的3枚硬币中,任意两个都不同行且不同列的概率.全国初中数学联赛四川初赛试卷参考答案及评分细则一、选择题(本题满分42分,每小题7分)1、B2、C3、B4、B5、D6、A二、填空题(本大题满分28分,每小题7分)1、72、253、29≤t 4、6三、(本大题20分)解:∵方程x 2+ax -b =0的根是a 和c ,∴a +c =-a ,ac =-b∵x 2+cx +d =0的根是b 和d ,∴b +d =-c ,bd =d ········································ 5分(一)若d ≠0,则由bd =d 知b =1由a +c =-a 知c =-2a ,由ac =-b 知-2a 2=-1,解得22±=a ················· 10分 当22=a 时,2-=c 得d =-c -b =12-; ········································· (1) 当22-=a 时2=c ,得d =-c -b =12--. ······································· (2) 经验证,22±=a ,b =1,2 =c ,d =12-±是符合条件的两组解. ······· 15分 (二)若d =0,则b =-c ,由a +c =-a 知c =-2a ,由ac =-b 知ac =c若c =0,则a =0,这与a 、b 、c 、d 是不同的实数矛盾.若c ≠0,则a =1,再由c =-2a 知c =-2,从而b =-c =2经验证,a =1,b =2,c =-2,d =0也是符合条件的解. ································ 20分四、(本大题25分)证明:(1)如图,连结I 1A 1,I 1A 2,I 1A 3,I 2A 2和I 2A 3∵I 1是△A 1A 2A 3的内心,∴∠I 1A 1A 2=∠I 1A 1A 3=21∠A 2A 1A 3 ∠I 1A 2A 1=∠I 1A 2A 3=21∠A 1A 2A 3,∠I 1A 3A 1=∠I 1A 3A 2=21∠A 1A 3A 2 ···················· 5分 延长A 1I 1交四边形A 1A 2A 3A 4外接圆于P ,则∠A 2I 1A 3=∠A 2I 1P +∠PI 1A 3=∠I 1A 1A 2+∠I 1A 2A 1+∠I 1A 1A 3+∠I 1A 3A 1 =21(∠A 2A 1A 3+∠A 1A 2A 3+∠A 2A 3A 1)+21∠A 2A 1A 3=90o +21∠A 2A 1A 3 ··············· 10分同理∠A 2I 2A 3=90o +21∠A 2A 4A 3,又∵四边形A 1A 2A 3A 4内接于一圆 ∴∠A 2A 1A 3=∠A 2A 4A 3,∴∠A 2I 1A 3=∠A 2I 2A 3.∴A 2、I 1、I 2、A 3四点共圆. ········ 15分(2)又连结I 3A 4,则由(1)知A 3、I 2、I 3、A 4四点共圆∴∠I 1I 2A 3=180o -∠I 1A 2A 3=180o -21∠A 1A 2A 3 同理∠I 3I 2A 3=180o -∠I 3A 4A 3=180o -21∠A 1A 4A 3 ··········································· 20分 ∴∠I 1I 2I 3=360o -(∠I 1I 2A 3+∠I 3I 2A 3)=21(∠A 1A 2A 3+∠A 1A 4A 3)=90o ················· 25分五、(本大题25分)解:1、计算总的放法数N :第一枚硬币放入16个格子有16种放法;第二枚硬币放入剩下的15个格子有15种放法;第三枚硬币放入剩下的14个格子有14种放法.所以,总的放法数N =16×15×14=3360. ············································ 10分2、计算满足题目要求的放法数m :第一枚硬币放入16个格子有16种放法,与它不同行或不同列的格子有9个.因此,与第一枚硬币不同行或不同列的第二枚硬币有9种放法.与前两枚硬币不同行或不同列的格子有4个,第三枚硬币放入剩下的4个格子有4种放法.所以,满足题目要求的放法数m =16×9×4=576. ·································· 20分 所求概率P =3561415164916=⨯⨯⨯⨯=N m . ·················································· 25分。

