2013-2014学年安徽省合肥五十中九年级(上)期中数学试卷
合肥50中九年级上册期末精选试卷检测题
合肥50中九年级上册期末精选试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,直角坐标系xOy 中,一次函数y kx b =+的图象1l 分别与x 轴,y 轴交于A ,B两点,点A 坐标为()9,0,正比例函数12y x =的图象2l 与1l 交于点(),3C m ,点(),0N n 在x 轴上一个动点,过点N 作x 轴的垂线与直线1l 和2l 分别交于P 、Q 两点.(1)求m 的值及直线1l 所对应的一次函数表达式; (2)当03PQ <时,求n 的取值范围; (3)求出当n 为何值时,PQC ∆面积为12?【答案】(1)6m =;9y x =-+;(2)46n <或68n <;(3)2n =或10. 【解析】 【分析】(1)直接将点C 代入正比例函数,可求得m 的值,然后将点C 和点A 代入一次函数,可求得一次函数解析式;(2)用含n 的式子表示出PQ 的长,然后解不等式即可;(3)用含有n 的式子表示出△PQC 的底边长和高的长,然后求解算式即可得. 【详解】(1)将点C(m ,3)代入正比例函数12y x =得: 3=1m 2,解得:m=6 则点C(6,3) ∵A(9,0)将点A ,C 代入一次函数y kx b =+得:0936k bk b =+⎧⎨=+⎩解得:k=-1,b=9∴一次函数解析式为:y=-x+9 (2)∵N(n ,0) ∴P(n ,9-n),Q(n ,12n ) ∴PQ=192n n --∵要使03PQ < ∴0<1932n n --≤ 解得:46n <或68n <(3)在△PQC 中,以PQ 的长为底,则点C 到PQ 的距离为高,设为h 第(2)已知:PQ=139922n n n --=- 由图形可知,h=6n - ∵△PQC 的面积为12 ∴12=136922nn -- 情况一:当n <6是,则原式化简为:12=()136922n n ⎛⎫--⎪⎝⎭ 解得:n=2或n=10(舍)情况二:当n ≥6时,则原式化简为:12=()136922n n ⎛⎫-- ⎪⎝⎭解得:n=2(舍)或n=10 综上得:n=2或n=10. 【点睛】本题考查一次函数的综合,用到了解一元二次方程,求三角形面积等知识点,解题关键是用含n 的算式表示出PQ 的长度,注意需要添加绝对值符号.2.已知二次函数y =9x 2﹣6ax +a 2﹣b ,当b =﹣3时,二次函数的图象经过点(﹣1,4) ①求a 的值;②求当a ≤x ≤b 时,一次函数y =ax +b 的最大值及最小值; 【答案】①a 的值是﹣2或﹣4;②最大值=13,最小值=9 【解析】 【分析】①根据题意解一元二次方程即可得到a 的值;②根据a ≤x ≤b ,b =﹣3求得a=-4,由此得到一次函数为y =﹣4x ﹣3,根据函数的性质当x =﹣4时,函数取得最大值,x =﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a、b的关系得到函数解析式是解题的关键.3.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解.③当时,,,由题意,得,解得:(舍去),.综上所述,当为4或16时,的面积等于.【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB,CQ的长.4.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同) 【答案】详见解析 【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得: 10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2, 答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得: 2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y , ∴(14.4×90%+y )×90%+y≤15.464, ∴y≤2.答:每年新增汽车数量最多不超过2万辆. 考点:一元二次方程—增长率的问题5.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.【答案】0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== ,由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k ≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,二、初三数学 二次函数易错题压轴题(难)6.在平面直角坐标系中,将函数y =x 2﹣2mx+m (x≤2m ,m 为常数)的图象记为G ,图象G 的最低点为P(x 0,y 0). (1)当y 0=﹣1时,求m 的值. (2)求y 0的最大值.(3)当图象G 与x 轴有两个交点时,设左边交点的横坐标为x 1,则x 1的取值范围是 .(4)点A 在图象G 上,且点A 的横坐标为2m ﹣2,点A 关于y 轴的对称点为点B ,当点A 不在坐标轴上时,以点A 、B 为顶点构造矩形ABCD ,使点C 、D 落在x 轴上,当图象G 在矩形ABCD 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围. 【答案】(1)12或﹣1;(2)14;(3)0<x 1<1;(4)m =0或m >43或23≤m <1【解析】 【分析】(1)分m >0,m =0,m <0三种情形分别求解即可解决问题; (2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G 与x 轴有两个交点时,m >0,求出当抛物线顶点在x 轴上时m 的值,利用图象法判断即可;(4)分四种情形:①m <0,②m =0,③m >1,④0<m≤1,分别求解即可解决问题. 【详解】解:(1)如图1中,当m >0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=51+或51-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m的值为512或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m ﹣2<0, 解得23≤m <1, 综上所述,满足条件m 的值为m =0或m >43或23≤m <1. 【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.7.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C . (1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)2122y x x =-+,点B (2,2);(2)m=2或209m =;(3)存在;n=27时,抛物线向左平移. 【解析】 【分析】(1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值;(3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离. 【详解】解:(1)把原点O (0,0),和点A (4,0)代入y=12-x 2+bx+c . 得040c b b c =⎧⎨-++=⎩,∴02c b =⎧⎨=⎩. ∴22112(2)222y x x x =-+=--+. ∴点B 的坐标为(2,2).(2)∵点B 坐标为(2,2). ∴∠BOA=45°.∴△PDC 为等腰直角三角形. 如图,过C′作C′D ⊥O′P 于D .∵O′P=OP=m . ∴C′D=12O′P=12m . ∴点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ).当点O′在y=12-x 2+2x 上. 则−12m 2+2m =m . 解得:12m =,20m =(舍去). ∴m=2.当点C′在y=12-x2+2x上,则12-×(32m)2+2×32m=12m,解得:120 9m=,20m=(舍去).∴m=20 9(3)存在n=27,抛物线向左平移.当m=209时,点C′的坐标为(103,109).如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处.以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″.当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短.∵BA′∥AC′,且BA′=AC′,点A(4,0),点C′(103,109),点B(2,2).∴点A′(83,89).∴点A″的坐标为(83,289).设直线OA″的解析式为y=kx,将点A″代入得:828 39k=,解得:k=76.∴直线OA″的解析式为y=76 x.将y=2代入得:76x=2,解得:x=127,∴点B′得坐标为(127,2).∴n=212277-=. ∴存在n=27,抛物线向左平移. 【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m)以及点B′的坐标是解题的关键.8.已知二次函数y =ax 2+bx +c (a ≠0). (1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围; (3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】 【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0), ∴令y =0得:ax 2+bx+c =0 ∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤,∴﹣b 2≥4a ,∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.9.如图1所示,抛物线223y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P 是第四象限内抛物线上的动点,四边形OPAQ 是平行四边形,设点P 的横坐标为m . (1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P 在抛物线上运动时,四边形OPAQ 可能是正方形吗?若可能,请求出点P 的坐标,若不可能,请说明理由;(4)在点Q 随点P 运动的过程中,当点Q 恰好落在直线AC 上时,则称点Q 为“和谐点”,如图(2)所示,请直接写出当Q 为“和谐点”的横坐标的值.【答案】(1)2214433y x x =-+;(2)9个 ;(3)33,22或44,;(4)33【解析】 【分析】(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,即可求解; (2)APC ∆的面积PHAPHCSSS,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434b c, 故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方, 此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=, 即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②,联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点. (1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 的坐标为(13,93132-+). 【解析】 【分析】(1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可. 【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2,即点C 坐标为(0,2),同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H , 由点A、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为: S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a , PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°, ∴∠FQ ′P =∠OCQ ′, ∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a aa Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+=此时a 13P 139313-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.三、初三数学 旋转易错题压轴题(难)11.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BO D′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.12.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题13.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)12354 55(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题14.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC61-.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.15.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.四、初三数学圆易错题压轴题(难)16.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为32,AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)33+3;(3)ADCD=62+或62.【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵2,AB=6,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3, ∴AE=22AB BE -=33,∵CE=BE=3, ∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°, ∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB 时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32, ∴AD 333CD 32+==62+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°, ∴33 ∴2DF=36 ∴AD 36CD 6==62综上所述:AD CD =622或62【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.17.已知:ABC 内接于O ,过点B 作O 的切线,交CA 的延长线于点D ,连接OB .(1)如图1,求证:DAB DBC ∠=∠;(2)如图2,过点D 作DM AB ⊥于点M ,连接AO ,交BC 于点N ,BM AM AD =+,求证:BN CN =;(3)如图3,在(2)的条件下,点E 为O 上一点,过点E 的切线交DB 的延长线于点P ,连接CE ,交AO 的延长线于点Q ,连接PQ ,PQ OQ ⊥,点F 为AN 上一点,连接CF ,若90DCF CDB ∠+∠=︒,tan 2ECF ∠=,12ON OQ =,10PQ OQ +=求CF 的长.【答案】(1)详见解析;(2)详见解析;(3)10=CF 【解析】 【分析】 (1)延长BO 交O 于G ,连接CG ,根据切线的性质可得可证∠DBC +∠CBG=90°,然后根据直径所对的圆周角是直角可证∠CBG +∠G=90°,再根据圆的内接四边形的性质可得∠DAB=∠G ,从而证出结论;(2)在MB 上截取一点H ,使AM=MH ,连接DH ,根据垂直平分线性质可得DH=AD ,再根据等边对等角可得∠DHA=∠DAH ,然后根据等边对等角和三角形外角的性质证出∠ABC=∠C ,可得AB=AC ,再根据垂直平分线的判定可得AO 垂直平分BC ,从而证出结论;(3)延长CF 交BD 于M ,延长BO 交CQ 于G ,连接OE ,证出tan ∠BGE=tan ∠ECF=2,然后利用AAS 证出△CFN ≌△BON ,可设CF=BO=r ,ON=FN=a ,则OE=r ,根据锐角三角函数和相似三角形即可证出四边形OBPE 为正方形,利用r 和a 表示出各线段,最后根据10PQ OQ +=a 和CF .【详解】解:(1)延长BO 交O 于G ,连接CG。
合肥市第五十中学2014-2015学年度九年级第一学期期中考试
合肥市第五十中学2014-2015学年度九年级第一学期期中考试英语试卷听力部分(20分)一、关键词语选择(共5小题;每小题1分,满分5分)()1. A. trip B. ship C. sheep()2. A. silly B. empty C. funny()3. A. report B. repeat C. rewrite()4. A. hardly B. nearly C. clearly()5. A. wake up B. look up C. come up二、短对话理解(共5小题;每小题1分,满分5分)你将听到五段对话,每段对话后有一个小题。
请在每小题所给的A、B、C三个选项中选出一个最佳选项。
每段对话读两遍。
()6.How does the girl’s father know the news ?A. On TV.B. On the radio.C. On the Internet.()7. When can the woman get the ticket to Nanjing ?A. This MondayB. This SaturdayC. Next Monday()8. Where does the conversation probably take place ?A. In a restaurantB. In a bookshopC. In a post office()9. What’s the weather like ?A. WindyB. SunnyC. Snowy()10. How did Jim go to school today ?A. By carB. By busC. By bike三、长对话理解(共5小题;每小题1分,满分5分)你将听到五段对话,每段对话后有几个小题。
请在每小题所给的A、B、C三个选项中选出一个最佳选项。
每段对话读两遍。
听第一段对话,回答第11--12小题。
2013-2014学年度九年级数学上学期期中试卷 (新人教版 第20套)
合肥市经开区高刘中学2013-2014学年度上学期期中考试九年级数学试卷班级_________ 得分____________一、选择题(每小题4分,满分40分) 1.下列函数不属于二次函数的是( )。
