六年级奥数题:立体图形(A)
六年级奥数题:立体图形(A)
六年级奥数题;立体图形(A)年级 班 姓名 得分一·填空题1,一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 ,2,如图,在一块平坦的水泥地上,用砖和水泥砌成一个长方体的水泥池,墙厚为10厘米(底面利用原有的水泥地),这个水泥池的体积是 ,3,一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 ,4,把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米,5,图中是一个圆柱和一个圆锥(尺寸如图),问:柱锥V V 等于 ,2 单位:米6,一个长方体的表面积是67,92平方分米,底面的面积是19平方分米,底面周长是17,6分米,这个长方体的体积是 ,7,一块长方体木块长2,7米,宽1,8分米,高1,5分米,要把它裁成大小相等的正方体小木块,不许有剩余,小正方体的棱长最大是 分米,8,王师傅将木方刨成横截面如右图(单位:厘米)那样高40厘米的一根棱柱,虚线把横截面分成大小两部分,较大的那部分的面积占整个底面的60%,这个棱柱的体积是 立方厘米,9,小玲有两种不同形状的纸板,一种是正方形的,一种是长方形的(如下图),正方形纸板的总数与长方形纸板的总数之比是1:2,她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完,在小玲所做的纸盒中,坚式纸盒的总数与横式纸盒的总数之比是 ,10,在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要 块正方体木块,二·解答题11,一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米,原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?12,如图表示一个正方体,它的棱长为4厘米,在它的上下·前后·左右的正中位置各挖去一个棱长为1厘米的正方体,问此图的表面积是多少?8 28 24 12 (图1)(图2)13,下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来,14,雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨水将它下满要用1小时,有下列(A )-(E )不同的容器(图2),雨水下满各需多少(注面是朝上的敞口部分,)P2cm 2cm (A ) (B ) (C ) (D ) (E )———————————————答 案——————————————————————1, 96分米,正方体的底面积为384÷6=64(平方分米),故它的棱长为512÷64=8(分米),棱长的总和为8×12=96(分米),2, 8,96立方米,(3-0,1×2)×(1,8-0,1×2)×2=8,96(立米米),3, 圆柱体,200,96立方分米,(3,14×42)×4=200,96(立方分米),4, 216,这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米),5, 241, ππππ816828,3164243122⨯=⨯⎪⎭⎫ ⎝⎛⨯==⨯⎪⎭⎫ ⎝⎛⨯⨯=柱锥V V ,故241=柱锥V V ,6, 32,3立方分米,长方体的侧面积是67,92-19×2=29,92(平方分米),长方体的高为29,92÷17,6=1,7(分米),故长方体的体积为19×1,7=32,3(立方分米),7, 0,3长·宽·高分别是270厘米·18厘米和15厘米,而270·18和15的最大公约数为3(厘米),这就是小正方体棱长的最大值,8, 17200,设较大部分梯形高为x 厘米,则较小部分高为(28- x )厘米,依题意有: 4:6)28()824(21:)2412(21=⎥⎦⎤⎢⎣⎡-⨯+⨯⎥⎦⎤⎢⎣⎡+⨯x x 解得x =16,故这棱柱的体积为 1920040)1628()824(2116)2412(21=⨯⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯+⨯(立方厘米),9, 3:1,一个竖式的无盖纸盒要用一个正方形纸板和4个长方形纸板,一个横式的无盖纸盒要用2个正方形纸板和3个长方形纸板,设小玲做的纸盒中,有x 个竖式的, y 个横式的,则共用正方形纸板(x +2 y )个,用长方形纸板(4 x +3 y )个,依题意有: (x +2 y ):(4 x +3 y )=1:3,解得x : y =3:1,10, 20,6,至多要20块(左下图),至少需要6块(右下图),11, 若铁块完全浸入水中,则水面将提高326)3040(203=⨯÷(厘米),此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面, 设放入铁块后,水深为x 厘米,因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有:x x 20201030403040⨯+⨯⨯=⨯解得x =15,即放进铁块后,水深15厘米,12, 大正方体的表面还剩的面积为()9014622=-⨯(厘米2),六个小孔的表面积为()305162=⨯⨯(厘米2),因此所求的表面积为90+30=120(厘米2),13,截面的线在展开图中如右图的A -C -Q -P -A ,14, 在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满; 容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需32 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1A小时接满;容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1,5小时接满;容器(E):容积:接水面积=20×S:S=20:1(S为底面积),接水时间为2小时,来源;本站原创 2011-03-15 16:15:18[标签;图形面积六年级奥数题及答案]1·有10张扑克牌,点数分别为1,2,3,…,9,10。
小学数学奥数测试题-立体图形2022人教版
小学数学奥数测试题-立体图形2022人教版2022年小学奥数几何专题——立体图形1.如图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?2.右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米(图中只画出了前面、右面、上面挖去的正方体)3.在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?4.下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为三个正方形小洞的挖法和前两个相同为少平方厘米?1厘米的正方形小洞,第21厘米,那么最后得到的立体图形的表面积是多45.一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?6.一个表面积为56cm2的长方体如图切成27个小长方体,这27个小长方体表面积的和是多少平方厘米?7.如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木8.要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b2h时,如何打包?⑵当b2h时,如何打包?⑶当b2h时,如何打包?9.要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?10.如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.11.如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是多少平方厘米?试卷第2页,总16页12.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.13.用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米14.有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.15.棱长是m厘米(m为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m的最小值是多少16.有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?17.三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?18.把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?19.把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?20.一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?21.有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A的为黑色,图中共有黑色积木多少块?A22.有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少3233232311322312311123.如图所示,一个555的立方体,在一个方向上开有115的孔,在另一个方向上开有215的孔,在第三个方向上开有315的孔,剩余部分的体积是多少?表面积为多少?试卷第4页,总16页24.如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?第8题25.一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?26.右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.⑸⑺⑾⑻⑹⑵⑴⑷⑶⑼⑽27.图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴图⑵28.如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)0.511111.529.有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?30.圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是多少立方厘米.(结果用π表示) 31.如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π3.14)16.56m32.如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱试卷第6页,总16页。
六年级奥数专题训练-第五讲.几何-立体部分
【例 13】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连 续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方 体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?