2014年全国初中数学竞赛预赛试题及参考答案

2014年全国初中数学竞赛预赛试题及参考答案

2014年全国初中数学竞赛预赛试题及参考答案(竞赛时间:2014年3月2日上午9:00--11:00)一、选择题(共6小题,每小题6分,共36分)以下每小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的自然数,则的值为【】(A)2013(B)2014(C)2015(D)0【答】D.解:最大的负整数是-1,∴=-1;绝对值最小的有理数是0,∴=0;倒数等于它本身的自然数是1,∴=1.∴==0.2. 已知实数满足则代数式的值是【】(A)(B)3(C)(D)7【答】A.解:两式相减得3.如图,将表面展开图(图1)还原为正方体,按图2所示摆放,那么,图1 中的线段MN在图2中的对应线段是【】(A)(B)(C)(D)【答】C.解:将图1中的平面图折成正方体,MN和线段c重合.不妨设图1中完整的正方形为完整面,△AMN和△ABM所在的面为组合面,则△AMN和△ABM所在的面为两个相邻的组合面,比较图2,首先确定B点,所以线段d 与AM重合,MN与线段c重合.4. 已知二次函数的图象如图所示,则下列7个代数式,,,,,,中,其值为正的式子的个数为【】(A)2个(B)3个(C)4个(D)4个以上【答】C.解:由图象可得:,,,∴,,.抛物线与轴有两个交点,∴.当=1时,,即.当=时,,即.从图象可得,抛物线对称轴在直线=1的左边,即,∴.因此7个代数式中,其值为正的式子的个数为4个.5. 如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的函数解析式为【】(A)(x<0)(B)(x<0)(C)(x<0)(D)(x<0)【答】B.解:如图,分别过点分别做轴的垂线,那么∽,则,故.6.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF 的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6【答】B.解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF 为平行四边形,∴G为PS的中点, 即在点P运动过程中,G始终为PS的中点,所以G的运行轨迹为△CSD的中位线,∵CD=AB-AC-BD=6-1-1=4,∴点G移动的路径长为=2.二、填空题(共6小题,每小题6分,共36分)7.已知,化简得.【答】.解:∵,∴,,原式=.8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为.【答】.解:设口袋中蓝色玻璃球有个,依题意,得,即=10,所以P(摸出一个红色玻璃球)=.9. 若,则= .【答】8.解:∵,∴.则,即.∴10.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为.【答】.解:∵Rt△OAB中,∠AOB=30°,AB=2,∴AO=CO=,BO=DO=4,∴阴影部分面积====.11.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,CA1= .【答】.解:过A1作A1M⊥BC,垂足为M,设CM=A1M=x,则BM=4-x,在Rt△A1BM中,,∴=,∴x =A1M=,∴在等腰Rt△A1CM中,C A1=.12.已知a、b、c、d是四个不同的整数,且满足a+b+c+d =5,若m是关于x的方程(x-a)(x-b)(x-c)(x-d)=2014中大于a、b、c、d的一个整数根,则m的值为.【答】20.解:∵(m-a)(m-b)(m-c)(m-d)=2014,且a、b、c、d是四个不同的整数,由于m是大于a、b、c、d的一个整数根,∴(m-a)、(m-b)、(m-c)、(m-d)是四个不同的正整数. ∵2014=1×2×19×53,∴(m-a)+(m-b)+(m-c)+(m-d)=1+2+19+53=75.又∵a+b+c+d =5,∴m =20.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有,.易知0<x≤69,0<y≤49,0<z≤34,……………………………………4分∴,,即.∵x,y,z均为正整数,≥0,即0<z≤14∴z只能取14,9和4 (8)分①当z为14时,=2,=28. .②当z为9时,=26,=18. .③当z为4时,=50,=8. .综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支.……………………………………………………………………14分14.如图,在矩形ABCD中,AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6.(1)若点P是边AD上的一个动点(不与点A、D重合),设DP为x,四边形AEHP的面积为y,试求y与x的函数解析式;(2)若AE=2EB.①求圆心在直线BC上,且与直线DE、AB都相切的⊙O的半径长;②圆心在直线BC上,且与直线DE及矩形ABCD的某一边所在直线都相切的圆共有多少个?(直接写出满足条件的圆的个数即可.)14、解:(1)在Rt中,…………………………………………………………5分(2)①∽.………………………7分若⊙与直线DE、AB都相切,且圆心在AB的左侧,过点作于,则可设. 解得…………………10分若⊙与直线DE、AB都相切,且圆心在AB的右侧,过点作于,则可设解得即满足条件的圆的半径为或6.…………………………………………13分②6个.………………………………………………………………………………………16分15. 如图1,等腰梯形OABC的底边OC在x轴上,AB∥OC,O为坐标原点,OA =AB=BC,∠AOC=60°,连接OB,点P为线段OB上一个动点,点E为边OC中点.(1)连接PA、PE,求证:PA=PE;(2)连接PC,若PC+P E=,试求AB的最大值;(3)在(2)在条件下,当AB取最大值时,如图2,点M坐标为(0,-1),点D为线段OC上一个动点,当D点从O点向C点移动时,直线MD与梯形另一边交点为N,设D点横坐标为m,当△M NC为钝角三角形时,求m的范围.解:(1)证明:如图1,连接AE.…………………………………………………………5分(2)∵PC+P E=,∴PC+PA=.显然有OB=AC≤PC+P A=.……………7分在Rt△B OC中,设AB=OA=BC=x,则OC=2x,OB=,∴≤,∴≤2.即AB的最大值为2.…………………………10分(3) 当AB取最大值时,AB=OA=BC=2,OC=4.分三种情况讨论:①当N点在OA上时,如图2,若CN⊥M N时,此时线段OA上N点下方的点(不包括N、O)均满足△M NC为钝角三角形.过N作NF⊥x轴,垂足为F,∵A点坐标为(1,),∴可设N点坐标为(,),则D F=a-m,NF=,FC=4-a. ∵△O MD∽△FN D∽△FCN,∴.解得,,即当0<<时,△M NC为钝角三角形; (14)分②当N点在AB上时,不能满足△M NC为钝角三角形; (15)分③当N点在BC上时,如图3,若CN⊥M N时,此时BC上N点下方的点(不包括N、C)均满足△M NC为钝角三角形.∴当<<4时,△M NC为钝角三角形.综上所述,当0<<或<<4时,△M NC为钝角三角形 (1)。

