沪九数学(三)答案
沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)
沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)AC51.将抛物线y=x^2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为哪一个?A。
y=(x-1)^2+2B。
y=(x+1)^2+2C。
y=(x-1)^2-2D。
y=(x+1)^2-22.已知二次函数y=ax^2-1的图象经过点(1,-2),那么a的值为多少?A。
a=-2B。
a=2C。
a=1D。
a=-13.对于非零向量a、b,如果2|a|=3|b|,且它们的方向相同,那么用向量a表示向量b正确的是哪一个?A。
b=a*(3/2)B。
b=a*(2/3)C。
b=-a*(3/2)D。
b=-a*(2/3)4.在四边形ABCD中,若AB=a,AD=b,BC=c,则CD等于哪一个?A。
a-b-cB。
-a+b-cC。
a-b+cD。
-a+b+c5.在直角三角形ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于哪一个?A。
3sinαB。
3cosαC。
sinα/3D。
cosα/36.在直角三角形ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为多少?A。
3/4B。
4/3C。
5/3D。
3/57.在直角三角形ABC中,∠ACB=90°,BC=1,AC=2,则下列结论正确的是哪一个?A。
sinA=3/2B。
tanA=1/2C。
cosB=3/2D。
tanB=3/48.抛物线y=-3x^2+2x-1的图象与x轴交点的个数是多少?A。
没有交点B。
只有一个交点C。
有且只有两个交点D。
有且只有三个交点9.关于二次函数y=(x+1)^2的图象,下列说法正确的是哪一个?A。
开口向下B。
经过原点C。
对称轴右侧的部分是下降的D。
顶点坐标是(-1,0)10.在三角形ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE//BC的是哪一个?A。
DE^2/BC^2=3/2B。
沪教版九年级上册-解直角三角形(基础),带答案
教学内容------解直角三角形 ★知识要点1、解直角三角形的依据在直角三角形ABC 中,如果∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,那么 (1)三边之间的关系为(勾股定理)(2)锐角之间的关系为∠A+∠B=90° (3)边角之间的关系为:2、其他有关公式直角三角形面积公式: (hc 为c 边上的高)3、解直角三角形的条件在除直角C 外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。
4、直角三角形的关键是正确选择关系式 在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数 (2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。
(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。
5、直角三角形时需要注意的几个问题(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。
(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。
(3)按照题目中已知数据的精确度进行近似计算★新课学习引入新课:如图所示,一棵大树在一次强烈的台风中于地面10米处折断倒下,树顶落在离数根24米处.问大树在折断之前高多少米? 显然,我们可以利用勾股定理求出折断倒下的部分的长度为222410 =26 , 26+10=36所以, 大树在折断之前的高为36米.解:120119sin ,cos 169169A A ==,120tan 119A =,119cot 120A =3. 已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34,则底角∠B=30︒;4. 如图所示,已知:在△ABC 中,∠A=60°,∠B=45°,AB=8.求:△ABC 的面积(结果可保留根号).解:48163ABC S ∆=-例3、 已知直角三角形的斜边与一条直角边的和是16cm ,另一条直角边为8cm ,求它的面积.解:224S cm =例4、 在△ABC 中,90C ︒∠=,60B ︒∠=,33a b +=+,求:a 、b 、c 的值及∠A.解:3a =,3b =,23c =,30A ︒∠=例5、 已知△ABC 中,∠C=90°,若△ABC 的周长为30,它的面积等于30,求三边长. 解:5,12,13a b c ===或12,5,13a b c ===例6、 如图:△ABC 中,∠ACB=90°,CD ⊥AB 于D 点,若∠A=60°,AB-CD=13,求BC 及ABC S ∆ . 解:683BC =+,48383ABC S ∆=+例7、 已知△ABC 中,∠BAC=60°,AB ∶AC=5∶2且103ABC S ∆= ,求三边的长. 解:10AB =,4AC =,219BC =例8、 如图,△ABC 中,∠ACB =90°,BD 是中线,已知AB =10,3tan 2α=,求∠A 和BC.解:30A ︒∠=,5BC =例9、 如图,△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,AC =5,BC =12,(1)求AB 的值;(2)求∠BCD 的值。
沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(满分40分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“两边及其夹角对应相等的两个三角形全等”是必然事件C.“概率为0.0001的事件”是不可能事件D.“长度分别是3cm,3cm,6cm的三根木条能组成一个三角形”是必然事件2.抛物线y=x2﹣6x+9的顶点坐标是()A.(3,0)B.(﹣3,0)C.(﹣3,9)D.(3,9)3.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A.B.C.D.4.从﹣1,1,2中任取两个不同的数,分别记为a和b,则a,b是方程x2﹣x﹣2=0的两个根的概率是()A.B.C.D.5.书架上有a本经济类书,7本数学书,b本小说,5本电脑游戏类书.现某人随意从架子上抽取一本书,若得知取到经济类或者数学书的机会为,则a,b的关系为()A.a=b﹣2B.a=b+12C.a+b=10D.a+b=126.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.如图,点AB和C、D分别在以点O为圆心的两个同心圆上,若∠AOB=∠COD,∠C =m°,则∠D=()A.m°B.m°C.m°D.2m°8.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.B.C.D.9.一个盒子里有完全相同的小球,球上分别标有数字1,2,3,从中摸出一个数字记为a,则摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是()A.0B.C.D.110.如图,直角三角形的三边分别是a,b,c,且a<b<c,分别以三角形的三条边为边向外作正方形.若在该图形上做随机扎针试验,针头扎在三角形和三个正方形上的概率分别是P1,P2,P3,P4,则下列关系式一定成立的是()A.P3+P2=P4﹣P1B.P2+P3=P4C.P2+P3=P1+P4D.P1+P2+P3=P4二、填空题(满分20分)11.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是.12.如图,直线y=x+与y轴交于点P,将它绕着点P旋转90°所得的直线对应的函数解析式为.13.如图,AC是⊙O的直径,与弦BD交于E,连接BC,过点O作OF⊥BC于P,若BD =8cm,AE=2cm,则OF的长度是.14.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a.解答下列问题:(1)关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不等的实数根的概率是;(2)以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.三、解答题(满分90分)15.如图,过⊙O内一点P画弦AB使P是AB的中点.16.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成,现对由三个小正方形组成的“□□□”进行涂色,每个小正方形随机涂成黑色或白色,求恰好是两个黑色小正方形和一个白色小正方形的概率.17.如图,AB是⊙O的直径,C、D是半⊙O的三等分点,CE⊥AB于点E,求∠ACE的度数并指出AC与OD的关系.18.如图,在4×4的正方形网格中,小正方形的边长为1,△PMN绕某点旋转一定的角度,得到△P1M1N1.(1)指出旋转中心及旋转角的度数;(2)求MN1的长.19.新冠病毒的传染性极强,某地因1人患了新冠病毒没有及时隔离治疗,经过两天的传染后共有9人患了新冠病毒,每天平均一个人传染了几人?如果按照这个传染速度,再经过3天的传染后,这个地区一共将会有多少人患新冠病毒?20.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.设半径为1的圆的面积与其内接正n边形的面积差为△n,如图①,图②,若用圆的内接正八边形和内接正十二边形逼近半径为1的圆,求△8﹣△12的值.21.已知,如图,△ABC的顶点A,C在⊙O上,⊙O与AB相交于点D,连接CD.(1)若⊙O半径为5,∠A=30°,求弦CD的长;(2)在(1)的条件下,求图中阴影部分的面积;(3)若∠ACB+∠ADC=180°,求证:BC是⊙O的切线.22.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116295480601摸到白球的频率0.590.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中红球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?23.如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.解答下列问题:(1)两根等长立柱AB,CD的高度是米;并求出绳子最低点离地面的距离.(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面2米,求MN的长.(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m米,抛物线F2的顶点离地面距离为k米,当2≤k≤时,求m的取值范围.参考答案一、选择题(满分40分)1.解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误,不符合题意;B、“两边及其夹角对应相等的两个三角形全等”是必然事件,选项正确,符合题意;C、“概率为0.0001的事件”是随机事件,选项错误,不符合题意;D、不能构成三角形,选项错误,不符合题意.故选:B.2.解:∵抛物线y=x2﹣6x+9=(x﹣3)2,∴该抛物线的顶点坐标为(3,0),故选:A.3.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,∴这句话中任选一个汉字,这个字是“山”的概率是;故选:A.4.解:列表如下:﹣112﹣1(1,﹣1)(2,﹣1)1(﹣1,1)(2,1)2(﹣1,2)(1,2)由表知,共有6种等可能结果,其中a,b是方程x2﹣x﹣2=0的两个根的有(﹣1,2)、(2,﹣1)这两种结果,所以a,b是方程x2﹣x﹣2=0的两个根的概率为=,故选:D.5.解:由已知可得a+7=,解得a+2=b,即a=b﹣2.故选A.6.解:由题意可知:∠DOB=85°,由旋转得:△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.7.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠BOC=∠AOD,证明:在△COB和△DOA中,∴△COB≌DOA(SAS),∴∠C=∠D,∵∠C=m°,∴∠D=m°,故选:B.8.解:设正方形ABCD的边长为2a,针尖落在黑色区域内的概率==.故选:C.9.解:∵抛物线y=x2+ax+1与x轴没有交点,∴Δ=a2﹣4<0,而在1,2,3这3个数中,符合条件的只有1这1个数,∴摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是.故选:C.10.解:∵直角三角形的三边分别是a,b,c,且a<b<c,∴a2+b2=c2,∴根据几何概率的定义可知P2+P3=P4.故选:B.二、填空题(满分20分)11.解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,∴m﹣1=﹣3,2﹣n=﹣5,解得:m=﹣2,n=7,故m+n=5.故答案为:5.12.解:∵y=x+,∴函数y=x+与x轴的交点是(﹣1,0),与y轴的交点是(0,).∴OA=1,OP=.设函数与x轴交于点A,新函数与x轴交于点B,∵∠APO+∠BPO=90°=∠BPO+∠PBO,∴∠APO=∠PBO,∵∠AOP=∠POB=90°,∴△POA∽△BOP,∴=,即=,∴OB=3,∴点B(3,0).设新函数解析式为y=kx+,把点B代入求得,k=﹣.∴新函数解析式为y=﹣x+,故答案为:y=﹣x+.13.解:连接AB,∵BD⊥AC,∴BE=ED=BD=4(cm),由勾股定理得,AB==2(cm),∵OF⊥BC,∴CF=FB,又CO=OA,∴OF=AB=(cm),故答案为:.14.解:(1)令Δ=[﹣2(a﹣1)]2﹣4a(a﹣3)=4a+4>0,且a﹣3≠0,解得:a>﹣1且a≠3,∴a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的数有0,1,2,则a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的概率是,故答案为:;(2)∵二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0),∴a﹣(a2+2)+2=0,解得a=0或1,∵a≠0,∴a=1,∴以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.故答案为:.三、解答题(满分90分)15.解:连接OP,过点P作AB⊥OP,则弦AB即为所求.16.解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为.17.解:连接OC.∵AB是直径,弧AC=弧CD=弧BD,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°﹣60°=30°.∵△AOC是等边三角形,∴AC=OC=OD.18.解:(1)如图,连接BM、BN、BP、BM1、BN1、BP1,则BP1=BP=1,根据勾股定理得BM1=BM=,BN1=BN=2,∴点B是旋转中心,取格点E,连接BE、NE、N1E,∵BE=NE=N1E,∠BEN=∠BEN1=90°,∴∠EBN1=∠EN1B=45°,∠EBN=∠ENB=45°,∴∠NBN1=∠EBN1+∠EBN=90°,∴旋转角等于90°,(2)根据勾股定理得MN1==,∴MN1的长是.19.解:设每天平均一个人传染了x人,由题意,得x(x+1)+x+1=9,解得:x1=2,x2=﹣4(舍去),三天后共有(x+1)3个人患病,(2+1)3=27(人).故每天平均一个人传染了2人,在经过3天的传染后,这个地区一共将会有27人患病.20.解:如图,由题意,△8﹣△12=(S圆﹣S八边形)﹣(S圆﹣S十二边形)=S十二边形﹣S八边形=12××1×1×sin30°﹣8××1×1×sin45°=3﹣2.21.(1)解:连接OC、OD,如图所示:则OC=OD=5,∵∠A=30°,∴∠DOC=60°,∴△OCD是等边三角形,∴CD=OC=5;(2)解:由(1)得S阴影=S扇形COD﹣S△COD=﹣=﹣.(3)证明:连接CO并延长交⊙O于点M,连AM,如图2所示:则∠MAC=90°,∠M+∠ADC=180°,∴∠M+∠ACM=90°,∵∠ACB+∠ADC=180°,∴∠M=∠ACB,∴∠ACB+∠ACM=90°,即∠BCM=90°,且CM是⊙O的直径,∴BC是⊙O的切线.22.解:(1)当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)由(1)摸到白球的概率为0.6,则摸到红球的概率为1﹣0.6=0.4,所以可估计口袋中红球的个数为:5×0.4=2(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.23.解:(1)抛物线y=x2﹣x+3与y轴交与点A,∴A(0,3),∵两根等长立柱AB,CD,∴CD=3,∵a=>0,∴抛物线顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为:米;故答案为:3;米;(2)由(1)可知,对称轴为x=4,则BD=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,2),设F1的解析式为:y=a(x﹣2)2+2,将(0,3)代入得:4a+2=3,解得:a=0.25,∴抛物线F1为:y=0.25(x﹣2)2+2,当x=3时,y=0.25×1+2=2.25,∴MN的长度为:2.25米;(3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴F2的横坐标为:(8﹣m)+m=m+4,∴抛物线F2的顶点坐标为:(m+4,k),∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,把C(8,3)代入得:(8﹣m﹣4)2+k=3,解得:k=﹣(4﹣m)2+3,∴k=﹣(m﹣8)2+3,∴k是关于m的二次函数,又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大,∴当k=2时,﹣(m﹣8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=时,﹣(m﹣8)2+3=,解得:m1=8﹣2,m2=8+2(不符合题意,舍去),∴m的取值范围是:4≤m≤8﹣2.。
数学沪科版九年级(上册)3二次函数表达式的确定
∴解方程组得:a=2, b=-3, c=5
已知一个二次函数的图象过点(-1,10)、(1,4) 、(2,7), 求这个函数的表达式.
解:设所求的二次函数为y=ax2+bx+c.
a-b+c=10 由已知得Байду номын сангаас a+b+c=4
4a+2b+c=7
第一步:设出表达式的形式; 第二步:代入已知点的坐标; 第三步:解方程组。
方法2:设y ax2 bx c,由“x 0时,y样一吗个1?更,两简x 种捷 方?2与法12哪时,
y 0”,列方程组求出a,b,c的值.
已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0), B(3,0)两点(两点的纵坐标都为0),与y轴交于点C(0,3), 求这个二次函数的表达式.
解: ∵图象与x轴交于A(1,0),B(3,0) ∴设函数表达式为y=a(x-1)(x-3) ∵图象过点C(0,3) ∴3=a(0-1)(0-3),解得a=1. ∴二次函数表达式为y=(x-1)(x-3)=x2-4x+3
用待定系数法求二次函数的表达式的一般步骤: ①设出合适的函数表达式; ②把已知条件代入函数表达式,得到关于待定系数的方 程或方程组; ③解方程组求出待定系数的值,从而写出函数的表达式.
4.已知函数图象过已知三点,求出函数的解析式: (1) (1, 1),(0, 2),(1,1); (2) (1,0),(3, 0),(1, 5).
解:(1)选用一般式求表达式:
y 2x2 x 2
(2)选用交点式求表达式:
y 5 x 12 5
4
根据已知条件选设函数表达式: 用待定系数法求二次函数的表达式必须根据题目的特点,选择 适当的形式,才能使解题简便.一般来说,有如下几种情况: ①已知抛物线上三点的坐标,一般选用一般式; ②已知抛物线顶点坐标或对称轴或最大(小)值,一般选用顶 点式; ③已知抛物线与x轴的两个交点的横坐标,一般选用交点式; ④已知抛物线上纵坐标相同的两点,常选用顶点式(可求出对 称轴).
沪科版九年级数学上册试题 第22章《相似形》单元测试卷(含答案详解)
第22章《相似形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P 是线段AB 上一点(AP >BP ),若满足,则称点P 是AB 的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x 米时恰好站在舞台的黄金分割点上,则x 满足的方程是( )A .(20﹣x )2=20xB .x 2=20(20﹣x )C .x (20﹣x )=202D .以上都不对2.如图,点D ,E ,F 分别在的边上,,,,点M 是的中点,连接并延长交于点N ,则的值是( )A .B .C .D .3.将含有的三角板按如图所示放置,点在直线上,其中,分别过点,作直线的平行线,,点到直线,的距离分别为,,则的值为( )BP APAP AB=ABC V 13AD BD =DE BC ∥EF AB ∥EF BM AC ENAC32029161730︒ABC A DE 15BAD ∠=︒B C DE FG HIB DE HI 1h 2h 12h hA .1 BCD4.如图,点D 是△ABC 中AB 边上靠近A 点的四等分点,即4AD =AB ,连接CD ,F 是AC 上一点,连接BF 与CD 交于点E ,点E 恰好是CD 的中点,若S △ABC =8,则四边形ADEF 的面积是( )A .4B .C .2D .5.如图,在边长为的小正方形组成的网格中,建立平面直角坐标系,的三个顶点均在格点(网格线的交点)上.以原点为位似中心,画使它与的相似比为,则点的对应点的坐标是( )A .B .C .或D .或6.如图,已知、,与相交于点,作于点,点是的中点,于点,交于点,若,,则值为( )11-1181171ABC V O 111A B C △ABC V 2B 1B ()42,()42--,()42,()42--,()42,()42,-AB BC ⊥DC BC ⊥AC BD O OM BC ⊥M E BD EF BC ⊥G AC F 4AB =6CD =OM EF -A.B .C .D .7.如图,在平面直角坐标系中,为原点,为平面内一动点,,连接,点是线段上的一点,且满足.当线段取最大值时,点的坐标是( )A .B .C .D .8.如图,四边形是矩形,平分,,、的延长线交于点,连接,连接交于点.下列结论错误的是()A .图中共有三个等腰直角三角形B .C .D .9.如图,在平面直角坐标系中,点,点B 是线段上任意一点,在射线上取一点C ,使,在射线上取一点D ,使.所在直线的关系式为,点F 、G分别为线段的中点,则的最小值是()751253525O OA OB ==C 32BC =AC M AC :1:2CM MA =OM M36,55⎛⎫ ⎪⎝⎭612,55⎛⎫ ⎪⎝⎭ABCD CE BCD ∠AE CE ⊥EA CB F DE BD CE G DGC EBC∠=∠AB AD CG CE⋅=⋅∽CDG CEBV V ()E OE OA OB BC =BC BD BE =OA 12y x =OC DE 、FGABC .D .4.810.如图所示,正方形由四个全等的直角三角形和一个小正方形组成,且内接于正方形,连接,.已知正方形与正方形面积之比为,若,则( )A BCD .二、填空题(本大题共8小题,每小题4分,共32分)11.已知,且,则 .12.在中,M ,N 分别是BC ,AC 边上一点,连接AM ,BN 交于点P ,若,,则 .13.正方形中,E ,F 分别是,上的点,连结交对角线于点G ,若恰好平分,,则的值为 .ABCD FGHI DE BE CE>ABCD FGHI 59DE CH ∥BECE=32::3:5:7a b c =10a b c -+=a b c ++=ABC V :2:3BM CM =:1:4AN CN =:AP MP =ABCD AD DC EF BD BE AEF ∠413DG GB =DE AE14.宽与长的比等于黄金比的矩形称为黄金矩形.古希腊很多矩形建筑中宽与长的比都等于黄金比,如图,矩形ABCD 为黄金矩形,AB <AD ,以AB 为边在矩形ABCD 内部作正方形ABEF ,若AD =1,则DF = .15.如图,矩形的两条对角线相交于点O ,,垂足为E ,F 是的中点,连接交于点P,那么.16.如图,中,,,,若正方形的顶点在上,顶点、都在上,射线交边于点,则长为 .17.如图:等腰直角三角形中,E 为边上一点,.将沿着翻折得到线段,连接,若.ABCD AC BD ,OE AB ⊥OC EF OB OPPB=ABC V 90ACB ∠=︒2BC =4AC =DEFC D AB F G AC AF BC H CH ABC BC 3BE CE =AB AE AD CD AB =CD =18.如图,在矩形中,,,点在直线上,从点出发向右运动,速度为每秒,点在直线上,从点出发向右运动,速度为每秒,相交于点,则的最小值为 .三、解答题19.(8分)如图,,于点D ,M 是的中点,交于点P ,.若,求的长.ABCD 5cm AB =6cm BC =E AD A 0.5cm F BC B 2cm BE AF 、G BG CG +cm AB AC =AD BC ⊥AD CM AB DN CP ∥6cm AB =PN20.(8分)如图,四边形ABCD 中,AB=AC=AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD .(1)证明:∠BDC=∠PDC ;(2)若AC 与BD 相交于点E ,AB=1,CE :CP=2:3,求AE 的长.21.(10分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.若铁塔底座宽CD=12m ,塔影长 m ,小明和小华的身高都是1.6m ,同一时刻小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,求塔高AB.18DE22.(10分)如图1,在,,,D 为上一点,连接,分别过点A 、B 作于点N ,于点M .(1)求证:;(2)若点D 满足,求的长;(3)如图2,若点E 为中点,连接,求证:.图1 图2Rt ABC △90ACB ∠=︒1AC BC ==AB CD AN CD ⊥BM CD ⊥ACN CBM V V ≌21BDAD =∶∶DM AB EM 45EMN ∠=︒23.(10分)如图,在正方形中,点是对角线上一点,的延长线交于点,交的延长线于点,连接.(1)求证:;(2)求证:;(3)若的长.ABCD G BD CG AB E DA F AG CG AG =2AB BE DF =⋅GE =GC =EF24.(12分)如图,在平面直角坐标系中,点A 在轴的正半轴上,点在轴的负半轴上,点在轴的正半轴上,且,线段、的长是一元二次方程的两个根,且.(1)求点A 、点的坐标;(2)求点的坐标;(3)若直线过点A 交线段于点,且,求点坐标;(4)在平面内是否存在一点,使得以为直角顶点的与相似,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.x B x C y 90ACB ∠=︒OB OA 213360x x -+=OB OA <B C l BC D :1:2ABD ADC S S =△△D P P APC △ABC V P答案一、单选题1.A【分析】点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,则,即可求解.解:由题意知,点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,∴,∴(20−x )2=20x ,故选:A .2.A【分析】过点F 作交AC 于点G,可证.同理,可得,,;由,得,于是;设,则,,,从而得.解:过点F 作交AC 于点G,∴∴.BP AP AP AB=BP AP AP AB =FG BN ∥EN GN =13AE AD EC DB ==3EC AE =13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC a =203AC a =320EN AC =FG BN ∥1EN EM GN FM==EN GN =∵,∴.∴.∵,∴.∵,∴.∴.设,则,∴∴.∴.∴.∴.故选:A3.B【分析】设交于点,由,得三角形BCM 为等腰直角三角形,再由含30度角直角三角形三边长比及等腰直角三角形的边长比,设BC 为x ,可得MA 为,再由平行线分线段成比例求解.解:设交于点,∵,,DE BC ∥13AE AD EC DB ==3EC AE =EF AB ∥13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC EN NG GC a=++=35EC AE a ==53AE a =520+533AC AE EC a a a =+==320203EN a AC a ==CE FG M 45DAC BAD CAB ∠=∠+∠=︒MA x =-CE FG M 30CAB ∠=︒15BAD ∠=︒∴,∵,∴,三角形为等腰直角三角形,在Rt △ABC 中,设长为,则,∵,∴,∴,∵,∴,故选:B .4.D【分析】过D 点作DG∥EF ,连接AE ,,GF =FC ,再计算△ADE 和△AEF 的面积即可.解:过D 点作DG ∥EF ,连接AE ,∵点E 恰好是CD 的中点,4AD =AB ,∴,GF =FC ,设AG =k ,则AF =4k ,GF =3k ,FC =3k ,∴,∵,S △ABC =8,∴,∴,∵,∴,∴=.45DAC BAD CAB ∠=∠+∠=︒//FG DE 45CMB DAC ∠=∠=︒BCM BC x CM BC x ==30CAB ∠=︒CA ==MA x =-////HI FG DE 121h MA h CM ===14AG AD AF AB ==14AG AD AF AB ==43AF FC =14ACD ABC S AD S AB ∆∆==124ACD ABC S S ∆∆==112ADE AEC ACD S S S ∆∆∆===43AEFCEF S AF S CF ∆∆==4477AEF AEC S S ∆∆==417ADE AEF ADEF S S S ∆∆=+=+四边形117故选:D .5.C【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点的位置写出坐标即可.解:如图所示,当和在原点同侧时,∵与的相似比为2,,∴,即;如图所示,当和在原点两侧时,∵与的相似比为2,,∴,即;综上所述,或,故选C.1B ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B ⨯⨯()142B ,ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B -⨯-⨯()142B --,()142B --,()142B ,6.A【分析】证明,,,,求出,求出,,得出即可得出答案.解:、,,∴,,,∴,,∴,,∴,,∴,点是的中点,,,,∴,,∴,∴,故选:.7.DCOM CAB △∽△BOM BDC V V ∽OM CM AB BC =OM BM DC BC =125OM =132EG CD ==122FG AB ==1EF EG FG =-=AB BC ⊥ DC BC ⊥OM BC ⊥OM AB CD ∥∥COM CAB ∴V V ∽BOM BDC V V ∽OM CM AB BC =OM BM DC BC =4OM CM BC =6OM BM BC=125OM =EF BC ⊥ EG AB CD ∥∥ E BD BE DE ∴=BG CG ∴=CF AF ∴=132EG CD ==122FG AB ==1EF EG FG =-=75OM EF -=A【分析】由题意可得点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,先证,得,从而当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,然后分别证,,利用相似三角形的性质即可求解.解:∵点为平面内一动点,,∴点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,∵∴∴,∵,∴,∵,∴,∴,∴当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD BDO CDF V V ∽AEM AFC V V ∽C 32BC =C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OA OB ==AD OD OA =+=23OA AD =:1:2CM MA =23OA CM AD AC==OAM DAC ∠∠=OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD∵∴,∴,∵,∴,∵轴轴,,∴,∵,∴,∴,解得同理可得,,∴,解得∴∴当线段取最大值时,点的坐标是,故选D .8.A【分析】根据矩形的性质以及角平分线的性质得,是等腰直角三角形,,是等腰直角三角形,由证明,可得,,则,是等腰直角三角形,由,可得,由三角形外角的性质可得,证明,列比例式并结合等量代换可得.OAOB ==OD =BD =152==9CD BC BD =+=23OM CD =6OM =y x ⊥CF OA ⊥90DOB DFC ∠∠==︒BDO CDF ∠∠=BDO CDF V V ∽OB BD CF CD =1529=CF =AEM AFC V V ∽23ME AM CF AC ==23=ME =OE ===OM M 45DCE BCE ∠=∠=︒CEF △45F DCE ∠=∠=︒ABF △SAS (SAS)≌EBF EDC V V FEB CED ∠=∠BE ED =90FEB CEB CEB CED ∠+∠=∠+∠=︒BED V EBF EDC △≌△FEB CED ∠=∠DGC EBC ∠=∠∽CDG CEB V V AB AD CG CE ⋅=⋅解:如图:四边形是矩形,,,,平分,,,,是等腰直角三角形,,,是等腰直角三角形,,,,,,,,是等腰直角三角形,是等腰直角三角形,故A 错误;,,,,故B 正确;,,故D正确;ABCD AB CD ∴=90ABC BCD ADC ∠=∠=∠=︒90ABF ∴∠=︒CE BCD ∠45DCE BCE ∴∠=∠=︒AE CE ⊥ 90FEC ∴∠=︒CEF ∴V EF CE ∴=45F ∠=︒ABF ∴V BF AB CD ∴==45F DCE ∠=∠=︒ (SAS)≌EBF EDC ∴V △FEB CED ∴∠=∠BE ED =90FEB CEB CEB CED ∴∠+∠=∠+∠=︒BE ED = BED ∴V DCH V 45EBD ∴∠=︒45DGC GCB CBG CBG ∠=∠+∠=︒+∠ 45EBC EBD CBG CBG ∠=∠+∠=︒+∠DGC EBC ∴∠=∠DCG ECB ∠=∠ ∽CDG CEB ∴V V,,,,,故C 正确.