A.y=(x -1)(x+2) B.y=21(x+1)2 C.y=2(x+3)2-2x 2 D.y=1-3x 22.下列函数中,当x >0时,y 随x 的增大而减小的是( )。
A.x y =B.xy 1=C.x y 1-=D.2x y =3. 已知线段a=10,线段b 是线段a 上黄金分割的较长部分,则线段b 的长是( )。
A . B . C .D .4.若则下列各式中不正确的是( )。
A .B .C .D .5. 在比例尺1:10000的地图上,相距2cm 的两地的实际距离是( )。
A .200cm B .200dm C .200m D .200km6.抛物线y=x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )。
A.y=x 2+4x+3 B. y=x 2+4x+5 C. y=x 2-4x+3 D.y=x 2-4x -57. P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( )。
A .1条 B .2条 C .3条 D .4条8.如图1,在△ABC,P 为AB 上一点,连结CP ,下列条件中不能判定△ACP∽△ABC 的是( )。
A .∠ACP=∠B B.∠APC=∠ACB C. AC AP =AB AC D . AC AB =CPBC9.二次函数c bx ax y ++=2(0≠a )的图象如图2所示,则下列结论:①a >0; ②b>0; ③c >0;④b 2-4ac >0,其中正确的个数是( )。
A. 1个 B. 2个 C. 3个 D. 4个10.如图3,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=5m ,点P 到CD 的距离是3m ,则P 到AB 的距离是(A.56mB.67mC.65mD.103m图1 图2 图3二、填空题(每小题5分,满分20分)11.3与4的比例中项是______ 。
安徽省合肥市 九年级(上)期中数学试卷(含答案)
九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.下列函数中是二次函数的是()A. B. C. D.2.抛物线y=2(x-3)2-1的顶点坐标是()A. B. C. D.3.反比例函数y=的图象在()A. 第一、三象限B. 第一、二象限C. 第二、四象限D. 第三、四象限4.已知:,那么下列式子成立的是()A. B. C. D.5.抛物线向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A. B. C.D.6.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A. B. C. D.7.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.8.如图,矩形ABOC的顶点A在反比例函数y=-(x<0)的图象上,则矩形ABOC的面积等于()A. 8B. 6C. 4D. 29.已知点A(-2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A. B. C. D.10.已知二次函数y=ax2+bx+c+2的图象如图所示,有下列4个结论:①abc<0;②b2=4ac;③a+c=b-2;④m(am+b)+b>a(m≠-1),其中结论正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共20.0分)11.已知=,则的值是______.12.反比例函数y=图象经过点(7,4),若点(1,n)在该图象上,则n= ______ .13.已知二次函数的图象过原点,则a的值为______ .14.设a<-1,0≤x≤-a-1,且函数y=x2+ax的最小值为-,则常数a= ______ .三、解答题(本大题共9小题,共90.0分)15.若==(x、y、z均不为零),求的值.16.如图,一次函数y=k1x+b与反比例函数y=的图象相交于A(2,2),B(-1,m).(1)求一次函数与反比例函数的解析式;(2)直接写出一次函数的值小于反比例函数值的x的范围.17.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5,求BC、BF的长.18.某蓄水池的排水管每小时排水8m3,6h可将满池水全部排空,如果增加排水管,使每小时的排水量达到x(m3),将满池水排空所需的时间y(h).(1)直接写出y与x的关系式(不要求写出自变量的取值范围);(2)如果要在4~5h内将满池水排空,那么每小时的排水量应该控制在什么范围内?19.如图,已知E是正方形ABCD的边CD上一点,BF⊥AE于F.(1)求证:△ABF∽△EAD;(2)当AD=2,=时,求AF的长.20.如图,在△ABC中,BD是AC边上的中线,E是BC上一点,AE与BD相交于点F.求证:=.21.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)请你直接写出售价在什么范围时,每个月的利润不低于2200元?22.如图,在平面直角坐标系中,二次函数y=ax2+bx+6的图象交x轴于A、B两点,交y轴于点D,点C为抛物线的顶点,且A、B两点的横坐标分别为1和3.(1)写出A、B两点的坐标;(2)求二次函数的解析式;(3)在(2)的抛物线上,是否存在一点P,使得∠BAP=45°?若存在,求出点P的坐标;若不存在,请说明理由.23.如图所示,在长32m的篱笆,一面利用墙(墙的最大可用长度为10m)围成逐渐隔有两道篱笆的矩形花圃,设AB的长为xm,花圃的面积为Sm2.(1)求S与x的函数关系式(不用自变量取值范围);(2)如果能围成面积为48m2的花圃,那么AB的长是多少m?(3)能围成比48m2更大的花圃吗?如果能,请求出最大面积及AB的值;如果不能,请说明理由.答案和解析1.【答案】D【解析】解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1-x2=2x-1,故C错误;故选(D)形如y=ax2+bx+c(a≠0)的关系式称为二次函数,根据此定义即可判断.本题考查二次函数的定义,解题的关键是对二次函数一般式的正确理解,本题属于基础题型.2.【答案】B【解析】解:抛物线y=2(x-3)2-1的顶点坐标是(3,-1).故选B.根据顶点式解析式写出顶点坐标即可.本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.3.【答案】A【解析】解:反比例函数y=的图象在第一、三象限,故选:A.根据反比例函数的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可得答案.此题主要考查了反比例函数的性质,关键是熟练掌握反比例函数的性质.4.【答案】D【解析】解:A、∵,∴2x=3y,故A错误;B、∵,∴设x=3k,y=2k(k≠0),则xy=6k2,故B错误,C、∵,∴,故C错误;D、∵,∴,故D正确.故选D.根据比例的基本性质逐项判断.熟练掌握比例的性质.5.【答案】A【解析】【分析】根据图象向下平移减,向右平移减,可得答案.本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2,故选:A.6.【答案】C【解析】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选C.由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.本题考查了二次函数的对称性.二次函数关于对称轴成轴对称图形.7.【答案】B【解析】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴;故选:B.首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.此题主要考查了相似三角形的判定与性质,关键是掌握判断三角形相似的方法和相似三角形的性质.8.【答案】C【解析】解:∵四边形ABOC是矩形,∴AC⊥y轴,AB⊥x轴,∵点A在反比例函数y=-的图象上,∴S=|k|=4.矩形ABOC故答案为:4.由矩形的性质可得出AC⊥y轴、AB⊥x轴,再根据点A在反比例函数y=-的图象上利用反比例函数系数k的几何意义即可得出矩形ABOC的面积.本题考查了反比例函数系数k的几何意义以及矩形的性质,根据反比例函数=|k|.系数k的几何意义找出S矩形ABOC9.【答案】B【解析】解:∵反比例函数y=(k<0)中,k<0,∴此函数图象在二、四象限,∵-2<0,∴点A(-2,y1)在第二象限,∴y1>0,∵3>0,∴B(3,y2)点在第四象限,∴y2<0,∴y1,y2的大小关系为y2<0<y1.故选:B.先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点解答.此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.10.【答案】C【解析】【分析】本题主要考查二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换的熟练运用.①由抛物线开口向下a>0,抛物线和y轴的正半轴相交,c>0,-<0,b<0,所以abc <0;②根据抛物线与x轴有一个交点,得到b2-4ac=0,于是得到b2=4ac;③根据x=-1时,y=a+c-b=0,判断结论;④⑤根据x=-1时,函数y=a+b+c的值最小,得出当m≠-1时,有a-b+c>am2+bm+c,判断结论.【解答】解:∵开口向上,∴a>0,∵抛物线和y轴的正半轴相交,∴c>0,∵对称轴为,∴b=2a<0,∴abc<0,故①正确;∵抛物线与x轴有一个交点,∴b2-4ac=0,∴b2=4ac;故②正确;∵当x=-1时,a-b+c=0,∴a+c=b,故③错误;∵当x=-1时,二次函数有最小值,所以当m≠-1时,有a-b+c<am2+bm+c,所以a<m(am+b)+b,故④正确.故选C.11.【答案】【解析】解:由分比性质,得==,故答案为:.根据分比性质,可得答案.本题考查了比例的性质,利用了分比性质:=⇒=.12.【答案】28【解析】解:∵反比例函数y=的图象经过点A(7,4),∴k=7×4=28;∵点(1,n)在该反比例函数图象上,∴1×n=28,解得n=28.故答案为:28.直接根据反比例函数中k=xy的特点进行解答即可.本题考查的是反比例函数图象上点的坐标特点,即反比例函数y=(k≠0)中k=xy是定值,且保持不变.13.【答案】0【解析】解:把(0,0)代入y=(a-1)x2+3x+a(a-1),得a(a-1)=0,解得a=0或1,∵a-1≠0,∴a≠1,∴a=0,故答案为0.直接把原点坐标代入二次函数解析式得到关于a的方程,然后解方程,还要使a-1≠0即可.本题考查了二次函数图象上点的坐标特征:二次函数y=ax2+bx+c(a≠0)的图象上点的坐标满足其解析式.14.【答案】或【解析】【分析】本题主要考查二次函数的最值,掌握二次函数的单调性是解题的关键,注意分类讨论思想的应用.根据已知条件得到抛物线y=x2+ax与x轴的交点为(0,0),(-a,0),求得-a>1,抛物线y=x2+ax的对称轴为直线,当时,求得;当时,求得.【解答】解:令y=0,则x2+ax=0,解得:x=0或-a,∴抛物线y=x2+ax与x轴的交点为(0,0),(-a,0),∵a<-1,∴-a>1,∵抛物线y=x2+ax的对称轴为直线,∴当时,即当x=1时,函数y=x2+ax有最小值,∴,∴;当时,即当时,函数y=x2+ax有最小值,∴,∴;∵a<-1,∴,综上所述:常数或,故答案为或.15.【答案】解:设===k,x=6k,y=4k,z=3k.==.【解析】根据等比性质,可得答案.本题考查了比例的性质,利用等比性质是解题关键.16.【答案】解:(1)把(2,2)代入y=得k2=4,则反比例函数的解析式是y=,把(-1,m)代入解析式得m=-4,则B的坐标是(-1,-4).根据题意得,解得:,则一次函数的解析式是y=2x-2;(2)根据图象可得x的范围是:x<-1或x>2.【解析】(1)利用待定系数法求得反比例函数解析式,然后把B的坐标代入反比例函数解析式,求得B的坐标,最后用待定系数法求得一次函数解析式;(2)一次函数的值小于反比例函数值的x的范围,就是反比例函数图象在一次函数图象上边时对应的x的范围.本题考查了待定系数法求函数的解析式,理解求一次函数的值小于反比例函数值的x的范围,就是求反比例函数图象在一次函数图象上边时对应的x的范围是关键.17.【答案】解:∵l1∥l2∥l3,∴,∵AB=3,AD=2,DE=4,∴,解得BC=6,∵l1∥l2∥l3,∴,∴,解得BF=2.5.【解析】本题主要考查平行线分线段成比例的性质,解题的关键是由平行得到线段AB与已知条件中的线段之间的关系.由平行线分线段成比例解答即可.18.【答案】解:(1)∵蓄水池的排水管每小时排水8m3,6h可将满池水全部排空,∴蓄水量为6×8=48m3,∴xy=48,∴此函数的解析式y=;(3)当t=4时,V==12m3;当t=5时,V==9.6m3;∴每小时的排水量应该是9.6-12m3;【解析】(1)首先求得水池的蓄水量,然后根据xy=蓄水量即可得到y与x之间的函数关系式;(2)此题须把t=4和t=5代入函数的解析式即可求出每小时的排水量;本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,再运用函数关系式解题.19.【答案】(1)证明:∵正方形ABCD中,AB∥CD,∴∠BAF=∠AED,∵BF⊥AE,∴∠AFB=90°,∴∠AFB=∠D=90°,∴△ABF∽△EAD.(2)解:∵四边形ABCD是正方形,∴AD=CD=AB=2∵=,∴DE=CD=,在Rt△ADE中,AE===,∵△ABF∽△EAD,∴=,∴=,∴AF=2.【解析】(1)根据两角对应相等的两个三角形相似即可证明.(2)首先求出DE、AE,由△ABF∽△EAD,得=,由此即可解决问题.本题考查正方形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.20.【答案】证明:作EH∥AC交BD于H,∴=,=,∵AD=CD,∴=.【解析】作EH∥AC交BD于H,根据平行线分线段成比例定理得到=,=,由AD=CD,即可证明=.本题考查的是平行线分线段成比例定理的应用,正确作出辅助线、灵活运用定理、找准对应关系是解题的关键.21.【答案】解:(1)由题意得:y=(210-10x)(50+x-40)=-10x2+110x+2100(0<x≤15且x为整数);(2)根据(1)得:y=-10x2+110x+2100=-10(x-5.5)2+2402.5,∵a=-10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元;(3)根据题意得,-10x2+110x+2100≥2200,解得:1≤x≤10,故1≤x≤10且x为整数时,每个月的利润不低于2200元.【解析】(1)根据进价为每件40元,售价为每件50元,每个月可卖出210件,再根据每件商品的售价每上涨1元,则每个月少卖10件和销售利润=件数×每件的利润列出关系式,即可得出答案.(2)根据(1)得出的函数关系式,再进行配方得出y=-10(x-5.5)2+2402.5,当x=5.5时y有最大值,从而得出答案;(3)由“每个月的利润不低于2200元”列出关于x的不等式,解之可得.本题考查二次函数的实际应用,关键是读懂题意,找出之间的等量关系,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.22.【答案】解:(1)∵二次函数y=ax2+bx+6的图象交x轴于A、B两点,且A、B两点的横坐标分别为1和3,∴A(1,0),B(3,0);(2)由(1)知,A(1,0),B(3,0),∵二次函数y=ax2+bx+6的图象交x轴于A、B两点,∴ ,∴ ,∴二次函数的解析式为y=2x2-8x+6;(3)假设存在点P,设直线AP的解析式为y=mx+n,∵∠BAP=45°,∴|m|=1,当点P在x轴上方时,m=1,∵A(1,0),∴直线AP的解析式为y=x-1①,∵点P在抛物线y=2x2-8x+6②上,∴联立①②得,∴ (舍去)或,∴P(,),当点P在x轴下方时,m=-1,∵A(1,0),∴直线AP的解析式为y=-x+1③,联立②③得,∴ (舍)或,∴P(,-),即:P(,)或(,-).【解析】(1)根据x轴上点的特点直接得出点A,B坐标;(2)将点A,B坐标代入抛物线解析式,解方程组即可;(3)根据∠BAP=45°,得|m|=1,再分点P在x轴上方和x轴下方两种情况求出直线AP的解析式,联立抛物线解析式求出交点坐标即可.此题是二次函数综合题,主要考查待定系数法求抛物线和直线的解析式,求直线和抛物线的交点坐标,解方程组,用待定系数法求出直线AP和抛物线的解析式是解本题的关键.23.【答案】解:(1)设AB=x米,则BC=32-4x米,∴S=x(32-4x)=-4x2+32x;(2)根据题意得:-4x2+32x=48,即x2-8x+12=0,解得:x=2或x=6,∵32-4x≤10,即x≥5.5,∴x=6,即AB=6米;(3)能,∵S=-4x2+32x=-4(x-4)2+64,∴当x>4时,S随x的增大而减小;∵x≥5.5,∴x=5.5时,S取得最大值,最大值为55m2.【解析】(1)设AB=x米,则BC=32-4x米,由矩形的面积公式可得;(2)根据题意列出方程,解方程求得x的值,结合墙的最大可用长度为10m即32-4x≤10,可得x的范围,从而得出答案;(3)将函数解析式配方成顶点式,结合x的范围求得最值即可得.本题主要考查二次函数的应用和一元二次方程的应用,根据矩形的面积公式求得函数解析式是根本,熟练掌握二次函数的性质求得最值是解题的关键.。
2023-2024学年安徽省合肥市蜀山区五十中学新校九年级(上)期中数学试卷+答案解析
2023-2024学年安徽省合肥市蜀山区五十中学新校九年级(上)期中数学试卷一、选择题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列y 关于x 的函数中,是二次函数的是()A. B.C. D.2.若,则的值等于()A.B.C.D.3.将抛物线先向右平移2个单位,再向下平移3个单位得到的抛物线的解析式是()A. B.C.D.4.下列函数中,当时,y 随x 的增大而增大的是()A.B.C.D.5.对于抛物线,下列描述错误的是()A.抛物线的开口向下B.对称轴为直线C.y 有最小值1D.当时,y 随x 的增大而增大6.若,,三点都在函数的图象上,则,,的大小关系为()A. B.C.D.7.若函数的图象与x 轴只有1个公共点,则常数m 的值是()A.1B.2C.0或1D.18.如图.在中,,且DE分别交AB,AC于点D,E,若AD::1,,则BC为()A.6B.7C.8D.99.如图,若二次函数图象的对称轴为,与y轴交于点C,与x轴交于点A、点,则①二次函数的最大值为;②;③;④当时,,其中正确的个数是()A.1B.2C.3D.410.如图,点M和点N同时从正方形ABCD的顶点A出发,点M沿着运动,点N沿着运动,速度都为,终点都是点若,则的面积与运动时间之间的函数关系的图象大致是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
11.若反比例函数的图象位于第二、四象限,则k的取值范围是__________.12.如图,在平面直角坐标系中,矩形OAPB顶点A、分别在y轴、x轴上,顶点P在反比例函数的图像上,点Q是矩形OAPB内的一点,连接、、、,若、的面积之和是5,则__________.13.如图,线段,点C是线段AB的黄金分割点,且,设以AC为边的正方形的面积为,以BC为一边,AB长为另一边的矩形BCFG的面积为__________填:“>”“=”或“<”14.已知点是抛物线上一动点.当点M到y轴的距离不大于1时,b的取值范围是__________;当点M到直线的距离不大于时,b的取值范围是,则的值为__________.三、解答题:本题共9小题,共90分。
合肥市第五十中学九年级上数学期中测试卷
数学试题亲爱的同学:1.相信你会静心、尽力做好答卷。