【解析】每个长方体的棱长和是 288 3 96 厘米,所以,每个长方体长、宽、高的和是 96 4 24 厘米.因 为,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,所以,每个长方体的长、宽、 高分别是9厘米、8厘米、7厘米. 要求切割后只有一个面涂色的小正方体最少有多少个,则需每一个长方体按题意涂色时,应让切割 后只有一个面涂色的小正方体最少.所以,涂一面的长方体应涂一个 8 7 面,有 8 7 56 个; 涂两面的长方体,若两面不相邻,应涂两个 8 7 面,有 8 7 2 112 个;若两面相邻,应涂一
a
h b
图1
图2
图3
【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少? 【解析】考虑所有的包装方法,因为6 1 2 3,所以一共有两种拼接方式:
第一种按长宽高1 1 6拼接,重叠面有三种选择,共3种包装方法. 第二种按长宽高1 2 3拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的 重叠面剩下2种选择,一共有6种包装方法. 其中表面积最小的包装方法如图所示,表面积为1034.
【例 5】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?
25块积木
【解析】当小积木互相重合的面最多时表面积最小. 设想27块边长为1的正方形积木,当拼成一个 3 3 3 的正方体时,表面积最小,现在要去掉2块小 积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增 加,该几何体表面积为54.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十三、立体图形(1) 年级 班 姓名 得分一、填空题1.一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .2.如图,在一块平坦的水泥地上,用砖和水泥砌成一个长方体的水泥池,墙厚为10厘米(底面利用原有的水泥地).这个水泥池的体积是 .3.一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 .4.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.5.图中是一个圆柱和一个圆锥(尺寸如图).问:柱锥V V 等于 .6.一个长方体的表面积是67.92平方分米.底面的面积是19平方分米.底面2 单位:米周长是17.6分米,这个长方体的体积是 .7.一块长方体木块长2.7米,宽1.8分米,高1.5分米.要把它裁成大小相等的正方体小木块,不许有剩余,小正方体的棱长最大是 分米.8.王师傅将木方刨成横截面如右图(单位:厘米)那样高40厘米的一根棱柱.虚线把横截面分成大小两部分,较大的那部分的面积占整个底面的60%.这个棱柱的体积是 立方厘米.9.小玲有两种不同形状的纸板.一种是正方形的,一种是长方形的(如下图).正方形纸板的总数与长方形纸板的总数之比是1:2.她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.在小玲所做的纸盒中,坚式纸盒的总数与横式纸盒的总数之比是 .10.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要 块正方体木块.二、解答题11.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?12.如图表示一个正方体,它的棱长为4厘米,在它的上下、前后、左右的正中位置各挖去一个棱长为1厘米的正方体,问此图的表面积是多少?8 28 2412 (图1)(图2)13.下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.14.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨水将它下满要用1小时.有下列(A )-(E )不同的容器(图2),雨水下满各需多少时间(注面是朝上的敞口部分.)P2cm 2cm (A ) (B ) (C ) (D ) (E ) 雨———————————————答 案——————————————————————1. 96分米.正方体的底面积为384÷6=64(平方分米).故它的棱长为512÷64=8(分米),棱长的总和为8×12=96(分米).2. 8.96立方米.(3-0.1×2)×(1.8-0.1×2)×2=8.96(立米米).3. 圆柱体,200.96立方分米.(3.14×42)×4=200.96(立方分米).4. 216.这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米).5. 241. ππππ816828,3164243122⨯=⨯⎪⎭⎫ ⎝⎛⨯==⨯⎪⎭⎫ ⎝⎛⨯⨯=柱锥V V ,故241=柱锥V V .6. 32.3立方分米.长方体的侧面积是67.92-19×2=29.92(平方分米),长方体的高为29.92÷17.6=1.7(分米),故长方体的体积为19×1.7=32.3(立方分米).7. 0.3长、宽、高分别是270厘米、18厘米和15厘米,而270、18和15的最大公约数为3(厘米),这就是小正方体棱长的最大值.8. 17200.设较大部分梯形高为x 厘米,则较小部分高为(28- x )厘米.依题意有: 4:6)28()824(21:)2412(21=⎥⎦⎤⎢⎣⎡-⨯+⨯⎥⎦⎤⎢⎣⎡+⨯x x 解得x =16,故这棱柱的体积为 1920040)1628()824(2116)2412(21=⨯⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯+⨯(立方厘米).9. 