故选:A .9.A【分析】如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,先根据三线合一定理得到,,进而证明四边形是矩形,得到,,故当点B 与点M 重合时,最小,即最小,最小值为,设,则,求出,利用相似三角形的性质求出(舍去),则的最小值为.解:如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,∵,,点F 、G 分别为线段的中点,∴,,∵,∴,即,∴四边形是矩形,∴,,∴当最小时,最小,∴当点B 与点M 重合时,最小,即最小,最小值为,∵点H 在直线上,∴可设,∴,∵,CD CG CE CB∴=CD AB = BC AD =AB CG CE AD∴=AB AD CG CE ∴⋅=⋅BF BG ,ED OA HM OE ⊥BH BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠BFHG FG BH =90OHE ∠=︒BH FG HM ()2H m m ,2OM m HM m ==,OE =OMH HME △∽△m =0m =FG BF BG ,ED OA HM OE ⊥BH OB BC =BD BE =OC DE 、BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠180OBF CBF DBG EBG +++=︒∠∠∠∠90CBF DBG +=︒∠∠90FBG ∠=︒BFHG FG BH =90OHE ∠=︒BH FG BH FG HM 12y x =()2H m m ,2OM m HM m ==,()E∴∵,∴,又∵,∴,∴,∴∴(舍去),经检验,∴,故选A .10.A【分析】设,,则,根据正方形与正方形面积之比为,得到,求出,作交于点M ,作交于点P ,证明出,设,则然后利用相似三角形的性质得到,然后解方程求解即可.解:由题意可得,∴设,,则,∵,∴,OE =90MEH HOE MHO MOH +=︒=+∠∠∠∠MHO MEH =∠OMH HME =∠∠OMH HME △∽△OM HM HM ME=2m m =m =0m =m =FG CI DH a ==CH b =IH a b =+ABCD FGHI 59()22259a b a b +=+2BI CH a ==BM GH ⊥GH NE BM ⊥BM BPE ENC ∽V V CN m =IN BP a m ==+a m a a m +=BIC CHD ≌V V CI DH a ==CH b =IH a b =+90H ∠=︒22222CD CH DH a b =+=+∵正方形与正方形面积之比为,∴,即,∴整理得,∴,解得或(舍去),∴,∴,如图所示,作交于点M ,作交于点P ,由题意可得,,∵,∴四边形,是矩形,∴,,∴,∴设,则,∵,∴,∵,∴,∴,又∵,∴,ABCD FGHI 592259CD IH =()22259a b a b +=+222520a ab b -+=25220a a b b ⎛⎫-+= ⎪⎝⎭12a b =2a b=2b a =2BI CH a ==BM GH ⊥GH NE BM ⊥BM AGD DHC ≌V V ED CH ∥BINP ENHD 2PN BI a ==EN DH a ==PE PN EN a =-=CN m =IN BP a m ==+BE CE ⊥90BEP CEN ∠+∠=︒BP PN ⊥90BEP PBE ∠+∠=︒CEN PBE ∠=∠90BPE ENC ∠=∠=︒BPE ENC ∽V V∴,即,∴整理得,∴,∴解得,∴故选:A .二、填空题11.30【分析】设,,,根据得到,求得,从而得出,,,代入进行计算即可.解:,设,,,,,解得:,,,,,故答案为:30.12.【分析】过点M 作,交于点Q ,根据平行线分线段成比例可得,设,求出,即可求解.解:过点M 作,交于点Q ,BP PE BE EN CN CE ==a m a a m+=220a am m -+=210a a m m ⎛⎫-+= ⎪⎝⎭a m =BE CE =3a k =5b k =7c k =10a b c -+=35710k k k -+=2k =6a =10b =14c =::3:5:7a b c = ∴3a k =5b k =7c k =10a b c -+= 35710k k k ∴-+=2k =6a ∴=10b =14c =6101430a b c ∴++=++=5:8MQ BN ∥AC 23BM NQ CM CQ ==2,3NQ k CQ k ==54k AN =MQ BN ∥AC∵,∴,设,∴,∵,∴,则,∵,∴,故答案为:.13.或4【分析】延长交于R ,作于T ,不妨设,,,可证得是等腰三角形,可推出,进而表示出,然后解,从而求出x 的值,进而可得结果.解:如图,延长交于R ,作于T ,,不妨设,,则,设,MQ BN ∥23BM NQ CM CQ ==2,3NQ k CQ k ==5CN NQ CQ k =+=:1:4AN CN =154AN k =54k AN =MQ PN ∥55428kAP AN MP NQ k ===5:812EF BC GT DE ⊥4DG =13GB =4DE x =REB V 413EG DE DG RG BR BG ===EG DEG △EF BC GT DE ⊥ 413DG GB =∴4DG =13GB =17BD =4DE x =四边形是正方形,,,,,,恰好平分,,,,,在中,,由勾股定理得,解得,,当,当,综上所述,或4,故答案为:或4.14【分析】先根据黄金矩形求出AB ,再利用正方形的性质求出AF ,然后进行计算即可解答.解:∵矩形ABCD 为黄金矩形,AB <AD ,ABCD ∴BC AD ∥AD ==∴EBC AEB ∠=∠4AE AD DE x =-=413EG DE DG RG BR BG ===∴13BR x = BE AEF ∠∴AEB FEB ∠=∠∴EBC FEB ∠=∠∴13ER BR x ==∴4521717EG ER x ==Rt EGT V GT DT DG ===4ET DE DT x =-=-((22252417x x ⎛⎫+-= ⎪⎝⎭1x =2x =∴4DE x ==DE =AE ==∴4DE AE=DE =AE ==∴12DE AE =12DE AE =12∴∴∵四边形ABEF 是正方形,∴∴DF=AD -AF=15.【分析】根据矩形性质得到,利用三角形的三线合一得,过O 作交于点Q ,则有,,计算即可.解:∵是矩形,∴,∵F 是的中点,∴,又∵,∴,过O 作交于点Q ,∴,,∴,故答案为:.16.AB AD =AB AD ==1=13OA OB OC ==AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽ABCD OA OB OC ==OC 1122OF OC OA ==OA OB =OE AB⊥AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽13OP OQ OQ OF PB BE AE AF ====1343【分析】证明,,由相似三角形的性质得出 , ,设, 可得,, 从而可得出答案.解:∵四边形为正方形, ,∴,,∴,, ∴, , 设, ∴,, ∴, ∴, ∴.故答案为 .17.2【分析】如图,作,使,连接,,交于,过作于,可得,,可得,求解,,可得,由对折可得:,,,证明,可得,再证明,可得,有,,求解,可得,从而可得答案.解:∵等腰直角三角形,∴,如图,作,使,连接,,交于,过作于,△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24x AG =4x AG x CH +=DGFE 90ACB ∠=︒DG EF BC ∥∥DG EF =△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24xAG =4x AG x CH +=2AG x =24x x x CH +=43CH =43AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△454590BCH ∠=︒+︒=︒BE CH ==CE EF ==AH AE ===52EH ==AB AD ==BAE DAE ∠=∠DE BE =45ADE ABE ∠=∠=︒()SAS AEC AHD V V ≌90ECH EDH ∠=∠=︒()Rt Rt HL HEC EHD V V ≌HED CHE ∠=∠CH DE ==EK HK =CK DK =EK HK ==CK DK ===HKE CKD V V ∽ABC AB =AB AC ==BC =AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F∵等腰直角三角形,∴,,∴,∴,∴,,∴,∵,∴,,∴∴,由对折可得:,,,∵,∴,∴,∵,,∴,∴,∴,∴,∵,,∴,ABC 90BAC EAH ∠=︒=∠AB AC ==45B ACB ∠=∠=︒BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△BE CH =45B ACH ∠=∠=︒454590BCH ∠=︒+︒=︒3BE CE =BE CH ==CE EF ==AH AE ===52EH =AB AD ==BAE DAE ∠=∠DE BE ==45ADE ABE ∠=∠=︒90BAC EAH ∠=∠=︒90BAE EAC DAE DAH ∠+∠=︒=∠+∠EAC DAH ∠=∠AE AH =AB AC AD ==()SAS AEC AHD V V ≌45ACE AHD ∠=∠=︒CE HD ==454590EDH ∠=︒+︒=︒90ECH EDH ∠=∠=︒EH EH =CE DH =()Rt Rt HL HEC EHD V V ≌∴,,∴,,由勾股定理可得:,∴,∴,∴,∴,,∴,∴,∴,故答案为:218.10【分析】过点作直线,分别交、于点,过点作直线,分别交、于点,易知四边形、、为矩形,证明,由相似三角形的性质可得;设两点运动时间为,则,,易得,;作点关于直线的对称点,由轴对称的性质可得,故当三点共线时,的值最小,即取最小值,此时,在中,由勾股定理求得的值,即可获得答案.解:如下图,过点作直线,分别交、于点,过点作直线,分别交、于点,HED CHE ∠=∠CH DE ==EK HK =CK DK =222EK CE CK =+222EK EK ⎫=-+⎪⎪⎭EK HK ==CK DK ===45DK CK EK HK ===HKE DKC ∠=∠HKE CKD V V ∽45CD CK HE HK ==4452552CD EH ==⨯=G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、ABNM PBNG GNCQ GAE GFB V V ∽AE GM BF GN =E F 、t 0.5AE t =2BF t =1cm GM =4cm GN =C PQ K CG KG =B G K 、、BG KG +BG CG +Rt BCK △BK G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、易知四边形、、为矩形,,∵四边形为矩形,∴,∴,,∴,∴,设两点运动时间为,则,,则有,即,∵,∴,,∵四边形为矩形,∴,作点关于直线的对称点,如图,则,,由轴对称的性质可得,当三点共线时,的值最小,即取最小值,此时,在中,,∴的最小值为.故答案为:10.三、解答题19.ABNM PBNG GNCQ 5cm MN AB ==ABCD AD BC ∥AB DC∥GAE GFB ∠=∠GEA GBF ∠=∠GAE GFB VV ∽AEGM BF GN=E F 、t 0.5AE t =2BF t =0.5124GM t GN t ==4GN GM =5cm MN =1cm GM =4cm GN =GNCQ 4cm QC GN ==C PQ K 4cm QK QC ==8cm KC QK QC =+=CG KG =B G K 、、BG KG +BG CG +Rt BCK △10cm BK ===BG CG +10cm解:∵,,∴,又∵,∴,∴,∵点M 是线段的中点,,∴,∴,∴,∵,∴.20.解:(1)证明:∵AB=AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD+∠BDC=90°,∵AC=AD ,∴∠ACD=∠ADC ,∴∠ADC+∠BDC=90°,∵PD ⊥AD ,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC ;(2)解:过点C 作CM ⊥PD 于点M ,AB AC =AD BC ⊥BD DC =DN CM ∥1BN BD PN DC==BN NP =AD DN CM ∥1AP AM PN MD==AP PN =13PN AB =6cm AB =()1162cm 33PN AB ==⨯=∵∠BDC=∠PDC ,∴CE=CM ,∵∠CMP=∠ADP=90°,∠P=∠P ,∴△CPM ∽△APD ,∴=,设CM=CE=x ,∵CE :CP=2:3,∴PC=x ,∵AB=AD=AC=1,∴=,解得:x=,故AE=1-=.21.解:如图,过点D 作,交AE 于点F ,过点F 作,垂足为点G.由题意得,,∴,∵,,∴,∴,答:塔高AB 为24m.CM AD PC PA32x 13x 23x 12+131323DF CD ⊥FG AB ⊥1.62DF DE =18 1.6214.4(m)DF =⨯÷=16m 2GF BD CD === 1.61AG GF =1.669.6(m)AG =⨯=14.49.624(m)AB =+=22.解:(1)证明:∵,,∴,,又∵,∴,∴∵,∴;(2)解:∵,,∴,∴,设,则,由(1)知,,∵,∴,∴,∴,∴,∴;(3)解:延长,相交于点H,AN CD ⊥BM CD ⊥90ANC ∠=︒90BMC ∠=︒90ACB ∠=︒90ACN BCM BCN CBM ∠+∠=∠+∠=︒ACN CBM∠=∠AC BC =()ACN CBM ASA V V ≌AND BMD ∠=∠ADN BDM ∠=∠AND BMD V V ∽12AN DN AD BM DM DB ===AN x =2BM x =AN CM x ==2BM CN x ==222AN CN AC +=()22221x x +=x =CM =CN =MN 2233DM MN ===ME AN∵E 为的中点,∴∵,,∴,∴,,∴,∴,又∵,∴,又∴,∴,∴.23.解:(1)证明:∵是正方形的对角线,∴,,在和中,,∴,∴;(2)证明:∵四边形是正方形,∴,,,AB AE BE=90ANM ∠=︒90BMN ∠=︒AN BM ∥HAE MBE ∠=∠AHE BME ∠=∠()AAS AHE BME V V ≌AH BM =BM CN =CN AH =CM AN=MN HN =45HMN ∠=︒45EMB ∠=︒BD ABCD 45C D B A D B ∠=∠=︒DC DA =CDG V ADG △DC DA CDG ADG DG DG =⎧⎪∠=∠⎨⎪=⎩()SAS CDG ADG ≌△△CG AG =ABCD 90CBE FDC ∠=∠=︒CB CD AB ==CB DF ∥∴,∴,∴,即,∴;(3)解:∵∴,∵四边形是正方形,∴,,,∴,∴,,∴,∴,设,则,∴,∵,∴,,∴,∴,∴,∴的长为24.(1)解:∵,∴.∴.∵点A 在轴的正半轴上,点在轴的负半轴上,BCE DFC ∠=∠BCE DFC ∽△△CB FD BE DC =AB FD BE AB=2AB BE DF =⋅GE =GC =CE CG GE =+=ABCD CD AB ∥CD AB =CB AD ∥BE CD ∥EBG CDG ∠=∠BEG DCG ∠=∠BEG DCG ∽△△BE GE DC GC ==BE =6CD x =(66AE AB BE CD BE x x =-=-==AF CB ∥FAE CBE ∠=∠AFE BCE ∠=∠AFE BCE △∽△EF AE EC BE==EF =EF 213360x x -+=(4)(9)0x x --=124,9x x ==x B x∴A 点坐标为,B 点坐标为,(2)∵A 点坐标为,B 点坐标为,∴,设点C 的坐标为,则,∵,,∴,∴,∴,∴,∴,解得,经检验,是方程的解且符合题意,∴点C 的坐标是;(3)过点D 作轴于点E ,轴于点F ,如图,则,∴,,∵,∴.∴;,∵,,∴;,()9,0()4,0-()9,0()4,0-9,4OA OB ==()0,t ()0t >OC t =90ACB ∠=︒90AOC COB ∠=∠=︒90OCB ACO OCB OBC ∠+∠=∠+∠=︒ACO OBC ∠=∠ACO CBO V V ∽OC AO OB OC=94tt =6t =6t =()0,6DE x ⊥DF y ⊥DE OC ∥DF OB∥BED BOC V V ∽CDF CBO V V ∽:1:2ABD ADC S S =△△:1:2BD DC =13DE BD OC BC ==23DF CD BO BC ==4OB =6OC =2DE =243DF =解得.∴.(4)解:存在,求解过程如下:设,由题意可得:,,当时,,即,,解得,或,即点坐标为或,当时,,即,,解得或,即点坐标为或,综上可知,满足条件的P 点为:或或或83DF =8,23D ⎛⎫- ⎪⎝⎭(,)P x y 13AB OB OA =+=BC ===AC ===AP =CP =APC ACB △∽△AP AC PC AC AB CB ==29AC AP AB===6AC CB CP AB ⨯===00x y =⎧⎨=⎩721310813x y ⎧=⎪⎪⎨⎪=⎪⎩P (0,0)72108,1313⎛⎫⎪⎝⎭APC BCA △∽△AP AC PC BC AB AC ==6AC BC AP AB ⨯===29AC CP AB===96x y =⎧⎨=⎩45133013x y ⎧=⎪⎪⎨⎪=-⎪⎩P ()9,64530,1313⎛⎫- ⎪⎝⎭(0,0)72108,1313⎛⎫ ⎪⎝⎭()9,64530,1313⎛⎫- ⎪⎝⎭。
202-2023学年沪科版九年级上学期第一次月考数学试卷含答案
2022-2023学年九年级上学期第一次调研数学试卷 注意事项1.你拿到的试卷满分为150分,考试时间为120分钟。
2.试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页。
“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
一、选择题(本大题共10小题,每小题4分,满分40分)1.下列函数中,是二次函数的是 A.y=x 21+x+1 B.y=x ²-(x+1)2 C.y=-21x 2+3x+1 D.y=3x+1 2.将抛物线y=2x ²先向右平移2个单位,再向上平移3个单位后,得到的抛物线的表达式是A.y=2(x -2)2-3B.y=2(x -2)2+3C.y=2(x+2)2-3D.y=2(x+2)2+33.已知撤物线的顶点坐标是(2,-1),且与y 轴交于点(0,3),这个抛物线的表达式是 ( )A.y=x ²-4x+3B.y=x ²+4x +3C.y=x ²+4x -1D.y=x ²-4x -14.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,则下列结论中不正确的是()A.abc<0B.b=-4aC.4a+2b ≥m(am +b)D.a -b+c>05.若二次函数y=(x -m )²+h ,当x<1时,y 随x 的增大而减小,则m 的取值范围是()A.m=1B.m>1C.m ≥1D.m<16.已知二次函数y=kx ²-3x +2的图象和x 轴有交点,则k 的取值范围是() A.k<89且k ≠0 B.k<89 C.k ≤89且k ≠o D.k ≤89 7.如图,某同学以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线y=94x 2+5的一部分,则杯口的口径AC 为() A.9 B.8 C.7 D.108.点C 为线段AB 上的一个动点,AB=1,分别以AC 和CB 为一边作等边三角形,用S 表示这 两个等边三角形的面积之和,下列判断正确的是()A. 当C 为AB 的三等分点时,S 最小B.当C 是AB 的中点时,S 最大C.当C 为AB 的三等分点时,S 最大D.当C 是AB 的中点时,S 最小9.若二次函数y=ax 2+bx +c 的图象经过A (x 1,y 1),B (x 1,y 2),C (4-m ,m ),D (m ,n )(y 1≠n ),则下列命题正确的是A.若a>0且|x 1-2|>|x 2-2|,则y 1<y 2B.若a<0且y 1<y 2,则|2-x 1|<|2-x 2|C.若|x 1-2|>|x 2-2|且y 1>y 2,则a<0D.若x 1+x 2=4(x 1≠x 2),则AB//CD10.如图,在正方形ABCD 中,AB=4,动点M 从点A 出发,以每秒1个单位长度的速度沿射线AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿折线AD →DC →CB 运动,当点N 运动到点B 时,点M ,N 同时停止运动. 设△AMN 的面积为y ,运动时间为x (s ),则下列图象能大致反映y 与x 之间函数关系的是二、填空题(本大题共4小题,每小题5分,满分20分)11.若关于x 的函数y=(1-a )x 2-x 是二次函数,则a 的取值范围是12.已知抛物线y=x ²-x -1与x 轴的一个交点为(t ;0),则代数式-t ²+t +2022的值为13.若点P (m ,m )在二次函数y=x ²+2x +2的图象上,且点P 到x 轴的距离小于2,则m 的取值范围是14.若抛物线y=-a 2+bx +c 交x 轴于C (1,0),D (-3,0)两点,交y 轴于点E ,点A (-3,5),B(0,5).(1)此抛物线的表达式为(2)连接AB ,若将此抛物线向上平移m (m>0)个单位时,与线段AB 有一个公共点,则m 的取值范围为三、(本大题共2小题,每小题8分,满分16分)15.已知二次函数y=x 2-4x -1,求其对称轴和顶点坐标.16.二次函数y=ax 2的图象经过点(2,-2),(1)求这个函数的表达式;(2)当x 为何值时,函数y 随x 的增大而增大?四、(本大题共2小题,每小题8分,满分16分)17.已知二次函数y=21x 2-3x+25 (1)请把二次函数的表达式化成y=a (x -h )2+k 的形式(直接写出结果)(2)请在如图所示的平面直角坐标系内画出函数的图象(不必列表).18.在平面直角坐标系xOy中,关于x的二次函数y=x²+px+q的图象经过点(-1,0),(2,0),(1)求这个二次函数的表达式(2)求当-2≤x≤1时,y的最大值与最小值的差;(3)直接写出使y<0的x的取值范围.五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=x2+2mx-2m-1(m为常数).(1)当m=-1时,此函数的图象与x轴有几个交点?(2)求证∶不论m为何值,该二次函数的图象与x轴总有公共点.20.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1∶2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m²,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?六、(本题满分12分)21.鲜埠,古乃采珠之地,素有“珍珠城”之美誉,已知一批珍珠每颗的进价为30元,售价定为50元/颗时,每天可销售60颗,为扩大市场占有率,商家决定采取适当的降价措施,经调查发现,售价每降低2元,每天销量可增加20颗(销售单价不低于进价).(1)写出商家每天的利润W(元)与降价x(元)之间的函数关系;(2)当降价多少元时,商家每天的利润最大,最大利润是多少?(3)若商家每天的利润至少要达到1440元,则定价应在什么范围内?七、(本题满分12分)22.如图,已知抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与z轴交于A,B两点,点A 在点B左侧.点B的坐标为(1,0),0C=3OB.(1)求抛物线的表达式(2)若点D是线段AC下方抛物线上的动点,求△ACD面积的最大值.八、(本题满分14分)23.在平面直角坐标系中,抛物线y=ax2-2ax-3a(a≠0)的顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定;抛物线与x轴围成的封闭区域称为“G区城"(不包含边界),横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax²-2ax-3a的顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2-2ax-3a经过(1,3).①求a的值②在①的条件下,直接写出“G区域”内整点的坐标;(3)如果抛物线y=ax2-2ax-3a在"G区域"内有4个整点,求a的取值范围,。
九年级数学中考复习——相似形强化训练(Word版,含答案)
沪科版九年级数学中考复习相似形强化训练(含答案)1.三角形三条边上的中线交于一点,这个点叫三角形的重心.如图,G是△ABC的重心.求证:AD=3DG.2.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1) 求证:△ABE∽△DFA;(2) 若AB=6,BC=4,求DF的长3.如图,在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F处.(1) 求证:△ABF∽△FCE;(2) 若AB=2√3,AD=4,求EC的长.4.如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB·PA,求证:AB⊥CD.5.如图,一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD=80 mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?6.如图,DB过⊙O的圆心,交⊙O于点A,B,DC是⊙O的切线,C是切点.已知∠D=30°,DC=√3.(1) 求证:△BOC∽△BCD;(2) 求△BCD的周长.7.如图,在△ABC 中,点 D ,E ,F 分别在 AB ,BC ,AC 边上, DE ∥AC ,EF ∥AB. (1) 求证:△BDE ∽△EFC. (2) 设AFFC =12.① 若BC =12,求线段BE 的长;② 若△EFC 的面积是20,求△ABC 的面积.8.如图①,在△ABC 和△A ′B ′C ′中,D ,D ′分别是AB ,A ′B ′上一点,ADAB =A ′D ′A ′B ′. (1) 当CD C ′D′=ACA ′C′=AB A ′B ′时,求证:△ABC ∽△A ′B ′C ′.证明的途径可以用如图②所示的框图表示,请填写其中的空格. (2) 当CDC ′D ′=ACA ′C ′=BCB ′C ′时,判断△ABC 与 △A ′B ′C ′是否相似,并说明理由.9.如图,在菱形ABCD中,点E,F分别在边BC,CD上,BE=DF,AF的延长线交BC的延长线于点H,AE的延长线交DC的延长线于点G.(1) 求证:△AFD∽△GAD;(2) 如果DF2=CF·CD,求证:BE=CH.10.如图,AB是⊙O的直径,E为⊙O上一点,D是AÊ上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1) 求证:BC是⊙O的切线;(2) 若BD平分∠ABE,求证:AD2=DF·DB.11.如图,⊙O与△ABC的边BC相切于点C,与AC,AB分别交于点D,E,DE∥OB,DC是⊙O的直径.连接OE,过点C作CG∥OE,交⊙O于点G,连接DG,EC,DG与EC交于点F.求证:(1) 直线AB与⊙O相切;(2) AE·DE=AC·EF.12.如图,在⊙O中,AB为直径,C为圆上一点,延长AB到点D,使CD=CA,且∠D =30°.(1) 求证:CD是⊙O的切线.(2) 分别过A,B两点作直线CD的垂线,垂足分别为E,F,过点C作AB的垂线,垂足为G.求证:CG2=AE·BF.13.如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H. (1) 求证:∠C=∠AGD;(2) 已知BC=6,CD=4,且CE=2AE,求EF的长.14.四边形ABCD是边长为2的正方形,E是AB的中点,连接DE,F是射线BC上一动点(不与点B重合),连接AF,交DE于点G.(1) 如图①,当F是BC边的中点时,求证:△ABF≌△DAE.(2) 如图②,当点F与点C重合时,求AG的长.(3) 在点F运动的过程中,当线段BF为何值时,AG=AE?请说明理由.15.如图,在△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,点D从点B出发,沿边BA →AC以2 cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t s,△CDE的面积为S cm2.(1) 当点D与点A重合时,求t的值;(2) 求S关于t的函数解析式,并直接写出自变量t的取值范围.16..如图,△ABC和△CDE都是等边三角形,B,C,E三点在同一条直线上,连接BD,AD,BD交AC于点F.(1) 若AD2=DF·DB,求证:AD=BF.(2) 若∠BAD=90°,BE=6.求:①tan ∠DBE的值;②DF的长.17.我们知道:如图①,点B 把线段AC 分成两部分,如果BC AB=ABAC, 那么称B 为线段AC 的黄金分割点.它们的比值为√5−12. (1) 在图①中,若AC =20 cm ,则AB 的长为______________cm.(2) 如图②,用边长为 20 cm 的正方形纸片进行如下操作:对折正方形ABCD 再展开得折痕EF ,连接CE ,将 CB 折叠到CE 上,点B 对应点H ,得折痕CG.试说明:G 是AB 的黄金分割点.(3) 如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E(AE >DE),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF ,CB 交于点P . 他发现当PB 与BC 满足某种关系时,E ,F 恰好分别是AD ,AB 的黄金分割点.请猜想小明的发现,并说明理由.答案1.三角形三条边上的中线交于一点,这个点叫三角形的重心.如图,G 是△ABC 的重心.求证:AD =3DG.证明:连接DE.∵ G 是△ABC 的重心,∴ E ,D 分别是AB 和BC 的中点.∴ DE 是△ABC 的中位线.∴ DE ∥AC ,且DE =12AC.∴ △DEG ∽△ACG.∴DE AC=DG AG.∴ 12=DG AG.∴DGAD=13.∴ AD =3DG2.如图,在矩形ABCD 中,E 是BC 的中点,DF ⊥AE ,垂足为F. (1) 求证:△ABE ∽△DFA ;(2) 若AB =6,BC =4,求DF 的长证明:(1) ∵ 四边形ABCD 是矩形,∴ AD ∥BC ,∠B =90°.∴ ∠AEB =∠DAF.∵ DF ⊥AE ,∴ ∠B =∠AFD =90°.∴ △ABE ∽△DFA(2) ∵ E 是BC 的中点,BC =4,∴ BE =12BC =2.∵ 在Rt △ABE 中,AB =6,∴ AE =√AB 2+BE 2=2√10.∵ 四边形ABCD 是矩形,∴ AD =BC =4.∵ △ABE ∽△DFA ,∴ ABDF =AEDA .∴ DF =AB·DA AE=65√103.如图,在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F 处.(1) 求证:△ABF ∽△FCE ;(2) 若AB =2√3,AD =4,求EC 的长.证明:(1) ∵ 四边形ABCD 是矩形,∴ ∠B =∠C =∠D =90°.∴ 在Rt △ECF 中,∠EFC +∠FEC =90°.∵ △AFE 由△ADE 翻折得到,∴ ∠D =∠AFE =90°.∴ ∠AFB +∠EFC =90°.∴ ∠AFB =∠FEC.∴ △ABF ∽△FCE(2) ∵ 四边形ABCD 是矩形,∴ BC =AD =4.∵ △AFE 由△ADE 翻折得到,∴ AD =AF =4.∴ 在Rt △ABF 中,BF =√AF 2−AB 2=2. ∴ CF =BC -BF =2.由(1),得△ABF ∽△FCE ,∴ AB FC=BFCE.∴2√32=2EC,解得EC =2√334.如图,⊙O 的直径AB 交弦(不是直径)CD 于点P ,且PC 2=PB · PA ,求证:AB ⊥CD.证明:如图,连接AC ,BD ,OC ,OD.∵ CB̂=CB ̂,AD ̂=AD ̂,∴ ∠A =∠PDB ,∠ACP =∠B.∴ △APC ∽△DPB.∴ PC ∶PB =PA ∶PD.∴ PC ·PD =PA ·PB.∵ PC 2=PB ·PA ,∴ PC =PD.又∵ OC =OD ,∴ OP ⊥CD ,即AB ⊥CD5.如图,一块材料的形状是锐角三角形ABC ,边BC =120 mm ,高AD =80 mm ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,这个正方形零件的边长是多少?解:设正方形零件的边长为x mm ,则KD =EF =x mm ,AK =(80-x)mm.∵ 四边形EGHF 为正方形,∴ EF ∥GH ,即EF ∥BC.∴ △AEF ∽△ABC.∴ AKAD =EFBC . ∴ 80−x 80=x120,解得x =48.答:正方形零件的边长为48 mm6.如图,DB 过⊙O 的圆心,交⊙O 于点A ,B ,DC 是⊙O 的切线,C 是切点.已知∠D =30°,DC =√3.(1) 求证:△BOC ∽△BCD ; (2) 求△BCD 的周长.证明:(1) ∵ DC 是⊙O 的切线,∴ ∠OCD =90°.∵∠D =30°,∴ ∠BOC =∠D +∠OCD =30°+90°=120°.∵ OB =OC ,∴ ∠B =∠OCB =30°.∴ ∠OCB =∠D.又∵ ∠B =∠B =30°,∴ △BOC ∽△BCD(2) ∵ ∠OCD =90°,∠D =30°,DC =√3,∴ OB =OC =DC ·tan 30°=1,OD =2OC =2.∵ ∠B =∠D =30°,∴ BC =DC =√3.∴ △BCD 的周长=DC +BC +DB =√3+√3+2+1=3+2√37.如图,在△ABC 中,点 D ,E ,F 分别在 AB ,BC ,AC 边上, DE ∥AC ,EF ∥AB. (1) 求证:△BDE ∽△EFC. (2) 设AFFC =12.① 若BC =12,求线段BE 的长;② 若△EFC 的面积是20,求△ABC 的面积.证明:(1) ∵ DE ∥AC ,∴ ∠DEB =∠FCE.∵ EF ∥AB ,∴ ∠DBE =∠FEC. ∴ △BDE ∽△EFC (2) ① ∵ EF ∥AB ,∴BE EC=AF FC=12.∵ EC =BC -BE =12-BE ,∴BE12−BE=12,解得BE =4② ∵ AFFC =12,∴ FCAC =23 .∵ EF ∥AB ,∴ △EFC ∽△BAC.∴ S△EFC S △ABC=(FC AC )2=(23)2=49.∴ S △ABC=94S △EFC =94×20=458.如图①,在△ABC 和△A ′B ′C ′中,D ,D ′分别是AB ,A ′B ′上一点,ADAB =A ′D ′A ′B ′. (1) 当CDC ′D ′=ACA ′C ′=ABA ′B ′时,求证:△ABC ∽△A ′B ′C ′.