动手就有希望,努力就会成功!2.本卷满分100分,考试时间100分钟.三四五六七总分题号一二19 20 21 22 23 24 25 26得分一、选择题(每小题3分,共30分)1、已知等腰三角形的一个底角等于30°,则这个等腰三角形的顶角等于()A.150°B.120°C.75°D.30°2、关于x的方程ax2–3x+2=0是一元二次方程,则()A.a>0B.a≠0C.a=1D.a≥03、方程x2+6x–5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x–3)2=14C.(x+3)2=4D. (x–3)2=44、如图,在△ABC中,D、E分别是AB、AC边的中点,且AB=10,AC=14,BC=16,则DE等于( )A.5 B.7 C.8 D.125、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是()A.20°B.15°C.30°D.25°6、如图,□ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4 cm B.6cm C.8cm D.10cm7、已知菱形的两条对角线长分别为4cm和10cm,则菱形的边长为()2cm D.29cmA.116cmB.29cmC.298、在一个四边形ABCD中,依次连结各边中点的四边形是菱形,则对角线AC与BD需要满足条件()A.垂直B.相等C.垂直且相等D.不再需要条件9、如下图,太阳在房子的后方,那么你站在房子的正前方看到的影子为()A B C D10、如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A B C D二、填空题(每小题2分,共16分)11、方程(x+1)(x-2)=0的根是.12、某几何体的三视图如右图所示,那么该几何体是.13、如图,在△ABC中,BC=5 cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.14、如图,为了求出湖两岸A、B两点间的距离,观测者从测点A、B分别测得∠BAC=90°,∠ABC=30°,又量得BC=160 m,则A、B两点间的距离为m(结果保留根号)(第13题图) (第14题图) (第15题图) (第18题图) 15、如图,一张矩形纸片,要折叠出一个最大的正方形.小明把矩形的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个最大的正方形.他的判定方法是_____________________________________________________.16、要使一个菱形ABCD成为正方形,则需增加的条件是(填上一个正确的条件即可).17、如图,请写出等腰梯形ABCD(AD∥BC)特有..而一般梯形不具有的两个特征:①;②.18、如图所示,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144 m2,求甬路的宽度. 若设甬路的宽度为x m,则x满足的方程为.三、(每小题6分,共12分)19、解下列方程:(1)x2–2x–1=0 (2)(x–2)(x+5)=820、如图,ABCD是一张矩形纸片,点O为对角线的交点。
安徽省合肥九年级(上)期中数学试卷
九年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1.抛物线y=-3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为()A. y=−3(x−2)2+5B. y=−3(x−2)2−5C. y=−3(x+2)2−5D. y=−3(x+2)2+52.下列函数中,是反比例函数的是()A. y=kxB. 3x+2y=0C. xy−2=0D. y=2x−13.如图,已知a∥b∥c,直线AC,DF与a、b、c相交,且AB=6,BC=4,DF=8,则DE=()A. 12B. 163C. 245D. 34.若点A(-2,y1),B(-1,y2),C(8,y3)都在二次函数y=ax2(a<0)的图象上,则下列结论正确的是()A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y1<y3<y25.若ab=23,则a+bb的值为()A. 23B. 53C. 35D. 326.在同一坐标系中,函数y=kx和y=-kx+3的大致图象可能是()A. B.C. D.7.已知二次函数y=ax2+bx+c的图象如图所示,下列结论中,正确的结论的个数()①a+b+c>0;②a-b+c<0;③abc<0;④b=2a;⑤b>0.A. 5个B. 4个C. 3个D. 2个8.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,则S△ABE:S△ECF等于()A. 1:2B. 4:1C. 2:1D. 1:49.如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①△ADE∽△ABC;②DEBC=AEAC;③S△ADES△ABC=12.其中正确的有()A. 3个B. 2个C. 1个D. 0个10.如图,点M是双曲线y1=-2x(x<0)上一点,直线y2=2x+2分别与x轴、y轴交于点A,B,MC∥x轴交直线y2于点C,MD∥y轴交直线y2于点D,则AC•BD的值为()A. 25B. 5C. 552D. 不能确定二、填空题(本大题共4小题,共20.0分)11.抛物线y=2x2-4x+m的图象的部分如图所示,则关于x的一元二次方程2x2-4x+m=0的解是______.12.如图:M为反比例函数y=kx图象上一点,MA⊥y轴于A,S△MAO=2时,k=______.13.如图,已知△ABC,AB=AC=2,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是______.14.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=56,则DP的长为______;则CE=______.三、计算题(本大题共1小题,共8.0分)15.如图,D是△ABC的边AB上的一点,BD=43,AB=3,BC=2(1)△BCD与△BAC相似吗?请说明理由.(2)若CD=53,求AC的长.四、解答题(本大题共8小题,共82.0分)16.在如图边长为1个单位长度的小正方形中,已知点A(-3,-3),点B(-1,-3),点C(-1,-1)(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标:(3)以O为位似中心,在第一象限画出△A2B2C2,与△ABC位似比为2:1,并写出A2点的坐标17.小明在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-14x2+2x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)求抛物线的顶点坐标;(2)求出球飞行的最大水平距离;(3)若小明第二次仍从此处击球,使其最大高度不变,而球刚好进洞,则球飞行的路线满足抛物线的解析式是什么?18.已知二次函数的图象过三点A(-2,0),B(4,0),C(0,16)(1)求二次函数的解析式;(2)设这个二次函数的顶点为P,求△ABP的面积;(3)当x为何值时,y≤0.(请直接写出结果)19.已知如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A、B两点,A点坐标是(-2,1),B点坐标(1,n)(1)求出k,b,m,n的值;(2)求△AOB的面积;(3)直接写出一次函数0<kx+b<mx的x的取值范围.20.如图,在平行四边形ABCD中,E为BC边上一点连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求DE的长.21.某玩具厂投产一种新型电子玩具,每件制作成本为20元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似的看作一次函数y=-2x+100,设每月的利润为w(万元).(利润=售价-制作成本)(1)写出w(万元)与x(元)之间的函数表达式;(2)商家想每月获得250万元的利润,应将销售单价定为多少元?(3)如果厂家每月的制作成本不超过400万元,那么厂家销售这种新型电子玩具,每月获得的最大利润为多少万元?22.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?23.在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是BC上的一个动点(不与B、C重合),过F点的反比例函数y=kx(k>0)的图象与AC边交于点E.(1)求证:AE•AO=BF•BO;(2)若点E的坐标为(2,4),求经过O、E、F三点的抛物线的解析式;(3)是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出此时的OF的长;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:抛物线y=-3x2的顶点坐标为(0,0),点(0,0)向左平移2个单位,再向上平移5个单位所得对应点的坐标为(-2,5),所以平移后的抛物线解析式为y=-3(x+2)2+5.故选:D.先确定抛物线y=-3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(-2,5),然后根据顶点式写出平移后的抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2.【答案】C【解析】解:A、k≠0时,y=是反比例函数,故此选项错误;B、3x+2y=0,可变形为y=-x,不是反比例函数,故此选项错误;C、xy-=0可变形为y=是反比例函数,故此选项正确;D、y=不是反比例函数,故此选项错误;故选:C.根据反比例函数定义:形如y=(k为常数,k≠0)的函数称为反比例函数进行分析即可.此题主要考查了反比例函数定义,关键是掌握反比例函数的形式,注意k不为零的条件.3.【答案】C【解析】解:∵a∥b∥c,∴=,∵AB=6,BC=4,DF=8,∴=,∴DE=,故选:C.根据平行线分线段成比例定理列比例式:=,代入计算即可.本题考查了平行线分线段成比例定理,熟练掌握定理内容是关键:三条平行线截两条直线,所得的对应线段成比例.4.【答案】C【解析】解:∵二次函数y=ax2的对称轴为y轴,开口向下,且关于y轴对称,∴当x=8时和x=-8时对应的y值是相等的,∴x<0时,y随x的增大而增大,∵-8<-2<-1,∴y<y1<y2.,3故选:C.判断出二次函数的对称轴为y轴,再根据二次函数的增减性解答.本题考查了二次函数图象上点坐标特征,主要利用了二次函数的对称性和增减性,比较简单.5.【答案】B【解析】解:∵=,∴3a=2b,∴a=b,∴==,故选:B.依据=,可得a=b,即可得出==.本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.6.【答案】D【解析】解:A、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得-k>0,则k<0,则选项错误;B、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得-k>0,则k<0,则选项错误;C、由反比例函数图象得函数y=(k为常数,k≠0)中k<0,根据一次函数图象可得-k<0,则k>0,则选项错误;D、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得-k<0,则k>0,故选项正确.故选:D.根据一次函数与反比例函数的图象,判断两个式子中的k是否可以取到相同的符号,从而判断.本题考查了反比例函数与一次函数的图象与性质,能根据函数的图象判断k 的符号是关键.7.【答案】B【解析】解:当x=1时,y=a+b+c,顶点坐标(1,a+b+c),由图象可知,顶点坐标在第一象限,∴a+b+c>0,故①正确;当x=-1时,y=a-b+c,由图象可知,当x=-1时,所对应的点在第四象限,∴y=a-b+c<0,故②正确;∵图象开口向下,∴a<0,∵x=-=1,∴b=-2a,故④错误;∴b>0,故⑤正确;∵图象与y轴的交点在y轴的上半轴,∴c>0,∴abc<0,故③正确;∴正确的有4个.故选:B.根据图象的开口可确定a.再结合对称轴,可确定b,根据图象与y轴的交点位置,可确定c,进行一一分析,即可解答.本题考查了二次函数的图象和系数的关系,解题的关键是熟练掌握二次函数的有关性质、以及二次函数的图象的特点.8.【答案】B【解析】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴S△ABE:S△ECF=AB2:CE2,∵E是BC的中点,∴BC=2CE=AB∴==,即S△ABE:S△ECF=4:1故选:B.首先根据正方形的性质与同角的余角相等证得:△BAE∽△CEF,再根据相似三角形的性质可得结论.此题考查了相似三角形的判定与性质,以及正方形的性质,熟练掌握相似三角形面积的比等于相似比的平方.9.【答案】B【解析】解:∵点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴①正确;∴==,∴②正确;==,∴③错误;正确的有2个,故选:B.根据三角形的中位线性质推出DE∥BC,DE=BC,推出△ADE∽△ABC,即可判断①;根据相似三角形性质推出比例式,即可判断②③.本题考查了相似三角形的性质和判定、三角形的中位线定理等知识点,主要考查学生能根据相似三角形的判定定理推出△ADE和△ABC相似,并进一步根据相似三角形的性质推出有关结论.题型较好,难度适中.10.【答案】B【解析】解:设M(m,n),则D(m,2m+2),C(,n),mn=-2,∵直线y2=2x+2分别与x轴、y轴交于点A,B,∴A(-1,0),B(0,2),∵AC=,=|n|,BD==|m|,∴AC•BD=×|mn|=5,故选:B.设M(m,n),则D(m,2m+2),C(,n),mn=-2,求出AC、BD即可解决问题;本题考查反比例函数图象上的点的特征,一次函数图象上的点的特征等知识,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.11.【答案】x1=-1,x2=3【解析】解:观察图象可知,抛物线y=2x2-4x+m与x轴的一个交点为(-1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∴一元二次方程2x2-4x+m=0的解为x1=-1,x2=3.故本题答案为:x1=-1,x2=3.由图象可知,抛物线y=2x2-4x+m与x轴的一个交点为(-1,0),对称轴为x=1,根据抛物线的对称性可求抛物线与x轴的另一交点坐标,从而确定一元二次方程2x2-4x+m=0的解.本题考查了用函数观点解一元二次方程的方法.一元二次方程2x2-4x+m=0的解实质上是抛物线y=2x2-4x+m与x轴交点的横坐标的值.12.【答案】-4【解析】解:∵AB⊥x轴,∴S△AOM=|k|=2,∵k<0,∴k=-4.故答案为-4.根据反比例函数y=(k≠0)系数k的几何意义得到S△AOM=|k|=2,然后根据k<0去绝对值得到k的值.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.【答案】5-1【解析】解:∵∠A=36°,∴∠ABC=∠ACB=72°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=36°,∴∠BDC=72°,∴DA=DB=BC,∵∠DBC=∠A,∠C=∠C,∴△DBC∽△BAC,∴=,即BC2=CD•AC,∴AD2=CD•AC,∴点D是AC的黄金分割点,∴AD=AC=-1,故答案为:-1.证明△DBC∽△BAC,得到点D是AC的黄金分割点,根据黄金分割的概念解答即可.本题考查的是等腰三角形的性质、相似三角形的判定和性质、黄金分割的概念,掌握黄金比值是是解题的关键.14.【答案】25376【解析】解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∵点M是AB边的中点,∴AM=BM=1,在Rt△ADM中,DM==,∵AM∥CD,∴=,∴DP=,∵PF=,∴DF=DP-PF=-=,∵∠EDF=∠PDC,∠DFE=∠DCP=45°,∴△DEF∽△DPC,∴,∴,∴DE=,∴CE=CD-DE=2-=.故答案为:,.如图,首先求出DM、DF、PD的长,证明△DEF∽△DPC,可得,求出DE即可解决问题.本题考查正方形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.15.【答案】解:(1)△BCD∽△BAC.理由如下:∵BD=43,AB=3,BC=2,∴BDBC=432=23,BCBA=23,∴BDBC=BCBA,而∠DBC=∠CBA,∴△BCD∽△BAC;(2)∵△BCD∽△BAC,∴CDAC=BCBA,即53AC=23,∴AC=52.【解析】(1)利用两组对应边的比相等且夹角对应相等的两个三角形相似可判定△BCD∽△BAC;(2)根据相似三角形的性质计算AC的长.本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.16.【答案】解:(1)△ABC即为所求:(2)△A1B1C1如图所示;(3)△A2B2C2如图所示;【解析】(1)根据A,B,C的坐标画出△ABC即可;(2)分别作出A,B,C关于x轴的对称点A1,B1C1即可;(3)延长AO到A2使得OA2=2OA,同法作出B2,C2即可解决问题;本题考查作图-位似变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:(1)由题意得x=−b2a=−22⋅(−14)=4把x=4代入y=−14x2+2x解得y=4∴抛物线顶点坐标为(4,4).(1分)(2)−14x2+2x=0(2分)x1=0,x2=8,∴球飞行的最大水平距离为8m.(2分)(3)根据(1)当x=4时球的最大高度为4,此时球刚好进洞,即(10,0),顶点为(5,4)(3分)∴100a+10b=0,25a+5b=4a=−425b=85(4分)∴球飞行的路线满足抛物线的解析式为y=−425x2+85x.(5分)【解析】(1)用配方法或公式法求二次函数的顶点坐标;(2)令y=0,解出x1,x2的值,则球飞行的最大水平距离为|x1-x2|;(3)用待定系数法求出二次函数的解析式.本题考查了用待定系数法求函数解析式的方法,同时还考查了一元二次方程的解法和求二次函数的顶点坐标等知识,难度不大.18.【答案】解:(1)设该函数的解析式为y=ax2+bx+c,a×(−2)2+b×(−2)+c=0a×42+b×4+c=0c=16,解得,a=−2b=4c=16,即二次函数的解析式y=-2x2+4x+16;(2)∵y=-2x2+4x+16=-2(x-1)2+18,∴顶点P的坐标为(1,18),∵A(-2,0),B(4,0),∴AB=4-(-2)=6,∴△ABP的面积是:6×182=54;(3)当x≤-2或x≥4,y≤0.【解析】(1)根据二次函数的图象过三点A(-2,0),B(4,0),C(0,16),可以求得该函数的解析式;(2)根据(1)中的函数解析式可以求得点P的坐标,从而可以求得△ABP的面积;(3)根据二次函数的性质,可以直接写出当x为何值时,y≤0.本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.19.【答案】解:(1)∵反比例函数y=mx的图象过点A(-2,1),B(1,n)∴m=-2×1=-2,m=1×n∴n=-2∴B(1,-2)∵一次函数y=kx+b的图象过点A,点B∴−2=k+b1=−2k+b解得:k=-1,b=-1∴直线解析式y=-x-1(2)∵直线解析式y=-x-1与x轴交于点C∴点C(-1,0)∴S△AOB=12×1×1+12×1×2=32;(3)∵C(-1,0),A(-2,1),∴一次函数0<kx+b<mx的x的取值范围:-2<x<-1.