文本情感分析综述
面向文本的情感分析研究
面向文本的情感分析研究一、引言随着社交媒体、新闻网站等文本源不断涌现,如何从众多的文本数据中获取有用的情感信息成为了重要的课题之一。
面向文本的情感分析通过计算机技术的手段对文本的情感进行分析,为企业、政府等提供可靠的决策参考。
本文将从文本情感分析的定义、研究现状以及未来发展等方面进行阐述。
二、文本情感分析的定义文本情感分析(Text Emotion Analysis,TEA)指对文本中表达出来的情感进行自动化的检测、抽取和分析的技术。
TEA的主要任务是为文本打上与情感相关的标签或者分类,并根据标签或分类结果,进一步抽取文本情感的相关特征,从而实现对文本情感的精细化分析。
三、文本情感分析的研究现状1. 情感分类情感分类是文本情感分析的核心任务之一,该任务旨在将文本分为不同的情感类别。
情感分类的方法主要分为传统机器学习方法和深度学习方法两种。
传统机器学习方法采用特征工程对文本进行处理,再使用SVM、NB等算法进行分类。
深度学习方法则采用神经网络进行情感分类,该方法不需要进行特征工程,可以自动学习文本中的特征,因此该方法在文本情感分析领域取得了很大的成功。
2. 情感词典情感词典是一种基于词典的情感分类方法,它对情感词和文本情感进行匹配,从而实现情感分类。
情感词典的优点是不依赖于训练样本,可以快速实现情感分析。
目前常用的情感词典有SentiWordNet、AFINN等。
3. 情感预测情感预测是文本情感分析的另一项任务,旨在在新闻资讯、社交媒体等文本源中预测特定事件或话题的情感倾向。
情感预测的主要方法有监督学习和半监督学习等。
四、文本情感分析的应用1. 品牌形象管理文本情感分析可以用于对企业品牌形象进行管理,根据消费者在社交媒体上对品牌的评价进行情感分析,及时发现消费者对品牌的不满意之处,并做出相应的调整,提高品牌的信誉度。
2. 舆情监测文本情感分析可以用于对热点话题、事件等的舆情监测,对社交媒体上的事件进行情感分析,快速了解公众对事件的态度,从而为政府、媒体等机构提供情感倾向分析。
文本情感分析综述
文本情感分析综述文本情感分析是指对文本内容进行分析,以确定其中所包含情感的方法。
情感分析在自然语言处理领域具有广泛的应用,包括社交媒体监测、品牌管理、市场调研等。
本文将综述目前文本情感分析的技术和方法,并探讨其应用领域和存在的挑战。
一、情感分析技术和方法:1. 基于词典的方法:该方法使用预定义的情感词典,对文本中的词进行情感打分,然后通过加权求和或者分类算法来确定整个文本的情感极性。
常用的词典有SentiWordNet、AFINN等。
2.机器学习方法:该方法通过训练一个分类器,将文本分为积极、消极或中性,常用的算法有朴素贝叶斯、支持向量机、随机森林等。
3.深度学习方法:近年来,深度学习方法在情感分析中取得了显著的进展。
深度学习模型如循环神经网络(RNN)和卷积神经网络(CNN)能够对文本进行端到端的建模,包括长期依赖和局部特征提取。
二、情感分析的应用领域:1.社交媒体监测:情感分析可用于监测社交媒体上用户对特定事件、产品或品牌的态度和情感倾向,帮助公司及时了解用户的反馈和需求。
2.市场调研:情感分析可以帮助企业了解产品的市场反应和用户的需求,进而优化产品设计和营销策略。
3.品牌管理:情感分析可以帮助企业评估品牌形象和声誉,并及时发现并解决潜在的危机和问题。
4.情感分析还可应用于舆情监测、情感化以及个性化推荐等领域。
三、情感分析的挑战:1.多样性和主观性:情感分析受到文本多样性和主观性的影响,不同文化和背景下,不同人对同一词汇或句子的情感倾向可能会有差异。
2.语义理解:情感分析需要深入理解文本的上下文和语义,包括语言的隐喻、讽刺等。
这对于机器来说是一大挑战。
3.数据标注:情感分析的训练需要大量标注好情感的数据,然而标注数据是一项复杂且耗时的任务,为情感分析提供高质量的训练数据仍然是一个问题。
综上所述,文本情感分析是一项具有挑战性但应用广泛的任务。
随着技术的不断发展,我们可以期待情感分析在各个领域的更深入应用,并希望能够解决当前面临的挑战,提升情感分析的准确性和效果。
文本情感分析综述
d o c u me n t l e v e l s e n t i me n t a n a l y s i s ,a n d t e x t s e n t i me n t na a ly s i s a p p l i c a t i o n s .I t p o i n t e d o u t t h a t t h e c u r r e n t s e n t i me n t na a ly s i s
文本 情 感 分 析 综 述
杨 立 公 , 朱 俭 , 汤世 平
( 1 . 北 京理工大学 计算机学院, 北京 1 0 0 0 8 1 ; 2 . 中国青年政治学 院 计算 机教学及应用 中心, 北京 1 0 0 0 8 9 ) (}通信作者 电子 邮箱  ̄l l g g @g ma i l . C O B)
文章编号 : 1 0 0 1 —9 0 8 1 ( 2 0 1 3 ) o 6—0 1 5 7 4— 0 5
C OD EN J YI I DU
h t t p : / / w w w. j o c a . c a
d o i : 1 0 . 3 7 2 4 / S P . J . 1 0 8 7 . 2 0 1 3 . 0 1 5 7 4
s y s t e m c a n n o t g a i n h i g l l p r e c i s i o n .F u r t h e r r e s e a r c h s h o u l d f o c u s o n : w i d e l y a n d a p p r o p r i a t e l y a p p l y i n g s t u d y a c h i e v e m e n t o f
自然语言处理中的文本情感分析与情绪识别
自然语言处理中的文本情感分析与情绪识别自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解、分析和生成自然语言的方法和技术。
文本情感分析与情绪识别是NLP的研究方向之一,它的目标是通过计算机自动识别和理解文本中的情感和情绪。
文本情感分析主要关注文本中的情感倾向或情感极性,即判断文本是正面(positive)、负面(negative)还是中性(neutral)。
情感分析可以应用于用户评论、社交媒体内容、新闻报道等领域。
它对于企业和品牌来说尤为重要,因为它可以帮助他们了解产品或服务在公众中所产生的情感反应。
因此,文本情感分析可以作为决策制定、用户满意度调查等方面的重要工具。
情绪识别的目标是识别文本中隐含的情绪状态,例如愤怒、喜悦、悲伤、惊讶等。
相比于情感分析,情绪识别更加细致和具体,它可以更好地帮助我们理解文本背后的情感动机和情感表达。
情绪识别在社交媒体情感分析、市场调研、舆情分析等方面具有重要的应用价值。
文本情感分析和情绪识别的方法多种多样,常见的方法包括机器学习、深度学习和规则-based 方法。
对于机器学习方法,可以使用情感词典、分类算法或者是生成模型。
情感词典是一种包含不同情感极性词汇的资源,根据文本中词汇在情感词典中的情感极性进行累加或加权,可以得到文本的情感倾向。