证明的途径可以用如图②所示的框图表示,请填写其中的空格. (2) 当CD C ′D ′=ACA ′C ′=BC B ′C ′时,判断△ABC 与△A ′B ′C ′是否相似,并说明理由.(1) CD C ′D ′=AC A ′C ′=ADA ′D ′ ∠A =∠A ′(2) △ABC 与△A ′B ′C ′相似 理由:如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于点E ,D ′E ′交A ′C ′于点E ′.∵ DE ∥BC ,∴ △ADE ∽△ABC.∴ AD AB =DE BC =AEAC .同理可证A ′D ′A ′B ′=D ′E ′B ′C ′=A ′E ′A ′C ′.∵ ADAB =A ′D ′A ′B ′,∴DE BC=D ′E ′B ′C′,即DE D ′E′=BCB ′C′.同理可证AEAC=A ′E ′A ′C′.∴AC−AE AC=A ′C ′−A ′E ′A ′C ′,即ECAC=E ′C ′A ′C ′,即ECE ′C ′=ACA ′C ′.∵ CDC ′D ′=ACA ′C ′=BCB ′C ′,∴ CDC ′D ′=ECE ′C ′=DED ′E ′ .∴ △DCE ∽△D ′C ′E ′.∴ ∠CED =∠C ′E ′D ′.∵ DE ∥BC ,∴ ∠CED +∠ACB =180°.同理可证∠C ′E ′D ′+∠A ′C ′B ′=180°,∴ ∠ACB =∠A ′C ′B ′.∵ ACA ′C ′=CBC ′B ′,∴ △ABC ∽△A ′B ′C ′.9.如图,在菱形ABCD 中,点E ,F 分别在边BC ,CD 上,BE =DF ,AF 的延长线交BC 的延长线于点H ,AE 的延长线交DC 的延长线于点G. (1) 求证:△AFD ∽△GAD ;(2) 如果DF 2=CF ·CD ,求证:BE =CH.证明:(1) ∵ 四边形ABCD 是菱形,∴ AB ∥CD ,AB =AD ,∠B =∠D.又∵ BE =DF ,∴ △ABE ≌△ADF(SAS).∴ ∠BAE =∠DAF.∵ AB ∥CD ,∴ ∠G =∠BAE.∴ ∠DAF =∠G.又∵ ∠D =∠D ,∴ △AFD ∽△GAD (2) ∵ DF 2=CF ·CD ,∴ CF DF=DFCD.∵ 在菱形ABCD 中,AD ∥BC ,即AD ∥CH ,∴ △HFC ∽△AFD.∴CF DF=CHDA.∴CH AD=DFCD.∵ AD =CD ,∴ CH =DF.∵ △ABE ≌△ADF ,∴ BE =DF.∴ BE =CH10.如图,AB 是⊙O 的直径,E 为⊙O 上一点,D 是AÊ上一点,连接AE 并延长至点C ,使∠CBE =∠BDE ,BD 与AE 交于点F. (1) 求证:BC 是⊙O 的切线;(2) 若BD 平分∠ABE ,求证:AD 2=DF ·DB.证明:(1) ∵ AB 是⊙O 的直径,∴ ∠AEB =90°.∴ ∠EAB +∠EBA =90°.∵ ∠CBE =∠BDE ,∠BDE =∠EAB ,∴ ∠EAB =∠CBE.∴ ∠EBA +∠CBE =90°, 即∠ABC =90°.∴ CB ⊥AB.∵ AB 是⊙O 的直径,∴ BC 是⊙O 的切线(2) ∵ BD 平分∠ABE ,∴ ∠DBA =∠DBE.∵ ∠DAF =∠DBE ,∴ ∠DAF =∠DBA.∵ ∠FDA =∠ADB ,∴ △ADF ∽△BDA.∴ ADBD =DFDA .∴ AD 2=DF ·DB11.如图,⊙O 与△ABC 的边BC 相切于点C ,与AC ,AB 分别交于点D ,E ,DE ∥OB ,DC 是⊙O 的直径.连接OE ,过点C 作CG ∥OE ,交⊙O 于点G ,连接DG ,EC ,DG 与EC 交于点F.求证:(1) 直线AB 与⊙O 相切; (2) AE ·DE =AC ·EF.证明:(1) ∵ CD 是⊙O 的直径,∴ ∠DEC =90°.∴ DE ⊥EC.∵ DE ∥OB ,∴ OB ⊥EC.∴ OB 垂直平分线段EC.∴ BE =BC ,OE =OC.∵ OB =OB ,∴ △OBE ≌△OBC(SSS).∴ ∠OEB =∠OCB.∵ BC 是⊙O 的切线,∴ OC ⊥BC.∴ ∠OCB =90°.∴ ∠OEB =90°.∴ OE ⊥AB.∵ OE 是⊙O 的半径,∴ AB 是⊙O 的切线(2) 连接EG.∵ CD 是⊙O 的直径,∴ ∠DGC =90°.∴ CG ⊥DG.∵ CG ∥OE ,∴ OE ⊥DG.∴DE ̂=EG ̂.∴ DE =EG.∵ AE ⊥OE ,DG ⊥OE ,∴ AE ∥DG.∴ ∠EAC =∠GDC.∵ ∠GDC =∠FEG ,∴ ∠EAC =∠FEG.∵ ∠ECA =∠FGE ,∴ △AEC ∽△EFG.∴AE EF=AC EG.∵ EG =DE ,∴AE EF=ACDE.∴ AE ·DE =AC ·EF12.如图,在⊙O 中,AB 为直径,C 为圆上一点,延长AB 到点D , 使CD =CA ,且∠D =30°.(1) 求证:CD 是⊙O 的切线.(2) 分别过A ,B 两点作直线CD 的垂线,垂足分别为E ,F ,过点C 作AB 的垂线,垂足为G.求证:CG 2=AE ·BF.证明:(1) 连接OC.∵ CA =CD ,∠D =30°,∴ ∠CAD =∠D =30°.∵ OA =OC ,∴ ∠CAD =∠ACO =30°.∴ ∠COD =∠CAD +∠ACO =30°+30°=60°.∴ 在△OCD 中,∠OCD =180°-∠D -∠COD =180°-30°-60°=90°.∴ OC ⊥CD.又∵ OC 是⊙O 的半径,∴ CD 是⊙O 的切线(2) ∵ ∠COB =60°,OC =OB ,∴ △OCB 为等边三角形.∴ ∠CBG =60°.∵ BF ⊥CD ,∠D =30°,∴ ∠FBD =60°.∴ ∠CBF =180°-∠CBG -∠FBD =60°.∴ ∠CBG =∠CBF.∵ BF ⊥CD ,BG ⊥CG ,∴ CF =CG.∵ AE ⊥CE ,∠D =30°,∴ ∠EAD =60°.∵ ∠CAD =30°,∴ ∠EAC =∠EAD -∠CAD =30°.∴ ∠EAC =∠CAD.∵ CE ⊥AE ,CG ⊥AB ,∴ CE =CG.∵ CE ⊥AE ,BF ⊥CD ,∴ ∠AEC =∠CFB =90°.∵ 在Rt △CFB 中,∠FCB =90°-∠CBF =30°,∴ ∠EAC =∠FCB. ∴ △AEC ∽△CFB.∴ AECF =CEBF,即CF ·CE =AE ·BF.∴ CG 2=AE ·BF13.如图,AB 是⊙O 的直径,点D 在⊙O 上,AD 的延长线与过点B 的切线交于点C ,E 为线段AD 上的点,过点E 的弦FG ⊥AB 于点H. (1) 求证:∠C =∠AGD ; (2) 已知BC =6,CD =4,且CE =2AE ,求EF 的长.证明:(1) 如图,连接BD. ∵ AB 是⊙O 的直径,∴ ∠ADB =90°.∴ ∠DAB +∠ABD =90°.∵ BC 是⊙O 的切线,∴ ∠ABC =90°.∴ ∠C +∠CAB =90°.∴ ∠C =∠ABD.∵ AD̂=AD ̂,∴ ∠AGD =∠ABD.∴ ∠C =∠AGD(2) 如图,连接AF ,BF.∵ ∠ABC =∠BDC =90°,∠C =∠C ,∴ △ABC ∽△BDC.∴ ACBC =BCDC ,即AC6=64.∴ AC =9.∴ AB =√AC 2−BC 2=3√5.∵ CE =2AE ,∴ AE =3,CE =6.∵ FH ⊥AB ,∴ ∠AHF =90°=∠ABC.∴ FH ∥BC.∴ △AHE ∽△ABC.∴AHAB=EH CB =AE AC ,即3√5=EH 6=39 .∴AH =√5,EH =2.∴ BH =2√5.∵ AB 是⊙O 的直径,∴ ∠AFB =90°.∴ ∠AFH +∠BFH =∠AFH +∠FAH =90°.∴ ∠FAH =∠BFH.∴ △AFH ∽△FBH.∴ FH BH=AH FH,即2√5=√5FH.∴ FH =√10.∴ EF =FH -EH =√10-214.四边形ABCD 是边长为2的正方形,E 是AB 的中点,连接DE ,F 是射线BC 上一动点(不与点B 重合),连接AF ,交DE 于点G.(1) 如图①,当F 是BC 边的中点时,求证:△ABF ≌△DAE. (2) 如图②,当点F 与点C 重合时,求AG 的长.(3) 在点F 运动的过程中,当线段BF 为何值时,AG =AE ?请说明理由.证明:(1) ∵ 四边形ABCD 是正方形,∴ ∠B =∠DAE =90°,AB =DA =BC.∵ E ,F 分别是AB ,BC 的中点,∴ AE =12AB ,BF =12BC.∴ BF =AE.∴ △ABF≌△DAE(SAS)(2) ∵ 四边形ABCD 是正方形,∴ AB ∥CD ,∠ADC =90°,AD =CD =2.∴ AC =√AD 2+CD 2=√22+22=2√2.∵ AB ∥CD ,∴ △AGE ∽△CGD.∴ AGCG =AECD ,即2√2−AG =12.∴ AG =2√23(3) 当BF =83时,AG =AE理由:如图,设AF 交CD 于点M.若使AG =AE =1,则∠1=∠2.∵ 四边形ABCD 是正方形,∴ AB ∥CD ,∠ADM =90°.∴ ∠1=∠4.又∵ ∠2=∠3,∴ ∠3=∠4.∴ DM =MG.在Rt △ADM 中,AM 2-DM 2=AD 2,即(DM +1)2-DM 2=22,解得DM =32.∴ CM =CD -DM =2-32=12.∵ AB ∥CD ,∴ △ABF ∽△MCF.∴ BF CF =AB MC ,即BF BF−2=212.∴ BF =83.因此当BF =83时,AG =AE.15.如图,在△ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm ,点D 从点B 出发,沿边BA →AC 以2 cm/s 的速度向终点C 运动,过点D 作DE ∥BC ,交边AC(或AB)于点E.设点D 的运动时间为t s ,△CDE 的面积为S cm 2.(1) 当点D 与点A 重合时,求t 的值;(2) 求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.解:(1) ∵ 在△ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm ,∴ AB =√AC 2+BC 2=√62+82=10(cm).当点D 与点A 重合时,BD =AB =10 cm ,此时2t =10,∴ t =5(2) 显然,当t =0或t =8时,△CDE 不存在,不合题意.① 当0<t <5时,点D 在AB 上,BD =2t cm.∵ DE ∥BC ,∴ △ADE ∽△ABC. ∴DE BC=AD AB=AE AC.∴DE 8=10−2t 10=6−CE 6.∴ DE =40−8t 5cm ,CE =65t cm.∵ DE ∥BC ,∠ACB =90°,∴ DE ⊥AC.∴ ∠CED =90°.∴ S =12DE ·CE =12×40−8t 5×65t =-2425t 2+245;② 当t =5时,点D 与点A 重合,△CDE 不存在,不合题意;③ 如图,当5<t <8时,点D 在AC 上,AD =(2t -10)cm ,CD =AB +AC -2t =(16-2t)cm.∵ DE ∥BC ,∴ △ADE ∽△ACB.∴DE CB=AD AC.∴DE 8=2t−106.∴ DE =8t−403cm.∵ DE ∥BC ,∠ACB =90°,∴ DE ⊥AC.∴ ∠CDE =90°.∴ S =12DE ·CD =12×8t−403×(16-2t)=-83t 2+1043t -3203. 综上所述,S关于t 的函数解析式为S ={−2425t 2+245t (0<t <5),−83t 2+1043t −3203(5<t <8)16..如图,△ABC 和△CDE 都是等边三角形,B ,C ,E 三点在同一条直线上,连接BD ,AD ,BD 交AC 于点F.(1) 若AD 2=DF ·DB ,求证:AD =BF. (2) 若∠BAD =90°,BE =6.求: ① tan ∠DBE 的值; ② DF 的长.证明:(1) ∵ AD 2=DF ·DB ,∴ ADDB =DFAD .∵ ∠ADF =∠BDA ,∴ △ADF ∽△BDA.∴ ∠FAD =∠ABD.∵ △ABC ,△CDE 都是等边三角形,∴ AB =AC ,∠BAC =∠ACB =∠CDE =60°.∴ ∠ACD =60°.∴ ∠ACD =∠BAF.∴ △ADC ≌△BFA(ASA).∴ AD =BF(2) ① 过点D 作DG ⊥BE 于点G.∵ ∠BAD =90°,∠BAC =60°,∴ ∠DAC =30°.∵ ∠ACD =60°,∴ ∠ADC =90°.∴ DC =12AC.∴ CE =12BC.∵ BE =6,∴ CE =2,BC =4.∴ CG =EG =1,BG =5.∴ DG =√3.∴ tan ∠DBE =DG BG=√35② 在Rt △BDG 中,∵ ∠BGD =90°,DG =√3,BG =5,∴ BD =√DG 2+BG 2=√(√3)2+52=2√7.∵ ∠ABC =∠DCE =60°,∴ CD ∥AB.∴ △CDF ∽△ABF.∴ DF BF=CD AB=CE BC=12.∴DFBD=13.∴ DF =2√7317.我们知道:如图①,点B 把线段AC 分成两部分,如果BCAB =ABAC , 那么称B 为线段AC 的黄金分割点.它们的比值为√5−12. (1) 在图①中,若AC =20 cm ,则AB 的长为______________cm.(2) 如图②,用边长为 20 cm 的正方形纸片进行如下操作:对折正方形ABCD 再展开得折痕EF ,连接CE ,将 CB 折叠到CE 上,点B 对应点H ,得折痕CG.试说明:G 是AB 的黄金分割点.(3) 如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E(AE >DE),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF ,CB 交于点P . 他发现当PB 与BC 满足某种关系时,E ,F 恰好分别是AD ,AB 的黄金分割点.请猜想小明的发现,并说明理由.解:(1)(10√5-10)(2) 如图,延长CG ,DA 交于点J.∵ CG 是折痕,得∠BCG =∠ECG. ∵ 在正方形ABCD 中,AD ∥BC ,∴ ∠J =∠BCG =∠ECG.∴ JE =CE.∵ EF 是折痕,∴ DE =AE =12AD =10 cm.∴ 在Rt △CDE 中,CE =√DE 2+CD 2=10√5 cm.∴JE =10√5 cm.∴ AJ =JE -AE =(10√5-10)cm.∵ AJ ∥BC ,∴ △AGJ ∽△BGC.∴AG BG=AJBC=10√5−1020=√5−12. ∴ G 是AB 的黄金分割点(3) 当BP =BC 时,满足题意理由:∵ 四边形ABCD 是正方形,∴ AB =BC =AD ,∠BAE =∠CBF =90°,AD ∥BC ,即AE ∥BP .∴ BP =AB =AD.∵ BE ⊥CF ,∴ ∠ABE +∠CFB =90°.又∵ 在Rt △FBC 中,∠BCF +∠CFB =90°,∴ ∠BCF =∠ABE.∴ △BCF ≌△ABE(ASA).∴ BF =AE.∴ AF =DE. ∵ AE ∥BP ,∴ △AEF ∽△BPF.∴ AE BP=AF BF,即AEAD=DE AE,BF AB=AFBF.∴ E ,F 分别是AD ,AB 的黄金分割点.。
相似三角形中的“8”字模型(3种题型)-2023年九年级数学核心知识点与常见题型(沪教版)(解析版)
重难点专项突破:相似三角形中的“8”字模型(3种题型)【知识梳理】8字_平行型条件:CD∥AB,结论:ΔPAB∼ΔPCD(上下相似);左右不一定相似,不一定全等,但面积相等;四边形ABCD为一般梯形.条件:CD∥AB,PD=PC.结论:ΔPAB∼ΔPCD∼ΔPDC(上下相似)ΔPAD≅ΔPBC左右全等;四边形ABCD为等腰梯形;8字_不平行型条件:∠CDP =∠BAP .结论:ΔAPB∼ΔDPC (上下相似);ΔAPD ∼ΔBPC (左右相似);【考点剖析】题型一:8字-平行型(1)直接利用“8”字型解题例1.如图,在平行四边形ABCD 中,点E 在边DC 上,若:1:2DE EC =,则:BF BE =.【答案】3:5.【解析】:1:2DE EC =,可知23CE CE CD AB ==, 由//CE AB ,可知32BF AB EF CE ==,故:3:5BF BE =. 【总结】初步认识相似三角形中的“8”字型.例2.如图,P 为ABCD 对角线BD 上任意一点.求证:PQ PI PR PS =.【解析】证明:四边形ABCD 为平行四边形,////AB CD AD BC ∴,,////RB DI SD BQ ∴,.根据三角形一边平行线的性质定理,则有PI PD PSPR PB PQ==,PQ PI PR PS∴⋅=⋅.【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.例3.如图,在平行四边形ABCD中,CD的延长线上有一点E,BE交AC于点F,交AD于点G.求证:2BF FG EF=.【解析】证明:四边形ABCD为平行四边形,////AB CD AD BC∴,,////AB CE AG BC∴,.根据三角形一边平行线的性质定理,则有:EF CF BFBF AF FG==,∴2BF FG EF=.【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.例4.如图,点C在线段AB上,AMC∆和CBN∆都是等边三角形.求证:(1)MD AMDC CN=;(2)MD EB ME DC=.【解析】证明:(1)AMC∆和CBN∆是等边三角形,60ACM NCB AMC∴∠=∠=∠=︒.∵点C在线段AB 上,18060MCN ACM NCB AMC∴∠=︒−∠−∠=︒=∠.//AM CN∴,∴MD AMDC CN=.(2)同(1)易证得//CM BN,则有ME MCEB NB=.AMC∆和CBN∆是等边三角形,MC AM NB CN∴==,,MD MEDC EB∴=,∴MD EB ME DC=.【总结】初步认识相似三角形中的“8”字型,一个图形中存在往往不只一个,可用来进行等比例转化.例5.如图,已知////AB CD EF.AB m=,CD n=,求EF的长.(用m、n的代数式表示).【答案】mnm n+.【解析】由////AB CD EF,则有EF CF EF BFAB BC CD BC==,,即1EF EFm n+=,得mnEFm n=+.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.例6.如图,E为平行四边形ABCD的对角线AC上一点,13AEEC=,BE的延长线交CD的延长线于点G,交AD于点F,求:BF FG的值.【答案】1:2.【解析】由//AF BC,可得13AF AEBC EC==,即13AFAD=,故12AFFD=,由//AB DG,可得:::1:2BF FG AF FD==.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.例7.如图,12//l l,:2:5AF FB=,:4:1BC CD=,求:AE EC的值.【答案】2:1.【解析】由12//l l,得:25AG AFBD FB==,又:4:1BC CD=,可得21AGCD=,故::2:1AE EC AG CD==.【总结】考查相似三角形中“8”字型的综合应用,得到比例关系.(2)添加辅助线构造“8”字模型解题例8.过ABC∆的顶点C任作一直线,与边AB及中线AD分别交于点F、E.求证:2AE AFED FB=.【解析】过点D作//DG AB交CF于点G.//DG AB∴AE AFED GD=,DG CDBF CB=;AD是中线,∴2BC CD=,∴12DGBF=;∴2AE AFED BF=.【总结】题考查三角形一边的平行线知识,要学会构造平行基本模型.AB CDEF例9.如图,AD 是ABC ∆的内角平分线.求证:AB BD AC DC=.【解析】过点C 作//CM AB 交AD 的延长线于点M .//CM AB∴AB BD CM DC =,BAD M ∠=∠AD 是角平分线∴BAD DAC ∠=∠;∴M DAC ∠=∠ ∴AC CM =∴AB BD AC DC =. 【总结】本题考查了三角形一边的平行线、角平分线及等腰三角形的相关知识.题型二:8字-不平行型例10.如图,∠BEC =∠CDB ,下列结论正确的是( )A .EF •BF =DF •CFB .BE •CD =BF •CFC .AE •AB =AD •AC D .AE •BE =AD •DC AB CD M【分析】结合图形利用8字模型相似三角形证明△EFB∽△DFC,然后利用等角的补角相等得出∠AEC=∠ADB,最后证明△ABD∽△ACE,利用相似三角形的对应边成比例逐一判断即可.【解答】解:∵∠BEC=∠CDB,∠EFB=∠DFC,∴△EFB∽△DFC,∴EFDF =FBFC,∴EF•FC=DF•FB,故A不符合题意:∵△EFB∽△DFC,∴BECD =BFFC,∴BE•CF=CD•BF,故B不符合题意;∵∠BEC=∠CDB,∠BEC+∠AEC=180°,∠BDC+∠ADB=180°,∴∠AEC=∠ADB,∴△ABD∽△ACE,∴ABAC =ADAE,∴AB•AE=AD•AC,故C符合题意;因为:AE,BE,AD,CD组不成三角形,也不存在比例关系,故D不符合题意;故选:C.【点评】本题考查了相似三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.【过关检测】一.选择题(共3小题)1.(2023•静安区校级一模)如图,在△ABC中,中线AD与中线BE相交于点G,联结DE.下列结论成立的是()A.B.C.D.【分析】由AD,BE是△ABC的中线,得到DE是△ABC的中位线,推出△DEG∽△ABG,△CDE∽△CBA,由相似三角形的性质即可解决问题.【解答】解:AD,BE是△ABC的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S△CDE=S△ABC,∴=,结论成立的是=,故选:C.【点评】本题考查相似三角形的判定和性质,关键是掌握相似三角形的性质.2.(2023•徐汇区一模)如图,点D在△ABC边AB上,∠ACD=∠B,点F是△ABC的角平分线AE与CD 的交点,且AF=2EF,则下列选项中不正确的是()A.B.C.D.【分析】过C作CG∥AB交AE延长线于G,由条件可以证明△ACF≌△GCE(ASA),得到AF=EG,CF=CE,由△ADF∽△GCF,再由平行线分线段成比例,即可解决问题.【解答】解:过C作CG∥AB交AE延长线于G,∴∠G=∠BAE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠G=∠CAE,∴CG=CA,∵∠ACD=∠B,∠ECG=∠B,∴∠ACF=∠ECG,∴△ACF≌△GCE(ASA),∴CF=CE,AF=EG,∵AF=2FE,∴EG=2FE,令EF=k,则AF=EG=2k,AE=GF=3k,∵△ADF∽△GCF,∴AD:CG=AF:FG=2k:(3k)=2:3,∴=,故A正确.∵AB∥CG,∴CE:BE=GE:AE=2k:(3k)=2:3,∴=,故B正确.∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴==,故C正确.∵=,AC和BD不一定相等,∴不一定等于.故选:D.【点评】本题考查角的平分线,相似三角形的判定和性质,关键是通过辅助线构造相似三角形.3.(2022秋•闵行区期末)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果==3,且量得CD=4cm,则零件的厚度x为()A.2cm B.1.5cm C.0.5cm D.1cm【分析】根据相似三角形的判定和性质,可以求得AB的长,再根据某零件的外径为10cm,即可求得x的值.【解答】解:∵==3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=2,∵CD=4cm.∴AB=8cm.∵某零件的外径为10cm,∴零件的厚度x为:(10﹣8)÷2=1(cm),故选:D.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的值.二.填空题(共8小题)4.(2022秋•奉贤区期中)如图,已知点D为△ABC中AC边的中点,AE∥BC,ED交AB于点G,交BC 的延长线于点F,若,BC=8,则AE的长为.【分析】由AE∥BC,可得△AEG∽△BFG,△AED∽△CFD推出==,又有BC的值,再由==1,得出AE=CF,代入即可求解AE的长.【解答】解:∵AE∥BC,∴△AEG∽△BFG,△AED∽△CFD,∴==,==1,即AE=CF,又BC=8,∴=AE=4.故答案为:4.【点评】本题主要考查了平行线分线段成比例的性质问题,应熟练掌握.5.(2022•浦东新区校级模拟)如图,已知点D、E分别在△ABC的边CA、BA的延长线上,DE∥BC.DE:BC=2:3,设=,试用向量表示向量,=.【分析】由DE∥BC可得△ADE∽△ACB,由DE:BC=2:3,可得DA=CD,即可表示,从而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ACB,∵DE:BC=2:3,∴DA:CA=DE:BC=2:3,∵CD=DA+CA,∴DA=CD,∵=,∴=,∴=﹣,故答案为:﹣.【点评】本题考查向量的运算,相似三角形的判定与性质,熟练掌握相似三角形的性质和向量的运算的解题的关键.6.(2022•静安区二模)如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,点E、F分别是边AB、CD的中点,AO:OC=1:4,设=,那么=.(用含向量的式子表示)【分析】由相似三角形性质可得=4=4,再根据梯形中位线定理即可求得答案.【解答】解:∵AD∥BC,∴△AOD∽△COB,∴==,∴=4=4,∵点E、F分别是边AB、CD∴=(+)=(+4)=,故答案为:.【点评】本题考查了相似三角形的判定和性质,梯形中位线定理,平面向量等,熟练掌握相似三角形的判定和性质是解题关键.7.(2023•静安区校级一模)在矩形ABCD内作正方形AEFD(如图所示),矩形的对角线AC交正方形的边EF于点P.如果点F恰好是边CD的黄金分割点(DF>FC),且PE=2,那么PF=.【分析】先根据黄金分割的定义可得=,再利用正方形的性质可得:DF∥AE,DF=AE,从而可得=,然后证明8字模型相似三角形△CFP∽△AEP,从而利用相似三角形的性质进行计算即可解答.【解答】解:∵点F恰好是边CD的黄金分割点(DF>FC),∴==,∵四边形AEFD是正方形,∴DF∥AE,DF=AE,∴=,∵DC∥AB,∴∠FCP=∠PAE,∠CFP=∠AEP,∴△CFP∽△AEP,∴==,∵PE=2,∴PF=﹣1,故答案为:﹣1.8字模型相似三角形是解题的关键.8.(2022春•浦东新区校级期中)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,如果△BCD 的面积是△ABD面积的2倍,那么△BOC与△BDC的面积之比是.【分析】过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,根据已知易得DM=BN,再根据S△BCD=2S△ABD,从而可得BC=2AD,然后再证明8字模型相似三角形△AOD∽△COB,利用相似三角形的性质可得==,从而可得=,最后根据△BOC与△BDC的高相等,即可解答.【解答】解:过点D作DM⊥BC,垂足为M,过点B作BN⊥AD,交DA的延长线于点N,∵AD∥BC,∴BN=DM,∵S△BCD=2S△ABD,∴BC•DM=2×AD•BN,∴BC=2AD,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴△AOD∽△COB,∴==,∴=,∵△BOC与△BDC的高相等,∴==,故答案为:2:3.【点评】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.(2022秋•虹口区校级月考)如图,梯形ABCD中,AD∥BC,,点E为边BC的中点,点F在边CD上且3CF=CD,EF交对角线AC于点G,则AG:GC=.【分析】如图,连接DE,交AC于M,过M作MH∥EF交CD于H,首先利用AD∥BC,,点E为边BC的中点,可以得到AD:EC=AM:CM=DM:ME=3:2,然后利用MH∥EF,DH:HF=DM:ME=3:2=6:4,最后利用又3CF=CD即可求解.【解答】解:如图,连接DE,交AC于M,过M作MH∥EF交CD于H,∵AD∥BC,,点E为边BC的中点,∴△ADM∽△CME,∴AD:EC=AM:CM=DM:ME=3:2,∵MH∥EF,∴DH:HF=DM:ME=3:2=6:4,又3CF=CD,∴DF=2CF,∴CF:HF=5:4,∴CG:MG=5:4,∴CG=CM,MG=CM,而AM:CM=3:2,∴AM=CM,∴AG=AM+MG=CM,∴AG:GC=CM:CM=7:2.故答案为:7:2.【点评】此题主要考查了相似三角形的性质于判定,同时也利用了平行线的性质,解题的关键是会进行比例线段的转换,有一定的难度.10.(2022秋•黄浦区期末)如图是一个零件的剖面图,已知零件的外径为10cm,为求出它的厚度x,现用一个交叉卡钳(AC和BD的长相等)去测量零件的内孔直径AB.如果==,且量得CD的长是3cm,那么零件的厚度x是cm.【分析】根据相似三角形的判定和性质,可以求得AB的长,再根据某零件的外径为10cm,即可求得x的值.【解答】解:∵==,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm.∴AB=9cm.∵某零件的外径为10cm,∴零件的厚度x为:(10﹣9)÷2=0.5(cm),故答案为:0.5.AB的值.11.(2022春•闵行区校级月考)如图,梯形ABCD中,∠D=90°,AB∥CD,将线段CB绕着点B按顺时针方向旋转,使点C落在CD延长线上的点E处.联结AE、BE,设BE与边AD交于点F,如果AB=4,且=,那么梯形ABCD的中位线等于.【分析】过点B作BG⊥EC,利用同高的两个三角形的面积的比先求出EF:BF,再利用相似三角形的性质求出ED、EG,最后利用梯形中位线与上下底的关系得结论.【解答】解过点B作BG⊥EC,垂足为G∵=,∴=.∵AB∥CD,∴△EDF∽△BAF.∴==,∴ED=2,=.∵AD∥BG,∴=.∴EG=6.∵CB绕着点B按顺时针方向旋转,点C落在CD延长线上的点E处,∴BE=BC.∵BG⊥EC,∴EG=GC=6.∴DC=DG+CG=4+6=10.∴梯形ABCD的中位线=(AB+CD)=(4+10)=7.故答案为:7.【点评】本题主要考查了相似三角形的性质和判定,掌握等腰三角形的三线合一、等高的两个三角形的面积比等于底边的比、梯形的中位线等于上下底的和的一半是解决本题的关键.三.解答题(共12小题)12.(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么=,=.(用向量、表示)【分析】(1)根据题意可证明四边形AECD为平行四边形,得到AE=CD,则EF:AE=1:3,EF:AF=1:2,易证明△BEF∽△DAF,由相似三角形的性质即可求解;(2)由AF=2EF得,,由三角形法则求出和,再求出,最后利用三角形法则即可求出.【解答】解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故答案为:,.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质、平面向量,熟练三角形法则是解题关键.13.(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【分析】(1)利用平行线的性质证明∠ADB=∠DBC,然后利用已知条件可以证明△ADE∽△DBC,由此即可解决问题;(2)利用(1)的结论和已知条件可以证明△DEF∽△DBC,接着利用相似三角形的在即可求解.【解答】证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.【点评】此题主要考查了相似三角形的性质与判定,同时也利用了平行线的性质,比例的基本性质,有一定的综合性.14.(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF =2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,易证△AEF∽△DCF,则=,由DF =2AF即可求解;(2)先算出,再根据即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∵DF=2AF,∴,∵,,∴,,∴.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质、平面向量,熟练掌握平面向量的运算法则是解题关键.15.(2022秋•金山区校级期末)已知:如图,在△ABC中,点D在边BC上,AE∥BC,BE与AD、AC分别相交于点F、G,AF2=FG•FE.(1)求证:△CAD∽△CBG;(2)联结DG,求证:DG•AE=AB•AG.【分析】(1)通过证明△FAG∽△可得∠FAG=∠E,由平行线的性质可得∠E=∠EBC=∠FAG,且∠ACD =∠BCG,可证△CAD∽△CBG;(2)由相似三角形的性质可得=,且∠DCG=∠ACB,可证△CDG∽△CAB,可得=,由平行线分线段成比例可得=,可得结论.【解答】证明:(1)∵AF2=FG⋅FE.∴=,∵∠AFG=∠EFA,∴△FAG∽△FEA,∴∠FAG=∠E,∵AE∥BC,∴∠E=∠EBC,∵∠ACD=∠BCG,∴△CAD∽△CBG;(2)∵△CAD∽△CBG,∴=,∵∠DCG=∠ACB,∴△CDG∽△CAB,∴=,∵AE∥BC,∴=,∴=,∴=,∴DG•AE=AB•AG.【点评】本题考查了相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.16.(2022•松江区二模)已知:如图,两个△DAB和△EBC中,DA=DB,EB=EC,∠ADB=∠BEC,且点A、B、C在一条直线上,联结AE、ED,AE与BD交于点F.(1)求证:;(2)如果BE2=BF•BD,求证:DF=BE.【分析】(1)根据已知易证△DAB∽△EBC,然后利用相似三角形的性质可得∠DAB=∠EBC,=,从而可得AD∥EB,进而证明8字模型相似三角形△ADF∽△EBF,最后利用相似三角形的性质可得=,即可解答;(2)根据已知易证△BFE∽△BED,从而利用相似三角形的性质可得∠BEF=∠BDE,进而可得∠DAF=∠BDE,然后利用(1)的结论可证△ADF≌△DBE,再利用全等三角形的性质即可解答.【解答】证明:(1)∵DA=DB,EB=EC,∴=,∵∠ADB=∠BEC,∴△DAB∽△EBC,∴∠DAB=∠EBC,=,∴AD∥EB,∴∠DAF=∠AEB,∠ADF=∠DBE,∴△ADF∽△EBF,∴=,∴;(2)∵BE2=BF•BD,∴=,∵∠DBE=∠EBF,∴△BFE∽△BED,∴∠BEF=∠BDE,∵∠DAF=∠AEB,∴∠DAF=∠BDE,∵∠ADF=∠DBE,AD=DB,∴△ADF≌△DBE(ASA),∴DF=BE.【点评】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握全等三角形的判定与性17.(2023•宝山区二模)如图,四边形ABCD中,AD∥BC,AC、BD交于点O,OB=OC.(1)求证:AB=CD;(2)E是边BC上一点,联结DE交AC于点F,如果AO2=OF•OC,求证:四边形ABED是平行四边形.【分析】(1)由等腰三角形的性质和判定及平行线的性质,说明△AOB和△DOC全等,利用全等三角形的性质得结论;(2)先说明△AOB∽△FOD,再说明AB∥DE,结合已知由平行四边形的判定可得结论.