【解析】(1)将点A,点B坐标代入两个解析式可求k,b,m,n的值;(2)由题意可求点C坐标,根据△AOB的面积=△ACO面积+△BOC面积,可求△AOB的面积;(3)根据函数的图象即可求得x的取值范围.本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.20.【答案】(1)证明:∵四边形ABCD是平行四边形,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵四边形ABCD是平行四边形,∴CD=AB=8,∵△ADF∽△DEC,∴ADAF=DEDC,∴DE=AD⋅CDAF=63×843=12.【解析】(1)根据平行四边形的性质得到∠C+∠B=180°,∠ADF=∠DEC,根据题意得到∠AFD=∠C,根据相似三角形的判定定理证明;(2)根据相似三角形的性质列出比例式,代入计算即可.本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.21.【答案】解:(1)w=(-2x+100)(x-20)=-2x2+140x-2000,(2)由题意得,-2x2+140x-2000=250,解得:x1=25,x2=45.答:销售单价定为25元或45元时厂商每月能获得250万元的利润;(3)由题意:20(-2x+100)≤400,解得x≥40,∵利润函数的对称轴x=35,开口向下,∴x=40时利润最大,最大利润为400万.【解析】(1)月销售利润=月销量×(单件售价-单件制造成本;(2)构建方程即可解决问题;(3)构建不等式求出x的取值范围,再利用二次函数的性质解决问题即可;本题考查了二次函数的应用及一元二次方程的应用,解答本题的关键是得出月销售利润的表达式,要求同学们熟练掌握配方法求二次函数最值的应用.22.【答案】解:(1)∵四边形EGFH为正方形,∴BC∥EF,∴△AEF∽△ABC;(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80-x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴EFBC=AKAD,∴x120=80−x80,解得x=48.答:正方形零件的边长为48mm.(3)设EF=x,EG=y,∵△AEF∽△ABC∴EFBC=AKAD,∴x120=80−y80∴y=80-23x∴矩形面积S=xy=-23x2+80x=-23(x-60)2+2400(0<x<120)故当x=60时,此时矩形的面积最大,最大面积为2400mm2.【解析】(1)根据正方形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其它两边或其它两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为x mm,则KD=EF=x,AK=80-x,根据EF∥BC,得到△AEF∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果;(3)根据矩形面积公式得到关于x的二次函数,根据二次函数求出矩形的最大值.本题考查了正方形以及矩形的性质,结合了平行线的比例关系求解,注意数形结合的运用.23.【答案】(1)证明:∵E,F点都在反比例函数图象上,∴根据反比例函数的性质得出,xy=k,∴AE•AO=BF•BO;(2)解:∵点E的坐标为(2,4),∴AE•AO=BF•BO=8,∵BO=6,∴BF=43,∴F(6,43),分别代入二次函数解析式得:c=04a+2b+c=436a+6b+c=43,把c=0代入c=04a+2b+c=4①36a+6b+c=43②得:2a+b=218a+3b=23,解得:a=−49b=269,可得原方程组的解为:a=−49b=269c=0,∴y=-49x2+269x;(3)解:设存在这样的点F,将△CEF沿EF对折后,C点恰好落在OB边上的C'点,过点E作EG⊥OB,垂足为G.由题意得:EG=AO=4,把y=4代入y=kx得:x=14k,把x=6代入y=kx得:y=16k,∴EC'=EC=6-14k,C′F=CF=4-16k,∵∠EC'G+∠FC'B=∠FC'B+∠C'FB=90°,∴∠EC'G=∠C'FB.又∵∠EGC'=∠C'BF=90°,∴△EC'G∽△C'FB.∴EG:C'B=EC':C'F,∴4:C'B=(6-14k):(4-16k)=[3(2-112k)]:[2(2-112k)],∴C'B=83,∵C'B2+BF2=C'F2,∴(83)2+(16k)2=(4-16k)2,解得k=203,∴BF=k6=109,∴存在符合条件的点F,它的坐标为(6,109).∴FO=30169=27549.【解析】(1)根据反比例函数的性质得出,xy=k,即可得出AE•AO=BF•BO;(2)利用E点坐标首先求出BF=,再利用待定系数法求二次函数解析式即可;(3)设折叠之后C点在OB上的对称点为C',连接C'E、C'F,过E作EG垂直于OB于点G,则根据折叠性质、相似三角形、勾股定理得出即可.此题主要考查了反比例函数的性质以及待定系数法求二次函数解析式以及相似三角形的判定与性质,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合以及利用相似三角形的性质是这部分考查的重点也是难点.。
安徽省合肥市九年级上学期期中数学试卷
安徽省合肥市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列方程①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x ﹣1)(x﹣3)=x2 ,其中一元二次方程共有()A . 1B . 2C . 3D . 42. (2分) (2018九下·滨湖模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)已知二次函数()的图象如图所示,有下列结论:⑴abc>0;⑵a+b+c>0;⑶a-b+c<0;其中正确的结论有()A . 0个B . 1个C . 2个D . 3个4. (2分)在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A . (﹣1,﹣2)B . (﹣1,2)C . (1,﹣2)D . (2,1)5. (2分) (2016九上·大石桥期中) 已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A . 10B . 14C . 10或14D . 8或106. (2分)在背面完全相同的6张卡片的正面分别印有:;;;;;,把正面向下洗匀后,从中任抽两张,抽出的卡片上的函数当时,y随x的增大而减小的概率是()A .B .C .D .7. (2分) (2016九上·夏津期中) 如果关于x的二次方程a(1+x2)+2bx=c(1﹣x2)有两个相等的实数根,那么以正数a,b,c为边长的三角形是()A . 锐角三角形B . 钝角三角形C . 直角三角形D . 任意三角形8. (2分)关于x的一元二次方程(m-2)x2+(2m—1)x+m2—4=0的一个根是0,则m的值是()A . 2B . —2C . 2或者—2D .9. (2分)如图,在平面直角坐标系中将△ABC绕点C(0,﹣1)旋转180°得到△A1B1C1 ,设点A1的坐标为(m,n),则点A的坐标为()A . (﹣m,﹣n)B . (﹣m,﹣n﹣2)C . (﹣m,﹣n﹣1)D . (﹣m,﹣n+1)10. (2分)(2016·临沂) 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A . 抛物线的开口向下B . 当x>﹣3时,y随x的增大而增大C . 二次函数的最小值是﹣2D . 抛物线的对称轴是x=﹣二、填空题 (共6题;共6分)11. (1分) (2016九上·乌拉特前旗期中) 钟表的时针匀速旋转一周需要12小时,经过2小时,时针旋转了________度.12. (1分)(2020·上海模拟) 如果点A(﹣3,y1)和点B(﹣2,y2)是抛物线y=x2+a上的两点,那么y1________y2 .(填“>”、“=”、“<”).13. (1分) (2020九上·常州期末) 关于x的一元二次方程(2-k) x2-2x+1=0有两个不相等的实数根,则整数k的最小值是________.14. (1分)点A(2,1)关于原点对称的点B的坐标为________15. (1分) (2017八下·湖州期中) 方程(k﹣1)x2﹣x+ =0有两个实数根,则k的取值范围是________.16. (1分)(2018·滨州模拟) 在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为________.三、解答题。
九年级数学上学期期中测试题(安徽省合肥)
九年级数学上学期期中测试题(安徽省合肥)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2+4D.y=(x+3)2+43.(4分)对于反比例函数,下列说法正确的是()A.图象经过点(2,﹣3)B.图象位于第一、三象限C.当x<0时,y随x的增大而增大D.当x>0时,y随x的增大而增大4.(4分)二次函数y=x2+3x+n的图象与x轴有一个交点在y轴右侧,则n的值可以是()A.﹣2B.0C.2D.45.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥06.(4分)如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(2,3),B (m,﹣2),则不等式ax+b的解是()A.﹣3<x<0或x>2B.x<﹣3或0<x<2C.﹣2<x<0或x>2D.﹣3<x<0或x>37.(4分)一杠杆装置如图.杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F乙,F丙,F丁,将相同重量的水桶吊起同样的高度,若F丙<F乙<F甲<F丁,则这四位同学对杆的压力的作用点到支点的距离最远的是()A.甲同学B.乙同学C.丙同学D.丁同学8.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点位于(2,0),(3,0)两点之间.下列结论:①2a+b=0;②bc<0;③;④若x1,x2为方程ax2+bx+c=0的两个根,则﹣3<x1•x2<0.其中正确结论的个数是()A.1B.2C.3D.49.(4分)一次函数y=ax+b与反比例函数y=的图象如图所示,则二次函数y=ax2+bx+c 的大致图象是()A.B.C.D.10.(4分)已知二次函数y=ax2﹣2ax+3(其中x是自变量),当0<x<3时对应的函数值y 均为正数,则a的取值范围为()A.0<a<1B.a<﹣1或a>3C.﹣3<a<0或0<a<3D.﹣1≤a<0或0<a<3二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)已知y是x的二次函数,如表给出了y与x的几对对应值:x…﹣2﹣101234…y…11a323611…由此判断,表中a=.12.(5分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.13.(5分)如图,正方形四个顶点分别位于两个反比例函数和的图象的四个分支上,则n的值=.14.(5分)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC=2BC,△ABE的面积为9,四边形ABDE的面积为14,则a ﹣b的值为,a的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)已知抛物线y=x2﹣4x+a的顶点在直线y=﹣4x﹣1上,求抛物线的顶点坐标.16.(8分)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.四、(本大题共2小题,每小题8分,满分16分)17.(8分)已知反比例函数y=的图象经过点A(3,﹣2).(1)求k的值.(2)点C(x1,y1),B(x2,y2)均在反比例函数y=的图象上,若0<x1<x2,直接写出y1,y2的大小关系.18.(8分)如图,一次函数y=x+3的图象与反比例函数的图象交于点A(m,4),与x轴交于点B,与y轴交于点C(0,3).(1)求反比例函数解析式;(2)已知P为反比例函数图象上的一点,S△OBP=2S△OAC,求点P的坐标.五、(本大题共2小题,每小题10分,满分20分)19.(10分)甲船从A处起以15km/h的速度向正北方向航行,这时乙船从A的正东方向20km 的B处起以20km/h的速度向西航行,多长时间后,两船的距离最小?最小距离是多少?20.(10分)如图,抛物线y=ax2+bx+6经过点A(﹣2,0)、B(4,0),与y轴交于点C,点D是抛物线上的一个动点,设点D的横坐标为m(1<m<4),连接AC、BC、BD、CD.(1)请直接写出抛物线的表达式.(2)求△BCD面积的最大值.六、(本题满分12分)21.(12分)如图,一次函数y=2x的图象与反比例函数y=(x>0)的图象交于点A(4,n).将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=(x>0)的图象上.(1)求n,k的值;(2)当m为何值时,AB•OD的值最大?最大值是多少?七、(本题满分12分)22.(12分)如图1,某个温室大棚的横截面可以看作矩形ABCD和抛物线AED构成,其中AB=3m,BC=4m,取BC中点O,过点O作线段BC的垂直平分线OE交抛物线AED 于点E,若以O点为原点,BC所在直线为x轴,OE为y轴建立如图所示平面直角坐标系,抛物线AED的顶点E(0,4).请回答下列问题:(1)求如图2抛物线的解析式;(2)如图3,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT,SMNR,若FL=NR=0.75m,求两个正方形装置的间距GM的长.八、(本题满分14分)23.(14分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。
合肥市第五十中学2014年秋九年级上期中数学试卷含答案
数学试题第1页 共4页合肥市第五十中学2014-2015学年度九年级第一学期期中考试数 学 试 卷(总分100分 时间90分钟)题 号一二三四五总 分得 分得 分 评卷人一、选择题(共10小题,每小题3分,共30分) 1.抛物线122+-=x y 的对称轴是( )A.直线12x = B. 直线12x =- C. y 轴 D. 直线x=22.已知(5,-1)是双曲线)0(≠=k xky 上的一点,则下列各点中不在..该图象上的是( )A .( 13 ,-15) B .(5,1)C . (-1,5)D .(10,21-) 3.已知x :y=5:2,则下列各式中不正确的是( )A .x+y y = 72B .x-y y = 32C .x x+y = 57D .x y-x = 534.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.5.若△ABC ∽△A ′B ′C ′,其面积比为1:2,则△ABC 与△A ′B ′C ′的相似比为( ) A .1:2 B .2:2 C .1:4 D .1:26.如图,在△ABC 中,∠ADE =∠C ,那么下列等式中,成立的是( )A .BC DE=AB AE B .BC AE =BD ADC .ABAD =AC AE D .BC DE =ABAD7.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD :DE = 3:5,AE =8,BD =4,则DC 的长等于( )A .B .C .D .8.函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若212x x <<-,则( )A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定班级________________ 姓名_______________ 座位号______________ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 密 封 线 内 不 要 答 题 ____________________________________________________________________________________________________________________________________数学试题第2页 共4页9.将抛物线221y x =+的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是( ) A .22(2)3y x =+- B .22(2)2y x =+- C .22(2)3y x =-- D .22(2)2y x =--10.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,点D 是AB 上的一个动点 (不与A 、B 两点重合),DE ⊥AC 于点E ,DF ⊥BC 于点F ,点D 从靠近点A的某一点向点B 移动,矩形DECF 的周长变化情况是( )A.逐渐减小B.逐渐增大C.先增大后减小D.先减小后增大得 分 评卷人 二、填空题(共6小题,每小题3分,共18分)11.写出一个开口向下,顶点坐标是(1,-2)的二次函数解析式 .12.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连接AC 、BC ,在AC 上取点M ,使AM =3MC ,作MN ∥AB 交BC 于N ,量得MN =38m ,则AB 的长为 .13.教练对小明推铅球的录像进行技术分析(如图),发现铅球行进高度y (m)与水平距离x (m)之间的关系为() x -y 24121-=+3,由此可知铅球推出的距离是 m . 14.已知二次函数m x x y ++-=42的部分图象如图所示,则关于x 的一元二次方程042=++-m x x 的解为 .15.如图,已知:∠ACB =∠ADC =90°,AD=2,CD =2,当AB 的长为_____________时,△ACB与△ADC 相似.16.二次函数y=ax 2+bx+c 的图象如图所示,以下结论: ①a+b+c=0;②4a+b=0;③abc<0;④4ac-b 2<0;⑤当x ≠2时,总有4a+2b>ax 2+bx 其中正确的有(填写正确结论的序号).得 分 评卷人 三、(本题共3小题,每小题6分,满分18 分)17.已知二次函数6422++-=x x y . (1)求该函数图象的顶点坐标. (2)求此抛物线与x 轴的交点坐标.y 第16题图O 1 3xAD C B第15题 2 6第14题 第13题 AB C E D F 第10题第12题数学试题第3页 共4页18.如图,D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD=∠C ,AB=6,AD=4,求线段CD 的长.19.如图,已知抛物线32-+=bx ax y 的对称轴为直线1=x ,交x 轴于A 、B 两点,交y 轴于C 点,其中B 点的坐标为(3,0)。
合肥市五十中九年级(上)月考试卷
合肥市五十中九年级(上)月考试卷数 学 试 题老师寄语:同学们,准备好了吗?让我们一起对本月学过的课程做一次小结回顾吧!请同学们认真审题,仔细解答。