分类算法则通过将文本映射到预定义的情感类别中,使用训练好的模型进行分类。
生成模型是指通过训练一个文本生成模型,根据生成的文本的情感属性来判断原始文本的情感倾向。
深度学习方法近年来在文本情感分析和情绪识别中取得了重要的突破。
特别是利用神经网络模型如卷积神经网络(CNN)和循环神经网络(RNN),可以更好地捕捉文本特征,并对情感进行分类和识别。
通过将词嵌入(word embedding)和注意力机制(attention mechanism)引入深度学习模型,可以进一步提高模型的性能。
文本方面级情感分类方法综述
第41卷第6期2020年12月河北科技大学学报Journal of Hebei University of Science and'TechnologyVol.l,No.Dec.2020文章编号:1008-1542(2020)06-0518-10文本方面级情感分类方法综述李胜旺,杨艺,许云峰,张妍(河北科技大学信息科学与工程学院,河北石家庄050018)摘要:随着深度学习的发展,方面级情感分类已经在单领域和单一语言中取得了大量的研究成果,但是在多领域的研究还有提升的空间。
通过对近年来文本方面级情感分类方法进行归纳总结,介绍了情感分类的具体应用场景,整理了方面级情感分类常用的数据集,并对方面级情感分类的发展进行了总结与展望,提出未来可在以下领域开展深入研究:1)探索基于图神经网络的方法,弥补深度学习方法存在的局限性;2)学习融合多模态数据,丰富单一文本的情感信息;3)开展更多针对多语言文本和低资源语言的研究。
关键词:自然语言处理;情感分类;方面级别;文本分类;深度学习;图神经网络;图卷积网络中图分类号:TP311.3文献标识码:A doi:10.7535/hbkd.2020yx()6()()6A survey of text aspect-based sentiment classificationLI Shengwang,YANG Yi,XU Yunfeng,ZHANG Yan(School of Information Science and Engineering,Hebei University of Science and'Technology,Shijiazhuang,Hebei050018, China.)Abstract:With the development of deep learning,aspect-based sentiment classification has achieved a lot of results in a single field and a single language,but there is room for improvement in multi-ficlds.By summarizing up the methods of text aspectbased sentiment classification in recent years,the specific application scenarios of sentiment classification were introduced,and the commonly used data sets of aspect-based sentiment classification were categorized.The development of aspect-based sentiment classification were summarized and prospected,and further research can be carried out in the following areas: exploring methods based on graph neural networks to make up for the limitations of deep learning methods;learning to fuse multi-modal data to enrich the emotional information of a single text;developing more targeted research work on multilingual texts and low-resource languages.Keywords:natural language processing;sentiment classification;aspect-based;text classification;deep learning;graph neural network;graph convolutional network收稿日期:2020-10-02;修回日期:20201106;责任编辑:王淑霞基金项目:中国留学基金委地方合作项目(201808130283);中国教育部人工智能协同育人项目(201801003011);河北科技大学校立课题(82/1182108)第一作者简介:李胜旺(1963—)男,可北邯郸人,教授,硕士,主要从事计算机控制技术方面的研究。
文本情感分析范文
文本情感分析范文文本情感分析是指对一段文本进行评估和判断,以确定文本所表达的情感情绪是积极的、消极的还是中性的。
在自然语言处理领域,文本情感分析是一项重要的任务,它可以在许多应用中发挥关键作用,例如舆情监测、情感推荐和市场调研等。
情感分类是文本情感分析中的基本任务之一、情感分类的目标是根据文本的内容和上下文分析出文本所表示的情感类别。
常见的情感类别包括积极、消极和中性。
情感分类通常借助于机器学习算法,如支持向量机、朴素贝叶斯和深度学习模型等。
这些算法需要在训练阶段使用标注好的数据进行模型的训练,然后通过对新的文本进行分类来确定文本的情感类别。
情感分类可以被应用于许多领域,如舆情分析、评论分析和产品评价等。
另一个常见的任务是情感极性判断。
情感极性判断是指在情感分类的基础上,进一步判断出文本所表达情感的正负方向。
情感极性判断通常采用二分类的方法,将情感分为正向和负向两个极性。
情感极性判断可以帮助我们更好地理解文本的情感倾向性和态度。
这在舆情分析和情感推荐等领域中非常有用。
文本情感分析的关键挑战之一是语义的理解和表示。
由于自然语言的多样性和复杂性,对文本情感的准确理解是一项具有挑战性的任务。
为了解决这个问题,研究人员开发了各种各样的方法和技术,例如基于词典的方法、基于机器学习的方法和基于深度学习的方法等。
这些方法充分利用了大规模的训练数据和强大的计算能力,取得了显著的成果。
除了挑战,文本情感分析还面临着一些潜在的问题,例如主观性和目标性的混淆、文本长度的限制以及情感表达的多样性等。
这些问题需要进一步的研究和改进,以提高文本情感分析的性能和效果。
总结起来,文本情感分析是一项重要的任务,它可以用于许多应用中,从舆情分析到情感推荐等。
情感分类和情感极性判断是文本情感分析的两个主要任务。
虽然文本情感分析面临着挑战和问题,但通过不断的研究和改进,我们可以进一步提高其性能和效果,提供更好的情感分析服务。
面向评论的方面级情感分析综述
面向评论的方面级情感分析综述随着互联网的快速发展,人们对于商品、服务等方面的评论越来越多。