【解答】证明:(1)∵OB=OC,∴∠DBC=∠ACB.∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠DBC.∴∠DAC=∠ADB.∴OA=DO.在△AOB和△DOC中,,∴△AOB≌△DOC(SAS).∴AB=CD.(2)∵AO2=OF•OC,OA=OD,OC=OB,∴AO•OD=OF•OB,即.∵∠AOB=∠DOC,∴△AOB∽△FOD.∴∠BAO=∠DFO.∴AB∥DE.∴四边形ABED是平行四边形.【点评】本题主要考查了三角形全等和相似,掌握全等三角形的性质和判定、相似三角形的判定和性质、平行线的性质、等腰三角形的判定和性质及平行四边形的判定是解决本题的关键.18.(2022秋•徐汇区期中)如图,在四边形ABCD中,对角线AC与BD交于点E,DB平分∠ADC,且AB2=BE•BD.(1)求证:△ABE∽△DCE;(2)AE•CD=BC•ED.【分析】(1)根据相似三角形的判定可得△ABE∽△DBA;所以∠BAC=∠BDC,由此可得出△ABE∽△DCE;(2)由(1)中的相似可得出AE:DE=BE:CE,再由∠BEC=∠AED可得△ADE∽△BCE,所以∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,可得△BCD∽△ADE,进而可得结论.【解答】证明:(1)∵AB2=BE•BD,∴AB:BE=BD:AB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴∠BAC=∠BDC,∵BD平分∠ADC,∴∠ADB=∠BDC=∠BAC,∴△ABE∽△DCE;(2)由(1)中相似可得,AE:DE=BE:CE,∵∠BEC=∠AED,∴△ADE∽△BCE,∴∠EAD=∠EBC,∠ADE=∠BDC=∠BCE,∴△BCD∽△AED,AE•CD=BC•ED.【点评】本题主要考查相似三角形的性质与安定,涉及A字型相似,8字型相似等相关内容,熟练掌握相关判定是解题关键.19.(2022春•杨浦区校级期中)如图1,在△ABC中,点E在AC的延长线上,且∠E=∠ABC.(1)求证:AB2=AC•AE;(2)如图2,D在BC上且BD=3CD,延长AD交BE于F,若=,求的值.【分析】(1)利用两角相等的两个三角形相似,证明△ABC∽△AEB,然后利用相似三角形的性质即可解答;(2)过点E作EH∥CB,交AF的延长线于点H,利用(1)的结论可得===,先AC=2a,AB=3a,从而求出AE的长,进而求出的值,再根据已知设CD=m,BD=3m,从而求出BC,BE的长,然后证明A字模型相似三角形△ACD∽△AEH,利用相似三角形的性质可得EH=m,再证明8字模型相似三角形△BDF∽△EHF,利用相似三角形的性质可得=,从而求出EF的长,进行计算即可解答.【解答】(1)证明:∵∠E=∠ABC,∠A=∠A,∴△ABC∽△AEB,∴=,∴AB2=AC•AE;(2)解:过点E作EH∥CB,交AF的延长线于点H,∵△ABC∽△AEB,∴设AC=2a,AB=3a,∴=,∴AE=a,∴==,∵BD=3CD,∴设CD=m,则BD=3m,∴BC=CD+BD=4m,∴=,∴EB=6m,∵EH∥CD,∴∠ACD=∠AEH,∠ADC=∠AHE,∴△ACD∽△AEH,∴==,∴EH=m,∵EH∥BD,∴∠BDF=∠DHE,∠DBF=∠FEH,∴△BDF∽△EHF,∴===,∴EF=BE=m,∴==,∴的值为.【点评】本题考查了相似三角形的判定与性质,平行线分线段成比例,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(2023•崇明区二模)已知:如图,在平行四边形ABCD中,对角线AC、BD交于E,M是边DC延长线上的一点,联结AM,与边BC交于F,与对角线BD交于点G.(1)求证:AG2=GF•GM;(2)联结CG,如果∠BAG=∠BCG,求证:平行四边形ABCD是菱形.【分析】(1)由平行线的性质和相似三角形的平行判定法,可得到△ABG∽△MDG、△ADG∽△FBG,再利用相似三角形的性质得结论;(2)利用“两角对应相等”先说明△GCF∽△GMC,再利用等腰三角形的三线合一说明BD⊥AC,最后利用菱形的判定方法得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DM,AD∥BC.∴△ABG∽△MDG,△ADG∽△FBG.∴=,=.∴=.∴AG2=GF•GM.(2)∵AB∥DM,∴∠BAG=∠M.∵∠BAG=∠BCG,∴∠M=∠BCG.∵∠MGC=∠FGC,∴△GCF∽△GMC.∴=,即CG2=GF•GM.∴CG2=AG2.∴CG=AG.∵四边形ABCD是平行四边形,∴AE=CE.∴GE⊥AC,即BD⊥AC.∴平行四边形ABCD是菱形.【点评】本题主要考查了相似三角形的性质和判定,掌握相似三角形的判定和性质、平行四边形的性质、菱形的判定方法、等腰三角形的判定和性质等知识点是解决本题的关键.21.(2021秋•虹口区期末)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD,对角线AC与BD 交于点E.点F是线段EC上一点,且∠BDF=∠BAC.(1)求证:EB2=EF•EC;(2)如果BC=6,sin∠BAC=,求FC的长.【分析】(1)先由AD∥BC得到△EAD∽△ECB,从而得到,然后由∠BDF=∠BAC、∠AEB=∠DEF得证△EAB∽△EDF,进而得到,最后得到结果;(2)先利用条件得到AC、AB的长,然后利用BC=2AD得到AD、BD的长,再结合相似三角形的性质得到EB、EC的长,进而得到EF的长和FC的长.∴△EAD∽△ECB,∴,即,∵∠BDF=∠BAC,∠AEB=∠DEF,∴△EAB∽△EDF,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC﹣EF=6﹣4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.22.(2021秋•嘉定区期末)如图,在梯形ABCD中,AD∥BC,点E在线段AD上,CE与BD相交于点H,CE与BA的延长线相交于点G,已知DE:AE=2:3,BC=4DE,CE=10.求EH、GE的长.【分析】根据题目的已知并结合图形分析8字型模型相似三角形和A字型模型相似三角形,然后进行计算即可解答.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,∠DEC=∠ECB,∴△DEH∽△BCH,∴,∵BC=4DE,∴,∵CE=10,∴HC=10﹣EH,∴,∴EH=2,∵BC=4DE,DE:AE=2:3,∴,∵AD∥BC,∴∠GAE=∠GBC,∠GEA=∠GCB∴△GAE∽△GBC,∴,∵CE=10,∴GC=10+GE,∴,∴GE=6.【点评】本题考查了相似三角形的判定与性质,梯形,熟练掌握8字型模型相似三角形和A字型模型相似三角形是解题的关键.23.(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∠ACE=90°﹣2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°﹣2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°﹣(90°﹣2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD﹣∠BCD=45°﹣22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5﹣5,∴线段BD的长为5﹣5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①﹣②×2,得:(AM﹣CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=﹣7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8﹣y,在Rt△ABF中,AF2+BF2=AB2,∴(8﹣y)2+y2=50,解得:y=1或y=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.。
沪教版 九年级数学 相似三角形的判定
相似三角形的判定课前测试【题目】课前测试如图,已知CD 是△ABC 的高,D E⊥CA,DF⊥CB,求证:△CEF ∽△CBA.【答案】见解析 【解析】证明:∵CD ⊥AB,即∠CDA=∠CDB=90°,则∠A+∠ACD=90°, 又∵DE⊥CA,∴∠ACD+∠CDE=90°, ∴∠A=∠CDE,又∠ACD=∠DCE,∴△CAD ∽△CDE ,则CECDCD CA =,即CD 2=CA ·CE 同理可得△CBD ∽△CDF ,则CFCDCD CB =,即CD 2=CD 2=CB ·CF ∴CA ·CE=CB ·CF ,又∠ECF=∠BCA ,∴△CEF ∽△CBA总结:本题考察学生是否掌握“母子三角形”相似模型,待证的两个三角形中有一组公共角,因而再找出一组对应角相等或者是其夹角的两边成比例,经过分析发现,从角度入手基本不可能找出对应角相等,因而需要从夹角的两边证明. 该题属于典型的“母子三角形”模型,给出众多垂直关系,应该想到利用角度互余找等量. 只要“心中有模型”,对于这类题型的证明还是比较容易的. 【难度】3CAEDFB【题目】课前测试已知:如图,在ABC △中,AB AC =,M 是边BC 的中点,DME B ∠=∠,MD 与射线BA相交于点D ,ME 与边AC 相交于点E . (1)求证:BD CMDM EM=; (2)如果DE ME =,求证://ME AB ;(3)在第(2)小题的条件下,如果DM AC ⊥,求ABC ∠的度数. 【答案】(1)证明:∵∠DMC=∠B+∠BDM ,∠DMC=∠DME+∠EMC ,∠DME=∠B , ∴∠BDM=∠EMC ,∵AB=AC ,∴∠B=∠C ,∴△BDM ∽△CME ,EM DM CM BD =,即EMCMDM BD = (2)证明:∵△BDM ∽△CME,∴EC EMBM DM =, ∵DE=ME ,BM=CM ,∴ECDECM DM =,∠DME=∠EDM , ∵∠DME=∠B=∠C ,∴∠EDM=∠C ,∴△DME ∽△CME , ∴∠EMC=∠EMD ,∴∠EMD=∠B ,∴EM//AB ; (3)30° 【解析】(1)证明:∵∠DMC=∠B+∠BDM ,∠DMC=∠DME+∠EMC ,∠DME=∠B , ∴∠BDM=∠EMC ,∵AB=AC ,∴∠B=∠C ,∴△BDM ∽△CME ,EMDMCM BD =,即EMCMDM BD = (2)证明:∵△BDM ∽△CME,∴ECEMBM DM =, (第24题图)EMCBAD适用范围:各版本,初三年级知识点概述:相似三角形作为中学阶段最重要的知识点之一,既是中考重点,也是难点. 重点是灵活运用相似三角形的各个判定定理,难点是相似三角形与分类讨论及函数思想的互相结合. 本讲义主要讲解相似三角形相关的判定定理以及几个常见的基本相似模型,学生在学习过程中务必理解熟记每个相似模型,能够在已知题干中发现并证明三角形相似.适用对象:中等成绩及偏上注意事项:相似三角形判定定理的学习应该牢牢掌握不同模型之间的区别,此外,在平时的学习过程中还应该多积累不同题型的解题思路. 对于这一部分的学习,基础中等的学生应该掌握几种常见的相似模型,能够结合图形和已知条件进行分析证明,基础较好的学生应该培养分类讨论思想以及数形结合的思想,逐渐熟悉综合性大题的解题思路.重点选讲:①相似三角形之一线三等角模型;②相似三角形之母子三角形模型;③相似三角形之公共边角模型;④相似三角形的综合应用知识梳理1:相似三角形的定义如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形.说明:(1)相似三角形的定义虽然可以用来判断三角形相似,但是要求角与边的条件同时都满足的情况下才能使用;(2)相似三角形的书写具有严格的顺序性,不同的顺序代表不同的含义;(3)将两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数);(4)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似.知识梳理2:相似三角形的判定定理相似三角形的预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.相似三角形判定定理1:如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似. 可简述为:两角对应相等,两个三角形相似.相似三角形的判定定理2:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似.相似三角形判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似. 可简述为:三边对应成比例,两个三角形相似.直角三角形相似的判定定理:如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似. 可简述为:斜边和直角边对应成比例,两个直角三角形相似.强调:(1)有平行线时,用预备定理;(2)已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;(3)已有两边对应成比例时,可考虑利用判定定理2或判定定理3,但是在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.知识梳理3:全等三角形与相似三角形判定定理比较知识梳理4:相似三角形基本相似模型的认识三角形全等三角形相似两角夹一边对应相等(ASA) 两角及一对边对应相等(AAS) 两边及夹角对应相等(SAS)三边对应相等(SSS) 直角边与斜边对应相等(HL) 两角对应相等两边对应成比例,且夹角相等三边对应成比例 直角边与斜边对应成比例基本相似模型有:公共边角型(A 字型、斜A 型、8字型、斜8型)、母子型、一线三等角等例题精讲【题目】题型1:相似三角形之一线三等角模型如图,已知在梯形ABCD 中,AD // BC ,90A ∠=︒,AB = AD .点E 在边AB 上,且DE CD ⊥,DF 平分EDC ∠,交BC 于点F ,联结CE 、EF.(1)求证:DE = DC ;(2)如果BE 2=BF ·BC ,求证:BEF CEF ∠=∠. 【答案】见解析【解析】(1)作CH AD ⊥的延长线于点H , ∵AD // BC ,90A ∠=︒,AB = AD ,∴CH AD =,∵DE CD ⊥,∴ADE HCD ∠=∠, ∴ADE ∆≌HCD ∆,∴DE DC =; (2)∵BE 2=BF ·BC ,B B ∠=∠, ∴BEF ∆∽BCE ∆,∴BEF BCE ∠=∠, ∵DF 平分EDC ∠,DE DC =, ∴DEF ∆≌DCF ∆,∴DEF DCF ∠=∠, ∵DEC DCE ∠=∠,∴CEF BCE ∠=∠,∴BEF CEF ∠=∠.总结:本题考查了 “一线三直角”模型及相似和全等三角形的综合应用,通过已知条件构造一线三等角,可以实现快速解题的效果. 【难度】4A BCDEFA BCDEFH【题目】题型1变式练习1相似三角形之一线三等角模型等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.(1)如图a,当三角板的两边分别交AB、AC于点E、F时. 求证:△BPE∽△CFP;(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC 于点E、F.①探究1:△BPE与△CFP还相似吗?(只需写出结论)②探究2:连接EF,△BPE与△PFE是否相似?请说明理由;;【答案】见解析【解析】(1)证明:∵在△ABC中,∠BAC=120°,AB=AC,∴∠B=∠C=30°,∵∠B+∠BPE+∠BEP=180°,∴∠BPE+∠BEP=150°,又∠EPF=30°,且∠BPE+∠EPF+∠CPF=180°,∴∠BPE+∠CPF=150°,∴∠BEP=∠CPF,∴△BPE∽△CFP(两角对应相等的两个三角形相似).(2)解:①△BPE∽△CFP;②△BPE与△PFE相似.下面证明结论:同(1),可证△BPE∽△CFP,得CP/BE=PF/PE,又CP=BP,∴BP/PF=BE/PE,∵∠EBP=∠EPF ,∴△BPE ∽△PFE总结:“一线三等角”模型经常出现在等腰三角形、等边三角形、正方形、等腰梯形等几何图形中,因而当题干中出现以上图形时应当注意,有时候当题干给出了一条直线/线段上有两个角相等时,可以考虑构造第三个等角,利用“一线三等角”相似模型进行求解,如上题型1所示. 【难度】4【题目】题型1变式练习2相似三角形之一线三等角模型如图(1),在△ABC 中, AB=AC=5,BC=8,点P 、Q 分别在射线CB ,AC 上(点P 不与点C ,B 重合),且保持∠APQ=∠ABC.(1)若点P 在线段CB 上,且BP=6,求线段CQ 的长;(2)若BP=x ,CQ=y ,求y 与x 之间的函数关系式,并写出函数的定义域;(3)正方形ABCD 的长为5,如图(2),点P ,Q 分别在直线CB ,DC 上(点P 不与点C ,B 重合),且保持∠APQ=90°. 当CQ=1时,求出线段BP 的长. 【答案】 (1)125;(2)P 在BC 线段上:y=1(8)5x x -(0<x<8);P 在BC 的延长线上:y=1(8)5x x +(x ≥8); (3)当P 在线段BC 上,BP=552+或BP=552-;当P 在BC 的延长线上,PB=5352+ (2)(1)ABCDABPQ CQP【解析】(1)∵∠APQ+∠CPQ=∠B+∠BAP,∠APQ=∠ABC,∴∠BAP=∠CQP,又∵AB=AC,∴∠B=∠C,∴△CPQ∽△BAP.∴CQ CP BP AB=,∵AB=AC=5,BC=8,BP=6,CP=8-6=2,∴265CQ=∴CQ=125(2)若点P在线段CB上,由(1)知CQ CP BP AB=,∵BP=x,BC=8,∴CP=BC-BP=8-x,又∵CQ=y,AB=5,∴85y xx-=即y=1(8)5x x-,故所求的函数关系式为y=1(8)5x x-(0<x<8).若点P在线段CB的延长线上,如图.∵∠APQ=∠APB+∠CPQ,∠ABC=∠APB+∠PAB,∠APQ=∠ABC,∴∠CPQ=∠PAB,又∵∠ABP=180°-∠ABC,∠PCQ=180°-∠ACB,∠ABC=∠ACB,∴∠ABP=∠PCQ.∴△QCP∽△PBA.∴CQ CP BP AB=,∵BP=x,CP=BC+BP=8+x,AB=5,CQ=y,∴85y xx+=∴函数解析式为y=1(8)5x x+(x≥8).(3)①当点P在线段BC上,∵∠APQ=90°,∴∠APB+∠QPC=90°,∵∠PAB+∠APB=90°,∴∠PAB=∠QPC,∵∠B=∠C=90°,∴△ABP∽△PCQ,∴AB:PC=BP:CQ,即5:(5-BP)=BP:1,ABCDEF解得:BP =552+或BP=552- ②当点P 在线段BC 的延长线上,则点Q 在线段DC 的延长线上, 同理可得:△ABP ∽△PCQ ,∴AB :PC=BP :CQ ,∴5:(BP-5)=BP :1, 解得:BP =5352+或BP=5352-(舍)总结:本题考查一线三等角模型的相似问题,注意根据点的位置关系进行相应的讨论,属于模拟题以及中考真题中的常考压轴题型,这类题型的综合性一般较强,学生在平时的学习过程中应该养成良好习惯,培养分类讨论的思想. 【难度】5【题目】题型2:相似三角形之母子三角形模型在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,E 是AC 边上的一个动点(不与A 、C 重合),CF BE ⊥于点F ,连接DF.(1)求证:CB 2=BF ·BE ; (2)求证: BF ·AE=FD ·BA【答案】见解析 【解析】ABCDE 证明:(1)90ACB ∠=,CF BE ⊥, ∴90ACB CFB ∠=∠=,又CBF CBE ∠=∠,∴CBF EBC ∆∆∽,∴CB BEBF CB=,∴CB 2=BF ·BE (2)90ACB ∠=,CD BA ⊥, ∴90ACB CDB ∠=∠=,又CBD CBA ∠=∠, ∴CBD ABC ∆∆∽, ∴CB ABBD CB=,即CB 2=BD ·BA , ∴BF ·BE=BD ·BA , ∴FB BDBA BE= ,又ABE FBD ∠=∠, ∴FBD ABE ∆∆∽,∴FB FDBA AE=,∴ BF ·AE=FD ·BA 总结:本题考查了三角形相似的判定定理与性质定理,当题干中出现较多垂直、直角时,可以考虑利用母子三角形模型证明三角形相似进行求解. 【难度】4【题目】题型2变式练习1:相似三角形之母子三角形模型如图,90ACB CED ∠=∠=︒,CD AB ⊥于点D ,3AC =,4BC =,求ED 的长. 【答案】3625【解析】3AC =,4BC =,=90ACB ∠︒,225AB AC BC ∴=+=,根据面积法,可知CD AB AC BC ⋅=⋅,解得125CD =, 又CD AB ⊥,=90ACB ∠︒,可得ADC ∆∽ACB ∆, AD AC AC AB ∴=, 代入可得:95AD =,90ACB CED ∠=∠=︒,//DE BC ∴,925DE AD BC AB ∴==, 代入得:3625ED =总结:考查对于“母子三角形”的认识,初步建立可将相似三角形中对应边之比转化为同一三角形中边长比的思想,实际上这个图形中包含5个直角三角形,全部都是两两相似. 【难度】3【题目】题型2变式练习2:相似三角形之母子三角形模型在矩形ABCD 中,点E 是AD 的中点,BE 垂直AC 交AC 于点F ,求证: (1)=;(2)∠EFD=∠DBC【答案】见解析 【解析】证明:(1)∵AC ⊥BE ,∴∠AFB=∠AFE=90°,∵四边形ABCD 是矩形,∴∠BAE=90°,∴∠AFE=∠BAE , 又∵∠AEF=∠BEA ,∴△AEF ∽△BEA , ∴=(2)∵点E 是AD 的中点,∴AE=ED ,∴=,又∵∠FED=∠DEB , ∴△DEF ∽△EBD , ∴∠EFD=∠EDB , ∵AD//BC , ∴∠DBC=∠EDB , ∴∠EFD=∠DBC .总结:本题(1)利用母子三角形模型比较容易证明,第(2)问通常可以使用(1)中的结论进行命题的证明,属于比较常规的证明题. 【难度】3【题目】题型3:相似三角形之公共边角模型四边形ABCD 的对角线AC 与BD 相交于点E : (1)若4=EA ,5=EB ,6.1=ED ,2=EC ,求证△EAD 与△EBC 是相似三角形;(2)若∠ABE=∠DCE ,求证AD ·CE=BC ·DE.【答案】见解析 【解析】 (1)∵54EC DE EB EA ==,又∠AED=∠BEC ,∴△EAD ∽△EBC(2)AD 、DE 在△AED 中,BC 、CE 在△BEC 中,即证△EAD ∽△EBC ∵在△ABE 与△DCE 中,∠ABE=∠DCE ,∠AEB=∠DEC ∴△ABE ∽△DCE ,则ECBEDE AE =,又∠AED=∠BEC ∴△EAD ∽△EBC ,即AD ·CE=BC ·DE总结:本题中(2)中的两个相似三角形符合“斜8字”模型,这类模型通常会有一对对顶角,然后再给出一组非内错角相等,通过相似三角形判定定理1即可得证. 对于求证四条线段之间的比例关系,一般按照先定、后找、再证的顺序进行分析,先确定四条线段在哪两个可能相似的三角形中;再找出两个三角形相似所需的条件;最后根据分析,写出证明过程. 【难度】3BA BCDEF 【题目】题型3变式练习1:相似三角形之公共边角模型如图,已知等腰三角形ABC 中,AB = AC ,高AD ,BE 相交于点H. 求证: 4DH ·DA=BC 2【答案】见解析 【解析】 证明:AD 、BE 是高, ∴90ADB BEC ∠=∠=,∴90HBD C ∠+∠=, 90CAH C ∠+∠=,∴HBD CAH ∠=∠, ∴HBD CAD ∆∆∽,∴HD BDCD AD=, 即DH ·AD=BD ·CD , AB AC AD BC =⊥,, ∴12BD DC BC ==, ∴214DH AD BC =, ∴24DH AD BC =. 总结:本题考查“公共边角”模型,该题中一对直角三角形中不仅出现公共角,还出现了一对对顶角,这些元素很容易证明相应三角形的相似关系,再利用等腰三角形三线合一这一特点即可证明问题. 【难度】3【题目】题型3变式练习2:相似三角形之公共边角模型如图,梯形ABCD 中,AD // BC ,AB = DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且CDE ABD ∠=∠. (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=ABCDE H【答案】见解析【解析】证明:(1)AD // BC,AB = DC,BAD CDA∴∠=∠,AB DC AD AD==,,ABD DCA∴∆≅∆,ACD ABD∴∠=∠,CDE ABD∠=∠,ACD CDE∴∠=∠,∴AC//DE,AD // BC,∴四边形ACED是平行四边形.(2)//AD BC,∴AD DFBC FB=,AD DFBC AD DF FB∴=++,四边形ACED是平行四边形,∴AD CE=,∴AD DFBC CE DF FB=++,即AD DFBE DB=,//AD BE,∴DG ADGB BE=,∴DG DFGB DB=.总结:考查相似中有平行线的情况,即可直接利用图形中的“A”字型和“8”字型等基本图形进行等比例转化,【难度】3【题目】题型4:相似三角形的综合应用如图,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则EBG∆的周长为______cm.【答案】见解析【解析】设DF x=,根据翻折的性质,则有EF x=,6AF x=-,在Rt AEF∆中,用勾股定理,则有222AE AF EF+=,即()22236x x+-=,解得154x=,则94AF=,由90A∠=︒,则有90AFE AEF∠+∠=︒,AB CDEFG HQMNH G FED CBA同时90FEG D ∠=∠=︒,则90AEF EBG ∠+∠=︒,得:AFE BEG ∠=∠,由90A B ∠=∠=︒,可证AEF ∆∽BGE ∆,则AE AF EFBG BE GE==,即9153443BG GE==,解得4BG =,5EG =,故12EBG C cm ∆=. 总结: 本题属于“一线三直角”基本模型,结合翻折、勾股定理相关知识点进行考查,是模拟题中常考题型,一般找出相似三角形,通过线段之间的比例关系列出等式求解,有时还会用到勾股定理或者锐角三角比等. 【难度】4【题目】题型4变式练习1:相似三角形的综合应用如图,点E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC 、CD 于点M 、F ,BG ⊥AC ,垂足为点G ,BG 交AE 于点H.(1)求证:ABE ∆∽ECF ∆;(2)找出与ABH ∆相似的三角形,并证明;(3)若E 是BC 的中点,BC = 2AB ,AB = 2,求EM 的长.【答案】(1)见解析;(2)ECM ∆;(3)223【解析】(1)证明:EF AE ⊥,90AEB FEC ∴∠+∠=︒.90ABC ∠=︒ 90AEB BAE ∴∠+∠=︒ BAE FEC ∴∠=∠ 90ABE ECF ∠=∠=︒ ∴ABE ∆∽ECF ∆(2)由(1)BAE FEC ∠=∠,又90ABG GBC GBC BCG ∠+∠=∠+∠=︒ABG ECM ∴∠=∠ ,∴ABH ∆∽ECM ∆(3)作MN BC ⊥交BC 于点N ,则有//MN AB ,由BC = 2AB ,得2CN MN =, 2BC AB BE CE ==,45AB BE AEB FEC ∴=∠=∠=︒,12EN MN CN ∴==,得1233EN EC ==,则2223EM EN ==. 总结:该题涉及了“一线三等角”模型、“ 母子三角形”模型,一般而言,在这些模型中需要从角度入手,通过等量代换达到相似的目的,而在第二问中,往往需要第一问求出的相似,得出对应边或者对应角相等. 【难度】4【题目】题型4变式练习2:相似三角形的综合应用已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点,沿PE 翻折得到FPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G.(1)如图,当BP = 1.5时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP = x ,DG = y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)延长EF 交直线AD 于点H ,若CQE ∆∽FHG ∆,求BP 的长.【答案】(1)83;(2)()21616124x y x x -=<<-;(3)233或23 【解析】 (1)连结QE ,ABCD EF GP QABCD EFGP Q290BE EF CE QE QE QFE C ====∠=∠=︒,,, QFE QCE ∴∆≅∆, 12FEQ CEQ FEC ∴∠=∠=∠,()1902PEQ BEF FEC ∴∠=∠+∠=︒, BPE QEC ∴∠=∠, BPE ∴∆∽CEQ ∆, BP BE CE CQ ∴=,即1.522CQ =,解得:83CQ =. (2)由(1)可得:BPE ∆∽CEQ ∆,由BP x =,可得:4CQ x =,则44DQ x=-,4AP x =-, 由//AB CD ,则有DQ GD AP GA=, 即4444y x x y -=-+,整理,得:()21616124x y x x -=<<-. (3)由题意知,90C GFH ∠=︒=∠,①G 在线段AD 的延长线上时,由CQE ∆∽FHG ∆,可知G CQE ∠=∠, CQE FQE ∠=∠,2DQG FQC G ∴∠=∠=∠, 90DQG G ∠+∠=︒,30G BEP ∴∠=︒=∠,BP ∴==, ②G 在线段AD 的反向延长线上时,同理可得:30G BPE ∠=︒=∠,BP ∴==总结:考查翻折与全等、相似等知识点,本题中出现了“母子三角形”比较隐蔽,需要一定的分析才能发现,第二问中出现了“A 字”型模型,通过表示出不同线段的长度,列出比例式即可求解,第三问考察分类讨论的思想,在平时的模拟考中比较常见,需要学生养成良好的解题习惯. 【难度】5【题目】兴趣篇1如图,在直角梯形ABCD 中,AB // CD ,AB ⊥BC ,对角线AC ⊥BD ,垂足为E ,AD=BD ,过E 的直线EF // AB 交AD 于点F.(1)AF = BE ; (2)AF 2 = AE ·EC【答案】见解析 【解析】(1)EF// AB ,AF 不平行EB ,∴四边形FABE 是梯形,又AD BD =, ∴DAB DBA ∠=∠,∴四边形FABE 是等腰梯形, ∴AF BE =;(2)90AEB CEB ∠=∠=,∴90EBA EAB ∠+∠=, 90ECB EAB ∠+∠=,∴EBA ECB ∠=∠. ∴EBA ECB ∆∆∽, ∴EB EAEC EB=, ∴EB 2=EA ·EC , ∴AF 2=EA ·EC .总结:本题考查等腰梯形及相似三角形的判定及性质,注意图形中出现“母子三角形”模型,结合第一问的结论就可以得出待证式. 【难度】3【题目】兴趣篇2ABCD EF如图,ABC ∆是等边三角形,D 是AC 上的一点,BD 的垂直平分线交AB 于E ,交BC 于F.(1) 当点D 在边AC 上移动时,DEF ∆中哪一个角的大小 始终保持不变?并求出它的度数;(2)当点D 在边AC 上移动时,ADE ∆与哪一个三角形始终相似?并写出证明过程.又问:当点D 移动到什么位置时,这两个三角形的相似比为1?(3)若等边三角形ABC 的边长为6,2AD =,试求:BE BF 的值. 【答案】(1)EDF ∠始终不变,且等于60;(2)ADE CFD ∆∆∽,证明见解析;D 移动到AC 中点处时,这两个三角形的相似比为1; (3)45BE BF = 【解析】(1)翻折前后对应角相等,EDF ∠始终不变,且等于60; (2)相似比为1,说明ADE CFD ∆≅∆,得DE DF =; 又DB EF ⊥,所以DB 垂直平分EF ,得BD 平分ABC ∠,则ABC ∆是等边三角形,进而得出结论;(3)45AED CFD C BE DE BF DF C ∆∆=== 总结:本题考查了相似三角形的判定、翻折变换(折叠问题)、相似三角形的性质等的相关知识,通过折叠等边三角形的一个角,可以实现“一线三等角”的效果. 【难度】4【题目】备选试题1ABCDEF如图,在梯形ABCD 中,AB // CD ,90A ∠=︒,2AB =,3BC =,1CD =,点E 是AD的中点.(1) 求证:CDE ∆∽EAB ∆; (2) 证明CDE ∆与CEB ∆相似.【答案】见解析 【解析】(1)证明:过点C 作CF AB ⊥,垂足为F ,如图: 9090A CFB ∠=∠=,,//AD CF ∴,又//AB CD ,∴四边形AFCD 是平行四边形,又90A ∠=,∴平行四边形AFCD 是矩形, 1AF CD AD CF ∴===,,1BF ∴=.在Rt FBC ∆中,2222CF BC BF =-=,22AD ∴=, 点E 是AD 的中点 2ED EA ∴==, ∴22DE CD AB AE ==又90D A ∠=∠=,∴CDE ∆∽EAB ∆.(2)CDE ∆与CEB ∆相似.在Rt DCE ∆中,223CE DC DE =+=, 在Rt CBF ∆中,226BE AE AB =+=,3CE BE CBCD DE CE===, ∴CDE ∆∽CEB ∆. 总结:本题考查了梯形及相似三角形的判定,着重考查学生对相似三角形的判定方法的理解及运用能力.本题实际上是“一线三直角”模型. 【难度】3ABCDEFABCDE【题目】备选试题2如图,已知ABC ∆与ADE ∆都是等边三角形,点D 在BC 边上(点D 不与B 、C 重合),DE 与AC 相交于点F. (1)求证:ABD ∆∽DCF ∆;(2)若BC = 1,设BD = x ,CF = y ,求y 关于x 的函数解析式及定义域; (3)当x 为何值时,79AEF ABD S S ∆∆=?【答案】(1)见解析;(2)y=-x 2+x(0<x<1);(3)2133x x ==或【解析】(1)ABC ∆、ADE ∆是等边三角形 60,60B C E EDA ∴∠=∠=∠=∠=CDF FDA B DAB ∠+∠=∠+∠,CDF DAB ∴∠=∠ ABD DCF ∴∆∆∽; (2)由(1)得ABD DCF ∆∆∽,AB BDDC CF∴= 11x x y ∴=-()201y x x x ∴=-+<<;(2)易证ABD AEF ∆∆∽, AB ADAE AF∴= 279AEF ABD S AE S AB ∆∆⎛⎫∴== ⎪⎝⎭ 222279AE AF AB AD ∴== ADE ∆是等边三角形 AD AE ∴= 222279AE AF AB AE ∴== 224981AF AB ∴= 1AB = 79AF ∴= 72199y CF ∴==-=, 229x x ∴-+=解得1221,33x x == ∴当2133x x ==或时,79AEF ABD S S ∆∆=. 总结:本题考查旋转的相关知识,本题将相似三角形与旋转部分的知识点结合进行考察,利用“一线三等角”模型能够比较容易找出相似关系.A BCDEF【难度】4。
沪科版初中九年级数学上册专项素养巩固训练卷(三)反比例函数中k的几何意义练课件
x
x
AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AB=2OD,则k的值为
( D)
A. 6
B. 12
C. 8
D. 18
解析 D 如图,过点B作BE⊥x轴于E,延长线段BA,交y轴于F,易得四边形AFOD 是矩形,四边形OEBF是矩形, ∴AF=OD,BF=OE,∴AB=DE,
∵点A在双曲线y= 6 上,∴S矩形AFOD=6,同理S矩形OEBF=k.