预祝各位同学本次月考取得好成绩!一、选择题(每小题3分,共30分)1、若反比例函数y =xk的图象经过点(–1,2),则k 的值为 A .–2 B .–21 C .2 D .212、如果反比例函数y =xk在其象限内,y 随x 的增大而减小,那么它的图象分布在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3、函数y =–ax +a 与y =–a(a ≠0)在同一坐标系中的图象可能是()4、有两组扑克牌各三张,牌面数字均为1,2,3,随意从每组牌中各抽一张,数字和等于4的概率是( ) A.95 B.92 C.31 D.94 5、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标的背面是一张哭脸,若翻到哭脸就不得奖金,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻)。
某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A.41 B.51 C.61 D.203 6、准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( )A x x C xA.31 B.41 C.51 D.61 7、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是( )A .135B .1312C .125D .5128、在Rt △ABC 中,∠C=90°,tanA=43,AB=15,则BC=( )A.6B.7C.8D.99、在△ABC 中,∠C =90°,cosA=53,那么tanA 等于( )A .53B .54C .43D .34(第10题图)10、如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m ,那么这棵树的高度大约为( ) A .5.2 m B .6.8 m C .9.4 m D .17.2 m二、填空题(每小题3分,共24分)11、反比例函数y =–x5的图像在 象限. 12、已知点A(x 1,y 1)、B(x 2,y 2)是反比例函数y =–x2图象上两点,且0<x 1<x 2,则y 1、y 2的大小关系是 .13、已知α是锐角,且sin α=31,则cos α=___________. 14、某人沿坡度i =1∶3的山路的路面向上前进100米后,他所在的位置比原来的位置升高了 米.15、等腰三角形的腰长为10cm ,底边为16cm ,则这个等腰三角形底角的正切值是 . 16、将分别标有1、2、3的三张卡片洗匀后,背面朝上放在桌上,随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,恰好是“32”的概率是 . 17、在□a 2□2ab □b 2的方框中,任意填上“+”或“–”,能够构成完全平方式的概率是 .18、在对某次实验数据整理过程中,某个事件出现的频率随实验次数变化折线图如图所示,这个折线的变化特点说明了 ,试举一个大致符合这个特点的实物实验(指出关注的结果) .三、(每小题6分,共12分)19、将x =32代入反比例函数y =–x1中,所得函数值记为y 1,又将x =y 1+1代入函数中,所得函数值记为y 2,再将x =y 2+1代入函数中,所得函数值记为y 3,……,如此继续下去.(2)观察上表,你发现了什么规律?猜想y 2004= .(2分)20、已知:如图,在Rt △ABC 中,∠C=90°,AD 平分∠BAC ,AD=23,AC=3.(1)求∠B ; (2)求S △ABC .四、(每小题8分,共16分)21、已知点A(–2,n )是反比例函数y =xk(k <0)的图象上一点,过A 作AB ⊥x 轴于点B ,S △AOB =6. (1)求这个反比例函数的解析式;(2)若正比例函数y =mx 的图象过A 点,则正比例函数与反比例函数的图象还有其他交点吗?若有,求出交点坐标;若没有,说明理由.(3)写出反比例函数的值大于正比例函数的值的x 的取值范围.22、用如图所示的两个转盘进行“配紫色”游戏(红色与蓝色配成紫色)。
2013-2014学年安徽省合肥市包河区九年级(上)期中数学试卷
2013-2014学年安徽省合肥市包河区九年级(上)期中数学试卷一、选择题(本题共10小题,每小题3分,满分30分)1.(3分)抛物线y=(x﹣2)2+3的对称轴是()A.直线x=﹣2 B.直线x=2 C.直线x=﹣3 D.直线x=32.(3分)把抛物线y=2x2向左平移1个单位,则所得抛物线的解析式是()A.y=2(x﹣1)2 B.y=2(x+1)2C.y=2x2﹣1 D.y=2x2+13.(3分)若=,则下列各式不成立的是()A.=B.= C.=D.=4.(3分)下列四个函数中,y的值随着x值的增大而减小的是()A.y=2x B.y=x+1 C.y=(x>0) D.y=x2(x>0)5.(3分)如下图,在边长为1的正方形网格中,点A、B、C均在格点上.则下列四个图形中的三角形(阴影部分,顶点均在格点上)与△ABC相似的是()A.B.C.D.6.(3分)在等腰△ABC和等腰△DEF中,∠A与∠D是顶角,下列判断正确的是()①∠A=∠D时,两三角形相似;②∠A=∠E时,两三角形相似;③=时,两三角形相似;④∠B=∠E时,两三角形相似.A.1个B.2个C.3个D.4个7.(3分)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米8.(3分)下列各图中有可能是函数y=ax2+c,的图象的是()A. B.C.D.9.(3分)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B 点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.210.(3分)已知二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=﹣1,给出下列结论:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(本题共6小题,每小题3分,满分18分)11.(3分)如果在比例尺为1:1000000的地图上,A、B两地的图上距离是1.6厘米,那么A、B两地的实际距离是千米.12.(3分)如图,DE∥BC,AB=12,AC=16,EC=6,则AD=.13.(3分)已知线段AB=2cm,点P是线段AB的黄金分割点,且AP>PB,则线段AP= cm.14.(3分)初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.15.(3分)如图,从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是h=9.8t﹣4.9t2,那么小球运动中的最大高度h最大=米.16.(3分)一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油面的高度为m.三、(本题共2小题,每小题10分,满分20分)17.(10分)如图,已知△ABC中,CE⊥AB于E,BF⊥AC于F,在不添加字母的情况下,找出图中所有的相似三角形,并证明其中一组.18.(10分)二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求该二次函数图象的顶点坐标和对称轴.四、(本题满分10分)19.(10分)如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.五、(本题满分10分)20.(10分)已知一次函数与反比例函数的图象交于点P(﹣3,M),Q(2,﹣3).(1)求这两个函数的关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)结合图象,直接写出当x为何值时,一次函数的值大于反比例函数的值?六、(本题满分12分)21.(12分)已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(,),对称轴是;(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.2013-2014学年安徽省合肥市包河区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,满分30分)1.(3分)(2009•金华)抛物线y=(x﹣2)2+3的对称轴是()A.直线x=﹣2 B.直线x=2 C.直线x=﹣3 D.直线x=3【分析】直接根据顶点式的特点可直接写出对称轴.【解答】解:因为抛物线解析式y=(x﹣2)2+3是顶点式,顶点坐标为(2,3),所以对称轴为直线x=2.故选B.【点评】主要考查了求抛物线的对称轴的方法.2.(3分)(2006秋•义乌市期末)把抛物线y=2x2向左平移1个单位,则所得抛物线的解析式是()A.y=2(x﹣1)2 B.y=2(x+1)2C.y=2x2﹣1 D.y=2x2+1【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,那么新抛物线的顶点为(﹣1,0),可设新抛物线的解析式为y=2(x﹣h)2+k,代入得y=2(x+1)2.故选B.【点评】解决本题的关键是得到新抛物线的顶点坐标.3.(3分)(2015秋•合肥期末)若=,则下列各式不成立的是()A.=B.= C.=D.=【分析】根据比例设x=2k,y=3k,然后代入比例式对各选项分析判断利用排除法求解.【解答】解:∵=,∴设x=2k,y=3k,A、==,正确,故本选项错误;B、==,正确,故本选项错误;C、==,正确,故本选项错误;D、=≠,故本选项正确.故选D.【点评】本题考查了比例的性质,利用“设k法”表示出x、y求解更加简便.4.(3分)(2016•东平县二模)下列四个函数中,y的值随着x值的增大而减小的是()A.y=2x B.y=x+1 C.y=(x>0) D.y=x2(x>0)【分析】根据一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=2x,正比例函数,k>0,故y随着x增大而增大,错误;B、y=x+1,一次函数,k>0,故y随着x增大而增大,错误;C、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,正确;D、y=x2,当x>0时,图象在对称轴右侧,y随着x的增大而增大,错误.故选C.【点评】本题综合考查二次函数、一次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.5.(3分)(2013秋•包河区校级期中)如下图,在边长为1的正方形网格中,点A、B、C 均在格点上.则下列四个图形中的三角形(阴影部分,顶点均在格点上)与△ABC相似的是()A.B.C.D.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【解答】解:已知给出的三角形的各边分别为、2、、只有选项A的各边为1、、与它的各边对应成比例.故选A.【点评】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握.6.(3分)(2011春•工业园区期末)在等腰△ABC和等腰△DEF中,∠A与∠D是顶角,下列判断正确的是()①∠A=∠D时,两三角形相似;②∠A=∠E时,两三角形相似;③=时,两三角形相似;④∠B=∠E时,两三角形相似.A.1个B.2个C.3个D.4个【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【解答】解:①∠A=∠D时,∠B=∠C=∠E=∠F,所以两三角形相似,正确;②∠A=∠E时,不能判定其它角相等,所以不能判定两三角形相似,错误;③=时,,所以两三角形相似,正确;④∠B=∠E时,∠C=∠F,所以两三角形相似,正确.判断正确的共3个.故选C.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.7.(3分)(2008•金华)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【分析】由已知得△ABP∽△CDP,则根据相似形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故选:B【点评】本题综合考查了平面镜反射和相似形的知识,是一道较为简单的题,考查相似三角形在测量中的应用.8.(3分)(2013•江北区模拟)下列各图中有可能是函数y=ax2+c,的图象的是()A. B.C.D.【分析】按照a的符号分类讨论,逐一排除.【解答】解:当a>0时,函数y=ax2+c的图象开口向上,且经过点(0,c),函数y=的图象在一三象限,故可排除B、D;当a<0时,函数y=ax2+c的图象开口向下,函数y=的图象在二四象限,排除C,A正确.故选A.【点评】主要考查二次函数和反比例函数图象的有关性质,同学们应该熟记且灵活掌握.9.(3分)(2012•潍坊)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE 向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.2【分析】可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可.【解答】解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解.故选B.【点评】考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD相似得到比例式.10.(3分)(2015秋•道里区期末)已知二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=﹣1,给出下列结论:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.其中正确的结论有()A.2个B.3个C.4个D.5个【分析】根据抛物线与x轴交点的个数判定根的判别式的符号;由抛物线的开口方向,抛物线与y轴的交点位置以及抛物线对称轴可以判定a、b、c的符号;由x=1和x=﹣1可以得到相应的y值的符号.【解答】解:(1)抛物线与x轴有2个交点,则b2﹣4ac>0,则b2>4ac,故(1)正确;(2)抛物线开口方向向上,则a>0.抛物线与y轴交于负半轴,则c<0.对称轴在y轴的左侧,a、b同号,即b>0.所以abc<0.故(2)错误;(3)对称轴x=﹣=﹣1,则b﹣2a=0,故(3)错误;(4)如图,当x=1时,y>0,即a+b+c>0,故(4)正确;(5)如图,当x=﹣时,y<0,即a﹣b+c<0.故(5)正确;综上所述,正确的个数是3个.故选:B.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本题共6小题,每小题3分,满分18分)11.(3分)(2013秋•包河区校级期中)如果在比例尺为1:1000000的地图上,A、B两地的图上距离是1.6厘米,那么A、B两地的实际距离是16千米.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,1.6÷=1600000厘米=16千米.即实际距离是16千米.故答案为:16.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.12.(3分)(2013秋•包河区校级期中)如图,DE∥BC,AB=12,AC=16,EC=6,则AD= 7.5.【分析】由平行可得=,且可求得AE=10,代入可求得AD.【解答】解:∵DE∥BC,∴=,∵AC=16,EC=6,∴AE=10,∴=,解得AD=7.5,故答案为:7.5.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.13.(3分)(2013秋•包河区校级期中)已知线段AB=2cm,点P是线段AB的黄金分割点,且AP>PB,则线段AP=cm.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长度.【解答】解:由于P为线段AB=8cm的黄金分割点,且AP是较长线段,则AP=2×=﹣1.故选B.【点评】本题主要考查了理解黄金分割点的概念,熟记黄金比的值进行计算,难度适中.14.(3分)(2008•苏州)初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=﹣4.【分析】由表格可知,(0,﹣2),(2,﹣2)是抛物线上两对称点,可求对称轴x=1,再利用对称性求出横坐标为3的对称点(﹣1,﹣4)即可.【解答】解:观察表格可知,当x=0或2时,y=﹣2,根据二次函数图象的对称性,(0,﹣2),(2,﹣2)是抛物线上两对称点,对称轴为x==1,顶点(1,﹣2),根据对称性,x=3与x=﹣1时,函数值相等,都是﹣4.故答案为:﹣4.【点评】观察二次函数的对应值的表格,关键是寻找对称点,对称轴,利用二次函数的对称性解答.15.(3分)(2009•庆阳)如图,从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是h=9.8t﹣4.9t2,那么小球运动中的最大高度h最= 4.9米.大【分析】把抛物线解析式化成顶点式,即可解答.【解答】解:h=9.8t﹣4.9t2=4.9[﹣(t﹣1)2+1]当t=1时,函数的最大值为4.9米,这就是小球运动最大高度.【点评】本题涉及二次函数的实际应用,难度中等.16.(3分)(2000•陕西)一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油面的高度为0.64m.【分析】根据题意,画出图形,因为油面和桶底是平行的,所以可构成相似三角形,根据对应边成比例列方程即可解答.【解答】解:如图:AB表示木棒长,BC表示油桶高,DE表示油面高度,AD表示棒上浸油部分长,∴DE∥BC∴△ADE∽△ABC∴AD:AB=DE:BC∵AD=0.8m,AB=1m,BC=0.8m∴DE=0.64m∴桶内油面的高度为0.64m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出桶内油面的高度,体现了转化的思想.三、(本题共2小题,每小题10分,满分20分)17.(10分)(2013秋•包河区校级期中)如图,已知△ABC中,CE⊥AB于E,BF⊥AC于F,在不添加字母的情况下,找出图中所有的相似三角形,并证明其中一组.【分析】根据相似三角形的判定定理进行解答即可.【解答】解:∵CE⊥AB于E,BF⊥AC于F,∴∠AEC=∠AFB,∵∠A=∠A,∴△ABF∽△ACE;∵CE⊥AB于E,BF⊥AC于F,∴∠AEC=∠AFB=90°,∴B、C、E、F四点在以BC为直径的圆上,∴∠AFE=∠ABC,∴△AEF∽△ACB.【点评】本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.18.(10分)(2013秋•包河区校级期中)二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求该二次函数图象的顶点坐标和对称轴.【分析】(1)把已知点的坐标代入解析式,然后解关于b、c的二元一次方程组即可得解;(2)把函数解析式转化为顶点式形式,然后即可写出顶点坐标与对称轴解析式;【解答】解:(1)∵二次函数y=x2+bx+c的图象经过点(4,3),(3,0),∴,解得;(2)∵该二次函数为y=x2﹣4x+3=(x﹣2)2﹣1.∴该二次函数图象的顶点坐标为(2,﹣1),对称轴为直线x=2;【点评】本题考查了待定系数法求二次函数解析式,二次函数的顶点坐标与对称轴的求解,以及作二次函数图象,都是基础知识,一定要熟练掌握.四、(本题满分10分)19.(10分)(2012秋•扶沟县期末)如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB 的长为多少时,这两个直角三角形相似.【分析】如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.在Rt△ABC和Rt△ACD,直角边的对应需分情况讨论.