这些评论中蕴含着丰富的情感信息,对于企业和研究者来说,如何有效地分析和理解这些情感信息具有重要意义。
本文将综述面向评论的方面级情感分析的研究现状、不足以及未来研究方向。
方面级情感分析是一种将文本情感分析细化到特定方面的技术,如产品特性、服务质量等方面。
通过对面包、酒店等特定方面的情感分析,可以为消费者提供更加详细、客观的参考信息。
在方面级情感分析中,情感分类和情感极性分析是两个基本的问题。
情感分类是将评论分为正面、负面或中立三类,而情感极性分析则是进一步确定评论的积极或消极程度。
情感词句的提取和特征选择是解决问题的关键。
面向评论的情感分析需要运用自然语言处理、机器学习等技术,根据评论内容提取情感信息。
常用的方法包括基于文本的监督学习和非监督学习。
监督学习需要标注大量的训练数据,通过学习模型进行情感分类和极性分析。
非监督学习则不需要标注数据,通过聚类、关联规则等方法发现情感模式和规则。
在实际应用中,需要根据具体场景选择合适的方法。
评估情感分析效果的方法包括传统评估方法和基于深度学习的评估方法。
传统评估方法主要通过准确率、召回率和F1分数等指标来衡量模型的性能。
基于深度学习的评估方法则可以利用神经网络模型,如卷积神经网络(CNN)、循环神经网络(RNN)等,对情感分析结果进行自动评估。
虽然面向评论的方面级情感分析已经取得了很大进展,但仍存在一些问题和挑战。
未来的研究方向包括:1)集成多种方法和数据,提高情感分析的准确性和可靠性;2)深入研究情感极性细粒度划分,以适应更加复杂的情感分析需求;3)考虑上下文信息对情感分析的影响,提高模型的情境理解能力;4)结合多模态数据,如图像、音频等,丰富情感分析的视角和维度;5)研究无监督学习方法,减少对大量标注数据的依赖;6)探索情感分析和对话系统的结合,为实际应用提供更多可能性。
中文微博情感分析研究综述
( 上海大学悉尼3 - 商学院 上海 2 0 1 8 与之相关 的研 究得 到学术界和工 商界 的广泛关注 。针对 中文微博情感分析 的研 究进 行综述。将 中文
微博文本情感分析分为三类任务 : 文本预处理 、 情感信息抽取和情感分类 , 对各 自的研 究方法和进 展进行 总结。其 中情感信 息抽取 分为情感 词 、 主题和关 系的抽取 , 将微 博主观文本情感分 类方 法归结为基 于语义词 典 的情感 计算和 基于机器 学 习的情感分 类。此 外, 从微博 网站数据构成 的角度 出发 , 对情感分析做 了延伸分析。最后总结微博情感 分析的研 究现状, 并提 出今后 的研究方 向。 关键词
中图分类号
中文微 博 情感 分析 情感信息抽取
T P 3 9 1 文献标识码 A
情感 分类
D O I : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 0 - 3 8 6 x . 2 0 1 3 . 0 3 . 0 4 3
oVERVI EW oN S ENTD江ENT ANALYSI S OF CHI NES E MI CRoBLoGGI NG
t h e p a p e r ,w e s u mma r i s e t h e s t u d i e s i n l i g h t o f C h i n e s e mi c r o b l o g g i n g s e n t i me n t a n a l y s i s .W e d i v i d e t h e C h i n e s e mi e r o b l o g g i n g t e x t s e n t i me n t
中文文本情感分析综述
ICTCLAS 解析并标注中文文本,分别采用文本频率、CHI 统计 量、互信息、信息增益四种特征选择方法,以中心向量法、K 近 邻、Winnow、朴素贝叶斯和支持向量机作为不同的文本分类 方法,在不同的特征数量和不同规模的训练集情况下进行了 实验,并对实验结果进行了比较。对比结果表明: 采用文档频 率特征表示方法优于其他特征选择方法和支持向量机分类方 法优于其他分类方法。在足够大训练集和选择适当数量特征 的情况下,文本的情感倾向分类能取得较好的效果。但是文 本的主题不同对分 类 的 结 果 有 影 响。孟 凡 博 等 人[17] 设 计 并 实现了一个基于关键词模板的文本褒贬倾向判定系统。该系 统定义Байду номын сангаас关键词 类 别、建 立 了 关 键 词 库、关 键 词 模 板 库,并 设计了模板匹配算法和文本褒贬倾向值算法,对测试文本进 行关键词及模板匹配进而判断测试文本的褒贬倾向。李寿山 等人[18]具体研究四种不同的分类方法在中文情感分类上的 应用,并且采用一种基于 Stacking 的组合分类方法,用以组合 不同的分类方法。实验结果表明该组合方法在所有领域都能 够获得比最好基分类方法更好的分类效果。
文本情感分析是指对包含用户表示的观点、喜好、情感等 的主观性文本进行检测、分析以及挖掘。文本情感倾向分析 作为一个多学科交叉的研究领域,涉及包括自然语言处理、计 算语言学、信息检索、机器学习、人工智能等多个领域。文献 [1 - 3]对文本情感分析的目的、主要任务以及主流技术做了 简要的介绍,但主要是介绍针对英文的文本情感分析,对中文 文本情感分析并没有重点介绍。本文主要介绍针对中文文本 情感分析的主流方法与研究进展。
学习情感分析方法研究综述
01 一、引言
目录
02
二、情感分析的主要 技术
03 三、情感分析的挑战
04 四、未来发展趋势
05 五、结论
06 参考内容
一、引言
随着社交媒体和在线平台的普及,大量的公众文本数据在网络中留下了痕迹。 这些数据中,人们的情感倾向和情绪表达占据了重要的部分。因此,情感分析 (Emotion Analysis)作为一种从文本中提取情感信息的技术,正逐渐成为自然 语言处理(NLP)领域的重要研究方向。本次演示旨在综述情感分析方法的研究 现状,探讨其主要技术和挑战,并展望未来的发展趋势。
参考内容
摘要
文本情感分析是指通过计算机算法对文本中的情感信息进行自动识别和分类。 这种技术广泛应用于舆情分析、产品评论、情感对话等领域,对于企业、政府和 社会具有重要的应用价值。本次演示将对文本情感分析方法的研究进行综述,介 绍各种方法的优缺点,并探讨未来的研究方向。
引言
随着互联网的快速发展,文本情感分析技术变得越来越重要。这种技术可以 帮助企业和政府部门了解公众对某个话题、产品或事件的情绪反应,从而做出更 加科学合理的决策。此外,文本情感分析也是自然语言处理领域的重要研究方向 之一,对于推动语言理解、人机交互和智能助手的发展具有重要的理论价值。
5、大规模预训练模型:利用大规模预训练模型进行微调,可以有效地提高 情感分析的性能。未来,这种方法可能会成为主流。
五、结论
情感分析作为自然语言处理的一个重要方向,已经在多个领域得到了广泛的 应用。然而,面对复杂多变的自然语言环境,情感分析仍然面临着许多挑战。希 望通过本次演示的综述,能为研究者提供一些关于情感分析未来研究方向的启示。
Байду номын сангаас
文本情感分析
文本情感分析情感分析是一种文本挖掘技术,用于识别并提取文本中的情感和意见。
随着社交媒体和在线内容的不断增长,情感分析变得越来越重要,因为企业和个人希望了解公众对其产品和服务的看法。