2014年全国初中数学联赛决赛试题和参考题答案

2014年全国初中数学联赛决赛试题和参考题答案

2014年全国初中数学联赛决赛试题一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ,则22t xy yz zx 的最大值为【】A .47B .59C .916D .12253.在△ABC 中,ABAC ,D 为BC 的中点,BE AC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .64.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x 【】A .12B .35C .1(35)2D .16.在△ABC 中,90C,60A ,1AC ,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.2.使得不等式981715n nk对唯一的整数k 成立的最大正整数n 为.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC.4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECDACB , AC 的延长线与△ABD 的外接圆交于点F. 证明:DFE AFB .五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?FCA BDE2014年全国初中数学联赛决赛试题和参考答案一、选择题:(本题满分42分,每小题7分)1.已知,x y 为整数,且满足22441111211()()()3xyxyxy,则x y 的可能的值有【】A. 1个B. 2个C. 3个D. 4个【答】 C. 由已知等式得2244224423x y xyx yxyx y x y,显然,x y 均不为0,所以x y =0或32()xy x y .若32()xy x y ,则(32)(32)4x y .又,x y 为整数,可求得12,x y,或21.x y,所以1x y 或1x y .因此,x y 的可能的值有3个.2.已知非负实数,,x y z 满足1xyz,则22txyyzzx 的最大值为【】A .47B .59C .916D .1225【答】 A.21222()2()()4t xyyzzx x yz yz x y z y z 212(1)(1)4x x x 2731424xx2734()477x,易知:当37x ,27yz时,22t xy yzzx 取得最大值47.3.在△ABC 中,ABAC ,D 为BC 的中点,BEAC 于E ,交AD 于P ,已知3BP ,1PE,则AE =【】A .62B .2C .3D .6【答】 B.因为AD BC ,BE AC ,所以,,,P D C E 四点共圆,所以12BD BC BP BE ,又2BCBD ,所以6BD,所以3DP.又易知△AEP ∽△BDP,所以AE PE BDDP,从而可得1623PE AEBD DP.4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是【】A .12B .25C .23D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205.5.设[]t 表示不超过实数t 的最大整数,令{}[]t tt .已知实数x 满足33118xx,则1{}{}x x【】A .12B .35C .1(35)2D .1【答】 D. 设1x a x,则32223211111()(1)()[()3](3)xxxxxa axxxxx,所以2(3)18a a,因式分解得2(3)(36)0a a a ,所以3a .由13xx解得1(35)2x,显然1{}1,0{}1x x ,所以1{}{}x x1.6.在△ABC 中,90C,60A ,1AC,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,90ADE ,则BE 的长为【】A .423B .23C .1(31)2D .31【答】 A.过E 作EF BC 于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB .设EFx ,则2BEx ,22AEx ,2(1)DEx ,1DFAC ,故2221[2(1)]x x,即2410x x .又01x ,故可得23x.故2423BE x .二、填空题:(本题满分28分,每小题7分)1.已知实数,,a b c 满足1a b c ,1111abcbc ac ab,则abc____.【答】0. 由题意知1111121212cab,所以(12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c 整理得22()8a b c abc ,所以abc 0.2.使得不等式981715n n k对唯一的整数k 成立的最大正整数n 为.【答】144. 由条件得7889k n,由k 的唯一性,得178k n且189k n,所以FEBCAD2118719872k k nnn,所以144n .当144n 时,由7889k n可得126128k ,k 可取唯一整数值127.故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,ABBC ,108BPC ,D 为AC 的中点,BD与PC 交于点E ,如果点P 为△ABE 的内心,则PAC .