A. 1
B. 2
C. 3
D. 4
解析 B 第一个图象中阴影部分的面积为6;第二个图象中阴影部分的面积为 3;第三个图象中阴影部分的面积为6;第四个图象中阴影部分的面积为12.故选B.
6. [和差法](2023广西贵港桂平一模,12,★★☆)如图,点A(m,1)和B(-2,n)都在反
比例函数y=
4 x
专项素养巩固训练卷(三) 反比例函数中k的几何意义
(练题型)
类型一 同一象限内运用k 的几何意义
1. [等积变形法](2024安徽合肥四十八中期末,6,★☆☆)如图,点A是反比例函
数y=
k x
(x<0)的图象上的一点,过点A作AB⊥x轴,垂足为点B,C为y轴上一点,连接AC,
BC,若△ABC的面积为3,则k的值为 ( D )
2
2
2
故选C.
7. [易错题](★☆☆)如图,在平面直角坐标系中,过原点O的直线交反比例函数y=
k 的图象于A,B两点,BC⊥y轴于点C,△ABC的面积为6,则k的值为 -6 .
x
答案 -6
解析
由反比例函数图象的对称性可知,OA=OB,∴S△AOC=S△BOC=
1 2
244 相似三角形的判定(作业)-2021-2022学年九年级数学上(沪教版)(解析版)
24.4相似三角形的判定一、单选题1.如图,AD、BC相交于点O,由下列条件不能判定△AOB与△DOC相似的是()A.AB∥CD B.A D∠=∠C.OA OBOD OC=D.OA ABOD CD=【答案】D【解析】本题中已知∠AOB=∠DOC是对顶角,应用两三角形相似的判定定理,即可作出判断.解:A、由AB∥CD能判定△AOB∽△DOC,故本选项不符合题意.B、由∠AOB=∠DOC、∠A=∠D能判定△AOB∽△DOC,故本选项不符合题意.C、由OA OBOD OC=、∠AOB=∠DOC能判定△AOB∽△DOC,故本选项不符合题意.D、已知两组对应边的比相等:OA ABOD CD=,但其夹角不一定对应相等,不能判定△AOB与△DOC相似,故本选项符合题意.故选:D【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2.在△ABC中,直线DE分别与AB、AC相交于点D、E,下列条件不能推出△ABC与△ADE相似的是()A.AD AEBD EC=B.∠ADE=∠ACBC.AE﹒AC=AB﹒AD D.AD DE AB BC=【答案】D【解析】由题意可得一组对角相等,根据相似三角形的判定:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似添加条件即可.【详解】解:有两边对应成比例且夹角相等的两个三角形相似,故选项A不符合题意;两角对应相等,两三角形相似,故选项B不符合题意;由AE﹒AC=AB﹒AD得AD ACAE AB=,且∠A=∠A,故可得△ABC与△ADE相似,所以选项C不符合题意;而D不是夹角相等,故选项D符合题意;故选:D【点睛】相似三角形的判定:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.3.下列各组图形中,不一定相似的是()A.各有一个角是100°的两个等腰三角形B.各有一个角是90°的两个等腰三角形C.各有一个角是60°的两个等腰三角形D.各有一个角是50°的两个等腰三角形【答案】D【解析】根据相似图形的定义,以及等边三角形的性质对各选项分析判断求解.【详解】A 、各有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似;B 、两个等腰直角三角形,对应边的比相等,锐角都是45°,相等,所以一定相似;C 、各有一个角是60°的两个等腰三角形,是等边三角形,有两对对应角相等,所以一定相似;D 、各有一个角是50°的两个等腰三角形,可能是顶角为50°,也可能底角为50°,所以对应角不一定相等,所以不一定不相似;故选:D .【点睛】本题考查了相似图形的判断,严格按照判定定理即可,另外,熟悉等腰三角形,等边三角形的性质对解题也很关键.4.如图,已知12,∠=∠则添加下列一个条件后,仍无法判定ABC ADE ∆∆的是( )A .AB BC AD DE = B .AB AC AD AE = C .B ADE ∠=∠ D .C E ∠=∠【答案】A【解析】先根据∠1=∠2得出∠BAC=∠DAE ,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,∴∠BAC=∠DAE . A. AB BC AD DE=,∠B 与∠D 的大小无法判定,∴无法判定△ABC∽△ADE ,故本选项符合题意; B.AB AC AD AE =,∴△ABC∽△ADE ,故本选项不符合题意;∠=∠∴△ABC∽△ADE,故本选项不符合题意;C. B ADE∠=∠∴△ABC∽△ADE,故本选项不符合题意;D. C E故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.5.下列说法中,正确的是()①有两边成比例且一对内角相等的两个三角形相似;②有一对锐角相等的两个直角三角形相似;③有两边对应成比例且夹角相等的两个三角形相似;④一条直线截三角形两边所得的三角形与原三角形相似.A.①,②B.②,③C.③,④D.①,④.【答案】B【解析】根据三角形相似的判定判定即可;【详解】①必须是夹角,故错误;②有一对锐角相等的两个直角三角形相似,正确;③有两边对应成比例且夹角相等的两个三角形相似,正确;④必须是第三边的平行线,故错误;故答案选D.【点睛】本题主要考查了相似三角形的判定,准确判断是解题的关键.6.如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对【答案】D【解析】试题分析:∵∠ADE=∠ACD=∠ABC,∴DE∥BC,∴△ADE∽△ABC,∵DE∥BC,∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD,∴共4对,故选D.考点:1.相似三角形的判定;2.平行线的判定.7.如图,下列选项中不能判定ACD ABC ∆∆的是( )A .2AC AD AB =⋅B .2BC BD AB =⋅ C .ACD B ∠=∠D .ADC ACB ∠=∠ 【答案】B【解析】根据相似三角形的判定定理逐个判断即可.【详解】解:A 、∵AC 2=AD•AB , ∴AC AB AD AC=, ∵∠A=∠A ,∴△ACD∽△ABC ,故本选项不符合题意;B 、∵BC 2=BD•AB , ∴BC AB BD BC=, ∵∠B=∠B ,∴△BCD∽△ABC ,不能推出△ACD∽△ABC ,故本选项符合题意;C 、∵∠A=∠A ,∠ACD=∠B ,∴△ACD∽△ABC ,故本选项不符合题意;D 、∵∠A=∠A ,∠ADC=∠ACB ,∴△ACD∽△ABC ,故本选项不符合题意;故选:B .【点睛】本题考查了相似三角形的判定定理,能熟记并理解应用相似三角形的判定定理是解此题的关键.8.在△ABC中,D为AB上一点,过点D作一条直线截△ABC,使截得的三角形与△ABC相似,这样的直线可以作()A.2条B.3条C.4条D.5条【答案】C【解析】根据相似三角形的判定方法分析,即可做出判断.【详解】满足条件的直线有4条,如图所示:如图1,过D作DE∥AC,则有△BDE∽△BAC;如图2,过D作DE∥BC,则有△ADE∽△ABC;如图3,过D作∠AED=∠B,又∠A=∠A,则有△ADE∽△ACB;如图4,过D作∠BED=∠A,又∠B=∠B,则有△BED∽△BAC,故选:C.【点睛】本题考查了相似三角形的判定,解答的关键是对相似三角形的判定方法的理解与灵活运用.9.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,由下列条件判定△ABC∽△DEF的是()①∠A=55°,∠D=35°;②AC=3,BC=4,DF=6,DE=8;③AC=9,BC=12,DF=6,EF=8;④AB=10,AC=8,EF=9,DE=15.A.1个B.2个C.3个D.4个【答案】B【解析】根据相似三角形的判定方法对各个选项进行分析即可.【详解】解:如图示,在Rt△ABC 和Rt△DEF 中,∠C=∠F=90°,①55A ∠=︒905535B35D ,B D ∴∠=∠C F ∠=∠ABC EDF ∴∆∆∽,故①是不正确的;9=AC ,12BC =,6DF =,8EF =, ∴32ACBC DF EF , C F ∠=∠,ABC DEF ∴∆∆∽, 故③是正确的;10AB =,6BC =,15DE =,9EF =, ∴23ABBC DE EF , C F ∠=∠,ABC DEF ∴∆∆∽;故④是正确的;∵3AC =,4BC =,6DF =,8DE =, ∴12ABBC DF DE ,C F ∠=∠有一组角相等两边对应成比例,但该组角不是这两边的夹角,故不相似;故②是错误的;综上所述③④是正确的,正确的有2个,故选:B .【点睛】此题主要要求学生熟练掌握相似三角形的判定定理:两角对应相等,两组边对应成比例且夹角相等,三边对应成比例.10.如图,在正三角形ABC 中,点D 、E 分别在AC 、AB 上,且13AD AC =,AE=BE ,则有( )A .△AED ∽△BEDB .△AED ∽△CBDC .△AED ∽△ABDD .△BAD ∽△BCD【答案】B【解析】 本题可以采用排除法,即根据已知中正三角形ABC 中,D 、E 分别在AC 、AB 上,13AD AC =,AE=BE ,我们可以分别得到:△AED 、△BCD 为锐角三角形,△BED 、△ABD 为钝角三角形,然后根据锐角三角形不可能与钝角三角形相似排除错误答案,得到正确答案.【详解】由已知中正三角形ABC 中,D 、E 分别在AC 、AB 上,13AD AC =,AE=BE , 易判断出:△AED 为一个锐角三角形,△BED 为一个钝角三角形,故A 错误;△ABD 也是一个钝角三角形,故C 也错误;但△BCD 为一个锐角三角形,故D 也错误;故选:B .【点睛】此题考查相似三角形的判定,解题关键在于可以直接根据相似三角形的定义,大小不同,形状相同,排除错误答案,得到正确结论.11.下列条件,能使ABC 和111A B C △相似的是( )A .1111112.5,2,3;3,4,6AB BC AC A B BC AC ======B .11111192,3,4;3,6,2AB BC AC A B B C AC ======C.11111110,8;AB BC AC A B BC AC =====D.1111111,3;AB BC AC A B BC AC ======【答案】B【解析】【解析】 根据相似三角形的判定定理进行判断.【详解】解:A 、11112.55213642AB BC A B B C ==≠==,不能使ABC ∆和△111A B C 相似,错误; B 、11111123242933632AB BC AC A B AC B C =======,能使ABC ∆和△111A B C 相似,正确; C、1111AB BC A B B C =≠=,不能使ABC ∆和△111A B C 相似,错误; D、1111AB BC A C B C ==≠=,不能使ABC ∆和△111A B C 相似,错误; 故选B.【点睛】本题考查了相似三角形的判定.识别三角形相似,除了要掌握定义外,还要注意正确找出三角形的对应边、对应角.12.如图,在平面直角坐标系中,A (0,4),B (2,0),点C 在第一象限,若以A 、B 、C 为顶点的三角形与△AOB 相似(不包括全等),则点C 的个数是( )A .1B .2C .3D .4【答案】D【详解】试题解析:如图①,∠OAB =∠1BAC ,∠AOB =∠1ABC 时,△AOB ∽△1ABC .如图②,AO ∥BC ,BA △2AC ,则∠2ABC =∠OAB ,故△AOB ∽△2BAC ;如图③,3AC ∥OB ,∠ABC 3=90 ,则∠ABO =∠CAB ,故△AOB ∽△3C BA ;如图④,∠AOB =∠4BAC =90 ,∠ABO =∠4ABC ,则△AOB ∽△4C AB .故选D .二、填空题13.如图,在△ABC 中,DE∥BC ,则DE BC=______.【答案】=AB AD AE AC【解析】 根据平行线的性质得∠ADE=∠B ,∠AED=∠C ,利用“有两个角对应相等的两个三角形相似”证得△ADE∽△ABC ,根据相似三角形的性质即可得出结论.【详解】∵DE∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴△ADE∽△ABC , ∴=AB AD AE AC, 故答案为:=AB AD AE AC . 【点睛】本题考查了平行线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答的关键. 14.如图,在△ABC 中,DE∥BC ,13ADBD ,则△ABC∽______,其相似比为______.【答案】△ADE41【解析】 根据已知条件判定相似三角形即可;【详解】∵DE∥BC ,∴ABC ADE , ∵13AD BD , ∴1A 4AD B =, ∴4A 1=AB D ; 故答案是△ADE 和41. 【点睛】本题主要考查了相似三角形的判定和性质,准确分析是解题的关键.15.点D 在ABC 的边AB 上,且2AC AD AB =⋅,则ABC ACD ,理由是_______.【答案】有两边对应成比例且夹角相等的两个三角形相似【解析】先依题意画出图形,再根据相似三角形的判定即可得.【详解】依题意,画图如下:2AC AD AB=⋅,即AB AC AC AD=,又A A∠=∠,ABC ACD~∴(有两边对应成比例且夹角相等的两个三角形相似),故答案为:有两边对应成比例且夹角相等的两个三角形相似.【点睛】本题考查了相似三角形的判定,熟练掌握判定方法是解题关键.16.如图,添上条件________,则ABC ADE∽.【答案】∠ABC=∠ADE(答案不唯一)【解析】根据相似三角形的判定定理添加即可.【详解】添上∠ABC=∠ADE条件,则△ABC∽△ACD.理由:∵∠ABC=∠ADE,∠A=∠A,∴△ABC∽△ACD .故答案为∠ACD=∠B (答案不唯一)【点睛】本题主要考查了相似三角形的判定:有两个角对应相等的三角形相似;熟练掌握相似三角形的判定定理是解题键. 17.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC∽△ADE .【答案】解:∠D=∠B 或∠AED=∠C .【解析】根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B 或∠AED=∠C 或AD :AB=AE :AC 或AD•AC=AB•AE 时两三角形相似.故答案为∠D=∠B (答案不唯一).18.在ABC 和A B C '''中,若B B '∠=∠,6AB =,8BC =,4B C ''=,则当A B ''=________时,ABC A B C '''.【答案】3【解析】在ABC 和A B C '''中,已知了B B '∠=∠,要判定这两个三角形全等,可以利用定理“两边对应成比例且夹角相等,两三角形相似”,得到AB BC A B B C '''=',即可求出A B ''的值. 【详解】由两边成比例且夹角相等的两个三角形相似,若要使ABC A B C ''', 已知'B B ∠=∠,只要::AB BC A B B C ''''=即可,解得3A B ''=.【点睛】本题考查的是利用“两边对应成比例且夹角相等,两三角形相似”的判定两三角形相似方法为图形补充条件,紧扣定理构成比例式是解题的关键.19.如图,E 是□ABCD 的边BA 延长线上的一点,CE 交AD 于点F ,图中______对相似三角形.【答案】3【解析】由□ABCD 可得//AB CD ,//AD BC ,再由平行线性质推导而证明△AFE∽△CFD∽△BCE ,从而完成求解.【详解】∵□ABCD∴//AB CD ,//AD BC∴E DCF ∠=∠,EAFEBC ∠=∠ ∵AFE CFD ∠=∠∴AEF DCF ∽∵EAFEBC ∠=∠,AEF BEC ∠=∠ ∴AFE BCE ∠=∠∴△CFD∽△BCE∴△AFE∽△CFD∽△BCE故答案为:3.【点睛】本题考查了平行四边形和相似三角形的知识;求解的关键是熟练掌握平行四边形和相似三角形的性质,从而得到答案.20.如图,在矩形ABCD 中,6AB =,12AD =,点E 在边AD 上,8AE =,点F 在边DC 上,则当EF =________时,ABE △与DEF 相似.【答案】5或203【解析】 若要ABE △与DEF 相似,则需要对应直角边成比例,代入数值计算即可.【详解】由题意,知ABE △与DEF 都是直角三角形, 所以当AB BE DE EF =或AE BE DE EF =时,ABE △与DEF 相似, 由6AB=,8AE =,12AD =,得10BE =,4DE =, ∴6104EF =或8104EF=, ∴EF =5或203. 故答案为: 5或203. 【点睛】ABE △与DEF 相似和ABE DEF △△∽是有区别的,前者没有明确两个三角形的对应关系,后者已给出了对应关系,因此前者要分类讨论.21.如图所示,在正方形网格上有6个斜三角形,①△ABC ,②△BCD ,③△BDE ,④△BFG ,⑤△FGH ,⑥△EFK ,在②~⑥中,与三角形①相似的有____(填序号)【答案】③④⑤【解析】两三角形三条边对应成比例,两三角形相似,据此即可解答.【详解】解:设每个小正方形的边长为1,则△ABC的各边长分别为1②△BCD的各边长分别为1③△BDE的各边长分别为2、2△ABC各边长的2倍);④△BFG的各边长分别为5(为△ABC;⑤△FGH的各边长分别为2(为△ABC;⑥△EFK的各边长分别为3根据三组对应边的比相等的两个三角形相似得到与三角形①相似的是③④⑤.故答案为③④⑤.【点睛】此题考查了相似三角形的判定,勾股定理,掌握三组对应边的比相等的两个三角形相似是解题的关键.22.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD中,对角线BD是它的相似对角线,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________度【答案】145【解析】先画出示意图,由相似三角形的判定可知,在△ABD和△DBC中,已知∠ABD=∠CBD,所以需另一组对应角相等,若∠A=∠C,则△ABD与△DBC全等不符合题意,所以必定有∠A=∠BDC,再根据四边形的内角和为360°列式求解.【详解】解:根据题意画出示意图,已知∠ABD=∠CBD,△ABD与△DBC相似,但不全等,∴∠A=∠BDC,∠ADB=∠C.又∠A+∠ABC+∠C+∠ADC=360°,∴2∠ADB+2∠BDC+∠ABC=360°,∴∠ADB+∠BDC=145°,即∠ADC=145°.【点睛】对于新定义问题,读懂题意是关键.三、解答题23.如图,BD、AC相交于点P,连接BC、AD,且∠1=∠2,求证:△ADP∽△BCP.【答案】见解析【解析】根据两角对应相等,两三角形相似的判定定理得解.【详解】证明:∵∠1=∠2,∠DPA=∠CPB,∴△ADP∽△BCP.【点睛】本题考查相似三角形的判定,熟练掌握三角形相似的各种判定方法是解题关键.24.如图,在正方形ABCD中,E是CD上的一点,F是BC的延长线上的一点,且CE=CF,BE的延长线交DF 于点G,求证:△BGF∽△DCF.【答案】见解析.【解析】先根据正方形的性质得出DC=BC,∠DCB =∠DCF =90°,由CE=CF可得出△DCF≌△ECB,故∠CDF=∠CBE,再根据∠F 为公共角即可得出结论.【详解】∵正方形ABCD∴∠DCB=∠DCF=90︒,DC=BC∵CE=CF∴△DCF≌△ECB∴∠CDF =∠CBE∵∠CDF+∠F=90︒∴∠CBE+∠F=90︒∴∠BGF=90︒=∠DCF∴△BGF∽△DCF【点睛】本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.25.如图,∠C=90°,AC=CD=DE=BE,试找出图中的一对相似三角形,并加以证明.【答案】△ADE∽△BDA【解析】先利用勾股定理求得AD=,进而有ED AD AD BD ==,又∠ADB=∠ADB ,利用“两组边对应成比例及其夹角相等的两个三角形相似”即可证得△ADE∽△BDA .【详解】∵∠C=90°,AC=CD=DE=BE ,∴AD=,BD=2CD , ∴ED AD AD BD ==, ∵∠ADB=∠ADB ,∴△ADE∽△BDA .【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解答的关键.26.如图,在Rt ABC 中,90ACB ∠=,CD AB ⊥于D .(1)写出图中的两对相似三角形;(2)选择其中的一对相似三角形说明它们相似的理由.【答案】(1)ACD ABC ∽,CDB ACB ∽;(2)详见解析【解析】(1)根据相似三角形的判定定理,结合图形可得出ACD ABC △∽△,CDB ACB ∽△△,ACD CBD △∽△; (2)根据题意可选择证明ACD ABC △∽△,利用等角代换得出B ACD ∠=∠,从而利用两角法判断ACD ABC △∽△.【详解】解:()1根据相似三角形的判定定理可知:图中的两对相似三角形为:ACD ABC △∽△和CDB ACB ∽△△;(2)∵90A B ∠+∠=,90A ACD ∠+∠=,∴B ACD ∠=∠,又∵90ACB ADC CDB ∠=∠=∠=,∴ACD ABC △∽△.【点睛】本题考查有两组对应角相等的两三角形相似,熟练掌握相似三角形的判定定理是解答本题的关键.27.如图,已知//,//,//AB DE AC DF BC EF .求证:~DEF ABC .【答案】证明见解析【解析】根据对应边平行可得对应边之比,从而证明~DEF ABC .【详解】 解://,~,DE OE AB DE ODE OAB AB OB∴∴=. //,~,EF OE OF BC EF OEF OBC BC OB OC∴∴==. //,~,DF OF AC DF ODF OAC AC OC ∴∴=. ∴DE EF DF AB BC AC ==, ∴~DEF ABC .【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法:三边对应成比例是解题的关键.28.如图,在△ABC 中,∠C=90°,DM△AB 于点M ,DN△BC 于点N ,交AB 于点E .求证:△DME∽△BCA .【答案】见解析【解析】先证明∠DEM=∠A ,再由∠C=∠DME=90°,根据有两组角对应相等的两个三角形相似即可证明DME ∽BCA .【详解】证明:∵∠C=90°,DM△AB 于点M ,DN△BC 于点N ,∴∠C=∠ENB=∠DME=90°,∴AC∥DN ,∴∠BEN=∠A ,∵∠BEN=∠DEM ,∴∠DEM=∠A .在DME 与BCA 中,DEM A DME C ∠=∠⎧⎨∠=∠⎩, ∴DME ∽BCA .【点睛】本题考查了相似三角形的判定,方法有(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.29.如图,ABC 和EFD △的顶点都在正方形网格的格点上,则ABC 与EFD △相似吗?请说明理由.【答案】~ABC EFD .理由见解析【解析】利用勾股定理求出网格中三角形的边长,再证明两个三角形三边对应成比例即可得到结论.【详解】解:相似,理由如下:设网格中小正方形的边长均为1.根据勾股定理,得5,AB AC BC EF DE DF ====∴AB AC BC EF DE DF === ∴~ABC EFD .【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法:三边对应成比例是解题的关键.30.已知:如图,△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 边上的一个动点(不与B ,C 重合),∠ADE =45°.求证:△ABD ∽△DCE .【答案】见解析【解析】已知等腰直角三角形的两底角相等:∠B =∠C =45°,所以欲证明△ABD ∽△DCE ,只需推知∠1=∠3,由“两角法”证得结论.【详解】∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°,∴∠1+∠2=180°﹣∠B =135°,∵∠2+∠ADE +∠3=180°,∠ADE =45°,∴∠2+∠3=180°﹣∠ADE =135°,∴∠1=∠3,∴△ABD ∽△DCE .【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰直角三角形的判定与性质. 31.如图,在ABCD 中,E 是DC 上一点,连接AE 、F 为AE 上一点,且BFE C ∠=∠. 求证:ABF EAD .【答案】证明见解析.【解析】本题要证明ABF EAD ,根据题目给定的条件中没有给定与边对应成比例有关的信息,只有与角有关的条件,故在方法选择上确定利用定理“两角对应相等,两三角形相似”,通过证明BFE C ∠=∠,BAE AED∠=∠即可完成.【详解】证明∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,//AD BC ,∴180D C ∠+∠=︒∵180AFB BFE ∠+∠=︒,且BFE C ∠=∠,∴D AFB ∠=∠.∵//AB CD ,∠=∠,∴BAE AED∴ABF EAD.【点睛】本题考查的是相似三角形的判定,关键是根据题意利用“两角对应相等,两三角形相似”的方法来证明两三角形相似.32.如图1,在正方形ABCD中,对角线AC、BD交于点O,点E在AB上,点F在BC的延长线上,且AE=CF,连接EF交AC于点P,分别连接DE,DF,DP(1)求证:△ADE≌△CDF;(2)求证:△ADP∽△BDF;(3)如图2,若PE=BE,PC CF的值.【答案】(1)详见解析;(2)详见解析;(3)CF1,【解析】(1)根据SAS证明即可;(2)如图1,作FH∥AB交AC的延长线于H.易证△APE≌△HPF(AAS),得PE=PF,再证△DEF是等腰直角三角形,得∠EDP=∠FDP=45°,进而得∠DAP=∠DBF,∠ADP=∠BDF即可得到结论;(3)如图2,作PH△BC于H.首先证明∠EFB=30°,由PC得:HF进而求出CF,即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠BCD=∠DCF=90°,∵AE=CF,∴△ADE≌△CDF(SAS);(2)如图1,作FH∥AB交AC的延长线于H.∵四边形ABCD是正方形,∴∠ACB=∠FCH=45°,∵AB∥FH,∴∠HFC=∠ABC=90°,∴∠FCH=∠H=45°,∴CF=FH=AE,∵∠PAE=∠H=45°,∠APE=∠FPH,∴△APE≌△HPF(AAS),∴PE=PF,∵△ADE≌△CDF,∴DE=DF,∠ADE=∠CDF,∴∠EDF=∠ADC=90°,∴△DEF是等腰直角三角形,∵EP=PF,∴∠EDP=∠FDP=45°,∵ADP=∠ADE+∠PDE=∠ADE+45°,∠BDF=∠CDF+∠BDC=∠CDF+45°,∴∠ADP=∠BDF,∵∠DAP=∠DBF=45°,∴△ADP∽△BDF;(3)如图2中,作PH△BC于H.∵∠ACB=45°,PC∴PH=CH=1.由(2)得:BE=PE=PF,∴BE=12 EF,∴∠BFE=30°,∴PF=2,∴HF∴CF1,【点睛】本题主要考查相似三角形的判定定理,正方形的性质定理,全等三角形的判定和性质定理,等腰直角三角形的性质定理以及含30°角的直角三角形的性质定理,添加辅助线,构造全等三角形和含30°角的直角三角形,是解题的关键.。
沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)
沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(本大题共10小题,满分40分)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知锐角α满足tan(α+20°)=1,则锐角α的度数为()A.10°B.25°C.40°D.45°3.已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣4.若(2,m)、(4,m)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线()A.x=5B.x=1C.x=2D.x=35.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠CAB=35°,则∠D等于()A.35°B.55°C.65°D.70°6.如图,在▱ABCD中,F是BC边上一点,延长DF交AB的延长线于点E,若AB=3BE,则BF:CF等于()A.1:2B.1:3C.2:3D.2:57.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,若AB=4,AC=3,则BD为()A.1.8B.3.2C.2.4D.58.点A(m,n)在二次函数y=x2﹣4的图象上,则2m﹣n的最大值是()A.4B.5C.﹣4D.﹣59.如图,在△ABC中,∠ACB=90°,D点在BC边上,,P为AB边上一点,当PC=PD时,的值为()A.B.C.D.10.如图,直线l为抛物线y=﹣x2+2x+3的对称轴,点P为抛物线上一动点(在顶点或顶点的右侧),过点P作P A⊥x轴于点A,作PB∥x轴交抛物线于点B,设P A=h,PB=m,则h与m的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,满分20分)11.已知=,则=.12.如图,⊙O的弦AB=6,半径OD⊥AB交AB于点D、交弧AB于点C.若CD=1,则⊙O的半径为.13.如图,点A在双曲线y=上,点B在双曲线y=上,AB∥x轴,过点A作AD⊥x 轴于D,连接OB,与AD相交于点C,若AB=2OD,则k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、解答题(本大题共9小题,总计90分)15.计算:cos245°+sin60°•tan30°﹣tan45°.16.已知当x=1时,二次函数有最大值5,且图象过点(0,﹣3),求此函数关系式.17.已知,如图,一次函数y=﹣2x+1,与反比例函数y=的图象有两个交点A点、B点,过点A作AE⊥x轴于点E,点E坐标为(﹣1,0),过点B作BD⊥y轴于点D,直线AB 交y轴于点C.(1)求k的值;(2)求tan∠CBD.18.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)﹒(1)画出△ABC以点O为中心,顺时针方向旋转90°,得到的A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.19.学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.20.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.21.如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;(2)点F在CD上,且CE=EF,求证:AF⊥BD.22.规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.23.如图1,△ABC中,∠ACB=90°,AC=BC,E为△ABC的中线BD上的一点,将线段AE以E点为中心逆时针旋转90度得到线段EF,EF恰好经过点C.如图1.(1)若∠CAF=α,则∠CBE=(用含α的代数式表示);(2)若BH平分∠EBC,交EC于点G,交AF于点H,如图2.①求证:△BEG∽△ACF;②若EG=1,求CF的长.参考答案一、选择题(本大题共10小题,满分40分)1.解:A.不是中心对称图形,是轴对称图形,故此选项不符合题意;B.不是中心对称图形,是轴对称图形,故此选项不符合题意;C.不是中心对称图形,是轴对称图形,故此选项不符合题意;D.既是中心对称图形,又是轴对称图形,故此选项符合题意;故选:D.2.解:∵tan45°=1,∴a+20°=45°,则a=25°.故选:B.3.解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.4.解:∵(2,m)、(4,m)是抛物线y=ax2+bx+c上的两个点,且(2,m)、(4,m)关于直线x=3对称,∴抛物线对称轴为直线x=3.故选:D.5.解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣35°=55°,∴∠D=∠B=55°.故选:B.6.解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△DCF∽△EBF,∴,且AB=CD=3BE,∴BF:CF=1:3,故选:B.7.解:由勾股定理得,BC===5,由射影定理得,AB2=BD•BC,则BD==3.2,故选:B.8.解:把(m,n)代入y=x2﹣4得n=m2﹣4,∴2m﹣n=2m﹣(m2﹣4)=﹣m2+2m+4=﹣(m﹣1)2+5,∴m=1时,2m﹣n的最大值是5,故选:B.9.解:过P作PE⊥AC于E,PF⊥BC于F,∴四边形PECF为矩形,PE=CF,∵PF⊥BC,∴CF=DF,∴△APE∽△ABC,∴,∴,故选:A.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的对称轴为直线x=1.令y=0,则﹣x2+2x+3=0,解得:x=﹣1或x=3.∴抛物线y=﹣x2+2x+3与x轴交于(﹣1,0)和(3,0).设直线l与PB交于点C,与x轴交于点D,与y轴交于点E,如图,则OD=CE=1.∵PB∥x轴,抛物线y=﹣x2+2x+3关于直线x=1对称,∴PC=PB.∵PB=m,∴PC=.∴PE=OA=PC+CE=+1.∴点P的横坐标为+1.∵点P为抛物线上一动点(在顶点或顶点的右侧),∴+1≥1.∴m≥0.①当点P在x轴及x轴上方时,1≤+1≤3,即当0≤m≤4时,∵点P为抛物线上一动点,∴P点的纵坐标为:﹣+3=﹣+4,∴P A=h=﹣+4;②当点P在x轴的下方时,+1>3,即m>4时,∵P点的纵坐标为:﹣+3=﹣+4,∴P A=h=﹣(﹣+4)=﹣4;∴h与m的函数关系式为:h=.∵函数h=﹣+4和h=﹣4是抛物线的一部分,∴正确的选项是:A.故选:A.二、填空题(本大题共4小题,满分20分)11.解:∵=,∴5(a﹣b)=3(a+b),∴5a﹣5b=3a+3b,∴a=4b,∴==.故答案为:.12.解:∵⊙O的弦AB=6,半径OD⊥AB,∴AD=AB=×6=3,设⊙O的半径为r,则OD=r﹣CD=r﹣1,连接OA,在Rt△OAD中,OA2=OD2+AD2,即r2=(r﹣1)2+32,解得r=5.故选:5.13.解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=6,同理S矩形OEBF=k,∵AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=18,∴k=18,故答案是:18.14.解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠P AB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠P AB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、解答题(本大题共9小题,总计90分)15.解:原式=()2+×﹣1=+﹣1=0.16.解:根据题意,设二次函数的解析式为y=a(x﹣1)2+5,把(0,﹣3)代入得a(0﹣1)2+5=﹣3,解得a=﹣8,所以二次函数的解析式为y=﹣8(x﹣1)2+5.17.解:(1)∵一次函数y=﹣2x+1的图象经过点A,∴y=2+1=3,∴A(﹣1,3),∵反比例函数y=的图象经过A(﹣1,3),∴k=﹣1×3=﹣3;(2)∵一次函数y=﹣2x+1的图象经过点C,∴y=0+1=1,∴C(0,1),联立一次函数与反比例函数得,解得,;∴B(,﹣2),D(0,﹣2),∴BD=,CD=3,∴tan∠CBD===2.18.解:(1)如图,△A1B1C1为所作,点C1的坐标是(2,﹣2);故答案为:(2,﹣2);(2)如图,△A2B2C2为所作,点C2的坐标是(1,0);故答案为:(1,0).19.解:法一、如图,∵四边形AEFD为矩形,∠BAD=53°,∴AD∥EF,∠E=∠F=90°,∴∠BAD=∠EBA=53°,在Rt△ABE中,∠E=90°,AB=10cm,∠EBA=53°,∴sin∠EBA=≈0.80,cos∠EBA=≈0.60,∴AE=8cm,BE=6cm,∴∠FBC=90°﹣∠EBA=37°,∴∠BCF=90°﹣∠FBC=53°,在Rt△BCF中,∠F=90°,BC=6cm,∴sin∠BCF=≈0.80,cos∠BCF=≈0.60,∴BF=4.8cm,FC=3.6cm,∴EF=6+4.8=10.8cm,∴S四边形EFDA=AE•EF=8×10.8=86.4(cm2),S△ABE==×8×6=24(cm2),S△BCF=•BF•CF=×4.8×3.6=8.64(cm2),∴截面的面积=S四边形EFDA﹣S△ABE﹣S△BCF=86.4﹣24﹣8.64=53.76(cm2).法二、如图,延长AB交DC的延长线于点M,∴∠BCM=∠A=53°,∴cos53°=≈0.6,∴CM=10,∴BM=8,∴AM=AB+BM=18,∵AD=AM•sin A=14.4,DM=AM•cos A=10.8,∴截面的面积=S△ADM﹣S△BCM==AD•DM﹣BC•BM=53.76(cm2).20.(1)证明:∵BE平分∠ABC,∵DE∥BC,∴∠DEB=∠CBE∴∠ABE=∠DEB.∴BD=DE,∵DE∥BC,∴△ADE∽△ABC,∴∴,∴AE•BC=BD•AC;(2)解:设△ABE中边AB上的高为h.∴,∵DE∥BC,∴.∴,∴BC=10.21.解:(1)连接OD,如图:∵M是CD的中点,CD=12,∴DM=CD=6,OM⊥CD,∠OMD=90°,Rt△OMD中,OD=,且OM=3,∴OD==3,即圆O的半径长为3;(2)连接AC,延长AF交BD于G,如图:∵AB⊥CD,CE=EF,∴AB是CF的垂直平分线,∴AF=AC,即△ACF是等腰三角形,∵CE=EF,∴∠F AE=∠CAE,∵=,∴∠CAE=∠CDB,∴∠F AE=∠CDB,Rt△BDE中,∠CDB+∠B=90°,∴∠F AE+∠B=90°,∴∠AGB=90°,∴AG⊥BD,即AF⊥BD.22.解:(1)∵y=(x﹣1)2+2,∴抛物线上的点到x轴的最短距离为2,∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为2;(2)不同意他的看法.理由如下:如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,当t=时,PQ有最小值,最小值为,∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,∴不同意他的看法;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线y=+c于N,设M(t,t2﹣2t+3),则N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,当t=时,MN有最小值,最小值为﹣c,∴抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为﹣c,∴﹣c=,∴c=1.23.解:(1)∵D为AC的中点,∠AEC=90°,∴AD=DE=DC,∴∠DAE=∠AED,∵AE=EF,∴∠EAF=45°,∴∠EAD=45°﹣α,∴∠DEA=∠EAD=45°﹣α,∴∠BCA=90°,∵∠EDC=90°﹣2α,∴∠CBE=2α;故答案为:2α;(2)①由(1)可知,∠CBE=2α,∠CAF=α,∵BH平分∠EBC,∴∠EBG=α,即∠EBG=∠CAF=α,∵DE=EC,∴∠DEC=∠DCE,则∠DEC+∠GEB=∠DCE+∠ACF=180°,∴∠GEB=∠ACF,∴△BEG∽△ACF;②设ED=x,则AD=DC=x,BC=2x,∴BD=,∴BE=(﹣1)x,即,∴EG=CF,∵EG=1,∴CF=.。
相似三角形的性质定理(3种题型)-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)
相似三角形的性质定理(3种题型)【知识梳理】一、相似三角形性质定理1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 二、相似三角形性质定理2相似三角形周长的比等于相似比. 三、相似三角形性质定理3相似三角形的面积的比等于相似比的平方.【考点剖析】题型一:相似三角形性质定理1例1.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,1132AB A B =,BE 、B 1E 1分别是它们的对应中线,且6BE =.求B 1E 1的长. 【答案】4.【解析】解:111ABC A B C ∆∆∽,BE 、11B E 分别是对应中线,1111AB BEA B E B ∴=即11362E B =,114E B =【总结】本题考查相似三角形对应中线的比等于相似比.例2.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,12AC =,119A C =,1A ∠的平分线A 1D 1的长为6,求A ∠的平分线的长. 【答案】8.【解析】解:111ABC A B C ∆∆∽,AD 、11A D 分别是A ∠、1A ∠的平分线,1111AC AD A C A D ∴=即1296AD =,8AD ∴=即A ∠的平分线的长为8.【总结】本题考查相似三角形对应角平分线的比等于相似比. 例3.求证:相似三角形对应高的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BC 、11B C 的高.求证:11ADkA D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,11ABkA B =;又AD 、11A D 分别是BC 、11B C 的高,11190BDA B D A ∴∠=∠=,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质. 例4.求证:相似三角形对应中线的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是边BC 、11B C 的 中线.求证: 11ADk A D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,1111AB CBkA B C B ==;又AD 、11A D 分别是边BC 、11B C 的中线,12BD BC ∴=,111112B D B C =,∴11DB k D B =,1111AB BD A B B D ∴=,111ABD A B D ∴∆∆∽,1111AB ADkA B A D ∴==.【总结】本题考查相似三角形的判定和性质的运用.例5.求证:相似三角形对应角平分线的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BAC ∠、111B A C ∠ 的角平分线.求证:11ADk A D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,111BAC B A C ∠=∠,11ABkA B =;又AD 、11A D 分别是BAC ∠、111B A C ∠的角平分线,11111111,22BAD BAC B A D B A C ∴∠=∠∠=∠,111BAD B A D ∴∠=∠,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质.例 6.如图,ABC ∆和111A B C ∆中,AD 和BE 是ABC ∆的高,11A D 和11B E 是111A B C ∆的高,且1C C ∠=∠,1111AD ABA D AB =. 求证:1111AD BEA DB E =【解析】AB C D EA 1E 1D 1 C 1B 1证明:1111AB ADA B A D =,又111ADB A D B ∠=∠,111ABD A B D ∴∆∆∽,111ABD A B D ∴∠=∠,又1C C ∠=∠,111ABC A B C ∴∆∆∽,又BE 、11B E 分别是ABC ∆、111A B C ∆的高,1111BE AB E B A B ∴=,1111BE ADE B A D ∴=.【总结】本题考查相似三角形的判定和性质的综合运用.例7.如图,D 是ABC ∆的边BC 上的点,BAD C ∠=∠,BE 是ABC ∆的角平分线,交AD 于点F ,1BD =,3CD =,求BF :BE .【解析】解:BE 是ABC ∆的角平分线,∴ABF EBC ∠=∠,又BAD C ∠=∠,ABF CBE ∴∆∆∽,AB BFCB BE ∴=,又BAD C ∠=∠,ABD ABC ∠=∠BAD BCA ∴∆∆∽,AB BD BC BA ∴=,14AB AB ∴=,2AB ∴=,12AB BC ∴=,1:2BF BE ∴=.【总结】本题考查相似三角形的判定和性质的综合运用.例8.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.【答案】2360cm .AB C DEFABC D EFGH K【解析】解:设DG xcm =,()38FG x cm=−矩形DEFG ,//90GF BC GDB ∴∠=,,GF AGBC AB ∴=,又AH 是高,90AHB ∴∠=,GDB AHB ∴∠=∠//DG AH ∴,DG BG AH AB ∴=,1DG GFAH BC ∴+=,3813248x x −∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形. 【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.例9.如图,正方形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 是ABC ∆的高,BC = 60厘米,AH = 40厘米,求正方形DEFG 的边长.【答案】24.【解析】设正方形EFGD 的边长为x ,//DG BC ,DG AD APBC AB AH ∴==.406040x x −∴=,24x ∴=,∴正方形EFGD 的边长为24.【总结】本题考查三角形内接正方形的相关知识,主要还是通过比例相等来列式建立关系. 例10.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上,顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x 的函数关系式.ABCDEF GH P【答案】23(4)4x y x x =>−.【解析】解:如图, 矩形DEFG ,//90GD BC DEC ∴∠=,,GD AD BC AB ∴=.又 AH 是高,90AHC ∴∠=. DEC AHC ∴∠=∠, //DE AH ∴,DE BDAH AB ∴=, 1DG DEBC AH ∴+=, 641BC x ∴+=,64xBC x ∴=−,又12ABC S y BC AH ∆==,∴()2344x y x x =>−.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.题型二:相似三角形性质定理2例11.若ABC ∆∽DEF ∆,ABC ∆与DEF ∆的相似比为1:2,则ABC ∆与DEF ∆的周长比为( )(A )1:4 (B )1:2 (C )2:1 (D )1:2【答案】B【总结】相似三角形的周长比等于相似比.例12.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,它们的周长分别为48和60,且12AB =,1125B C =,求BC 和A 1B 1的长.【答案】112015BC A B ==,.【解析】解:111ABC A B C ∆∆∽,1111111ABC A B C C AB CBC A B C B ∆∆∴==;又111484605ABC A B C C C ∆∆==,∴1120,15BC A B ==.【总结】本题考查相似三角形的性质.例13.如果两个相似三角形的最长边分别为35厘米和14厘米,它们的周长相差60厘米,那么大三角形的周长是.【答案】100cm .【解析】两三角形的相似比为5:2,则周长比为5:2,设大三角形周长为5acm ,小三 角形周长为2acm ,则5260a a −=,所以20a =,所以大三角形的周长为100cm . 【总结】相似三角形的周长比等于相似比.例14.如图,在ABC ∆中,12AB =,10AC =,9BC =,AD 是BC 边上的高.将ABC ∆沿EF 折叠,使点A 与点D 重合,则DEF ∆的周长为.【答案】312.【解析】由折叠得EF 垂直平分AD ,AD 是BC 上的高,ABCD EF//EF BC ∴,AEF ABC ∴∆∆∽,12AEF ABC C C ∆∆∴=,9101231ABC C ∆=++=,312AEF C ∆∴=.【总结】本题考查相似三角形的性质和判定.例15.如图,梯形ABCD 的周长为16厘米,上底3CD =厘米,下底7AB =厘米,分别延长AD 和BC 交于点P ,求PCD ∆的周长.【答案】152cm .【解析】解:梯形ABCD ,//CD AB ∴,AEF ABC ∴∆∆∽,37PDC PAB C CD C AB ∆∆∴==,即327PDC PDC ABCD C C C CD ∆∆=+−梯形, 31667PDC PDC C C ∆∆∴=+−,152PDC C cm ∆∴=.【总结】本题考查相似三角形的性质和判定.例16.如图,在ABC ∆中,=90C ∠︒,5AB =,3BC =,点P 在AC 上(与点A 、C 不重合),点Q 在BC 上,PQ //AB .当PQC ∆的周长与四边形P ABQ 的周长相等时,求CP 的长.【答案】247.【解析】解:CPQ PABQC C ∆=四边形,ABCD PABCPQCP CQ PQ BQ PQ AP AB ∴++=+++, CP CQ BC CQ AC CP AB ∴+=−+−+, 5AB =,3BC =,90C ∠=,4AC ∴=,345CP CQ CQ CP ∴+=−+−+,6CP CQ ∴+=,//PQ AB ,CP CQCA CB ∴=,∴643CP CP −=,247CP =. 【总结】本题考查了三角形一边的平行线性质,主要考查了学生的推理能力.题型三:相似三角形性质定理3例17.(1)如果把一个三角形的三边的长扩大为原来的100倍,那么这个三角形的面积扩大为原来的倍;(2)如果一个三角形保持形状不变但面积扩大为原来的100倍,那么这个三角形的边长扩大为原来的倍.【答案】(1)10000;(2)10.【总结】相似三角形的面积比等于相似比的平方.例16.两个相似三角形的面积分别为5cm 2和16cm 2,则它们的对应角的平分线的比为( )(A )25:256(B )5:16(C )5:4(D )以上都不对.【答案】C【解析】相似三角形对应角平分线的比等于相似比,对应面积的比等于相似比的平方. 【总结】本题考查相似三角形的性质.例18.如图,点D 、E 分别在ABC ∆的边AB 和AC 上,DE //BC ,6DE =,9BC =,16ADE S ∆=.求ABC S ∆的值.【答案】36.ABCD E【解析】解://DE BC ,ADE ABC ∴∆∆∽,226499ADE ABC S DE S BC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,36ADE S ∆∴=. 【总结】本题考查相似三角形的判定及性质.例19.如图,在ABC ∆中,D 是AB 上一点,若B ACD ∠=∠,4AD cm =,6AC cm =,28ACD S cm ∆=,求ABC ∆的面积.【答案】218cm .【解析】解:B ACD ∠=∠,A A ∠=∠,ACD ABC ∴∆∆∽,222439ACD ABC S AD S AC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 又28ACD S cm ∆=,218ABC S cm ∆∴=.【总结】本题考查相似三角形的判定及性质.例20.如图,在ABC ∆中,点D 、E 在AB 、AC 上,DE //BC ,ADE ∆和四边形BCED 的面积相等,求AD :BD 的值.【答案】21+.ABCDABCD E【解析】解://DE BC ,ADE ABC ∴∆∆∽,2ADE ABC S AD S AB ∆∆⎛⎫∴= ⎪⎝⎭,ADE BCEDS S ∆=四边形,12ADE ABC S S ∆∆∴=,12AD AB ∴=,12121AD DB ∴==+−.【总结】本题考查相似三角形的判定及性质.例21.如图,在ABC ∆中,AD BC ⊥,BE AC ⊥,D 、E 分别为垂足.若60C ∠=︒,1CDE S ∆=,求四边形DEAB 的面积.【答案】3. 【解析】解:AD BC BE AC ⊥⊥,,90CDA BEC ∴∠=∠=.90CDA BEC ∴∠=∠=,CBE CAD ∴∆∆∽,CD CACE CB ∴=.90CDA BEC ∴∠=∠=,CBE CAD ∴∆∆∽,CD CACE CB ∴=,DCE ACB ∴∆∆∽,2DCE ACB S CD S CA ∆∆⎛⎫∴= ⎪⎝⎭,又60C ∠=, 30CBE CAD ∴∠=∠=,12CD CA =,14DCE ACB S S ∆∆∴=,13DCE BDEA S S ∆∴=四边形,1CDE S ∆=,3DEAB S ∴=四边形.【总结】本题考查相似三角形的性质及判定,直角三角形的性质等知识.例22.如图,Rt ABC ∆中,点D 是BC 延长线上一点,直线EF //BD 交AB 于点E , 交AC 于点G ,交AD 于点F ,若13AEG EBCG S S ∆=四边形,求CFAD的值.A B CDEF【答案】21.【解析】解://EF BD ,AEG AEC ∴∆∆∽,AE AFAB AD ∴=,2AEG ABC S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,13AEG EBCGS S ∆=四边形,14AEG ABC S S ∆∆∴=,12AE AF AB AD ∴==,Rt ABC ∆,90ACD ACB ∴∠=∠=,CF ∴是中线,12CF AD ∴=,12CF AD ∴=.【总结】本题考查相似三角形的性质,直角三角形的性质,三角形一边的平行线等知识.【过关检测】一、单选题1.(2022秋·上海浦东新·九年级校考期中)两个相似三角形的对应角平分线的比为1:4,则它们的周长比为( ) A .1:4 B .1:2C .1:16D .以上答案都不对【答案】A【分析】两个相似三角形的对应边的比,对应角平分线的比,对应中线的比,对应高线的比,周长的比都等于相似比.【详解】两个相似三角形的对应角平分线的比为1:4,∴两个相似三角形的相似比为1:4, ∴周长的比为1:4.ABCDEFG故选A .【点睛】本题考查相似三角形的性质,解题的关键是熟记相似三角形的性质并灵活运用.在ABC 的边,ABC 的面积是A .4B .8【答案】A【分析】过点A 作AH BC ⊥于H ,交GF 于M ,如图,先利用三角形面积公式计算出8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−,再证明AGF ABC ∽,则根据相似三角形的性质得方程,然后解关于x 的方程即可.【详解】解:如图,过点A 作AH BC ⊥于H ,交GF 于M ,∵ABC 的面积是32,8BC =, ∴2132BC AH ⋅=,∴8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−, ∵GF BC ∥,∴AGF ABC ∽, ∴GF AMBC AH = , 888x x −∴= ,解得∶4x =,即这个正方形的边长是4. 故选:A .【点睛】本题考查了相似三角形的判定与性质及正方形的性质,添加合适的辅助线是解题的关键. 3.(2022秋·上海嘉定·九年级校考期中)已知两个相似三角形的相似比为49:,那么它们的面积比为( ) A .23: B .818:C .49:D .1681:【答案】D【分析】根据相似三角形的面积比等于相似比的平方,即可得到答案.【详解】解:两个相似三角形的相似比为49:, ∴它们的面积比1618:故选D .【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题关键. 九年级统考期中)已知ABC 的三边长分别为,DEF 的一边长,如果这两个三角形相似,那么DEF 的另两边长可能是(【答案】B【分析】根据三边对应成比例的三角形相似,即可求得.注意DEF 中为5cm 边长的对应边可能是6cm 或7.5cm 或9cm ,所以有三种情况.【详解】解:设DEF 的另两边为cm,cm x y , 若DEF 中为5cm 边长的对应边为6cm , 则:567.59x y==,解得:254x =,152y =; 若DEF 中为5cm 边长的对应边为7.5cm ,则:57.569x y ==,解得:4x =,6y =;若DEF 中为5cm 边长的对应边为9cm , 则:5967.5x y ==,解得:103x =,256y =; 结合选项可得B 选项可选. 故选:B .【点睛】此题考查了相似三角形的判定:三边对应成比例的三角形相似.解此题的关键要注意DEF 中为5cm 边长的对应边不确定,答案不唯一,要仔细分析,小心别漏解.九年级上海市华东模范中学校考期中)如图,在ABC 中,:ADEABCSS为(A .3:5 【答案】C【分析】根据DE BC ∥可知ADEABC ,由:3:2AD DB =可知:3:5AD AB =,即相似比为3:5,再利用面积比是相似比的平方,即可判断求解. 【详解】解:∵DE BC ∥, ∴ADEABC ,∵:3:2AD DB =, ∴:3:5AD AB =,2239525ADE ABCSAD SAB ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 故选:C .【点睛】本题考查了相似三角形的判定与性质.用到的知识为:平行于三角形一边的直线与其他两边所截的三角形与原三角形相似,相似三角形对应边的比相等,都等于相似比,相似三角形面积的比等于相似比的平方.DEF 的最短边长为,那么DEF 的周长等于(126【答案】D【分析】由相似三角形的性质:周长的比等于相似比,求出相似比即可求得结果. 【详解】ABC DEF ∽,∴相似比为3193k ==,13ABC DEFC C∴=,33(356)42DEFABCCC ∴==⨯++=;故选:D .【点睛】本题考查了相似三角形的性质,掌握相似三角形周长的比等于相似比是关键.是ABC 的重心,四边形与ABC 面积的比值是(【答案】B【分析】连接DE ,根据三角形中位线定理以及中线的性质可得1,2DE BC DE BC =∥,12ABDABCS S =,12BDEABDSS =,从而得到ADE ACB △△∽,进而得到221112,34AED ABCSD E E D S B G C G BD CE ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭==,继而得到13DEGBDESS =,14ADEABCSS =,可得1116212DEGABCABCSS S =⨯=,再由ADEDEGAEGD S SS=+四边形,即可.【详解】解:如图,连接DE ,∵点G 是ABC 的重心,∴点D ,E 分别为,AC AB 的中点,∴1,2DE BC DE BC =∥,12ABDABCS S =,12BDEABDSS =,∴ADE ACB △△∽, ∴12DG EG DE BG CG BC ===, ∴221112,34AED ABCSD E E D S B G C G BD CE ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭==, ∴13DEGBDES S =,14ADE ABCSS =,∴111326DEGABDABDS S S =⨯=, ∴1116212DEG ABCABCSS S =⨯=,∴1114123ADEDEGABCABCABCAEGD S SS S S S =+=+=四边形,即四边形AEGD 与ABC 面积的比值是13.故选:B【点睛】本题主要考查了三角形的重心,相似三角形的判定和性质,三角形中位线定理,熟练掌握三角形的重心,相似三角形的判定和性质,三角形中位线定理是解题的关键. 二、填空题8.(2022秋·上海长宁·九年级校考期中)已知ABC 与DEF 相似,且ABC 与DEF 的面积比为1:4,若DEF 的周长为16,那么ABC 的周长等于________.【答案】8【分析】根据相似三角形的面积的比等于相似比的平方先求出ABC 与DEF 的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【详解】解:∵相似三角形ABC 与DEF 面积的比为1:4, ∴它们的相似比为1:2,∴ABC 与DEF 的周长比为1:2, ∵DEF 的周长为16, ∴ABC 的周长等于8, 故答案为:8.【点睛】本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.9.(2022秋·上海奉贤·九年级校联考期中)已知ABC ∽111A B C △,顶点A 、B 、C 分别与1A 、1B 、1C 对应,AB :113A B =:4,BE 、11B E 分别是它们的对应角平分线,则BE :11B E =______. 【答案】3:4【分析】根据相似三角形对应角平分线的比都等于相似比解答即可. 【详解】解:ABC ∽111A B C △,BE ∴:11B E AB =:113A B =:4,故答案为:3:4.【点睛】本题考查的是相似三角形的性质,掌握相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.10.(2022秋·上海浦东新·九年级校考期中)如图,DE BC ∥,:2:3AE EC =,则:OE OB =________.【答案】2:5【分析】根据:2:3AE EC =可求出:2:5AE AC =,再根据三角形相似的性质即可求解. 【详解】解:∵:2:3AE EC =,∴25AE AC =,∵DE BC ∥,∴25DE AE BC AC ==,且DEO CBO △∽△, ∴25OE DE OB CB ==, 故答案为:2:5.【点睛】本题主要考查比例的性质,相似三角形的性质,理解平行线的性质,相似三角形的性质是解题的关键.11.(2022秋·上海松江·九年级校考期中)已知ABC 和DEF 相似,对应边AB 与DE 之比为3:4,如果DEF 的周长为24,那么ABC 的周长是___________.【答案】18【分析】根据相似三角形的周长之比等于相似比得:3:4ABCDEFCC=,又因为DEF 的周长是24,再建立方程即可.【详解】解:∵ABC 和DEF 相似,对应边AB 与DE 之比为3:4, ∴:3:4ABCDEFCC=,∵DEF 的周长是24, ∴:243:4ABCC=∴ABC 的周长是18, 故答案为:18.【点睛】本题考查了相似三角形的性质,解题的关键是掌握相似三角形的周长之比等于相似比. 12.(2023·上海长宁·统考一模)如图,在ABC 中,90C ∠=︒,正方形EFGH 的边FG 在ABC 的边AB 上,顶点E 、H 分别在边AC 、BC 上,如果其面积为24,那么AF BG ⋅的值为______.【答案】24【分析】通过证明Rt Rt AFE HGB ∽,则AF BG EF HG ⨯=⨯,即可得到答案. 【详解】90C ∠=︒,正方形EFGH 的四个顶点在三角形的边上, 90A B ∴∠+∠=, 90B BHG ∠+∠=,Rt Rt AFE HGB ∴∽, =24AF BG EF HG ∴⨯=⨯.