情感分析可以帮助企业更好地了解客户的需求和情感倾向,进而改善产品和服务,提高客户满意度。
文本情感分析的意义在当今信息爆炸的时代,人们每天产生的海量文本数据包含了大量的情感信息。
传统的文本分析往往只关注文本的内容和结构,而忽略了文本背后的情感色彩。
而情感分析可以从文本中提取情感、态度和情绪,为企业和个人提供了更多有价值的信息。
通过文本情感分析,可以实现以下几个方面的价值:1.市场调研分析:通过对消费者在社交媒体平台上发布的评论和观点进行情感分析,可以更好地了解消费者对产品和服务的看法,从而指导市场营销策略的调整。
2.舆情监控管理:政府和企业可以通过对新闻报道、社交媒体和网络论坛等多种文本信息进行情感分析,及时了解公众对其言行和事件的反馈,从而调整应对措施。
3.个性化推荐系统:通过对用户在社交媒体平台上的行为和评论进行情感分析,可以为用户提供更加个性化、符合其兴趣和情感倾向的产品和服务推荐。
文本情感分析的技术方法文本情感分析主要涉及自然语言处理和机器学习等技术领域。
常用的情感分析方法包括:基于词典的情感分析、基于机器学习的情感分析和深度学习的情感分析等。
1.基于词典的情感分析:该方法通过构建情感词典和情感词典中词语的情感强度来对文本进行情感分析。
当文本中出现情感词时,根据情感词的强度的正负值来判断文本的情感倾向。
2.基于机器学习的情感分析:该方法通过训练机器学习模型来对文本进行情感分类。
常用的机器学习算法包括朴素贝叶斯、支持向量机和深度学习等。
3.深度学习的情感分析:深度学习是当前情感分析领域的研究热点之一,特别是基于循环神经网络(RNN)和长短时记忆网络(LSTM)的情感分析模型在文本分类任务中取得了较好的效果。
文本情感分析的应用场景文本情感分析在许多领域都有着广泛的应用,下面列举了几个常见的应用场景:1.社交媒体监测:企业可以通过对社交媒体上用户评论和帖子的情感分析,了解公众对其产品和服务的看法,及时回应用户的关切。
情感分析研究综述
情感分析研究综述近年来,情感分析研究受到越来越多的重视,其成果可为机器人技术,文本分析和情绪计算提供强大的支持。
鉴于情感分析在研究领域中具有重要的意义,本文将对情感分析的机制,技术和应用等方面进行综述。
一、情感分析的机制情感分析的机制可以归纳为感知、理解和评价三个层次。
在感知层,通过自然语言处理和文本挖掘技术,从文本中提取出情感信息,以确定受评价文本的类型;在理解层,使用语义分析和情感序列分析技术,对情感信息进行解码,以抽取出情感的表示形式;在评价层,使用情感计算和相似性分析技术,以定量的方式衡量情感信息的强度,以确定文本的情感倾向。
二、情感分析的技术情感分析技术可以分为基于机器的技术和人工智能技术两大类。
基于机器的情感分析技术,建立在传统的自然语言处理和文本挖掘技术基础之上,主要包括情感分类、情感实体提取、情感评价和情感预测等技术;人工智能技术,则是通过深度学习等先进的方法实现情感分析,其中,神经网络模型的使用更加广泛,能够实现对整篇文本的情感分析,可以有效地提高情感分析精度。
三、情感分析的应用情感分析技术可以广泛应用于社交媒体分析、电子商务推荐、新闻舆情分析、智能搜索引擎、信用风险预测等领域。
例如,有研究发现,利用深度神经网络模型,能够对网络视频中的回声效应态度进行定量分析,以帮助企业更好地实现客户满意度管理,提高电子商务的效率和用户体验。
四、结论情感分析作为现代自然语言处理和文本挖掘技术的重要组成部分,其技术取得了显著的进步。
情感分析的机制、技术和应用已经被广泛应用于各种领域,对促进机器人技术,文本分析和情绪计算方面的发展起到了重要的作用。
未来,情感分析研究仍需探索更深入,在实际应用中发挥重要作用。
AI写作的文本情感分析
AI写作的文本情感分析随着人工智能技术的不断发展,AI写作在文本创作领域逐渐崭露头角。
其中一项重要技术是文本情感分析,它可以帮助AI写作系统更好地理解和表达情感内容。
本文将探讨AI写作的文本情感分析技术,并讨论其应用前景。
一、文本情感分析的基本原理文本情感分析是指识别和分析文本中隐藏的情感信息的过程。
AI写作系统通过观察文本中的词汇、句法结构和上下文关系,以及利用机器学习算法和大数据分析技术,来自动判断文本所传达的情感倾向。
1.1 情感分类文本情感分析根据情感的属性将其归类为积极、消极或中性。
通过对文本情感词汇、情感强度和句子结构的分析,AI写作系统可以判断出文本的整体情感倾向。
1.2 情感强度评估除了分类情感倾向,文本情感分析还可以评估情感的强度。
通过分析文本中的情感词汇、程度副词和句子表达方式,AI写作系统可以量化文本中情感的强度,从而更准确地表达情感。
二、AI写作的文本情感分析应用AI写作的文本情感分析技术在多个领域具有广泛的应用前景。
2.1 情感推荐系统利用文本情感分析技术,AI写作系统可以为用户推荐与其情感倾向相符合的文章、商品或服务。
通过分析用户在社交媒体平台上的文本互动行为,AI系统可以了解用户的情感偏好,从而提供更加个性化的推荐。
2.2 营销与广告创作在广告和营销领域,情感对于引起消费者的共鸣和情感共鸣至关重要。
AI写作系统可以通过文本情感分析来判断用户对广告创意的情感反应,并根据用户情感需求生成更具感染力的广告文案。
2.3 情感分析监控在社交媒体及舆情监测领域,AI写作系统可以利用文本情感分析技术对用户发布的内容进行情感分析。
这对于企业来说是非常有价值的,他们可以了解用户对产品或服务的情感反馈,并作出相应的改进措施。
2.4 情感写作辅助工具AI写作系统可以充当作家的助手,通过分析作者的文本反馈和语言使用习惯,为其提供适合目标读者情感需求的写作建议。
这对于那些希望传达特定情感的作者来说尤为有用。
文本细粒度情感分析研究综述
综述
1、情感分类
1、情感分类
情感分类是细粒度情感分析的关键问题之一,主要涉及将文本数据划分为不 同的情感类别。目前,机器学习算法在情感分类方面取得了显著的成果,尤其是 深度学习算法的应用。例如,卷积神经网络(CNN)和循环神经网络(RNN)等深 度学习模型在处理自然语言任务时具有强大的能力。另外,一些传统的机器学习 算法,如贝叶斯分类器和支持向量机(SVM)等也在情感分类中得到了广泛的应 用。
参考内容
内容摘要
随着社交媒体和在线平台的快速发展,文本情感分析技术变得越来越重要。 其中,文本细粒度情感分析在情感极度细微变化的场景中具有广泛的应用价值。 本次演示将综述文本细粒度情感分析的研究现状、方法、应用领域、挑战以及未 来发展趋势。
一、引言
一、引言
文本情感分析是指通过自然语言处理技术和机器学习算法,对文本数据进行 情感倾向性分析和评价。而文本细粒度情感分析则更加情感倾向的细分和微妙变 化,旨在捕捉和判断文本中的每一个情感元素,进而实现更精准的情感分析。这 种技术在商业、政府、教育等众多领域都具有广泛的应用前景。
文本细粒度情感分析研究综述
01 一、引言
目录
02 二、情感分析的方法
03
三、情感分析的应用 现状
04
四、情感分析的研究 方法与挑战
05 五、结论
06 参考内容
内容摘要
随着社交媒体和在线平台的快速发展,文本情感分析技术变得越来越重要。 其中,文本细粒度情感分析在情感极度细微变化的场景中具有广泛的应用价值。 本次演示将综述文本细粒度情感分析的研究现状、方法、应用领域、挑战以及未 来发展趋势。
一、引言