【答】48.由题意可得PEA PEB CED AED ,而180PEA PEB AED ,所以60PEA PEB CED AED ,从而可得30PCA . 又108BPC ,所以12PBE ,从而24ABD . 所以902466BAD ,11()(6630)1822PAEBAD CAE ,所以183048PAC PAE CAE 4.已知正整数,,a b c 满足:1ab c ,111a b c ,2b ac ,则b.【答】36. 设,a c 的最大公约数为(,)a c d ,1aa d ,1c c d ,11,a c 均为正整数且11(,)1a c ,11a c ,则2211bacd a c ,所以22|d b ,从而|d b ,设1b b d (1b 为正整数),则有2111ba c ,而11(,)1a c ,所以11,a c 均为完全平方数,设2211,a m c n ,则1b m n ,,m n均为正整数,且(,)1m n ,mn .又111a b c ,故111()111d a b c ,即22()111d m nmn .注意到222212127m nmn,所以1d或3d .若1d ,则22111mnmn ,验算可知只有1,10m n 满足等式,此时1a ,不符合题意,故舍去.若3d,则2237m nmn ,验算可知只有3,4m n 满足等式,此时27,36,48a bc,符合题意.EDAB PC因此,所求的36b .三、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a ,(1)8a b b ,求2211ab的值.解由已知条件可得222()40a bab ,()8ab a b .设a b x ,ab y ,则有2240xy,8xy,…………5分联立解得(,)(2,6)x y 或(,)(6,2)x y .………10分若(,)(2,6)x y ,即2a b ,6ab ,则,a b 是一元二次方程2260tt 的两根,但这个方程的判别式2(2)24200,没有实数根;……………15分若(,)(6,2)x y ,即6ab,2ab ,则,a b 是一元二次方程2620tt 的两根,这个方程的判别式2(6)8280,它有实数根.所以2222222222211()262282a ba b ab aba b a b.………20分四、.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB , AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB .证明由ABCD 是平行四边形及已知条件知ECDACB DAF .………5分又A 、B 、F 、D四点共圆,所以B D CA B D,………… ….10分所以△ECD ∽△DAF ,………15分所以ED CD AB DFAFAF.………20分又EDFBDF BAF ,所以△EDF ∽△BAF ,故DFE AFB .……………………25分五、(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333nxyzxyz ,则称n 具有性质P .FCA BDE(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解取1x ,0y z ,可得3331103100,所以1具有性质P ;取1xy,0z,可得33321103110,所以2具有性质P ;…………………5分若3具有性质P ,则存在整数,,x y z 使得33()3()()xy z x yz xyyzzx ,从而可得33|()x y z ,故3|(x yz,于是有39|()3()()x y z x yz xyyzzx ,即9|3,这是不可能的,所以3不具有性质P .……………………10分(2)记333(,,)3f x y z xy zxyz ,则33(,,)()3()3f x y z x y zxy x y xyz 3()3()()3()xy z x y z x yz xy x y z =3()3()()xy z xy z xy yz zx 2221()()2x y z x yzxy yzzx 2221()[()()()]2xyz x y y z zx . 即(,,)f x y z 2221()[()()()]2xy z xy yz z x ①……………………15分不妨设xy z ,如果1,0,1x y y z x z ,即1,x z y z ,则有(,,)31f x y z z ;如果0,1,1x y y z x z ,即1x yz ,则有(,,)32f x y z z ;如果1,1,2xyyzxz,即2,1xz y z ,则有(,,)9(1)f x y z z ;由此可知,形如31k 或32k或9k(k 为整数)的数都具有性质P .……………………20分又若33|(,,)()3()()f x y z xyz x y z xy yz zx ,则33|()x y z ,从而3|()x yz ,进而可知39|(,,)()3()()f x y z xyz xyz xyyzzx .综合可知:当且仅当93n k 或96n k (k 为整数)时,整数n 不具有性质P .又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数共有224×2=448个.…………………25分我们对服务人员的配备以有经验、有知识、有技术、懂管理和具有高度的服务意识为准绳,在此基础上建立一支高素质的物业管理队伍,为销售中心的物业管理创出优质品牌。