故答案为24.【点睛】本题主要涉及三角形相似的判定和相似三角形的性质应用,掌握相似三角形的判定和性质是解题的关键.,如果ABC 三边长分别是DEF 的两边长为【分析】根据相似三角形的性质列出比例式,代入数据即可求解.【详解】解:∵ABC DEF △△∽,∵ABC ,2,2,DEF 的两边长为1x∴21x ==,解得:x所以DEF ..【点睛】本题考查了相似三角形的性质,求出相似比是解题关键.14.(2022秋·上海宝山·九年级统考期中)已知111ABC A B C :△△,顶点A 、B 、C 分别与1A 、1B 、1C 对应,11:3:5AB A B =,E 、1E 分别是边AC 、11AC 的中点,如果1BE =,那么11B E 的长为________. 【答案】53/213【分析】根据相似三角形对应中线的比等于相似比列比例式求解即可.【详解】解答:解:∵11111:35ABC A B C AB A B =∽,:,∴对应中线BE 、11B E 的比值为35:,∴11135B E =::, ∴1153B E =. 故答案为:53.【点睛】本题考查了相似三角形的性质,相似三角形对应中线的比等于相似比. 15.(2022秋·上海杨浦·九年级统考期中)如果两个相似三角形的面积比为3:4,那么它们对应高之比为__________.2 【分析】根据相似三角形的性质,两个相似三角形的面积比等于相似比的平方,因为两个相似三角形的面积比为3:42;再结合两个相似三角形对应高的比等于相似比即可得到答案. 【详解】解:两个相似三角形的面积比为3:4,∴2,∴2,2.【点睛】本题考查相似三角形的性质应用,熟练掌握形式三角形面积比等于相似比的平方,相似三角形对应高的比等于相似比是解决问题的关键. 16.(2023·上海·一模)如果ABC ∽DEF ,且ABC 的三边长分别为3、4、5, DEF 的最短边长为6,那么DEF 的周长等于________.【答案】24【分析】先设DEF 的周长等于c ,再根据相似三角形周长的比等于相似比即可求出c 的值.【详解】解;设DEF 的周长等于l ,∵ABC ∽DEF ,ABC 的三边长分别为3、4、5,DEF 的最短边长为6, ∴33546c ++=,解得24c = .故答案为:24.【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比. 17.(2023·上海黄浦·统考一模)已知ABC 的三边长分别为2、3、4,DEF 与ABC 相似,且DEF 周长为54,那么DEF 的最短边的长是______.【答案】12 【分析】先计算出ABC 的周长,进而得出相似比为16∶,进而得出答案. 【详解】解:∵ABC 的三边长分别为2、3、4,∴ABC 的周长为:9∵DEF 与ABC 相似,且DEF 周长为54,∴ABC 与DEF 的周长比为95416=∶∶, ∴ABC 与DEF 的相似比为16∶, 设DEF 的最短边的长是x ,则:216x =∶∶,解得∶12x =.故答案为∶12.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.18.(2023·上海宝山·一模)已知一个三角形的三边之比为2:3:4,与它相似的另一个三角形ABC 的最小边长为4厘米,那么三角形ABC 的周长为 _____厘米.【答案】18【分析】相似三角形的对应边的比相等,因而与已知三角形相似的三角形的三边的比也是2:3:4,即可求得三角形的三边,从而求得周长.【详解】解:所求三角形的三边的比是2:3:4,设最短边是2x 厘米,则24=x ,解得2x =,因而另外两边的长是36x =厘米,48x =厘米.则三角形的周长是68418++=(厘米).故答案为:18.【点睛】本题考查了相似三角形的性质,相似三角形对应边的比相等,由此得到所求三角形的三边的比也是2:3:4,是解题关键. 19.(2022·上海·九年级专题练习)两个相似三角形的面积之比是 9:25, 其中较大的三角形一边上的高是 5 厘米, 那 么另一个三角形对应边上的高为_________厘米.【答案】3【分析】把面积之比转换成相似比,在通过比例求出高 【详解】∵两个三角形面积比为9:25∴两个三角形相似比为3:5设:另一三角形对应边上的高为x∴355x =,解得x=3 故答案为:3【点睛】本题考查相似比和面积比的应用,掌握他们的区别是本题关键. 20.(2023·上海徐汇·统考一模)如图,在Rt ABC △中,90C ∠=︒,2AC =,1BC =,正方形DEFG 内接于ABC ,点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长是______.【答案】【分析】过点C 作C M A B ⊥于点M ,交GF 于点N ,首先由勾股定理得出AB 的长,由面积法即可求出CM 的长,可证得CGF CAB ∽,再根据相似三角形的性质,即可得出答案.【详解】解:如图:过点C 作C M A B ⊥于点M ,交GF 于点N ,Rt ABC △中,90C ∠=︒,2AC =,1BC =,AB ∴,1122ABC S AC BC AB CM =⋅=⋅△,∴AC BC CM AB ⋅∴===, ∵正方形DEFG 内接于ABC ,GF EF MN ∴==,GF AB ∥,CGF CAB ∴△∽△,CN GF CM AB ∴=,EF −=,解得:EF =,故答案为:.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键. 21.(2023·上海虹口·校联考二模)如图,在ABC 中,点D 、E 分别在边BC AC 、上,ABE C ∠=∠,DE AB ∥,如果6AB =,9AC =,那么:BDE CDE S S △△的值是______.【答案】4:5【分析】根据已知证明ABE ACB ∽,得出4AE =,进而得出5EC =,根据DE AB ∥,根据平行线分线段成比例,得出45AE BD EC DC ==,即可求解. 【详解】解:∵BAE CAB ∠=∠,ABE C ∠=∠,∴ABE ACB ∽,∵6AB =,9AC =,∴AB AE AC AB =∴24AB AE AC ==,∴945EC AC AE =−=−=,∵DE AB ∥,∴45AE BD EC DC == ∴:BDE CDE S S △△=::4:5BD DC AE EC ==,故答案为:4:5.【点睛】本题考查了相似三角形的性质与判定,平行线分线段成比例,熟练掌握相似三角形的性质与判定是解题的关键.22.(2023·上海·一模)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为______.【答案】8+8【分析】根据 “优美梯形”的定义,得到ABD BDC ∽△△,从而得到90CBD BAD ∠=∠=︒,AD AB BD BC BD CD ==,推出2BD AB CD =⋅,算出BD =再根据勾股定理,得到AD 、BC 的长,即可得到该直角梯形的周长.【详解】解:根据题意,作图如下,ABCD 为直角梯形,90BAD ADC ∴∠=∠=︒,90ABD ADB ∴∠+∠=︒,90ADB BDC ∠+∠=︒,ABD BDC ∴∠=∠,直角梯形ABCD 是“优美梯形”,ABD BDC ∴∽,90CBD BAD ∴∠=∠=︒,AD AB BD BC BD CD ==,2BD AB CD ∴=⋅,2AB =,4CD =,BD ∴,在Rt ABD 中,2AD ,在Rt BCD △中,BC =∴该梯形的周长2428AB BC CD DA =+++=++=+故答案为:8+【点睛】本题考查了直角梯形的性质,相似三角形的性质,勾股定理,熟练掌握相似三角形的性质是解题关键. 23.(2022秋·上海奉贤·九年级校联考期中)如图,在梯形ABCD 中,AD BC ∥,AC 与BD 相交于点O ,如果2ABC ACD S S =,那么COD S △:ABC S =______.【答案】1:3/13【分析】首先根据2ABC ACD S S =,可得AD :1BC =:2;然后根据AOD ∴∽COB ,可得AO :OC OD =:OB AD =:1BC =:2,进而可得AOD S:1BOC S =:4,AOD S :1AOB S =:2,AOD S :1OCD S =△:2,设AOD S k =,分别表达OCD S 和ABC S 进而可得结论.【详解】解:在梯形ABCD 中,//AD BC ,2ABC ACD S S =,AD ∴:1BC =:2;//AD BC ,AOD ∴∽COB ,AO ∴:OC OD =:OB AD =:1BC =:2,AOD S∴:1BOC S =:4,AOD S :1AOB S =:2,AOD S :1OCD S =△:2, 设AOD S k=,则4BOC S k =,2AOB OCD S S k ==, 6ABC AOB BOCS S S k ∴=+=, COD S ∴:2ABC S k =:61k =:3.故答案为:1:3.【点睛】此题主要考查了相似三角形的判定与性质的应用,以及梯形的特征和应用,要熟练掌握.三、解答题24.(上海·九年级校考阶段练习)如图,已知梯形ABCD ,AB ∥DC ,△AOB 的面积等于9,△AOD 的面积等于6,AB =7,求CD 的长.【答案】143【详解】试题分析:由题意易得△COD ∽△AOB ,由此可得:CD DO AB BO =;由△AOB 的面积等于9,△AOD 的面积等于6,可得:23DO BO =,再结合AB=7即可求得CD 的长.试题解析:∵AB ∥DC ,∴△COD ∽△AOB , ∴CD DO AB BO =,∵△AOB 的面积等于9,△AOD 的面积等于6, ∴23DO BO =, ∴23CD DO AB BO ==, 又∵AB =7, ∴273CD =, ∴CD =143.【答案】20平方厘米【分析】根据两个相似三角形的面积比等于对应边的比的平方,结合面积和即可求解.【详解】解:设两个三角形的面积分别为x ,y ,则有22365x y x y ⎧⎛⎫=⎪ ⎪⎨⎝⎭⎪+=⎩,解得2045x y =⎧⎨=⎩;答:较小三角形面积为20平方厘米.【点睛】本题考查的是相似三角形的性质,解题的关键是掌握相似三角形的面积比等于对应边的比的平方.26.(2020秋·上海宝山·九年级统考阶段练习)如图,正方形DEFG 的边EF 在ABC ∆的边上,顶点D 、G 分别在边AB 、AC 上,已知ABC ∆的边15BC =,高10AH =,求:正方形DEFG 的边长和面积.【答案】6,36【分析】由正方形的性质可得DG //BC ,不难证明ADG △∽ABC ,即DG AM BC AH =,设正方形的边长为x ,分别表示出对应边的长度并代入DG AM BC AH =求解,即可得出正方形的边长,即可得出正方形的面积. 【详解】设正方形的边长为x ,正方形DEFH ,AH ⊥BC ,∴DG=GF=MH=x ,DG //BC ,∴ADG=B ∠∠,AM=10-x ,在ADG △与ABC 中,ADG=BAC BAC B ∠=∠⎧⎨∠∠⎩,∴ADG △∽ABC ,∴DG AM BC AH =,∴101510x x −=, 解得:x=6,S=6×6=36.答:正方形的边长为6,面积为36.【点睛】本题主要考查正方形的性质以及相似三角形的判定与性质,设正方形的边长为x ,根据相似比等于高之比列方程求解是解题关键.27.(上海·九年级阶段练习)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.【答案】48mm【分析】设正方形EF=EG=ID=x,根据正方形的性质,得到EF∥BC,△AEF∽△ABC,列出比例式EF AIBC AD=,代入计算即可.【详解】∵四边形EFHG是正方形,AD是高,∴ EF∥BC,四边形EGDI是矩形,∴ EG=ID,设正方形EF=EG=ID=x,∴△AEF∽△ABC,∴EF AI BC AD=,∵ BC=120mm,高AD=80mm,∴80 12080x x−=,解得x=48,故正方形的边长为48mm.【点睛】本题考查了正方形的性质,三角形相似的判定和性质,熟练掌握三角形相似的性质是解题的关键.。
相似三角形中的“A”字模型(4种题型)-2023新九年级数学核心知识点与常见题型(沪教版)(解析版)
重难点专项突破:相似三角形中的“A”字模型(4种题型)【知识梳理】【考点剖析】题型一:直接利用“A”字模型解题例1.如图,E是▱ABCD的边BA延长线上一点,CE与AD相交于点F,AE=1,AB=2,BC=3,那么AF=.【分析】利用A字模型相似三角形进行计算即可解答.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠B,∠EFA=∠ECB,∴△EAF∽△EBC,∴EAEB =AFBC,∴13=AF3,∴AF=1,故答案为:1.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握A字模型相似三角形是解题的关键.例2.(2022秋•静安区期末)在△ABC中,AB=6,AC=5,点D、E分别在边AB、AC上,当AD=4,∠ADE=∠C时,=.【分析】首先判定△ADE∽△ACB,然后利用该相似三角形的对应边成比例解答.【解答】解:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△ACB.∴=.∵AC=5,AD=4,∴=.故答案为:.【点评】本题考查的是相似三角形的判定与性质,相似三角形是相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.题型二:添加辅助线构造“A”字模型解题例3.如图,在△ABC中,∠C=90°,BC=2,AB=2√5,点D在边AC上,CD:AD=1:3,联结BD,点E 在线段BD上,如果∠BCE=∠A,那么CE=.【分析】根据已知∠BCE=∠A,想到构造这两个角所在的三角形相似,所以过点E作EF⊥BC,垂足为F,可得△ABC∽△CEF,进而可得CF=2EF,然后设EF为a,则CF为2a,BF为2﹣2a,最后再证明A字模型相似△BFE∽△BCD,从而解答即可.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB =90°,BC =2,AB =2√5,∴AC =√AC 2−BC 2=√(2√5)2−22=4,∵CD :AD =1:3,∴CD =1,∵∠BCE =∠A ,∠ACB =∠CFE =90°,∴△ABC ∽△CEF ,∴AC BC =CF EF =42=2,∴设EF 为a ,则CF 为2a ,BF 为2﹣2a ,∵∠ACB =∠BFE =90°,∠CBD =∠FBE ,∴△BFE ∽△BCD ,∴BF BC =EF CD ,∴2−2a 2=a 1, ∴a =12,∴EF =12,CF =1,∴CE =√EF 2+CF 2=√(12)2+12=√52, 故答案为:√52.【点评】本题考查了相似三角形的判定与性质,勾股定理,熟练掌握A 字模型相似是解题的关键. 例4. 如图,已知ABC ∆中,AD 、BE 相交于G ,:3:1BD DC =,:1:2AG GD =.求:BG GE 的值.【答案】11.【解析】点G 作//GM BC 交AC 于点M .//GM BC ∴AG GM AD CD =,EG GM EB CB =;:1:2AG GD =, ∴13AG GM AD CD ==,:3:1BD DC =,∴14DC BC =,∴112GM BC =, ∴112GE EB =,∴:BG GE 的值为11.【总结】本题考查了三角形一边的平行线知识,要学会构造平行基本模型.例5.如图,在ABC ∆中,点D 在线段BC 上,75BAD ∠=︒,30CAD ∠=︒,AD = 2,BD = 2DC ,求AC 的长.【答案】3.【解析】过点D 作//DM AB 交AC 于点M .//DM AB, ∴75BAD ADM ∠=∠=;又180ADM AMD DAM ∠+∠+∠=,30CAD ∠=∴75AMD∠=,∴AMD ADM∠=∠,∴2AD AM==.//DM AB,∴AM BDAC BC=.又2BD DC=,∴23BD AMBC AC==.∴3AC=.【总结】本题考查了三角形一边的平行线及等腰三角形的相关知识.题型三:“AX”字型解题例6.如图,ABC∆中,//DE BC,3AE=,4DE=,2DF=,5CF=,求EC的长.【答案】92EC=.【解析】//DE BC,25DE DF AEBC CF AC∴===,即3235EC=+,求得:92EC=.【总结】相似三角形中“A”字型和“X”字型的综合应用,可得到相等比例关系式.例7.如图,在梯形ABCD中,//AD BC,对角线AC、BD交于点O,点E在AB上,且//EO BC,已知3AD=,6BC=.求EO的长.【答案】2. 【解析】由//AD BC ,可得:3162AO AD CO BC ===,故13AO AC =,由//EO BC ,13EO AO BC AC ==,求得2EO =.【总结】相似三角形中“A ”字型和“X ”字型的综合应用,可得到相等比例关系式.题型四:双A 字模型例8.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD , 垂足为F .求证:111AB CD EF+=.【解析】AB ⊥BD ,CD ⊥BD ,EF ⊥BD ,∴////AB CD EF∴EF DF AB DB =,EF BF CD DB = ∴1EF EF AB DC +=,即111AB CD EF +=.【总结】本题考查了三角形一边的平行线知识的应用.【过关检测】一.选择题(共3小题)1.(2023•嘉定区二模)如图,已知点D 、E 分别在△ABC 的边AB 、AC 上,DE ∥BC ,AD :DB =1:3,那么S △DEC :S △DBC 等于( )AB CDEFA.1:2B.1:3C.2:3D.1:4【分析】根据题意可得AD:AB=1:4,再证明△ADE∽△ABC,得,即BC=4DE,根据平行线间的距离处处相等可得C到DE的距离为等于点D到BC的距离,以此即可求解.【解答】解:∵AD:DB=1:3,∴AD:AB=1:4,∵DE∥BC,∴△ADE∽△ABC,∴,∴BC=4DE,设点C到DE的距离为h1,点D到BC的距离为h2,∵DE∥BC,∴h1=h2,∴,即S△DEC:S△DBC=1:4.故选:D.【点评】本题主要考查平行线的性质、相似三角形的判定与性质,灵活运用相关知识解决问题是解题关键.2.(2022秋•徐汇区期末)如图,在△ABC中,DE∥FG∥BC,AD:AF:AB=1:2:5,则S△ADE:S四边形DEGF:S四边形FGCB=()A.1:2:5B.1:4:25C.1:3:25D.1:3:21【分析】由DE∥FG∥BC,可得△ADE∽△AFG∽△ABC,又由AD:AF:AB=1:2:5,利用相似三角形的面积比等于相似比的平方,即可求得S△ADE:S△AFG:S△ABC=1:4:25,然后设△ADE的面积是a,则△AFG和△ABC的面积分别是3a,21a,即可求两个梯形的面积,继而求得答案.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴AD:AF:AB=1:2:5,∴S△ADE:S△AFG:S△ABC=1:4:25,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,25a,则S四边形DFGE=S△AFG﹣S△ADE=3a,S四边形FBCG=S△ABC﹣S△AFG=21a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:21.故选:D.【点评】此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是掌握相似三角形面积的比等于相似比的平方.3.(2022秋•奉贤区期中)在△ABC中,点D、E在边AB、AC上,,要使DE∥BC,可添加下列条件中的()A.B.C.D.【分析】先求出比例式,再根据相似三角形的判定得出△ADE∽△ABC,根据相似推出∠ADE=∠B,根据平行线的判定得出即可【解答】解:只有选项D正确,理由是:∵AD:BD=3:2,∴AD:AB=3:5,∴AE:AC=3:5,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、C的条件都不能推出DE∥BC,故选:D.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.二.填空题(共13小题)4.(2023春•普陀区期中)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、DC上的点,EF∥BC,如果,AD=4,BC=9,那么EF的长为.【分析】延长BA,与CD的延长线交于点G,易证明△GAD∽△GBC,得到,进而得到,再证明△GEF∽△GBC,利用相似三角形的性质即可解答.【解答】解:延长BA,与CD的延长线交于点G,如图,∵AD∥BC,AD=4,BC=9,∴△GAD∽△GBC,∴,∵,∴,,∵EF∥BC,∴△GEF∽△GBC,∴,∵BC=9,∴EF=6.故答案为:6.【点评】本题主要考查相似三角形的判定与性质,熟知相似三角形的对应边成比例是解题关键.5.(2023•普陀区一模)如图,△ABC中的一边BC与双边平行且单位相同的刻度尺的一边重合,边AB、AC 分别与刻度尺的另一边交于点D、E,点B、C、D、E在刻度尺上的读数分别为0、5、1、3,如果刻度尺的宽度为3,那么△ABC的面积是.【分析】过点A作AF⊥DE,垂足为G,并延长AG交BC于点H,根据题意得:DE=2,BC=5,GH=3,DE ∥BC,从而可得∠ADE=∠ABC,∠AED=∠ACB,然后证明A字模型相似三角形△ADE∽△ABC,从而利用相似三角形的性质求出AH的长,最后利用三角形的面积公式进行计算,即可解答.【解答】解:过点A作AF⊥DE,垂足为G,并延长AG交BC于点H,由题意得:DE=2,BC=5,GH=3,DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴=,∴=,解得:AH=5,∴△ABC的面积=BC•AH=×5×5=,故答案为:.【点评】本题考查了相似三角形的判定与性质,三角形的面积,平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.6.(2023•静安区校级一模)在△ABC中,AB=6,AC=5,点D、E分别在边AB、AC上,当AD=4,∠ADE=∠C时,=.【分析】首先判定△ADE∽△ACB,然后利用该相似三角形的对应边成比例解答.【解答】解:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△ACB.∴=.∵AC=5,AD=4,∴=.故答案为:.【点评】本题考查的是相似三角形的判定与性质,相似三角形是相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.7.(2023•青浦区一模)如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,DE∥BC,EF∥AB,CF=3BF.如果S△ADE=1,那么S四边形DBCE=.【分析】根据题意可得,四边形DEFB为平行四边形,则,易证明△ADE∽△ABC,根据相似三角形的性质得,以此求出S△ABC=16,由S四边形DBCE=S△ABC﹣S△ADE 即可解答.【解答】解:∵CF=3BF,∴,∵DE∥BC,EF∥AB,∴四边形DEFB为平行四边形,∴DE=BF,△ADE∽△ABC,∴,∴,∵S△ADE=1,∴S△ABC=16,∴S四边形DBCE=S△ABC﹣S△ADE=15.故答案为:15.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解题关键.8.(2022秋•黄浦区期中)如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则S△DMN:S四边形DBCM=.【分析】由DE为三角形ABC的中位线,利用中位线定理得到DE平行于BC,且DE等于BC的一半,再由M 为DE的中点,得到DM为DE的一半,可得出DM为BC的四分之一,由DM与BC平行,得到两对同位角相等,进而确定出三角形DMN与三角形NBC相似,由相似三角形面积之比等于相似比的平方,求出三角形DMN与三角形NBC面积之比,即可求出四边形DBCM与三角形DMN的面积之比.【解答】解:∵DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠NDM=∠B,∠NMD=∠NCB,∴△NDM∽△NBC,∵M为DE的中点,∴DM=DE=BC,即相似比为1:4,∴S△NDM:S△NBC=1:16,则S△DMN:S四边形DBCM=1:15.故答案为:1:15.【点评】此题考查了相似三角形的判定与性质,以及三角形的中位线定理,熟练掌握相似三角形的判定与性质是解本题的关键.9.(2022秋•宝山区期中)在梯形ABCD中,AD∥BC,AD=2,BC=5,点E、F分别在边AB、CD上,且EF∥BC,如果AE:EB=2:1,那么EF的长为.【分析】连接AC交EF于点P,先利用平行线分线段成比例定理求出、,再利用相似三角形的性质求出EP、FP EF.【解答】解:如图,连接AC交EF于点P.∵AD∥BC,EF∥BC,∴AD∥EF∥BC.∴==.∴=,=.∵AD∥EF∥BC,∴△AEP∽△ABC,△CFP∽△CDA.∴==,==.∵AD=2,BC=5,∴EP=,PF=.∵EF=EP+PF=+=4.故答案为:4.【点评】本题主要考查了相似三角形的性质和判定,掌握“平行线分线段成比例定理”、相似三角形的判定和性质是解决本题的关键.10.(2022秋•嘉定区期中)如图,AD∥BC∥EF,AE:AB=2:3,AD=8,BC=14则EF=.【分析】过点A作AH∥DC,交EF于点G,利用平行四边形的判定可得四边形AGFD和四边形AHCD都是平行四边形,从而可得AD=GF=8,AD=CH=8,进而可得BH=6,然后证明A字模型相似三角形△AEG∽△ABH,从而利用相似三角形的性质可得EG=4,最后进行计算即可解答.【解答】解:过点A作AH∥DC,交EF于点G,∵AD∥BC∥EF,∴四边形AGFD是平行四边形,四边形AHCD是平行四边形,∴AD=GF=8,AD=CH=8,∵BC=14,∴BH=BC﹣CH=6,∵EG∥BH,∴∠AEG=∠B,∠AGE=∠AHB,∴△AEG∽△ABH,∴=,∴=,∴EG=4,∴EF=EG+FG=4+8=12,故答案为:12.【点评】本题考查了相似三角形的判定与性质,平行四边形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.11.(2022秋•浦东新区期中)如图、在△ABC,CD平分∠ACB,DE∥BC,AD=2,BD=3,BC=5,则CE =.【分析】根据平行线的性质可得∠ADE=∠B,∠AED=∠C,从而可得△ADE∽△ABC,然后利用相似三角形的性质进行计算可得DE=2,最后再根据角平分线的定义和平行线的性质可得△EDC是等腰三角形,即可解答.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∴=,∴DE=2,∵DE∥BC,∴∠EDC=∠DCB,∵CD平分∠ACB,∴∠DCB=∠ACD,∴∠EDC=∠ACD,∴ED=EC=2,故答案为:2.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,平行线的性质,熟练掌握根据角平分线的定义和平行线的性质可得等腰三角形是解题的关键.12.(2022秋•徐汇区校级月考)如图,AM:MB=AN:NC=1:3,则MN:BC=.【分析】首先根据已知条件可以证明MN∥BC,然后证明△AMN∽△ABC即可求解.【解答】解:∵AM:MB=AN:NC=1:3,∴MN∥BC,AM:AB=1:4,∴△AMN∽△ABC,∴MN:BC=AM:AB=1:4.故答案为:1:4.【点评】此题主要考查了相似三角形的性质与判定,熟练掌握相似三角形的性质是解题的关键.13.(2022秋•虹口区校级月考)如图,矩形DEFG为△ABC的内接矩形,点G,F分别在AB,AC上,AH 是BC边上的高,BC=10,AH=6,EF:GF=2:5,则矩形DEFG的面积为.【分析】据矩形的性质可得出GF∥BC,进而可得出△AGF∽△ABC,设EF=2x,则GF=5x,根据相似三角形的性质即可得出关于x的一元一次方程,解之即可得出x的值,再利用矩形的面积公式即可求出矩形DEFG 的面积.【解答】解:设EF=2x,则GF=5x.∵GF∥BC,AH⊥BC,∴AK⊥GF.∵GF∥BC,∴△AGF∽△ABC,∴=.∵AH=6,BC=12,∴=.解得x=.∴EF=,GF=6,∴矩形DEFG的面积为.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及解一元一次方程,根据相似三角形的性质列出关于x的一元一次方程是解题的关键.14.(2022春•青浦区校级期末)已知:如图,在△ABC中,AC=6,BC=8,AB=10,点D位于边AB上,过点D作边BC的平行线交边AC于点E,过点D作边AC的平行线交边BC于点F,设AE=x,四边形CEDF的面积为y,则y关于x的函数关系式是.(不必写定义域)【分析】根据已知可证四边形DECF是平行四边形,然后利用勾股定理的逆定理证明△ABC是直角三角形,从而可得∠C=90°,进而可得四边形DECF是矩形,再证明A字模型相似三角形△AED∽△ABC,从而利用相似三角形的性质可得DE=x,最后根据矩形的面积公式进行计算即可解答.【解答】解:∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,在△ABC中,AC=6,BC=8,AB=10,∵AC2+BC2=62+82=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴∠C=90°,∴四边形DECF是矩形,∵DE∥BC,∴∠AED=∠C=90°,∵∠A=∠A,∴△AED∽△ABC,∴=,∴=,∴DE=x,∴矩形CEDF的面积=DE•CE,∴y=x(6﹣x)=﹣x2+8x,故答案为:y=﹣x2+8x.【点评】本题考查了相似三角形的判定与性质,勾股定理的逆定理,函数关系式,熟练掌握A字模型相似三角形是解题的关键.15.(2021秋•金山区期末)如图,E是▱ABCD的边BA延长线上一点,CE与AD相交于点F,AE=1,AB =2,BC=3,那么AF=.【分析】利用A字模型相似三角形进行计算即可解答.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠B,∠EFA=∠ECB,∴△EAF∽△EBC,∴=,∴=,∴AF=1,故答案为:1.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握A字模型相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【分析】根据已知∠BCE=∠A,想到构造这两个角所在的三角形相似,所以过点E作EF⊥BC,垂足为F,可得△ABC∽△CEF,进而可得CF=2EF,然后设EF为a,则CF为2a,BF为2﹣2a,最后再证明A字模型相似△BFE∽△BCD,从而解答即可.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.【点评】本题考查了相似三角形的判定与性质,勾股定理,熟练掌握A字模型相似是解题的关键.三.解答题(共5小题)17.(2022秋•奉贤区期中)如图,已知在四边形ABCD中,AD∥BC.E为边CB延长线上一点,联结DE 交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AE2=AG•AC,求证:=.【分析】(1)由AD∥BC,得到△ADG∽△CEG,根据相似三角形的性质即可得到结论;(2)由AE2=AG•AC易得△AEG∽△ACE,所以∠AEG=∠ACE=∠DAG,可得△ADG∽△EDA,再根据相似三角形的性质可得结论.