一、引言
文本情感分析是指通过自然语言处理技术和机器学习算法,对文本数据进行 情感倾向性分析和评价。而文本细粒度情感分析则更加情感倾向的细分和微妙变 化,旨在捕捉和判断文本中的每一个情感元素,进而实现更精准的情感分析。这 种技术在商业、政府、教育等众多领域都具有广泛的应用前景。
文本情感分析研究现状
文本情感分析研究现状文本情感分析是指通过自然语言处理技术将文本中的情感倾向进行判别和分类的任务。
近年来,随着社交媒体的兴起和互联网信息的爆炸性增长,文本情感分析成为了热门的研究领域,吸引了众多学者的关注。
本文将对文本情感分析的研究现状进行综述,并讨论其应用和挑战。
目前,文本情感分析主要分为两个方向:情感分类和情感极性识别。
情感分类是将文本划分为多个离散的情感类别,如积极、中性和消极;情感极性识别则是根据文本的情感态度划分为正向和负向。
这两个方向相互补充,共同构成了文本情感分析的核心内容。
在情感分类方面,传统的方法主要基于机器学习算法,如朴素贝叶斯、支持向量机和最大熵模型。
这些方法将文本转化为向量表示,并利用分类器进行情感分类。
然而,传统方法在处理复杂的文本中存在着一些问题,如特征选择困难、泛化性能差等。
为了解决这些问题,近年来,深度学习在文本情感分析中得到了广泛的应用。
深度学习模型能够自动学习特征表达,并能够处理大规模文本数据。
其中,卷积神经网络(CNN)和长短期记忆网络(LSTM)是两个常用的深度学习模型。
CNN能够捕捉文本中的局部特征,而LSTM则可以建模文本的时序信息。
此外,还有一些基于注意力机制的模型,如Transformer和BERT,它们能够更好地关注文本中的重要信息。
在情感极性识别方面,大部分研究集中在两个任务:情感词汇挖掘和情感表达强度分析。
情感词汇挖掘是指从文本中识别出具有情感倾向的词汇,例如“好”、“坏”等。
常见的方法包括基于词典的方法和基于机器学习的方法。
情感表达强度分析则是判断情感的强烈程度,例如“非常好”和“一般般”。
除了情感分类和情感极性识别,文本情感分析还有一些其他的研究方向。
例如,情感迁移学习利用源领域的标注数据来进行目标领域的情感分类,以应对数据稀缺和领域差异性的问题。
跨媒体情感分析则是将不同媒体(如文本、图像和音频)中的情感进行分析和对比。
多模态融合、多语言情感分析、社交媒体情感分析等都是具有应用前景的研究方向。
文本情感分析综述
文本情感分析综述作者:来亮钱屹来源:《计算机光盘软件与应用》2012年第18期摘要:近年来随着计算机、人工智能、心理学等学科交叉领域的不断延伸,情感分析引起了很多研究人员的兴趣。
情感分析主要是对主观性文本进行挖掘与分析,从中获取有价值的信息。
本文针对中文文本情感分析的研究现状与进展进行总结。
首先介绍文本情感分析的内容,并按粒度层次,从词语级、语句级介绍相关的技术,分析了近年来的一些研究进展。
接着介绍了中文文本情感分析的方法,最后总结了中文文本情感分析的研究难点与未来的研究方向。
关键词:文本;情感分析;倾向性;情感计算;粒度中图分类号:TP391 文献标识码:A 文章编号:1007-9599(2012)18-0000-021 情感计算概述情感计算是人工智能的一个热门、前沿的研究领域,它的目标是要赋予计算机类似人一样的观察、理解和生成各种情感特征的能力,最终能够像人一样自然亲切的交流。
随着Internet 的发展,以文本形式出现的信息越来越多,已经成为最容易获取,也是最为丰富的一种交互资源。
1.1 文本情感分析的内容。
美国MIT媒体实验室的Picard教授认为情感计算主要包括三个部分,即情感识别、情感发生、情感表达。
内容具体可分为九个方面:情感机理、情感信息的获取、情感模式识别、情感的建模与理解、情感合成与表达、情感计算的应用、情感计算机的接口、情感的传递与交流、可穿戴计算机。
关于文本的情感计算是文本情感分析中的核心问题之一,文本情感分析,广义上包含对文本的主客观性分析,同时也包含了对主观信息的倾向性分析及强度分析。
倾向性分析也就是我们通常所说的褒贬性分析,一般指说话人对某事某物的看法或观点,通常以“表扬——批评”、“赞同——反对”这样具有较强烈情感倾向的词汇来分类;而强度分析指的是对同一事物所持观点的语气强烈程度,如:“我喜欢文学”与“我热爱文学”,两个句子同样表达了对文学的喜爱,但程度不同,“热爱”的语气强烈程度要远远超过“喜欢”。
自然语言处理中的文本情感分析模型
自然语言处理中的文本情感分析模型近年来,随着社交媒体的兴起和大数据的普及,人们在网络平台上的文本表达愈发丰富和多样化。
这使得对文本情感的分析和理解成为了自然语言处理领域中的一个重要研究方向。
文本情感分析模型的发展,不仅可以帮助企业了解用户的情感倾向,优化产品和服务,还可以助力舆情监测、社会心理研究等领域的发展。
一、情感分析的基本概念和应用场景情感分析,即通过计算机技术对文本中所表达的情感进行自动识别和分类。
情感分析的应用场景广泛,如舆情分析、产品评论分析、社交媒体监测等。
通过情感分析,企业可以了解用户对产品或服务的满意度,以便及时调整营销策略和改进产品质量。
二、情感分析的方法和技术情感分析的方法和技术主要分为基于词典的方法和基于机器学习的方法两大类。
1. 基于词典的方法基于词典的方法是情感分析中最早被使用的方法之一。
该方法通过构建情感词典,将文本中的词语与情感极性进行匹配,从而判断文本的情感倾向。
然而,基于词典的方法存在词典覆盖不全、多义词问题等缺陷,对于复杂的文本情感分析效果有限。
2. 基于机器学习的方法基于机器学习的方法在情感分析中得到了广泛的应用。
该方法通过训练一个分类器,将文本分为积极、消极或中性等情感类别。
常用的机器学习算法包括支持向量机(SVM)、朴素贝叶斯(Naive Bayes)和深度学习模型等。
这些算法通过学习大量标注好的文本数据,从中学习情感的特征和规律,进而对未知文本进行情感分类。
三、情感分析模型的优化和挑战尽管基于机器学习的方法在情感分析中取得了一定的成果,但仍存在一些挑战和局限性。
1. 数据标注问题情感分析模型的训练需要大量标注好的文本数据,但标注过程耗时耗力。
同时,情感本身具有主观性,不同人对同一文本的情感判断可能存在差异,导致标注结果的不一致性。
2. 多样性和上下文问题文本情感分析面临着多样性和上下文问题。
同一词语在不同语境下可能表达不同的情感,而情感分析模型往往难以捕捉到这种细微差别。
基于深度学习的文本情感分析方法研究
基于深度学习的文本情感分析方法研究随着社交媒体的兴起以及用户生成内容的爆炸增长,对大规模文本数据进行情感分析的需求与日俱增。
文本情感分析是一种将自然语言处理和机器学习相结合的技术,旨在自动识别和理解文本中的情感倾向。
近年来,深度学习模型在文本情感分析领域取得了显著的进展,并且成为了研究和应用的热点之一。
本文将就基于深度学习的文本情感分析方法进行综述,并对其研究现状和未来发展进行讨论。
一、基础知识介绍1.1 文本情感分析概述文本情感分析,又称为情感倾向分析,是指通过计算机技术对文本进行情感判断和分类的过程。
其目标是将文本分类为积极、消极或中性等情感类型。
情感分析可应用于情感监测、品牌舆情分析、用户评论情感分析等领域,对于企业决策和社会舆情分析起着重要作用。
1.2 深度学习简介深度学习是一种基于神经网络模型的机器学习方法,通过多层神经网络的构建和训练来解决复杂的模式识别和数据分析问题。