【解答】解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:(1)当Rt△ABC∽Rt△ACD时,有=,∴AB==3;(2)当Rt△ACB∽Rt△CDA时,有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.五、(本题满分10分)20.(10分)(2013秋•包河区校级期中)已知一次函数与反比例函数的图象交于点P(﹣3,M),Q(2,﹣3).(1)求这两个函数的关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)结合图象,直接写出当x为何值时,一次函数的值大于反比例函数的值?【分析】(1)利用待定系数法确定两函数的解析式;(2)画函数图象;(3)观察函数图象得到当x<﹣3或0<x<2时,一次函数图象都在反比例函数图象上方.【解答】解:(1)设反比例函数解析式为y=(k≠0),把Q(2,﹣3)代入得k=2×(﹣3)=﹣6,∴反比例函数解析式为y=﹣;把P(﹣3,m)代入y=﹣得﹣3m=﹣6,解得m=2,∴P点坐标为(﹣3,2),设一次函数解析式为y=ax+b(a≠0),把P(﹣3,2)和Q(2,﹣3)代入y=ax+b得,解得,∴一次函数的解析式为y=﹣x﹣1;(2)如图,(3)当x<﹣3或0<x<2时,一次函数的值大于反比例函数的值.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.六、(本题满分12分)21.(12分)(2012•漳州)已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(0,1),对称轴是x=0(或y轴);(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.【分析】(1)根据函数的解析式直接写出其顶点坐标和对称轴即可;(2)根据等边三角形的性质求得PB=4,将PB=4代入函数的解析式后求得x的值即可作为P点的横坐标,代入解析式即可求得P点的纵坐标;(3)首先求得直线AP的解析式,然后设出点M的坐标,利用勾股定理表示出有关AP的长即可得到有关M点的横坐标的方程,求得M的横坐标后即可求得其纵坐标,【解答】解:(1)顶点坐标是(0,1),对称轴是y轴(或x=O).(2)∵△PAB是等边三角形,∴∠ABO=90°﹣60°=30°.∴AB=20A=4.∴PB=4.解法一:把y=4代入y=x2+1,得x=±2.∴P1(2,4),P2(﹣2,4).解法二:∴OB==2∴P1(2,4).根据抛物线的对称性,得P2(﹣2,4).(3)∵点A的坐标为(0,2),点P的坐标为(2,4)∴设线段AP所在直线的解析式为y=kx+b∴解得:∴解析式为:y=x+2设存在点N使得OAMN是菱形,∵点M在直线AP上,∴设点M的坐标为:(m,m+2)如图,作MQ⊥y轴于点Q,则MQ=m,AQ=OQ﹣OA=m+2﹣2=m∵四边形OAMN为菱形,∴AM=AO=2,∴在直角三角形AMQ中,AQ2+MQ2=AM2,即:m2+(m)2=22解得:m=±代入直线AP的解析式求得y=3或1,当P点在抛物线的右支上时,分为两种情况:当N在右图1位置时,∵OA=MN,∴MN=2,又∵M点坐标为(,3),∴N点坐标为(,1),即N1坐标为(,1).当N在右图2位置时,∵MN=OA=2,M点坐标为(﹣,1),∴N点坐标为(﹣,﹣1),即N2坐标为(﹣,﹣1).当P点在抛物线的左支上时,分为两种情况:第一种是当点M在线段PA上时(PA内部)我们求出N点坐标为(﹣,1);第二种是当M点在PA的延长线上时(在第一象限)我们求出N点坐标为(,﹣1)∴存在N1(,1),N2(﹣,﹣1)N3(﹣,1),N4(,﹣1)使得四边形OAMN 是菱形.【点评】本题考查了二次函数的应用,解题的关键是仔细读题,并能正确的将点的坐标转化为线段的长,本题中所涉及的存在型问题更是近几年中考的热点问题.参与本试卷答题和审题的老师有:zhangCF;蓝月梦;hbxglhl;lanchong;星期八;sjzx;bjy;117173;lanyan;刘超;lf2-9;HJJ;nhx600;HLing;Ldt;冯延鹏;天马行空;csiya;zhjh;zcx;CJX;守拙;ln_86;399462;gsls(排名不分先后)菁优网2016年12月1日。
2014-2015学年安徽省合肥五十中九年级(上)期中数学试卷
2014-2015学年安徽省合肥五十中九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=22.(3分)已知(5,﹣1)是双曲线y=(k≠0)上的一点,则下列各点中不在该图象上的是()A.(,﹣15)B.(5,1)C.(﹣1,5)D.(10,﹣)3.(3分)已知x:y=5:2,则下列各式中不正确的是()A.=B.= C.=D.=4.(3分)下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A.B.C.D.5.(3分)若△ABC∽△A′B′C′,其面积比为1:2,则△ABC与△A′B′C′的相似比为()A.1:2 B.:2 C.1:4 D.:16.(3分)已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是()A.=B.=C.=D.=7.(3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.8.(3分)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若﹣2<x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定9.(3分)将抛物线y=2x2+1的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=2(x+2)2﹣3 B.y=2(x+2)2﹣2 C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2﹣2 10.(3分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点D是AB上的一个动点(不与A、B两点重合),DE⊥AC于点E,DF⊥BC于点F,点D从靠近点A的某一点向点B 移动,矩形DECF的周长变化情况是()A.逐渐减小 B.逐渐增大 C.先增大后减小 D.先减小后增大二、填空题(共6小题,每小题3分,共18分)11.(3分)写出一个开口向下,顶点坐标是(1,﹣2)的二次函数解析式.12.(3分)如图,A、B两点被池塘隔开,在AB外取一点C,连接AC、BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于N,量得MN=38m,则AB的长为.13.(3分)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是m.14.(3分)已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.15.(3分)如图,已知:∠ACB=∠ADC=90°,AD=2,CD=,当AB的长为时,△ACB与△ADC相似.16.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0;⑤当x≠2时,总有4a+2b>ax2+bx 其中正确的有(填写正确结论的序号).三、(本题共3小题,每小题6分,满分18分)17.(6分)已知二次函数y=﹣2x2+4x+6(1)求函数图象的顶点坐标及对称轴(2)求此抛物线与x轴的交点坐标.18.(6分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.19.(6分)如图,已知抛物线y=ax2+bx﹣3的对称轴为直线x=1,交x轴于A、B两点,交y轴于C点,其中B点的坐标为(3,0).(1)直接写出A点的坐标;(2)求二次函数y=ax2+bx﹣3的解析式.四、(本题共3小题,每小题8分,满分24分)20.(8分)如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF 的相似比为2:1;(3)求△ABC与△ED1F1的面积比.21.(8分)如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y1>y2时x的取值范围;(3)求△AOB的面积.22.(8分)如图,在等腰三角形ABC中,AB=AC,D是AB边上一点,以CD为一边,向上作等腰△DCE,使△EDC∽△ABC,连AE,求证:AE∥BC.五、(本题共1小题,满分10分)23.(10分)某公司生产一种环保产品,需要添加一种新型原料,若每件产品的利润与新型原料价格成一次函数关系,且每件产品的利润y(元)与新型原料的价格x(元/千克)的函数图象如图:(1)当新型原料的价格为600元/千克时,每件产品的利润是多少?(2)新型原料是一种稀少材料,为了珍惜资源,政府部门规定:新型原料每天使用量m(千克)与价格x(元/千克)的函数关系为x=10m+500,且m千克新型原料可生产10m件产品.那么生产300件这种产品,一共可得利润是多少?(3)受生产能力的限制,该公司每天生产这种产品不超过450件,那么在(2)的条件下,该公司每天应生产多少件产品才能获得最大利润?最大利润是多少?2014-2015学年安徽省合肥五十中九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2012•兰州)抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.【点评】主要考查了求抛物线的顶点坐标与对称轴的方法.2.(3分)(2015秋•蚌埠期中)已知(5,﹣1)是双曲线y=(k≠0)上的一点,则下列各点中不在该图象上的是()A.(,﹣15)B.(5,1)C.(﹣1,5)D.(10,﹣)【分析】根据反比例函数图象上点的坐标特点解答即可.【解答】解:因为点(5,﹣1)是双曲线y=(k≠0)上的一点,将(5,﹣1)代入y=(k≠0)得k=﹣5;四个选项中只有B不符合要求:k=5×1≠﹣5.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.3.(3分)(2016秋•蚌埠期中)已知x:y=5:2,则下列各式中不正确的是()A.=B.= C.=D.=【分析】根据合比性质,可判断A,根据分比性质,可判断B,根据合比性质、反比性质,可判断C,根据分比性质、反比性质,可判断D.【解答】解:A、由合比性质,得=,故A正确;B、由分比性质,得=,故B正确;C、由反比性质,得y:x=2:5.由合比性质,得=,再由反比性质,得=,故C正确;D、由反比性质,得y:x=2:5.由分比性质,得=.再由反比性质,得=,故D错误;故选;D.【点评】本题考查了比例的性质,利用了反比性质,合比性质、分比性质,记住性质是解题关键.4.(3分)(2012•广西模拟)下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A.B.C.D.【分析】根据函数的图象分析函数的增减性,即可求出当x<0时,y随x的增大而减小的函数.【解答】解:A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第三象限内y随x的增大而增大,故本选项错误;C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.故选:D.【点评】本题综合考查了二次函数、一次函数、反比例函数以及正比例函数的图象,解答时,注意“数形结合”的数学思想的应用.5.(3分)(2015秋•蚌埠期中)若△ABC∽△A′B′C′,其面积比为1:2,则△ABC与△A′B′C′的相似比为()A.1:2 B.:2 C.1:4 D.:1【分析】由△ABC∽△A′B′C′,其面积比为1:2,根据相似三角形的面积比等于相似比的平方,即可求得答案.【解答】解:∵△ABC∽△A′B′C′,其面积比为1:2,∴△ABC与△A′B′C′的相似比为:1:=:2.故选B.【点评】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的面积比等于相似比的平方定理的应用是解此题的关键.6.(3分)(2007•开封)已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是()A.=B.=C.=D.=【分析】先根据相似三角形的判定定理求出△ADE∽△ACB,再根据其对应边成比例解答即可.【解答】解:∵在△ABC中,∠ADE=∠C,∠A=∠A,∴△ADE∽△ACB,=.故选C.【点评】本题主要考查了三角形相似的判定方法,有两个角对应相等的三角形相似,相似三角形的对应边的比相等.7.(3分)(2014•毕节市)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.【分析】根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.【解答】解:∵∠C=∠E,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故应选:A.【点评】本题考查了相似三角形的判定和性质:对应角相等的三角形是相似三角形,相似三角形对应边成比例.8.(3分)(2016春•温州校级期中)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B (x2,y2),若﹣2<x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【分析】先确定抛物线的对称轴及开口方向,再根据点与对称轴的远近,判断函数值的大小.【解答】解:∵y=﹣2x2﹣8x+m=﹣2(x+2)2+m+8,∴对称轴是x=﹣2,开口向下,距离对称轴越近,函数值越大,∵﹣2<x1<x2,∴y1>y2.故选B.【点评】主要考查了二次函数的图象性质及单调性的规律.9.(3分)(2015秋•蚌埠期中)将抛物线y=2x2+1的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=2(x+2)2﹣3 B.y=2(x+2)2﹣2 C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2﹣2 【分析】直接根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=2x2+1的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是y=2(x﹣2)2+1﹣3,即y=2(x﹣2)2﹣2.故选D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.(3分)(2015秋•淮北期末)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点D是AB上的一个动点(不与A、B两点重合),DE⊥AC于点E,DF⊥BC于点F,点D从靠近点A的某一点向点B移动,矩形DECF的周长变化情况是()A.逐渐减小 B.逐渐增大 C.先增大后减小 D.先减小后增大【分析】设DE=λ,运用相似三角形的性质,将矩形DECF的周长表示为λ的一次函数的形式,运用函数的性质即可解决问题.【解答】解:设DE=λ,DF=μ;∵DE⊥AC于点E,DF⊥BC于点F,∴四边形DECF为矩形,∴CF=DE=λ,CE=DF=μ,∴矩形DECF的周长η=2λ+2μ;∵DE∥BC,∴△ADE∽△ABC,∴①;同理可证②,由①+②得:,∴μ=8﹣∴η=2λ+16﹣=+16,∵<0,∴η随λ的增大而减小;∵点D从靠近点A的某一点向点B移动时,λ逐渐变大,∴矩形DECF的周长η逐渐减小.故选A.【点评】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.二、填空题(共6小题,每小题3分,共18分)11.(3分)(2015秋•当涂县校级期中)写出一个开口向下,顶点坐标是(1,﹣2)的二次函数解析式y=﹣3(x﹣1)2﹣2.【分析】利用顶点式可写出其解析式,且保证a小于0即可.【解答】解:∵顶点坐标为(1,﹣2),∴可设其解析式为y=a(x﹣1)2﹣2,又开口向下,则a<0,不妨取a=﹣3,则其解析式为y=﹣3(x﹣1)2﹣2(答案不唯一),故答案为:y=﹣3(x﹣1)2﹣2.【点评】本题主要考查待定系数法求二次函数的解析式,掌握二次函数的顶点式方程y=a(x ﹣h)2+k是解题的关键.12.(3分)(2010•滨州)如图,A、B两点被池塘隔开,在AB外取一点C,连接AC、BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于N,量得MN=38m,则AB的长为152m.【分析】先根据MN∥AB可判断出△CMN∽△CAB,再根据相似三角形的对应边成比例列出方程解答即可.【解答】解:∵MN∥AB,AM=3MC,∴△CMN∽△CAB,=,∴=,即=,AB=38×4=152m.∴AB的长为152m.【点评】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.13.(3分)(2012•绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是10m.【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答】解:令函数式y=﹣(x﹣4)2+3中,y=0,0=﹣(x﹣4)2+3,解得x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故答案为:10.【点评】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.14.(3分)(2014秋•蜀山区校级期中)已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.15.(3分)(2015秋•蚌埠期中)如图,已知:∠ACB=∠ADC=90°,AD=2,CD=,当AB的长为3或3时,△ACB与△ADC相似.【分析】首先利用勾股定理求出AC的长,再根据如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.在Rt △ABC和Rt△ACD,直角边的对应需分情况讨论即可.【解答】解:∵AD=2,CD=,∴AC==.要使这两个直角三角形相似,有两种情况:(1)当Rt△ABC∽Rt△ACD时,有,∴AB=3;(2)当Rt△ACB∽Rt△CDA时,有,∴AB=3.即当AB的长为3或3时,这两个直角三角形相似.故答案为:3或3.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.16.(3分)(2015秋•蚌埠期中)二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0;⑤当x≠2时,总有4a+2b>ax2+bx 其中正确的有①②④⑤(填写正确结论的序号).【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:当x=1时y=0,∴a+b+c=0.∴正确;②由图象可知:对称轴x=﹣=2,∴4a+b=0,∴正确;由抛物线与x轴有两个交点可以推出b2﹣4ac>0,正确;③由抛物线的开口方向向下可推出a<0因为对称轴在y轴右侧,对称轴为x=﹣>0,又因为a<0,b>0;由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,错误;④由抛物线与x轴有两个交点可以推出b2﹣4ac>0∴4ac﹣b2<0正确;⑤∵对称轴为x=2,∴当x=2时,总有y=ax2+bx+c=4a+2b+c>0,∴4a+2b>ax2+bx正确.故答案为:①②④⑤.【点评】此题考查学生掌握二次函数的图象与性质,考查了数形结合的数学思想,是一道中档题.