3:1.一个竖式的无盖纸盒要用一个正方形纸板和4个长方形纸板,一个横式的无盖纸盒要用2个正方形纸板和3个长方形纸板.设小玲做的纸盒中,有x 个竖式的,y 个横式的,则共用正方形纸板(x +2 y )个,用长方形纸板(4 x +3 y )个,依题意有: (x +2 y ):(4 x +3 y )=1:3.解得x : y =3:1.10. 20,6.至多要20块(左下图),至少需要6块(右下图).11. 若铁块完全浸入水中,则水面将提高326)3040(203=⨯÷(厘米).此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.设放入铁块后,水深为x 厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有:x x 20201030403040⨯+⨯⨯=⨯解得x =15,即放进铁块后,水深15厘米.12. 大正方体的表面还剩的面积为()9014622=-⨯(厘米2),六个小孔的表面积为()305162=⨯⨯(厘米2),因此所求的表面积为90+30=120(厘米2).13. 截面的线在展开图中如右图的A -C -Q -P -A .14. 在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满; 容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需3小时接满;2 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1A容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1.5小时接满;容器(E):容积:接水面积=20×S:S=20:1(S为底面积),接水时间为2小时.来源:本站原创 2011-03-15 16:15:18[标签:图形面积六年级奥数题及答案]1、有10张扑克牌,点数分别为1,2,3,…,9,10。
从中任意取出若干张牌,为了使其中必有几张牌的点数之和等于15,问最少要取多少张牌?2、在三角形ABC中,点E是BC边上的中点,点F是中线AE上的点,其中AE=3AF,并且延长BF与AC相交于D,如下图所示。
若三角形ABC的面积为48,请问三角形AFD的面积为多少?1.有10张扑克牌,点数分别为1,2,3,…,9,10。
从中任意取出若干张牌,为了使其中必有几张牌的点数之和等于15,问最少要取多少张牌?解答:若只取5张牌,有可能不满足条件,例如1,2,8,9,1 0。
因此,最少取的张数不小于6。
下面证明6可以满足条件。
可以将5-10分成3组:{5,10},{6,9},{7,8},每组至多选一个则若在1,2,3,4中任意选三个数,它们的和一定在上面三组数中,即6个数必有若干个之和为15。
2.在三角形ABC中,点E是BC边上的中点,点F是中线AE 上的点,其中AE=3AF,并且延长BF与AC相交于D,如下图所示。
若三角形ABC的面积为48,请问三角形AFD的面积为多少?立体几何从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是______平方厘米.立体几何从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是______平方厘米.六年级:立体图形的表面积与体积难度:中难度一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为2 0厘米,求长方体底面面积与容器底面面积之比.、甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。
2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。
1、甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。
解答:200×(1+20%)÷90%-200=16(27.7-16)÷(30% - 20%)÷90%=1302、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。
解答:设原来的利润率为x,1+x%=(1-6.4%)×(1+x%+8%)x=17%1、小明于今年十月一日在银行存了活期储蓄2500元,月利率为0.1425%。
如果利息率为2 0%,那么,到明年十月一日,小明最多可以从银行取出多少钱?2、一种商品先按20%的利润率定价,然后按定价的90%出售,结果获利256元,这种商品的成本是多少?1.小明于今年十月一日在银行存了活期储蓄2500元,月利率为0.1425%。
如果利息率为20%,那么,到明年十月一日,小明最多可以从银行取出多少钱?解答:2500×0.1425%×12×(1-20%)+2500=2534.22.一种商品先按20%的利润率定价,然后按定价的90%出售,结果获利256元,这种商品的成本是多少?解答:256÷[(1+20%)×90%-1]=32001、甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。
解答:200×(1+20%)÷90%-200=16(27.7-16)÷(30% - 20%)÷90%=1302、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。
解答:设原来的利润率为x,1+x%=(1-6.4%)×(1+x%+8%)x=17%。