与传统机器学习方法相比,深度学习模型以其强大的非线性拟合能力和自动特征学习能力在文本情感分析任务中表现出色。
二、基于深度学习的文本情感分析方法2.1 卷积神经网络(CNN)卷积神经网络是一种常用的深度学习模型,具有一定的自然语言处理能力。
在文本情感分析领域,卷积神经网络通过卷积操作来捕捉文本中的局部特征,进而通过全连接层进行分类。
该方法在文本分类任务中取得了很好的效果。
2.2 循环神经网络(RNN)循环神经网络是一类具有记忆能力的神经网络,对于处理序列数据的任务特别有效。
在文本情感分析中,循环神经网络通过序列建模,能够较好地捕捉上下文信息,对于理解文本中的情感趋势非常有帮助。
然而,长时依赖问题限制了RNN模型的准确性。
2.3 长短期记忆网络(LSTM)为了解决长时依赖问题,研究者提出了长短期记忆网络。
LSTM模型通过引入记忆单元和门控机制,能够有效地记忆长期依赖关系,并且在文本情感分析中取得了较好的效果。
LSTM模型在多层结构的基础上,能够更好地处理文本中的复杂情感信息。
文本情绪分析综述
文本情绪分析综述随着社交媒体和在线交流的普及,人们产生和接触到的文本信息越来越丰富。
这些文本信息中蕴含着大量的情感信息,对于理解人们的需求、意见和态度具有重要意义。
文本情绪分析正是一种用于提取和处理这些情感信息的技术。
本文将综述文本情绪分析的基本概念、现状、趋势以及未来研究方向。
一、引言文本情绪分析是一种自然语言处理技术,通过计算机算法自动识别和分析文本中的情感倾向。
这种技术可以应用于诸多领域,如智能客服、广告效果评估、新闻报道分析等。
准确、高效的文本情绪分析技术对于企业、政府和社会各界具有重要意义。
二、情感分析文本情绪分析的核心是情感词典和机器学习算法。
情感词典是一种包含情感词汇及其权重的词典,用于表示文本中的情感倾向。
机器学习算法则是通过训练大量样本学习文本情感倾向的模型,并对新文本进行情感预测。
在情感分析过程中,特征选择和模型训练是两个关键环节。
特征选择涉及到从文本中提取有意义的信息,如词频、词性、句法等,用于判断文本的情感倾向。
模型训练则是通过机器学习算法,将提取的特征输入到模型中进行训练,以得到更准确的情感预测结果。
三、应用领域文本情绪分析在各个领域都有广泛的应用。
例如,在智能客服领域,文本情绪分析可以帮助企业快速了解客户需求和意见,提高客户满意度;在广告文案领域,文本情绪分析可以评估广告效果,为广告制作提供参考;在新闻报道领域,文本情绪分析可以分析作者的情感倾向,帮助读者更好地理解报道内容。
然而,文本情绪分析在实际应用中仍面临一些挑战,如情感词典的不完善、不同文化背景下的情感差异等。
因此,提高文本情绪分析的准确性和普适性仍是未来的重要研究方向。
四、未来展望随着深度学习和自然语言处理技术的不断发展,文本情绪分析的准确性和应用范围也将得到进一步提升。
未来,文本情绪分析有望实现以下发展:1、算法优化:结合深度学习和传统机器学习算法的优点,提高情感分析的准确性。
例如,使用预训练的深度学习模型进行情感预测,以及结合多种特征进行模型训练等。
基于以往同类研究文献资料
基于以往同类研究文献资料标题:基于以往同类研究文献资料的文本情感分析方法综述引言:文本情感分析是自然语言处理中的一个重要任务,其目标是自动判断和识别文本中所表达的情感倾向。
随着社交媒体和在线评论的普及,情感分析在舆情监测、商品推荐、舆论分析等领域具有广泛的应用价值。
本文基于以往同类研究文献资料,对文本情感分析的方法进行综述,包括传统机器学习方法和深度学习方法。
一、传统机器学习方法1. 特征提取:传统机器学习方法首先需要对文本进行特征提取。
常用的特征包括词袋模型、TF-IDF、n-gram等。
通过将文本映射到固定维度的特征空间,可以方便地进行后续的情感分类。
2. 情感分类算法:对于提取到的文本特征,可以采用各种经典机器学习算法进行情感分类,如支持向量机(SVM)、朴素贝叶斯(Naive Bayes)和决策树等。
这些算法通过训练一个分类器来将文本划分为积极、消极或中性情感。
二、深度学习方法1. 神经网络模型:深度学习方法在文本情感分析任务上取得了显著的突破。
常用的神经网络模型包括卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等。
这些模型可以自动学习文本的抽象特征,从而提升情感分类的性能。
2. 预训练模型:为了解决文本情感分析中数据稀疏和模型泛化能力差的问题,研究者提出了各种预训练模型,如Word2Vec、GloVe和BERT等。
这些模型通过在大规模语料库上进行预训练,得到了丰富的词向量表示和上下文信息,可以用于提升情感分类的效果。
三、方法比较与展望1. 性能比较:以往的研究中通过实验对比了不同方法在情感分析任务上的性能。
结果显示,深度学习方法往往能够取得更好的分类效果,尤其是在大规模数据集上。
然而,传统机器学习方法在小规模数据集或特定领域的情感分析中仍然具有一定优势。
2. 模型改进:研究者们不断改进情感分析方法,提出了各种改进的模型和技术。
例如,结合注意力机制和情感词典的方法能够更好地捕捉文本中的情感信息;多模态情感分析方法可以利用图像和语音等多种信息进行情感分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文本情感分析综述∗赵妍妍+, 秦兵, 刘挺(哈尔滨工业大学计算机科学与技术学院信息检索研究中心, 黑龙江哈尔滨 150001)A Survey of Sentiment Analysis *ZHAO Yan-Yan+, QIN Bing, LIU Ting(School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)+ Corresponding author: Phn: +86-451-86413683 ext 800, E-mail: zyy@Abstract: Sentiment analysis is a novel research topic with the quick development of online reviews, which has drawn interesting attention due to its research value and extensive applications. This paper surveys the state-of-the-art research on sentiment analysis. First, three important tasks of sentiment analysis are summarized and analyzed in detail, including sentiment extraction, sentiment classification, sentiment retrieval and summarization; then the evaluation and corpus for sentiment analysis are introduced; finally the applications of sentiment analysis are concluded. This paper aims to take a deep insight into the mainstream methods and recent progress in this field, making detailed comparison and analysis. It is expected to be helpful to the future research.Key words: sentiment analysis; sentiment extraction; sentiment classification; sentiment retrieval and summarization;evaluation; corpus摘 要: 文本情感分析是随着网络评论的海量增长而迅速兴起的一个新兴研究课题,其研究价值和应用价值受到人们越来越多的重视.