解本题的关键是根据图象找出抛物线的对称轴.三、(本题共3小题,每小题6分,满分18分)17.(6分)(2014秋•安徽校级期末)已知二次函数y=﹣2x2+4x+6(1)求函数图象的顶点坐标及对称轴(2)求此抛物线与x轴的交点坐标.【分析】(1)首先把已知函数解析式配方,然后利用抛物线的顶点坐标、对称轴的公式即可求解;(2)根据抛物线与x轴交点坐标特点和函数解析式即可求解.【解答】解:(1)∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴顶点坐标(1,8),对称轴:直线x=1;(2)令y=0,则﹣2x2+4x+6=0,解得x=﹣1,x=3.所以抛物线与x轴的交点坐标为(﹣1,0),(3,0).【点评】此题主要考查了抛物线与x轴的交点、函数图象的性质及二次函数的三种形式,都是二次函数的基础知识,要求学生熟练掌握.18.(6分)(2014•永州)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.【分析】由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.【解答】解:在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴=,∵AB=6,AD=4,∴AC===9,则CD=AC﹣AD=9﹣4=5.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.19.(6分)(2016秋•蚌埠期中)如图,已知抛物线y=ax2+bx﹣3的对称轴为直线x=1,交x 轴于A、B两点,交y轴于C点,其中B点的坐标为(3,0).(1)直接写出A点的坐标;(2)求二次函数y=ax2+bx﹣3的解析式.【分析】(1)根据抛物线的对称性直接写出点A的坐标;(2)把点A、B的坐标分别代入函数解析式列出关于a、b的方程组,通过解方程组来求它们的值.【解答】解:(1)∵抛物线y=ax2+bx﹣3的对称轴为直线x=1,交x轴于A、B两点,其中B点的坐标为(3,0),∴A点横坐标为:=﹣1,∴A点的坐标为:(﹣1,0);(2)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3得:,解得:.故抛物线解析式为:y=x2﹣2x﹣3.【点评】此题主要考查了二次函数的对称性以及待定系数法求二次函数解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.四、(本题共3小题,每小题8分,满分24分)20.(8分)(2014秋•蜀山区校级期中)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF 的相似比为2:1;(3)求△ABC与△ED1F1的面积比.【分析】(1)先利用勾股定理计算出两个三角形的所有边长,通过计算对应边的比得到==,再根据相似三角形的判定方法即可得到△ABC∽△DEF;(2)根据画位似图形的方法画出△ED1F1;(3)易得△ABC∽△D1EF1,然后根据相似三角形面积的比等于相似比的平方进行计算.【解答】解:(1)∵AB=2,AC=,BC=5,EF=,FD=,ED=2,∴==,==,==,∴==,∴△ABC∽△DEF;(2)延长ED到点D1,使ED1=2ED,延长EF到点F1,使EF1=2EF,连结D1F1,则△ED1F1为所求,如图;(3)∵△ABC∽△DEF,△DEF∽△D1EF1,∴△ABC∽△D1EF1,∴△ABC与△ED1F1的面积比=()2=()2=.【点评】本题考查了作图﹣位似变化:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了相似三角形的判定与性质.21.(8分)(2015秋•蚌埠期中)如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y1>y2时x的取值范围;(3)求△AOB的面积.【分析】(1)先根据一次函数图象上点的坐标特征得到m=﹣1+5=4,n=﹣4+5=1,这样得到A点坐标为(1,4),B点坐标为(4,1),然后利用待定系数求反比例函数的解析式;(2)观察函数图象找出一次函数图象都在反比例函数图象上方时x的取值范围;(3)先确定一次函数图象与x轴交点D,与y轴交点C的坐标,然后利用S△AOB=S△COD ﹣S△COA﹣S△BOD进行计算.【解答】解:(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=,得k=1×4=4,所以反比例函数解析式为y2=;(2)根据图象可知,当y1>y2时x的取值范围是x<0或1<x<4时;(3)如图,设一次函数图象与x轴交于点D,与y轴交于点C.当x=0时,y=﹣x+5=5,则C点坐标为(0,5),当y=0时,﹣x+5=0,解得x=5,则D点坐标为(5,0),所以S△AOB=S△COD﹣S△COA﹣S△BOD=×5×5﹣×5×1﹣×5×1=7.5.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.22.(8分)(2014秋•蜀山区校级期中)如图,在等腰三角形ABC中,AB=AC,D是AB 边上一点,以CD为一边,向上作等腰△DCE,使△EDC∽△ABC,连AE,求证:AE∥BC.【分析】利用相似可得到=,∠ACB=∠DCE,证明△BCD∽△ACE,可得到∠CAE=∠ACB则可证明AE∥BC.【解答】证明:∵△ABC∽△EDC,∴=,∠ACB=∠DCE,∴∠BCD=∠ACE,∴△BCD∽△ACE∴∠CAE=∠B,∴∠CAE=∠ACB,∴AE∥BC.【点评】本题主要考查相似三角形的性质和判定,掌握相似三角形的对应边成比例、对应角相等是解题的关键.五、(本题共1小题,满分10分)23.(10分)(2015秋•当涂县校级期中)某公司生产一种环保产品,需要添加一种新型原料,若每件产品的利润与新型原料价格成一次函数关系,且每件产品的利润y(元)与新型原料的价格x(元/千克)的函数图象如图:(1)当新型原料的价格为600元/千克时,每件产品的利润是多少?(2)新型原料是一种稀少材料,为了珍惜资源,政府部门规定:新型原料每天使用量m(千克)与价格x(元/千克)的函数关系为x=10m+500,且m千克新型原料可生产10m件产品.那么生产300件这种产品,一共可得利润是多少?(3)受生产能力的限制,该公司每天生产这种产品不超过450件,那么在(2)的条件下,该公司每天应生产多少件产品才能获得最大利润?最大利润是多少?【分析】(1)把(0,300),(500,200)代入直线解析式可得一次函数解析式,把x=600代入函数解析式可得利润的值;(2)利润=用新型原料量×每千克新型原料产生利润;(3)结合该工厂每天用新型原料量不超过45千度,得到利润的最大值即可.【解答】解:(1)工厂每千克新型原料产生利润y(元/千克)与电价x(元/千克)的函数解析式为:y=kx+b(k、b是常数,且k≠0).该函数图象过点(0,300),(500,200),∴,解得.∴y=﹣x+300(x≥0).当新型原料价x=600元/千克时,该工厂消耗每千克新型原料产生利润y=﹣×600+300=180(元/千克).答:工厂消耗每千克新型原料产生利润是180元.(2)设工厂每天消耗新型原料产生利润为w元,由题意得:W=10my=10m(﹣x+300)=10m[﹣(10m+500)+300].化简配方,得:w=﹣20(m﹣50)2+10000.∵m千克新型原料可生产10m件产品,∴那么生产300件这种产品需要新型原料30千克,∴当m=30时,w=﹣20(m﹣50)2+10000=﹣20×400+10000=2000元;(3)由题意得:w=﹣20(m﹣50)2+10000,a=﹣20<0,∴当m=50时,w最大=10000,∵该公司每天生产这种产品不超过45件,∴m=45时,最大利润为w=﹣20(45﹣50)2+10000=5000,即当工厂每天消耗45千克新型原料时,工厂每天消耗新型原料产生利润为5000元.【点评】考查二次函数及一次函数的应用;得到总利润的等量关系是解决本题的关键;注意利用配方法解决二次函数的最值问题.参与本试卷答题和审题的老师有:zhangCF;守拙;2300680618;wangjc3;zcx;CJX;zhjh;HJJ;sjw666;Ldt;Linaliu;sd2011;dbz1018;wd1899;sjzx;sks;nhx600;gsls(排名不分先后)菁优网2016年12月1日。
安徽省合肥市2014届九年级上学期“五校”联考(二)数学试题
2013-2014学年度第一学期合肥市“五校”11月联考九年级数学试卷1.本卷考试时间120分钟,满分150分。
.请在密封线内填写清楚学校、班级、姓名、考号。
.考试结束交答题卷。
二 三 四 五 六 七 八 总分10小题,4分,满分40分)反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可 )A .-1B .0C .1D .2 在同一平面直角坐标系中,一次函数1-=kx y 与反比例函数xky =(其中0≠k )的图象的形状大致是( )A .B .C .D .2米的线段进行黄金分割,则分成的较短的线段长为( )31 C .1 D .3+c a ba b b c a c ==+++=k ,则k 的值为( ) A .12 B .1 C .-1 D .12或-1P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 点作直线截△ABC ,ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条 1=∠2=∠3,则图中相似的三角形有 ( )A .1对 B .2对 C .3对 D .4对(第5题) (第6题) (第7题) (第10题) 7.梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O 点,若AOD S ∆∶ACD S ∆=1∶3,则AOD S ∆∶BOC S ∆=( ). A .61 B .31 C .41D .66 8.下图中阴影部分的面积与函数2122y x x =-++的最大值相同的是( )9.已知二次函数()2111y x bx b =-+-≤≤,当b 从1-逐渐变化到的过程中,它所对应的抛物线位置也随之变动.关于抛物线的移动方向的描述中,正确的是( )A .先往左上方移动,再往左下方移动 B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动10.已知反比例函数(0)ky k x=>的图象与一次函数6y x =-+相交与第一象限的A 、B 两点,如图所示,过A 、B 两点分别做x 、y 轴的垂线,线段AC 、BD 相交与P ,给出以下结论:①OA=OB ;②OAM OBN ∆∆∽;③若ABP ∆的面积是8,则5k =;④P 点一定在直线y x =上,其中正确命题的个数是( )个 A .1 B .2 C .3 D .411.如图,在△ABC 中,D 为AC 边上一点,要使CBD CAB ∆∆∽,需添加一个条件是________12.如图,点O 是等边三角形PQR 的中心,P′、Q′、R′分别是OP 、OQ 、OR 的中点,则△P′Q′R′与△PQR 是位似三角形.此时,△P′Q′R′与△PQR 的位似比为_________13.已知函数1y x=,当x <-1时,函数y 的取值范围是________14.如图,已知反比例函数xy 1=的图像上有一点P ,过点P 分别作x 轴和y 轴的垂线,垂足分别为A 、B ,使四边形OAPB 为正方形。
安徽省合肥五十中2014届九年级数学上学期期中试题
某某省某某五十中2014届九年级数学上学期期中试题(满分100分 时间:100分钟)一、选择题(本题共10小题,每小题3分,满分30分) 1、已知二次函数y=x 2-4x+5的顶点坐标为( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1)2、二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A 、先向左平移2个单位,再向上平移1个单位B 、先向左平移2个单位,再向下平移1个单位C 、先向右平移2个单位,再向上平移1个单位D 、先向右平移2个单位,再向下平移1个单位3、已知两个相似多边形的相似比是3︰4,其中较小多边形的周长为36 cm ,则较大多边形的周长为( ) A.48 cm B.54 cm C.56 cm D.64 cm4、下列四个点中,有三个点在同一反比例函数y =kx的图象上,则不在..这个函数图象上的点是( ). A .(5,1) B .(-1,5)C .⎝ ⎛⎭⎪⎫53,3 D .⎝ ⎛⎭⎪⎫-3,-535、已知点P 是线段AB 的黄金分割点,且AP >BP ,则下列结论正确的是( ) A 、215-=AB BP B 、618.0=AB BP C 、215-=AB PA D 、215-=BP AP 6、反比例函数y =1k x-的图象,在每个象限内,y 的值随x 值的增大而增大,则k 可以为( ) A 、0B 、1C 、2D 、37、如图,在 △ABC 中,∠ADE=∠ACD=∠ABC,则图中相似三角形有( )对。
A 、1B 、2C 、3D 、48、对于二次函数y=2(x+1)(x-3),下列说法正确的是( )A .图象的开口向下B .当x >1时,y 随x 的增大而减小第10题第14题C .当x <1时,y 随x 的增大而减小D .图象的对称轴是直线x=-19、如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,则ABAD的值是( ) A 、21 B 、33 C 、32 D 、2210、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中正确的结论是( ) A 、①② B 、①③④ C 、①②③⑤ D 、①②③④⑤二、填空题(本题共5小题,每小题4分,满分20分) 11、已知32=b a ,则a b a +=______。
秋季学期初三上期期中联考数学试卷附答案
2013年秋季学期初三上期期中联考数学试卷(附答案)安庆市2013~2014学年度第一学期期中十六校联考九年级数学试题命题:长风中学审题:长风中学(考试时间:120分钟满分:150分)题号一二三四五六七总分得分得分评卷人一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列函数是二次函数的是()A.B.C.D.2.与抛物线的图象形状相同的抛物线为()A.B.C.D.3.对于反比例函数,下列说法不正确的是()A.它的图象分布在第一、三象限B.点在它的图象上C.它的图象是中心对称图形D.随的增大而增大4.如图,直线与反比例函数和的图象分别交于A、B两点,点C是轴上任意一点,则△ABC的面积为()A.1B.3C.4D.85.已知抛物线与轴没有交点,那么该抛物线的顶点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.已知,下列各式一定成立的是()A.B.C.D.7.如图,在△中,∥,分别与、相交于点、,若,则︰的值为()A.B.C.D.8.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()9.如图所示,顶角为36°的等腰三角形,其底边与腰之比等于,这样的三角形叫做黄金三角形。
已知,为第一个黄金三角形,为第二个黄金三角形,为第三个黄金三角形,以此类推,第2014个黄金三角形的周长为()A.B.C.D.10.给出下列命题及函数,和的图象①如果,那么;②如果,那么;③如果,那么;④如果时,那么。
则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③题号12345678910答案得分评卷人二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数的顶点坐标是.12.若线段.13.如图,已知函数与(a0,b0)的图象交于点P,点P的纵坐标为1,则关于x的方程=0的解为.14.如图,过内一点分别作三边的平行线,形成三个小三角形①、②、③,如果这三个小三角形面积分别为1、4、9,则的面积为。
2023-2024学年安徽省合肥五十中九年级(上)第一次质检数学试卷+答案解析
2023-2024学年安徽省合肥五十中九年级(上)第一次质检数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.二次函数=−(+2)2+3图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.将抛物线=2+1向下平移2个单位,所得抛物线的表达式为()A.=2+3B.=2−1C.=(+2)2+1D.=(−2)2+13.某种蓄电池的电压(单位:)为定值,使用蓄电池时,电流(单位:)与电阻(单位:)是反比例函数关系.当=6时,=8,则当=12时,I的值是()A.4B.9C.32D.04.根据下列表格中二次函数=B2+B+(≠0,,,为常数)的自变量x与函数值y的对应值,判断方程B2+B+=0的一个解x的范围是()x−1.26−1.25−1.24−1.23=B2+B+−0.04−0.020.010.04A.−1.27<<−1.26B.−1.26<<−1.25C.−1.25<<−1.24D.−1.24<<−1.235.若点(1,−1),(2,2),(3,3)都在反比例函数=−3的图象上,则1,2,3的大小关系是()A.3<2<1B.2<1<3C.1<3<2D.2<3<16.下列函数中,y的值随x值的增大而减小的是()A.=2−2B.=−2+2C.=2−2D.=−2+27.小勇、小冠、小明、小天四人共同探究函数=2−2+3的值的情况,各自通报探究的结论,其中错误的是()A.小勇认为只有当=1时,函数值为2B.小冠认为找不到实数x,使函数值为0C.小明认为抛物线开口向上D.小天认为抛物线与x轴有两个交点8.在平面直角坐标系xOy中,抛物线=(−2)2+与x轴交于(,0),(,0)两点,其中<.将此抛物线向下平移,与x轴交于(,0),(,0)两点,其中<,下面结论正确的是()A.当>0时,+=+,−>−B.当>0时,+>+,−=−C.当<0时,+=+,−>−D.当<0时,+>+,−=−9.如图,正方形对称中心在原点O,四个顶点分别位于两个反比例函数=4和=的图象的四个分支上,则实数k的值为()A.−4B.−14C.14D.410.已知二次函数=B2+(+1)+的图象如图所示,则二次函数=B2+B+与正比例函数=−的图象大致为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年安徽省合肥五十中九年级(上)期中数学试卷一、选择题(本题共10小题,每小题3分,满分30分)1.(3分)已知二次函数y=x2﹣4x+5的顶点坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)2.(3分)二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位3.(3分)已知两个相似多边形的相似比是3:4,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm4.(3分)下列四个点中,有三个点在同一反比例函数的图象上,则不在这个函数图象上的点是()A.(5,1)B.(﹣1,5)C.(,3)D.(﹣3,﹣)5.(3分)已知点P是线段AB的黄金分割点,且AP>BP,则下列结论正确的是()A.=B.=0.618 C.=D.=6.(3分)反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k的值可为()A.0 B.1 C.2 D.37.(3分)如图,在△ABC中,∠ADE=∠ACD=∠ABC,则图中相似三角形有()对.A.1 B.2 C.3 D.48.(3分)对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣19.