【解答】证明:(1)∵AD∥BC,∴△ADG∽△CEG,∴=,∵=,∴=,∴AB∥CD;(2)∵AE2=AG•AC,∴=,∵∠EAG=∠CAE,∴△AEG∽△ACE,∴∠AEG=∠ACE,∵AD∥BC,∴∠ACE=∠DAG,∴∠DAG=∠AEG,∵∠ADG=∠EDA,∴△ADG∽△EDA,∴,即=.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.18.(2022秋•杨浦区期中)如图,点D、E分别在△ABC的边AB、AC上,DE∥BC.如果S△ADE=2,S△BCE=7.5.求S△BDE.【分析】设S△BDE=x,则可得出△ABE△BCE的面积之比,再将x的值代入即可得出答案;【解答】解:(1)设S△BDE=x.∴=,∴=.∵DE∥BC,∴=,∵S△ADE=2,S△BCE=7.5,∴=,解得:x1=﹣5(舍),x2=3.∴S△BDE=3.【点评】本题考查了平行线分线段成比例定理以及分式方程的应用,难度较大.19.(2022秋•奉贤区期中)如图,在△ABC中,点D在边AB上,点F、E在边AC上,且DF∥BE,.(1)求证:DE∥BC;(2)如果=,S△ABC=12,求S△ADE的值.【分析】(1)由DF∥BE得比例,结合已知比例,利用过渡比得出=,证明结论;(2)首先可以证明=,然后证明△ADE∽△ABC,最后利用相似三角形的面积比等于相似比的平方求解.【解答】(1)证明:∵DF∥BE,∴=,∵=,∴=,∴DE∥BC;(2)解:∵=,∴=,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∵S△ABC=12,∴S△ADE=.【点评】本题考查了相似三角形的判定与性质,平行线的性质,平行线分线段成比例.关键是利用平行线得出相似三角形及比例,利用相似三角形的面积比等于相似比的平方解题.20.(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,易证△AEF∽△DCF,则=,由DF =2AF即可求解;(2)先算出,再根据即可求解.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.【点评】本题主要考查相似三角形的判定与性质、平行四边形的性质、平面向量,熟练掌握平面向量的运算法则是解题关键.21.(2021秋•普陀区期末)如图,在△ABC中,边BC上的高AD=2,tan B=2,直线l平行于BC,分别交线段AB,AC,AD于点E、F、G,直线l与直线BC之间的距离为m.(1)当EF=CD=3时,求m的值;(2)将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,延长EP交线段CD于点Q.①当点P恰好为△ABC的重心时,求此时CQ的长;②联结BP,在∠CBP>∠BAD的条件下,如果△BPQ与△AEF相似,试用m的代数式表示线段CD的长.【分析】(1)根据=tanB=2,可得:BD=1,再由EF=CD=3,DG=m,可得:BC=4,AG=2﹣m,利用EF∥BC,可得=,建立方程求解即可;(2)①由翻折可得:BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,进而得出:AG=,推出DP=GP,再由EF∥BC,可得出EG=,利用ASA证明△PQD≌△PEG,即可求得答案;②分两种情况:Ⅰ.当△BPQ∽△FAE时,由△FAE∽△CAB,推出△BPQ∽△CAB,建立方程求解即可;Ⅱ.当△BPQ∽△AFE时,由△AFE∽△ACB,推出△BPQ∽△ACB,建立方程求解即可.【解答】解:(1)如图1,在△ABC中,边BC上的高AD=2,tanB=2,∴=tanB=2,∴BD=1,∵EF=CD=3,DG=m,∴BC=BD+CD=4,AG=AD﹣DG=2﹣m,∵EF∥BC,∴=,即=,解得:m=,∴m的值为;(2)①如图2,∵将△AEF沿着EF翻折,点A落在△ABC的重心点P处,∴BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,∴AG=GP=AP=,∴DP=GP,∵EF∥BC,∴∠PGE=∠PDQ=90°,△AEG∽△ABD,∴=,即=,∴EG=,在△PQD和△PEG中,,∴△PQD≌△PEG(ASA),∴DQ=EG=,∴CQ=CD﹣DQ=1﹣=,∴此时CQ的长为;②在Rt△ABD中,AB==,∵将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,∴∠PBQ<∠ABD,∵EF∥BC,∴∠AEF=∠ABD,∴∠PBQ<∠AEF,∵∠CBP>∠BAD,∴∠BAD<∠PBQ<∠AEF,∵GP=AG=2﹣m,DG=m,∴DP=DG﹣GP=m﹣(2﹣m)=2m﹣2,∴m>1,∴1<m<2,∵∠AEF=∠ABD,∴=tan∠AEF=tan∠ABD=2,∴=2,∴EG=,∵EF∥BC,∴△PEG∽△PQD,∴=,即=,∴DQ=m﹣1,∴BQ=BD+DQ=m,∵∠AEF=∠PEG=∠BQP,∠PBQ<∠AEF,∴△BPQ与△AEF相似,则△BPQ∽△FAE或△BPQ∽△AFE,Ⅰ.当△BPQ∽△FAE时,∵△FAE∽△CAB,∴△BPQ∽△CAB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=;Ⅱ.当△BPQ∽△AFE时,∵△AFE∽△ACB,∴△BPQ∽△ACB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=,综上,线段CD的长为或.【点评】本题考查了全等三角形判定和性质,相似三角形的判定和性质,勾股定理,三角函数,翻转变换的性质等,熟练掌握全等三角形判定和性质、相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想思考解决问题是解题关键.22.(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【分析】(1)利用平行线的性质证明∠ADB =∠DBC ,然后利用已知条件可以证明△ADE ∽△DBC ,由此即可解决问题;(2)利用(1)的结论和已知条件可以证明△DEF ∽△DBC ,接着利用相似三角形的在即可求解.【解答】证明:(1)∵AD ∥BC ,∴∠ADB =∠DBC ,又∵∠EAD =∠BDC ,∴△ADE ∽△DBC ,∴AE :AD =DC :BD ,∴AE •BD =AD •DC ;(2)∵AE :AD =DC :BD ,且,∴=, 而∠EDF =∠BDC ,∴△DEF ∽△DBC ,∴∠DEF =∠DBC ,∴EF ∥BC .【点评】此题主要考查了相似三角形的性质与判定,同时也利用了平行线的性质,比例的基本性质,有一定的综合性.23.如图,在平行四边形ABCD 中,E 是AD 上一点,CE 与BD 相交于点O ,CE 与BA 的延长线相交于点G ,已知2DE AE =,10CE =,求GE 和CO 的长.【答案】56GE CO ==,. 【解析】四边形ABCD 是平行四边形,//AD BC AD BC ∴=,.又2DE AE =,13GE AE AE GC BC AD ∴===,23EO DE OC BC ==, 即13GE GE EC =+,23EC CO CO −=, 代入即可求得56GE CO ==,.【总结】考查利用三角形一边平行线的性质构造“A ”字型和“X ”字型,进行比例线段的综合应用.24.如图,在ABC ∆中,设D 、E 是AB 、AC 上的两点,且BD CE =,延长DE 交BC 的延长线于点F ,:3:5AB AC =,12cm EF =,求DF 的长.【答案】20cm .【解析】过点D 作//DH AC 交BC 于H ,则有35BD AB DH AC ==,又BD CE =, 则有35CE DH =,由//CE DH , 得35EF CE DF DH ==,代入计算得:125320DF cm =⨯÷=. 【总结】作平行线,构造出与所求线段相关的“A ”字型或“X ”字型,比例转化.25.如图,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,且:3:2AD DB =,:1:2AE EC =,直线ED和CB 的延长线交于点F ,求:FB FC . FE DC B A【答案】1:3.【解析】过点B 作//BG FE 交AC 于G .根据三角形一边平行线的性质定理,可得:32AE AD EG DB ==,又:1:2AE EC =,故13EG EC =, 由//BG FE ,可得:::1:3FB FC EG EC ==.【总结】作平行线,构造出与所求线段相关的“A ”字型或“X ”字型,比例转化. G F EDCB A。
沪科版数学九年级上册《相似三角形的综合应用》教学设计1
沪科版数学九年级上册《相似三角形的综合应用》教学设计1一. 教材分析《相似三角形的综合应用》是沪科版数学九年级上册的一章内容。
本章主要介绍了相似三角形的性质和判定方法,以及相似三角形在实际问题中的应用。
相似三角形是中学数学中的一个重要概念,它在几何学和其他学科中都有广泛的应用。
通过本章的学习,学生可以加深对相似三角形的理解,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了三角形的基本性质,对三角形的内角和、边长关系等有一定的了解。
然而,学生对于相似三角形的概念和相关性质可能还不够熟悉,需要通过本章的学习来进一步掌握。
此外,学生可能对于将相似三角形应用于实际问题中还存在一定的困难,需要通过实例分析和练习来提高。
三. 说教学目标1.知识与技能目标:学生能够掌握相似三角形的性质和判定方法,并能够应用于实际问题中。
2.过程与方法目标:学生能够通过观察、分析和推理等方法,探索相似三角形的性质,培养解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,与同伴合作解决问题,培养团队合作精神。
四. 说教学重难点1.教学重点:相似三角形的性质和判定方法。
2.教学难点:相似三角形在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过引导学生观察、分析和推理等思维活动,探索相似三角形的性质。
2.教学手段:利用多媒体课件和实物模型等辅助教学,帮助学生直观地理解相似三角形的概念和性质。
六. 说教学过程1.引入新课:通过展示一些实际问题,引发学生对相似三角形的思考,激发学生的学习兴趣。
2.探究相似三角形的性质:引导学生观察和分析一些几何图形,引导学生通过推理得出相似三角形的性质。
3.应用相似三角形的性质:通过一些实际问题,让学生运用相似三角形的性质解决问题,巩固所学知识。
4.总结与拓展:引导学生总结本节课所学的知识,并给出一些拓展问题,激发学生的进一步学习兴趣。
七. 说板书设计板书设计要简洁明了,突出相似三角形的性质和判定方法。
沪科版九年级数学上册期末综合检测试卷(含答案解析)
沪科版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知函数(为常数)图象经过点,,,则有( )A. B. C. D.2.下列函数中,y是x的反比例函数的为()A. y=2x+1B. y=C. y=D. 2y=x3.将抛物线y=3x2先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是()A. y=3(x+2)2+1B. y=3(x+2)2-1C. y=3(x-2)2+1D. y=3(x-2)2-14.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )A. B. C. D.5.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.6.如图,D、E分别是△ABC的边AB、AC上的点,,则△AED与△ABC的面积比是()A.1:2B.1:3C.1:4D.4:97.如图,在菱形ABCD中,DE⊥AB,cosA= ,AE=6,则tan∠BDE的值是( )A. B. C. D.8.若,则=()A. B. C. D.9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个10.如图,在△ABC中,∠C=90°,∠A=30°,D为AB上一点,且AD:DB=1:3,DE⊥AC于点E,连接BE,则tan∠CBE的值等于()A. B. C. D.二、填空题(共10题;共30分)11.若点C是线段AB的黄金分割点,AB=20cm,则AC的长约是________.(精确到0.1cm)12.两个三角形相似,相似比是,如果小三角形的面积是9,那么大三角形的面积是________.13.已知三角形的一边长为x,这条边上的高为x的2倍少1,则三角形的面积y与x之间的关系为________.14.抛物线的部分图象如图所示,则当y<0时,x的取值范围是________.15.如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2= 上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________.16.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于________17.如图,在菱形纸片ABCD中,,∠,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点,分别在边,上,则∠的值为________ .18.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0,),C(4,0),其对称轴与x轴交于点D,若P为y轴上的一个动点,连接PD,则的最小值为________.19.在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y= (m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为________.20.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知=,若DF =10,则DE=________.三、解答题(共7题;共60分)21.计算:°22.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1.(1)在图上标出位似中心D的位置,并写出该位似中心D的坐标是;(2)求△ABC与△A′B′C′的面积比.23.如图,一艘海轮位于灯塔P的南偏东60º方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45º方向上的B处.(参考数据)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.24.如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D 处的仰角为°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:,.结果精确到0.1米)25.如图,已知D、E分别是△ABC的边AC、AB上的点,若∠A=35°,∠C=85°,∠ADE=60°.(1)请说明:△ADE∽△ABC;(2)若AD=8,AE=6,BE=10,求AC的长.26.小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?27.如图,在平面直角坐标系中,△CDE的顶点C点坐标为C(1,﹣2),点D的横坐标为,将△CDE 绕点C旋转到△CBO,点D的对应点B在x轴的另一个交点为点A.(1)图中,∠OCE等于多少;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使S△PAE=S△CDE?若存在,直接写出点P的坐标;若不存在,请说明理由.答案解析部分一、单选题1.【答案】B【考点】二次函数图象上点的坐标特征【解析】【解答】当x=0时,当x=3时, ;当x=6时,∵k<k+9<k+72,故答案为:B.【分析】分别将x=0,x=3,x=6代入函数y=3x2−6x+k,算出对应的函数值,即可比较大小。
2024年9月安徽省宣城市小升初数学必刷精品应用题模拟卷三含答案解析
2024年9月安徽省宣城市小升初数学必刷精品应用题模拟卷三含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.把长168厘米的铁丝围成一个长方形,使宽比长少12厘米,长和宽各是多少厘米?2.植树节,老师带领我们去一条长度是350米的道路植树,如果路的两边每隔50米种一棵树,一共可以栽多少棵?3.妈妈给丫丫买了一件上衣和一条裤子,裤子的价格是x元,上衣的价格是裤子的3倍.(1)用式子表示上衣和裤子一共花了多少钱?(2)当x=140时,买上衣和裤子一共花了多少元?4.一辆汽车从甲地开往乙地,第一小时行了全程的1/6,第二小时比第一小时多行了24千米,这时距离乙地还有116千米,甲乙两地间的公路长多少千米?5.一桶油用去一半后,连桶称重23千克,再用去一半后,连桶称重12千克,这个桶共装油多少千克?6.有700吨货物,每节车厢装82吨,需要几节车厢才能装完?7.“3.12”植树节同学们去植树,30人种了91棵,至少有1人要种多少棵树?8.汽车从甲地开往乙地,前4小时行平均每小时行38千米,后5小时共行了177.4千米,平均每小时行多少千米?9.甲乙两辆汽车分别从A、B两地同时相对开出,乙每小时行全程的1/10,甲比乙早1/3小时到达A、B两地的中点,当乙车到达中点时,甲车又继续向前行驶了26千米到达C点,A、B两地相距多少千米?10.六年级二班共有学生45人,其中女生有21人,再增加多少名女生,这时女生人数刚好是全班人数的1/2.11.养鸡场用2800个鸡蛋孵小鸡,结果有5%没有孵出来,孵出多少只小鸡?12.商店里出售的水杯有三种:不锈钢水杯,售价48元;钢化玻璃杯,售价32元;塑料水杯,售价16元.石老师打算买15只同样的水杯,他只带了500元,买哪一种合适?13.甲、乙两地相距632.5千米,客车与货车同时从甲、乙两地相对开出,5.5小时后相遇.已知客车平均每小时行65千米,货车平均每小时行多少千米?14.甲数是乙数的5/6,甲数与乙数的和是33,它们的最小公倍数是多少?15.甲、乙、丙三名同学的平均身高为1.48米,已知甲、乙两人的平均身高1.51米,则丙的身高为多少厘米.16.两地相距318千米,两辆汽车分别从两地同时相对开出.甲车每小时行49千米,乙车每小时行57千米.出发2小时后两车相距多少千米?17.学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,它占地多少平方米?需要挖出多少立方米的黄沙?18.玉华小学组织同学们去春游,共租车8辆,大巴车每车坐60人,中巴车每车坐40人,大巴车比中巴车上一共多坐了180人,大巴车和中巴车各有多少辆?19.一块长300米,宽200米的玉米地,共收玉米540000千克,平均每公顷收玉米多少千克?20.五年级同学向希望小学捐款.第一小队14人,共捐款76元;第二小队16人,共捐款80元;第三小队15人,共捐款78元.全班平均每人捐款多少元?21.工人们种了125棵树,只有8棵未成活,后又补种了8棵,全部成活.工人们种的这些树的成活率为多少?22.甲、乙两辆汽车同时从A,B两地相对开出,甲行驶到全程的7/12时与乙相遇.相遇后,乙车速度不变,继续以每小时40千米的速度前进,3.5小时后到达A地.(1)求A,B两地的路程.(2)若甲车以匀速行驶,求甲车的速度.23.甲、乙两车同时从A、B两城相对开出,甲车每小时行60千米,乙车每小时行59千米.两车相遇时,甲车多行8千米,求A、B两城的距离.24.甲、乙两辆车同时从相距860千米的两地出发,相向而行,甲车每小时行63千米,乙车每小时行48千米,5小时后两车相距多少千米?25.在六年级96名学生中调查会下中国象棋和国际象棋的人数,发现有24名同学两样都不会,有1/4的学生两样都会,有7/12的学生会下中国象棋,会下国际象棋的有多少名.26.工厂有工人132名,又招收了一些,现在有162名,工厂招收了工人多少名?(列出含未知数X的等式,再解答)27.李阿姨家承包了一块土地,去年收大豆45吨,今年比去年多收了二成,今年李阿姨家收大豆多少吨?28.一件工程,要求师徒二人4小时合作完成,若徒弟单独做,需要12小时完成,那么,师傅在4小时之内需要完成这件工程的几分之几?29.一个长方体油桶,高56厘米,底面是边长为30厘米的正方形,桶内盛有油的高度是50厘米,这个油桶盛了多少升油?30.公园路小学组织师生看电影,学生86人,教师24人,成人票每张10元,学生票每张5元,团体票每张6元,30人(含30人)以上可以购买团体票.请你设计一种最省钱的购票方案,并算出购票一共需多少钱?31.商店运来玩具车125辆,卖出74辆.(1)卖出的玩具车单价是115元/辆,共收入多少元?(2)剩下的按单价102元/辆卖,还能收入多少元?32.小明的爸爸6月份出差5天,这5天的日期之和是35,爸爸是在第5天回家的,请问小明的爸爸是几号回家的.33.修一段690米长的公路,已经修了150米.剩下的准备3天修完,平均每天修多少米?34.用2600千克的小麦,磨出面粉2184千克.小麦的出粉率是多少?35.一个长方形游泳池,长50米,宽25米.沿游泳池走一周是多少米?36.一共有96个学生,排成3个方阵做操,每个方阵站4列,平均每列有多少个学生.37.养鸡场一共养了120只鸡,其中公鸡是母鸡的25%,养鸡场养了公鸡和母鸡各多少只?38.某公司投资建设项目,实际投资60万元,比计划投资节省25%,节省了多少万元?39.机器厂要加工一批零件,计划25天完成.实际每天加工73个,不但提前4天完成了任务,还超额生产8个.原计划每天加工多少个?40.某工厂要加工一批零件,原计划每天加工160个零件,24天加工完.实际每天加工192个零件,照这样的效率多少天可以加工完?41.一辆大车和一辆小车去运大米.大车每车能运248袋,小车每车能运102袋.大车运了21次,小车运了36次把这批大米运完.这批大米共有多少袋?42.给一间教室铺地砖,原来用边长为0.4米的方砖铺需要275块.现在改用边长0.5米的方砖,需要多少块?43.一个三角形花地,在它的三条边上都种上月季花,并且每一个顶点种一棵,如果每边种8棵,一共种多少棵月季花.44.甲乙两车运沙子,乙车每趟比甲车多运0.3吨,甲车运8趟,乙车运5趟后,甲车比乙车多运12吨,甲车每趟运多少吨?45.新联小学组织同学参观东莞市科技馆,三年级同学男生有96人,女生有72人,每8人组成一个小组,这个级一共可以分多少个小组?46.甲、乙两车从相距480千米的两地相对开出,甲每小时行60千米,乙每小时行40千米,现在要使两车在两地间的中点相遇,乙必须先行几个小时.47.甲、乙两车同时从A、B两城出发,相向而行.经过一段时间后,甲车行了全程的2/3,乙车行了全程的45%,这时两车相距35千米.A、B两城相距多少千米?48.王老师带了71.2元去文具店,用29.2元买了3支钢笔,剩下的钱准备买7元一本的日记本.王老师可以买几本这样的日记本?49.甲乙两地相距1440千米,两辆汽车同时从两地相对开出,经过9小时两车相遇.其中一辆汽车每小时行79千米,另一辆汽车每小时行多少千米?50.商店里有大、中、小三种包装的同一种果汁:每瓶容量分别是1000毫升、500毫升、250毫升,每瓶售价10元、6元、3元,买1.75升这种果汁有多少种卖法?怎样买最省钱?最少用多少元?51.王老师坐车到省城开会,汽车的平均速度是每小时58.4千米,王老师坐车用了4.5小时到达省城.汽车行走了多少千米?52.师徒二人共加工208个机器零件,师傅加工的零件数比徒弟的2倍还多4个,师傅和徒弟各加工多少个零件?(列方程解答)53.一共有13根火柴,一共可以拼成几个三边形和几个正方形,并且刚好使这些火柴都用完?54.甲乙两地相距410千米,客车和货车分别从甲乙两地相向开出.货车每小时行37千米,当货车行了82千米以后,客车才从乙地开出,又经过4小时相遇,客车每小时行多少千米?55.一个小区内的原型草坪周长为94.2m,该草坪的面积为多少?现要为它安装自动旋转喷灌装置,有20m、15m、10m三种装置可供选择,你认为应选哪一种比较合适?放置在什么位置最合理?56.一块长方形菜地,长是33米,宽是27米,围着这个菜地的四周跑4圈是多少米?57.某车间给职工发奖金,若每人发240元则缺1800元,若每人发200元则余2200元,那么平均每人能发奖金多少元.58.一块梯形麦田,上底是76米,下底是120米,高50米,一共收小麦10290千克,平均每平方米收小麦多少千克?59.修一段路,第一天修了全长的25%,第二天比第一天多修了20%,两天共修了全长的百分之几?60.一件衣服原价100元,商店先打八折优惠,后来由于产品滞销又再打九折优惠,这时的价钱是原来的百分之几?61.一桶油连桶重23千克,用去油的50%以后,称得连桶重是12千克,问桶中原来共有油多少千克?桶重多少千克?62.100千克花生仁可出油42.5千克,照这样1000千克花生仁可出油多少千克?63.铺一条长为8.45千米的路,甲铺路队每天可铺1.15千米,工作了4天,其余的由乙铺路队用3.5天铺完,乙铺路队平均每天铺路多少千米?64.六年级同学春季植树的成活率是95%,成活棵数与植树棵数的最简整数比是多少?65.小麦的出粉率是75%,要出面粉825千克,需要小麦多少千克?66.建筑工人要铺一条870平方米的人行道,已经铺了6天,每天铺75平方米,剩下的要6天铺完,平均每天铺多少平方米?67.甲、乙两辆汽车同时从AB两站相对开出,第一次在离A站90千米处相遇,相遇后两车继续以原速度行驶,到达对方的出发地后立即返回,第二次相遇在离A地50千米处,求AB两地之间的路程.68.同学们去春游,把42瓶矿泉水和30瓶可乐平均分给几个小组,正好分完,最多可以分给几个小组?每个小组分得两种饮料各多少瓶?69.一列火车在提速前以每小时100千米的速度从甲城开往乙,两地相距900千米,提速后该列车从甲城至乙城所用的时间比提速前减少了1(4/5)小时.求提速后该火车的速度.70.一个圆柱形容器,从里面量底面直径是8厘米,高6厘米,在它里面装满水,然后把一个长10厘米的圆柱铁棒竖直插入水中并且它的底面和圆柱形容器底面接触,这时有一部分水溢出.当把这个铁棒取出后,水的深度只有3厘米,求这个圆柱形铁棒的体积是多少?71.饲养场今年养鸡912只,是养鸭只数的3倍,养鸭只数是养鹅只数的2倍,饲养场今年养鹅多少只?72.农场有两块高产地,第一块地收籽棉1645千克,比第二块收的1.5倍少27.5千克,第二块棉花高产地收籽棉多少千克?73.六年级同学参加科技小组的有17人,比参加文艺小组的2倍少7人,参加文艺小组有多少人?74.有一批正方形砖,如拼成一个长与宽之比为5:4的大长方形,则余38块,如改拼成长与宽各增加1块的大长方形则少53块,那么,这批砖共有多少块?75.修一段公路,第一周修了这段公路的25%,第二周修了这段公路的1/5,两周共修了270千米.这段公路全长多少千米?76.一项工程,甲独做要30天,乙独做的时间比甲少1/3.现在两人合作,最后几天乙没有参加,结果用了18天才完成任务,乙休息了几天?77.甲、乙两车同时从A、B两地相对开出,3小时相遇.甲车每小时行50千米,比乙车的速度快25%.A、B两地相距多少千米?78.一个植树小分队有男工18人,女工12人,一天共植树234棵.每位男工的植树棵数是每位女工的1.5倍.每位男工和每位女工各植树多少棵?79.一桶油连桶共重35千克,用去一半后,连桶重16.5千克,原来桶中油重多少千克?80.学校把植272棵树的任务,按人数分配给六年级的三个班。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!"!"#!"!$!"#$%&"'(!)*+,-.!/01!2+345!* 67"6
kl2.*"6*!""$2 ")2!
3mnop2Z[=qrstJuev! !*
I !*
!!!$!1wx78-+/"*60"."6*yz " {|}5&.!#'"#~!
-."* !8 9 :
;
<
=
%
>'"
#
!
C D E @ $ 0 *#
$$!*!$!!$ !$%!*# $&!!!"#!A B 1 %'$) - ? @ A @ +/ &($)+ &'$)+2#3!! B C * D E F % &$(%+
6"4+
.
4.
" *
*6
2 $
!
2
1 .!## ##4#"
/ <4+
" *
= 3,
2 e S e S ;
2 $
!
=
3
6
; " *
.!$0!
!*
J !$
$(!' ( 1$%('(
/%&$)'%&',%&%)'%&(,! *
/'$,) +&&,)
)% ,(
+&&,)
!
-
/'$,) +,)%(
/)$%)+',,(! 5
$ 5
+
! *
!
!#
!"!!' ( 1 &&%$+ &'&$&%+ &$&%
/ &&$)+ &(!
P 1&&($+($*)
/%&$)'%&(*! 0
/ "162+#$2 1+!
2+ ."!
2+ ."!
/ '( 6789:&;-+"."! 0 - 3 6 ;44*.*4."##4#"
/ , 6 ;44."!
/3,
+
4.".
4*
.*4."+
.4*
F * 5 !-
$)!$!)*+,! $
!"!"#!"!$!"#$%&"'(!)*+,-.!/01!2+345!! 67"6
*'!.-!(!.2!#! 5 $*!$!--+". ./012
$+!$N 78%'($ O'(+ 槡'$*.($* + 槡0*."* +$!
N 78%&'( O&'+ 槡&(*6'(* + 槡5*6$* +$槡0! $
H 9:;&+&''(+$$槡0+槡00
<=9&+&&'(+$5槡0+*0槡0
8>;&+&'((+
!%!!'(1%&'( %$(% _#!
&'+&($(+$%!
P 1'+ (&(/ &&'*+ &'&(+ &($%+2#3!
/ &'&*6 &&*'+2#3
&'&*6 &(&$+!5#3. &'&(+2#3
/ &&*'+ &(&$!
P &&'*+ &($&+2#3
/%&'*'%($&! $
/((&+ +(()'!
/(+ ()+(&('+槡*!
P (&('+槡**('('+槡*
/'(+槡*! 2
"1 %+%** %(%& /&%+*%? '% _ 78%&'* 6O! /&%+'%! 1 %&'*' %($& / &'&%+ &&()! %&'(%&$)%$(% _#c&'+&($%.&$+$(.$)? &%+()! / %&'%* %&()! /&)+'%+&%+()!
/($+$)6()+$)6&)+$)6槡*$)! /8>;&(&)+8>;&&($+(&$$+$)6$)槡*$)+槡*.!! !$
!"!"#!"!$!"#$%&"'(!)*+,-.!/01!2+345!" 67"6
/< "#!#=- Q" 6RSTRS! 3UVWXY!#Z[\E]^- _Q[`" ab6! $ *< -+5! = c 2 ."* 6*#".!#+5! $ 2 "!+4"*+!"d! 3efA4Z[E]^gh:M5!ij! 5 ". / 0 1 2 ."* 6*#".!#. . ".!* 6*#".!.!#""
*$L 4
($+*4$!
- * 5 !-
$'!$ % & + .", 槡""* .*,槡*",槡"6!
+.!."6! 0
+."! 5
&$)%+2#3$(+$)!/GH+ $(%) -./+!
**4$!AB011 G H + $(%) - . / +/ &&%)+ &)$'+2#3&&)%+ &'/ %&%)'
%)$'!/)&$%+$%')!I ($+"7 %)+($+$)+"&%+-."'$+5."!/-"."+5.""J K "+
.+"-+!*0,4+540! 3- 45" 6789:&;-+5"40! $
*< "+0=-+5400+!40>! ?@A0BCDEFGHIBJKL:M!40>! 5 G * !# *#
*$ 1 %&$)' %&(*
/&&($+&&*)! 4
P&&($+
! *
/&&*)+
! *
/)&*)+!! !# H !* !$!$!1-+."*6*#".!#+.".!#*62# *
*1'+ (&(&)((%
/ &+ + &&(%+ &(&)&&)$+ &$(%+$03!