本文对文本情感分析的研究现状与进展进行了总结.首先将文本情感分析归纳为三项主要任务,即情感信息抽取,情感信息分类以及情感信息的检索与归纳,并对它们进行了细致的介绍和分析;进而介绍了文本情感分析的国内外评测和资源建设情况;最后介绍了文本情感分析的应用.文本重在对文本情感分析研究的主流方法和前沿进展进行概括,比较和分析,以期对后续研究有所助益.关键词: 文本情感分析;情感信息抽取;情感信息分类;情感信息的检索与归纳;评测;资源建设中图法分类号: TP391文献标识码: A随着Web2.0的蓬勃发展,互联网逐渐倡导“以用户为中心,用户参与”的开放式构架理念.互联网用户由单纯的“读”网页,开始向“写”网页、“共同建设”互联网发展,并由被动地接收互联网信息向主动创造互联网信息迈进.因此,互联网(如:博客和论坛)上产生了大量的用户参与的,对于诸如人物、事件、产品等有价值的评论信息.这些评论信息表达了人们的各种情感色彩和情感倾向性,如“喜”、“怒”、“哀”、“乐”,和“批评”、“赞扬”等.基于此,潜在的用户就可以通过浏览这些主观色彩的评论,来了解大众舆论对于某一事件或产品的看法.由于越来越多的用户乐于在互联网上分享自己的观点或体验,这类评论信息迅速膨胀,仅靠人工的方法难以应对网上海量信∗Supported by the National Natural Science Foundation of China under Grant Nos. 60803093, 60975055 (国家自然科学基金) and the “863” National High-Tech Research and Development of China via grant 2008AA01Z144(863计划探索类专题项目)赵妍妍等:情感倾向性分析纵览息的收集和处理.因此,迫切需要计算机帮助用户快速获取和整理这些相关评价信息,情感分析(Sentiment Analysis)技术应运而生(本文中提及的情感分析,都是指文本情感分析).文本情感分析,又称意见挖掘,简单而言,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程.最初的情感分析源自前人对带有情感色彩的词语的分析[1],如“美好”是带有褒义色彩的词语,而“丑陋”是带有贬义色彩的词语.随着互联网上大量的带有情感色彩的主观性文本的出现,研究者们逐渐从简单的情感词语的分析研究过渡到更为复杂的情感句研究以及情感篇章的研究.基于此,按照处理文本的粒度不同,情感分析可分为词语级、短语级、句子级、篇章级以及多篇章级等几个研究层次[2].按照处理文本的类别不同,可分为基于新闻评论的情感分析和基于产品评论的情感分析.其中,前者处理的文本主要是新闻评论,如情感句“他坚定地认为台湾是中国不可分割的一部分”,表明了观点持有者“他”对于事件“台湾归属问题”的立场;后者处理的主要是网络在线的产品评论文本,如“Polo的外观很时尚”,表明了对评价对象“Polo的外观”的评价“时尚”是褒义的.由于基于产品评论的情感分析可以帮助用户了解某一产品在大众心目中的口碑,因此受到很多消费者和商业网站的青睐.而基于新闻评论的情感分析多用于舆情监控和信息预测中,是国内外评测中重要的评测任务.情感分析涉及多项非常有挑战性的研究任务.本文综合已有的研究成果,将情感分析归纳为三项层层递进的研究任务,即情感信息的抽取、情感信息的分类以及情感信息的检索与归纳,如图1所示.Fig.1 The framework of sentiment analysis图1 情感分析的研究框架其中,情感信息抽取是情感分析的最底层的任务,它旨在抽取情感评论文本中有意义的信息单元.其目的在于将无结构化的情感文本转化为计算机容易识别和处理的结构化文本,继而供情感分析上层的研究和应用服务.如将情感句“我觉得Canon的相片质量不错”转化为如图1所示的结构化文本形式.情感信息分类则利用底层情感信息抽取的结果将情感文本单元分为若干类别,供用户查看,如分为褒贬两类或者其他更细致的情感类别(如:喜、怒、哀、乐等).按照不同的分类目的,可分为主客观分析和褒贬分析;按照不同的分类粒度,可分为词语级、短语级、篇章级等多种情感分类任务.这些分类任务在情感分析初期吸引了大量的研究者.最高层的情感信息的检索与归纳可以看作与用户直接交互的接口,着重强调“检索”和“归纳”两项应用.该层次的研究主要在前两项任务即情感信息抽取和分类的结果的基础上,进行进一步的加工处理.情感分析是一个新兴的研究课题,具有很大的研究价值和应用价值[3-5].鉴于此,该研究课题受到国内外越来越多的研究机构的重视.本文在接下来的部分首先分别详细阐述情感分析的三个主要研究任务,重点针对各任务的主流方法和前沿进展进行对比分析;接着介绍国内外主流的评测会议以及现有的资源建设情况;然后,本文介绍情感分析几个重要的应用点;最后,展望情感分析技术的发展趋势.1 情感信息抽取情感信息抽取旨在抽取情感文本中的有价值的情感信息.它可以看作情感分析的基础任务,一直以来,学术界对它兴趣不减.纵观目前的研究现状,有价值的情感信息单元主要有评价词语(如“优秀”,“好用”)、评价对象(如“GPS”, “屏幕分辨率”)、观点持有者(如“国家政府”, “台湾当局”) 等.在对大量的情感文本进行分析之后,不少研究者发现某些组合搭配对于情感分析的上层任务如:情感信息分类以及情感信息的检索与归纳有更直接的帮助,如“评价搭配”(评价对象和评价词语的搭配,如“屏幕分辨率-高”)、“评价短语”(程度副词及其修饰的评价词语的搭配,如“不怎么-好”)等.下面本文将一一介绍目前情感信息抽取的具体任务及其主要实现技术.1.1 评价词语的抽取和判别评价词语又称极性词、情感词,特指带有情感倾向性的词语.很显然,评价词语在情感文本中处于举足轻重的地位,评价词语的识别和极性判断在情感分析领域创建伊始就引起了人们极大的兴致.基于前人大量的研究工作,评价词语的抽取和判别往往是一个一体化的工作,主要分为基于语料库和基于词典两种方法[10].基于语料库的评价词语抽取和判别主要是利用大语料库的统计特性,观察一些现象来挖掘语料库中的评价词语并判断极性.早期的一些学者发现,由连词(如and或but)连接的两个形容词的极性往往存在一定的关联性,如“and”连接的形容词(如“lovely and beautiful”)极性相同,然而“but”连接的形容词(如:“lovely but unnatural”)极性相反.