(3分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A.B.C.D.10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>2;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④ C.①②③⑤D.①②③④⑤二、填空题(本题共5小题,每小题4分,满分20分)11.(4分)已知=,则=.12.(4分)一个二次函数,它的二次项系数是1,且图象经过点(2,﹣3),这样的二次函数可以是.(只要求写一个符合要求的二次函数)13.(4分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).14.(4分)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB,其中单独能够判定△ABC∽△ACD的有.15.(4分)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.三、解答题(满分50分)16.(6分)已知一抛物线与x轴y轴的交点分别是A(﹣2,0)、B(0,4)且经过点C(2,16).(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.17.(8分)如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)18.(8分)如图,已知反比例函数的图象与一次函数y=kx+4的图象相交于P、Q两点,并且P点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ的面积.19.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.20.(10分)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向,顶点坐标,对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.21.(10分)如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x 米(0<x<4),矩形EFGH的面积为S米2.(1)求S与x的函数关系式;(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?2013-2014学年安徽省合肥五十中九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,满分30分)1.(3分)(2012•北海)已知二次函数y=x2﹣4x+5的顶点坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)【分析】把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标.【解答】解:y=x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1,所以,顶点坐标为(2,1).故选B.【点评】本题考查了二次函数的性质,把解析式配方写成顶点式解析式是解题的关键,本题也可以利用顶点公式求解.2.(3分)(2008•泰州)二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位【分析】把二次函数y=x2+4x+3化为顶点坐标式,再观察它是怎样通过二次函数y=x2的图象平移而得到.【解答】解:根据题意y=x2+4x+3=(x+2)2﹣1,按照“左加右减,上加下减”的规律,它可以由二次函数y=x2先向左平移2个单位,再向下平移1个单位得到.故选B.【点评】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.3.(3分)(2013秋•蜀山区校级期中)已知两个相似多边形的相似比是3:4,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm【分析】根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.【解答】解:大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.4.(3分)(2009•大连)下列四个点中,有三个点在同一反比例函数的图象上,则不在这个函数图象上的点是()A.(5,1)B.(﹣1,5)C.(,3)D.(﹣3,﹣)【分析】由反比例函数表达式的特点可知,在其图象上的点的横、纵坐标的乘积都等于k,所以判断点是否在反比例函的图象上,只要验证一下横、纵坐标的乘积是否与k相等就可以了.【解答】解:A、k=5×1=5,故在函数图象上;B、k=﹣1×5=﹣5≠5,故不在函数图象上;C、k=×3=5,故在函数图象上;D、k=﹣3×(﹣)=5,故在函数图象上.故选B.【点评】本题主要考查反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.5.(3分)(2013秋•蜀山区校级期中)已知点P是线段AB的黄金分割点,且AP>BP,则下列结论正确的是()A.=B.=0.618 C.=D.=【分析】根据黄金分割的定义即可进行判断.【解答】解:∵点P是线段AB的黄金分割点,且AP>BP,∴==,从而可得A、B、D错误;C正确.故选C.【点评】本题考查了黄金分割的知识,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.6.(3分)(2008•漳州)反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k的值可为()A.0 B.1 C.2 D.3【分析】本题考查反比例函数的图象和性质.对反比例函数y=(k≠0),当k<0时,在同一个象限,y随x的增大而增大.【解答】解:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k﹣1<0,k<1.故选A.【点评】本题考查了反比例函数的图象和性质,注意函数解析式y=中k的取值.7.(3分)(2013秋•蜀山区校级期中)如图,在△ABC中,∠ADE=∠ACD=∠ABC,则图中相似三角形有()对.A.1 B.2 C.3 D.4【分析】根据已知先判定线段DE∥BC,再根据相似三角形的判定方法进行分析,从而得到答案.【解答】解:∵∠ADE=∠ACD=∠ABC∴DE∥BC∴△ADE∽△ABC,∵DE∥BC∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD,∴共4对.故选:D.【点评】此题考查了平行线的判定;相似三角形的判定:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.8.(3分)(2012•巴中)对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【分析】先把二次函数化为顶点式的形式,再根据二次函数的性质进行解答.【解答】解:二次函数y=2(x+1)(x﹣3)可化为y=2(x﹣1)2﹣8的形式,A、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x>1时,y随x 的增大而增大,故本选项错误;C、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x<1时,y随x 的增大而减小,故本选项正确;D、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选C.【点评】本题考查的是二次函数的性质,根据题意把二次函数化为顶点式的形式是解答此题的关键.9.(3分)(2013•湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B 落在点E处,连接DE.若DE:AC=3:5,则的值为()A.B.C.D.【分析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DAC=∠BCA,从而得到∠EAC=∠DAC,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出=,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【解答】解:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DCA=∠BAC,∴∠EAC=∠DCA,设AE与CD相交于F,则AF=CF,∴AE﹣AF=CD﹣CF,即DF=EF,∴=,又∵∠AFC=∠EFD,∴△ACF∽△EDF,∴==,设DF=3x,FC=5x,则AF=5x,在Rt△ADF中,AD===4x,又∵AB=CD=DF+FC=3x+5x=8x,∴==.故选A.【点评】本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键.10.(3分)(2009•黄石)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c <0;②a﹣b+c>2;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④ C.①②③⑤D.①②③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线当x=1和x=﹣1时的情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,y=a+b+c<0,故①正确,②当x=﹣1时,y=a﹣b+c>2,故②正确,③由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x==﹣1,得2a=b,∴a、b同号,即b<0,∴abc>0,故③正确,④∵对称轴为x==﹣1,∴点(0,2)的对称点为(﹣2,2),∴当x=﹣2时,y=4a﹣2b+c=2,故④错误,⑤∵x=﹣1时,a﹣b+c>1,又﹣=﹣1,即b=2a,∴c﹣a>1,故⑤正确.故选:C.【点评】此题考查了点与函数的关系,还要注意二次函数y=ax2+bx+c系数符号的确定,难度适中.二、填空题(本题共5小题,每小题4分,满分20分)11.(4分)(2014秋•高邮市期末)已知=,则=.【分析】用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=b,∴==.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键.12.(4分)(2008秋•泰州期末)一个二次函数,它的二次项系数是1,且图象经过点(2,﹣3),这样的二次函数可以是y=(x﹣2)2﹣3(答案不唯一).(只要求写一个符合要求的二次函数)【分析】一个二次函数,它的二次项系数是1,且图象经过点(2,﹣3),因而二次项系数是1,把经过的点(2,﹣3)当作顶点,即可写出二次函数的解析式.【解答】解:已知二次函数的二次项系数是1,把图象经过的点(2,﹣3)特殊化,即顶点(2,﹣3),由抛物线的顶点式,可得y=(x﹣2)2﹣3.本题答案不唯一.故答案是:y=(x﹣2)2﹣3.(本题答案不唯一).【点评】根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.13.(4分)(2012•苏州)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.14.(4分)(2011•合肥校级一模)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB,其中单独能够判定△ABC∽△ACD的有①②④.【分析】利用相似三角形相似的判定,分别把①②④用作条件,结合题中已知条件均可证明△ABC∽△ACD.【解答】解:由图可知∠A为两个要证明相似的三角形的公共角,因此,只要再找出一组对应角相等,或两组对应边成比例即可证明△ABC∽△ACD.而①②④分别与∠A为△ABC与△ACD的公共角相结合,均可推出△ABC∽△ACD.③中∠A不是已知的比例线段的夹角,故不正确.∴选①②④.故答案为:①②④.【点评】本题考查了相似三角形的判定定理.15.(4分)(2012•扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC 为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是1.【分析】设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式,利用函数的知识进行解答即可.【解答】解:如图,连接DE.设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,当x=1时,DE2取得最小值,DE也取得最小值,最小值为1.故答案为:1.【点评】此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.三、解答题(满分50分)16.(6分)(2013秋•蜀山区校级期中)已知一抛物线与x轴y轴的交点分别是A(﹣2,0)、B(0,4)且经过点C(2,16).(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.【分析】(1)首先设抛物线的解析式为y=ax2+bx+c,再把A(﹣2,0)、B(0,4)且经过点C(2,16)分别代入y=ax2+bx+c,进而可得关于a、b的方程组,再解出a、b的值,进而可得答案;(2)根据对称轴是x=﹣,顶点坐标是(﹣,),再代入a、b、c的值可得答案.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵与y轴的交点是(0,4),∴c=4,∵经过A(﹣2,0),C(2,16),∴,解得:,∴抛物线的解析式为y=x2+4x+4;(2)抛物线的对称轴是x=﹣=﹣=﹣2,==0,顶点坐标是(﹣2,0).【点评】此题主要考查了待定系数法求二次函数解析式,以及求顶点坐标和对称轴,关键是掌握对称轴是x=﹣,顶点坐标是(﹣,).17.(8分)(2010•丽水)如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)【分析】(1)首先根据小正方形的边长,求出△ABC和△DEF的三边长,然后判断它们是否对应成比例即可.(2)只要构成的三角形与△ABC的三边比相等即可(答案不唯一).【解答】解:(1)△ABC和△DEF相似;根据勾股定理,得AB=2,AC=,BC=5;DE=4,DF=2,EF=2;∵=,∴△ABC∽△DEF.(2)答案不唯一,下面6个三角形中的任意2个均可;△DP2P5,△P5P4F,△DP2P4,△P5P4D,△P4P5P2,△FDP1.【点评】此题主要考查的是相似三角形的判定方法:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(SSS)18.(8分)(2003•海南)如图,已知反比例函数的图象与一次函数y=kx+4的图象相交于P、Q两点,并且P点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ的面积.【分析】(1)首先根据点P的纵坐标是6,结合反比例函数的图象求得点P的横坐标,再根据点P的坐标求得一次函数的解析式;(2)可以求得直线和x轴的交点坐标以及联立解方程组求得点Q的坐标,再进一步根据x 轴所分割成的两个三角形的面积进行计算.【解答】解:(1)把y=6代入,∴x=2,把(2,6)代入一次函数y=kx+4,∴k=1,∴一次函数的解析式是y=x+4;(2)根据(1)中的直线的解析式,令y=0,则x=﹣4,即直线与x轴的交点M的坐标是(﹣4,0),根据题意得,解得或.即点Q(﹣6,﹣2),∴S△POQ=S△OMQ+S△OMP=×4×2+×4×6=4+12=16.【点评】此题要求学生既能够根据函数的解析式求得点的坐标,也能够根据点的坐标求得函数的解析式,还也能够运用分割法求得不规则三角形的面积.19.(8分)(2013•巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.【分析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在Rt△ADE中,利用勾股定理求出线段AE的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴,∴DE===12.在Rt△ADE中,由勾股定理得:AE===6.【点评】本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.20.(10分)(2008•巴中)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向,顶点坐标,对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.【分析】抛物线的开口方向由二次项系数确定,顶点,对称轴,可以由抛物线顶点式确定.本题抛物线都是经过原点的,要充分运用好顶点式解题.【解答】解:(1)y=﹣x2+x=﹣(x﹣4)2+∴抛物线y=﹣x2+x开口向下,顶点为(4,),对称轴为直线x=4;(2)令y=0,得:﹣x2+x=0解得:x1=0,x2=8∴球飞行的最大水平距离是8m.(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m∴抛物线的对称轴为直线x=5,顶点为(5,)设此时对应的抛物线解析式为y=a(x﹣5)2+又∵点(0,0)在此抛物线上,∴25a+=0,a=﹣∴y=﹣(x﹣5)2+,即y=﹣x2+x.【点评】任何一个抛物线解析式都是可以写成一般式和顶点式的,要充分用好抛物线的对称性,顶点,解析式中的顶点式解题.21.(10分)(2013•莆田)如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2.(1)求S与x的函数关系式;(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?【分析】(1)连接AC、BD,根据轴对称的性质,可得EH∥BD,EF∥AC,△BEF为等边三角形,从而求出EF,在Rt△AEM中求出EM,继而得出EH,这样即可得出S与x的函数关系式.(2)根据(1)的答案,可求出四个三角形的面积,设费用为W,则可得出W关于x的二次函数关系式,利用配方法求最值即可.【解答】解:(1)连接AC、BD,∵花坛为轴对称图形,∴EH∥BD,EF∥AC,∴△BEF∽△BAC,∵四边形ABCD是菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形.同理,得到△BEF是等边三角形,∴EF=BE=AB﹣AE=(4﹣x)m,在Rt△AEM中,∠AEM=∠ABD=30°,则EM=AEcos∠AEM=xm,∴EH=2EM=xm,故可得S=(4﹣x)×x=﹣x2+4x.(2)易求得菱形ABCD的面积为8m2,由(1)得,矩形EFGH的面积S=﹣x2+4x.则可得四个三角形的面积为(8+x2﹣4x)m2,设总费用为W,则W=20(﹣x2+4x)+40(8+x2﹣4x)=20x2﹣80x+320=20(x﹣2)2+240,∵0<x<4,∴当x=2时,W取得最小,W最小=240元.即当x为2时,购买花草所需的总费用最低,最低费用为240元.【点评】本题考查了二次函数的应用,首先需要根据花坛为轴对称图形,得出EH∥BD,EF∥AC,重点在于分别得出EF、EH关于x的表达式,另外要掌握配方法求二次函数最值的应用.参与本试卷答题和审题的老师有:星期八;hbxglhl;137-hui;sjzx;张超。