四川省八年级数学联赛初赛试题

四川省八年级数学联赛初赛试题

一 .选择题(每小题7分,共42分)1 .若x <1,则化简|x -1|得( ).A .x -1B .x +1C .-x -1D .-x +12 .已知(x +a)(x -b)=x 2+2x -1,则ab 等于( ).A .-2B .-1C .1D .23 .若a <0,p >q >0,则( ).A .|pa|>|qa|B .|pa|<|qa|C .a a p q >D .p q a a<4 .已知凸四边形ABCD 对角线交于O ,满足AO =OC ,BO =3OD ,若△ADO 的面积为1,则凸四边形ABCD 的面积为( ).A .4B .6C .8D .105 .若|a -1|+|a -2|<3,则a 的取值范围是( ).A .a <0B .0<a <3C .3<aD .1<a <26 .在凸四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =2CD =,则AB =( ).A .4B .C .6D .二 .填空题(每小题7分,共28分)7 .如果每人工作效率相同,a 个人b 天共做c 个零件,那么要做a 个零件,b 个人需要的天数是___.(用含a 、b 、c 的代数式表示)8 .若a =,则221a a+的值为_____.9 .两个单位正方形,其中一个正方形的顶点在另一个正方形的中心,则两个正方形重叠部分的面积为______.10 .P 为矩形ABCD 内的一点,且PA =2,PB =3,PC =4,则PD 的长等于____.三 .计算与应用(本题满分20分)11 .已知直线y =kx +b 经过点A(1,1)和点B(-1,3),且与x 轴、y 轴的交点分别为C 、D .设O 为坐标原点,求△COD 的面积.四.(本大题满分25分)12.在△ABC中,∠A=2∠B,CD是∠ACB的平分线.求证:BC=AC+AD.五.(本大题满分25分)把1到15的15个自然数分成A和B两组.若把10从A组转移到B组.则A、B两组数的平均数都分别比原来的减少了12.求两组数原来的平均数.2012年四川初中数学联赛(初二组)初赛试卷(参考答案与评分标准) (3月16日下午4:00-6:00)一.选择题(每小题7分,共42分)1.若x<1,则化简|x-1|得( D ).A.x-1 B.x+1 C.-x-1 D.-x+12.已知(x+a)(x-b)=x2+2x-1,则ab等于( C ).A.-2 B.-1 C.1 D.23.若a<0,p>q>0,则( A ).A .|pq|>|qa|B .|pq|<|qa|C .a a p q >D .p q a a<4 .已知凸四边形ABCD 对角线交于O ,满足AO =OC ,BO =3OD ,若△ADO 的面积为1,则凸四边形ABCD 的面积为( C ).A .4B .6C .8D .105 .若|a -1|+|a -2|<3,则a 的取值范围是( B ).A .a <0B .0<a <3C .3<aD .1<a <26 .在凸四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =2CD =则AB =( A ).A .4B .C .6D .二 .填空题(每小题7分,共28分)7 .如果每人工作效率相同,a 个人b 天共做c 个零件,那么要做a 个零件,b 个人需要的天数是__2a c_.(用含a 、b 、c 的代数式表示)8 .若a =,则221a a+的值为__10___.9 .两个单位正方形,其中一个正方形的顶点在另一个正方形的中心,则两个正方形重叠部分的面积为___14___.10 .P 为矩形ABCD 内的一点,且PA =2,PB =3,PC =4,则PD __.三 .计算与应用(本题满分20分)11 .已知直线y =kx +b 经过点A(1,1)和点B(-1,3),且与x 轴、y 轴的交点分别为C 、D .设O 为坐标原点,求△COD 的面积.解:由条件知13k b k b=+⎧⎨=-+⎩, ……5分解得1,2k b =-=, ……10分于是直线为2y x =-+.令0,y =得2x =,即(2,0)C ,令0,x =得2y =,即(0,2)D . ……15分所以,COD ∆的面积12222=⨯⨯=. ……20分四 .(本大题满分25分)12 .在△ABC 中,∠A =2∠B ,CD 是∠ACB 的平分线.求证:BC =AC +AD .证明:如图,将A 沿CD 反射到BC 上得'A , ……5分则DB A B B A D CA '2'∠+∠=∠=∠=∠,故DB A B '∠=∠, ……15分所以B A D A AD ''==, ……20分 故AD AC B A C A BC +=+=''. ……25分五 .(本大题满分25分)把1到15的15个自然数分成A 和B 两组.若把10从A 组转移到B 组.则A 、B 两组数的平均数都分别比原来的减少了12.求两组数原来的平均数. 解:设A 、B 两组数原来平均数分别为a 、b ,A 组数原来有m 个数.则B 组数原来有15m -个数.根据题意有:A'D C A B⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-+--=--=++=-+)3(2111510)15()2(21110)1(1201521)15( b m m b a m am m b am ……5分 由(2)得:)4(212 m a -=由(3)得:)5(362 m b -= ……10分(4)、(5)分别代入(1)解得:10=m ……15分将10=m 分别代入(4)、(5)得:5.5=a ……20分13=b ……25分2012年四川初中数学竞赛(初二组)初赛参考解答与评分标准一、选择题(每小题7分,共42分)1. D 2.C 3.A 4. C 5.B 6.A二、填空题(每小题7分,共28分)1. 2a c 2.10 3.144三、(本大题满分20分)已知直线y kx b =+经过点(1,1)A 和点(1,3)B -,且与x 轴、y 轴的交点分别为,C D ,设O 为坐标原点.求COD ∆的面积.解:由条件知13k b k b=+⎧⎨=-+⎩, ……5分解得1,2k b =-=, ……10分 于是直线为2y x =-+.令0,y =得2x =,即(2,0)C ,令0,x =得2y =,即(0,2)D . ……15分 所以,COD ∆的面积12222=⨯⨯=. ……20分四、(本大题满分25分)在ABC ∆中,B A ∠=∠2,CD 是ACB ∠的平分线,求证:AD AC BC +=.证明:如图,将A 沿CD 反射到BC 上得'A , (5)则DB A B B A D CA '2'∠+∠=∠=∠=∠, 故DB A B '∠=∠, 所以B A D A AD ''==, 故AD AC B A C A BC +=+=''.五、(本大题满分25分)把1到15的15个自然数分成A 和B 两组,若把10从A 组转移到B 组,则A 、B 两组数的平均数都分别比原来减少了21.求两组数原来的平均数. 解:设A 、B 两组数原来平均数分别为a 、b ,A 组数原来有m 个数.则B 组数原来有15m -个数.根据题意有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-+--=--=++=-+)3(2111510)15()2(21110)1(1201521)15( b m m b a m am m b am ……5分 由(2)得:)4(212 m a -=由(3)得:)5(362 m b -= ……10分(4)、(5)分别代入(1)解得:10=m ……15分将10=m 分别代入(4)、(5)得:5.5=a ……20分13=b ……25分。

全国初中数学竞赛试题及答案(2014年)

全国初中数学竞赛试题及答案(2014年)

2014年全国初中数学联合竞赛试题参考答案说明:第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,错误!未找到引用源。

则x y +的可能的值有( C )A. 1个B. 2个C. 3个D. 4个2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( A ) A .47 B .59 C .916 D .1225 3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则错误!未找到引用源。

=( B )A B C D 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( B )A .12 B .25 C .23 D .345.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( D )A .12B .3C .1(32D .1 6.在△ABC 中,90C ∠=︒,60A ∠=︒错误!未找到引用源。

,1AC =,D 在BC 上,E 在AB 上,使得△A D E 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为( A )A .4-B .2C .11)2D 1 二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =__0__.2.使得不等式981715n n k <<+错误!未找到引用源。

四川初中数学联赛(初二组)初赛试卷全解全析

四川初中数学联赛(初二组)初赛试卷全解全析

初中数学(初二组)试卷2、已知 a * "b = b ' "C — c ' £, a ;匚 b 上 c,贝y a b c =(M =p 4 p 2q 1,其中p,q 为质数,且满足q - p =29,则M =一、选择题(本大题满分42分,1、下列名人中:①比尔•盖茨 斯坦,其中是数学家的是( ) A .①④⑦B.③④⑧每小题7分)②高斯③袁隆平④诺贝尔 ⑤陈景润⑥华罗庚⑦高尔基⑧爱因 C.②⑥⑧D.②⑤⑥A.5B.3.5C.1D.0.53、在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点。

设k 为整数,当直线 y= x_2与y = kx k 的交点为整点时,k 的值可以取() A. 4个B.5C.6 个D.74、如图,边长为 1的正方形 ABCD 绕A 逆时针旋转 300到正方形 AB’CD’, 图中阴影部分的面积为(A.—#B.1-孑 D.5、已知 A.2009 B.2005 C.2003D.2000(第6题图)6、四边形 ABCD 中.DAB = 60°,. B - D =90°, BC =1,CD-2,则对角线AC 的长为(A. ■. 21B. -f C •警D •警二、填空题(本大题满分3、 2、 1、 2、 3、4、5、4、3、2、2、已知 a, b,c 满足 2a -4 • b • 2「,a - 3 b 2a 2c^ 2 2ac ,则 a - b ,c 的值为(第 4题图)丁ECD 的面积为1 / 5B(第3题图)(第4题图)4、有一等腰钝角三角形纸片,若能从一个顶点出发,将其剪成两个等腰三角形纸片,则等腰三角形纸片 的顶角为_______________ 度。

三、简答题(本大题满分20分)1•如图,直线OB 是一次函数y - -2x 的图象,点A 的坐标为0,2,在直线OB 上找点C , 使得、ACO 为等腰三角形,点C 坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省2014年全国初中数学联赛(初二组)初赛试卷
一、选择题(本小题满分42分,每小题7分)
12-的值是 ( )
A 、0
B

C 、-
D 、4
2、实数a b c 、、满足01,a b c abc +
+==,则a b c 、、中正数的个数是

) A 、0 B 、1 C 、2 D 、3
3、在一个圆柱形水池内,有一个进水管和一个出水管,进水管流水速度是出水管流水速度的两倍.开始时 有一满池水,出水管开始放水,到池水只有一半池时,打开进水管放水(此时出水管不关)直到放满池水 关闭进水管,再由出水管放完池水。

则在这一过程水池中的水量V 随时间t 的变化关系的图像是( )
t
D
t C
t B
A
t
4、如图,在矩形ABCD 中,AB=2,BC=3,AE 是∠BAD 的平分线,EF 垂直于AE ,则AF 的长为( ) A 、、4 C 、
5、方程231x x ---=的解的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、无数个
6、在△ABC 中,∠B 和∠C 的角平分线交点是I ,则∠BIC 是 ( ) A 、锐角 B 、直角 C 、钝角 D 、无法确定
二、填空题(本大题满分28分,每小题7分)
A
B
C
D F E
1、用火柴棍按照如下图所示的规律搭建三角形,“…”表示按照前面的规律一直搭建下去,当搭建到第n 个编号三角形的时候,所用火柴棍的根数是 (用含有n 的式子表示).
2、若a 为整数,则关于x 的方程11()a x a -=+ 的所有整数解的和是 .
3、a b 、为常数,且对任何实数x ,都有22222
3+1212
()()x a b x x x x +=++++成立,则a
b = . 4、在长方形纸片ABCD 中,1
2AB BC ==,,设E 为边BC 的中点,现将纸片折叠,使A E 、重合,
则折痕将长方形纸片分成两部分中,较大部分面积与较小部分面积之比的值为 .
三、(本大题满分20分)
解不等式231x x -<-
•••
如图,在等腰梯形ABCD 中,A D ∥BC ,35DE BC E DE BD ⊥==于,若,,求梯形ABCD 的面积.
B
C
D
A
E
已知正整数a b 、满足233()a b a b +=+,试求a b 、的值.。

相关文档
最新文档