基于这种现象, Hatzivassiloglou和McKeown[1]从大语料库华尔街日报(Wall Street Journal)中发掘出大量的形容词性的评价词语. Wiebe等人[11]沿袭了较为相似的工作,他们使用了一种相似度分布的词聚类方法在大语料库上完成了形容词性的评价词语的获取.然而,以上的两种方法仅将评价词语的词性局限于形容词词性,忽略了其他词性的评价词语.为了避免评价词语词性的限制, Riloff等人[12]手工制定一些模板并选取种子评价词语,使用迭代的方法获取了名词词性的评价词语.随后,Turney和Littman[13]提出了点互信息(Point Mutual Information)的方法判别某个词语是否是评价词语.这种方法适用于各种词性的评价词语的识别,但是较为依赖种子褒/贬词语集合.鉴于此,基于语料库的方法最大的优点在于简单易行,缺点则在于可利用的评论语料库有限,同时评价词语在大语料库中的分布等现象并不容易归纳.基于词典的评价词语抽取及判别方法主要是使用词典中的词语之间的词义联系来挖掘评价词语.这里的词典一般是指使用WordNet或HowNet等.很自然的,有学者想到利用词典将手工采集的种子评价词语进行扩展来获取大量的评价词语[14-16].这种方法简单易行,但是较依赖于种子评价词语的个数和质量,并且容易由于一些词语的多义性而引入噪声.为了避免词语的多义性,一部分学者使用词典中词语的注释信息来完成评价词语的识别与极性判断[17-20].此外,一些学者[21]沿用了Turney等人的点互信息的方法[13],通过计算WordNet中的所有形容词与种子褒义词代表“good”和贬义词“bad”之间的关联度值来识别出评价词语.然而,并非所有的语种的情感资源都像英文一样丰富,对于某些词典资源非常稀缺的语种,有学者将词典资源丰富的语种的情感词典翻译到资源较少的语种中[22],如将英文的情感词典翻译成中文,供中文情感分析应用.但是实验显示,不少评价词语在经过翻译之后极性发生了改变.这也印证了Wiebe在文献[23]中所指出的“词语的词义和其极性有一定的关系,但是相同的词义并不一定有相同的极性”.鉴于此,基于词典的方法的优点在于获取的评价词语的规模非常可观,但是由于很多词存在一词多义现象,构建的情感词典往往含有较多的歧义词,如词语“好”在大多数情况下表现为“优秀”的意思,但在某些情况下扮演修饰成分(如“他跑的好快啊!”).此外,还有一部分学者采用基于图的方法来识别评价词语的极性[10,24].具体的,该方法将要分类的词语作为图上的点,利用词语之间的联系形成边来构建图,继而采用各种基于图的迭代算法(Propagation Algorithm)来完成词语的分类.如,有学者考察图中两个词语的注释信息而构建图[24],继而使用Spin模型对图中的点迭代的进行概率计算,得出每个词语的极性.还有一些学者尝试使用多种图模型[10],如:最小切分模型(Mincuts)、随机最小切分模型(Randomized Mincuts)及标签迭代模型(Label Propagation)等完成评价词语的褒贬分类.实验证实了基于图的方法的有效性.基于图的方法是一种新颖的方法,它可以灵活的将词语间的各种联系作为特征融入图中,继而进行迭代计算.然而,寻找更有效的词语间特征以及如何选取图算法是值得深入研究的问题.1.2 评价对象的抽取评价对象是指某段评论中所讨论的主题,具体表现为评论文本中评价词语所修饰的对象,如新闻评论中的某个事件/话题或者产品评论中某种产品的属性(如“屏幕”)等.现有的研究大部分集中于产品领域的评价对象的抽取,他们大多将评价对象限定在名词或名词短语(候选评价对象)的范畴内,进而对它们进行进一步的识别.赵妍妍等:情感倾向性分析纵览一部分学者使用基于规则/模板的方法抽取评价对象.规则的制定通常要基于一系列的语言分析与预处理过程,如词性标注,命名实体识别和句法分析等.相应地,制定的规则也包括词序列规则,词性规则以及句法规则等形式.Yi[25]使用三条限制等级逐渐递进的词性规则从候选评价对象中抽取出真正的评价对象.还有学者[26-27]使用关联规则挖掘的方法或是基于句法分析的结果[28]找出频繁出现的候选评价对象,继而使用两种剪枝方法去除错误样例.然而,这些方法仅能找出频繁的评价对象.为了发掘出非频繁的评价对象,有学者尝试使用含有评价词语和评价对象槽(slot)的词序列模板[26].此类方法最主要的优点在于针对性强,可以直接针对待解决的问题或特定的语言现象制定规则/模板.而其缺点则在于规则/模板的可扩展性差,人工编写的工作量大,成本较高.有学者[29]从另一个角度诠释了评价对象的抽取.他们将评价对象看作产品属性的一种表现形式(如对数码相机领域而言,“相机的大小”是数码相机的一个属性,而“相机滑盖” 是数码相机的一个组成部分),继而考察候选评价对象与领域指示词(如“整体-部分”关系指示词:“scanner has”)之间的关联度来获取真正的评价对象.实验证明这种方法取得了较好的实验效果,超过了基于规则/模板的方法.但难点在于领域指示词的获取.近年来,随着话题模型(Topic Model)[30-31]的逐渐兴起,很多学者将其应用到情感分析领域.由于评价对象是蕴涵于情感文本中的某些话题,因此可以使用话题模型用于评价对象的识别.有学者[32]采用多粒度的话题模型挖掘产品领域情感文本中的评价对象,并将相似的评价对象进行聚类.这种方法理论上能够提高评价对象抽取的召回率,但是遗憾的是,还没有实验将这种方法和上述传统的基于名词短语的方法进行对比.此外,还有一部分学者从事新闻评论文本中的话题评价对象的抽取[33-34].如:对于情感句“所有人都认为政府应该加强改善医疗卫生条件”,抽取话题评价对象“政府应该加强改善医疗卫生条件”.1.3 观点持有者抽取观点持有者的抽取在基于新闻评论的情感分析中显得尤为重要,它是观点/评论的隶属者,如新闻评论句“我国政府坚定不移的认为台湾是中国领土不可分割的一部分”中的“我国政府”.很自然的,人们会想到评论中的观点持有者一般是由命名实体(如:人名或机构名)组成,因此可以借助于命名实体识别技术来获取观点持有者[35].此外,还有学者曾尝试借助语义角色标注来完成观点持有者的抽取[33].但是这些方法较为依赖自然语言处理的基础技术,有较低的语言覆盖现象和较差的领域适应性.还有人将观点持有者的抽取定义为分类任务,这种方法的关键在于分类器和特征的选取.如Choi将其看作一个序列标注问题[36],并使用CRF (Conditional Random Fields)模型融合各种特征来完成观点持有者的抽取.相似的,Kim[15]将所有名词短语都视为候选观点持有者,使用ME (Maximum Entropy)模型来进行计算.以上的方法将观点持有者的抽取当作一个独立的任务.通过观察,许多研究者发现,观点持有者一般是和观点同时出现的,所以可以将观点和观点持有者的识别作为一个任务同时解决.Bethard[37]在抽取出情感句中的观点单元(多是由一些短语组成)之后,分析句中观点和动词的句法关系,即可同步获取观点持有者.由于产品评论中一般默认观点持有者是用户本身,因此鲜有研究者在产品评论领域研究这一任务.1.4 组合评价单元的抽取评价词语在情感分析中的作用是不言而喻的.然而在某些情况下,单独的评价词语存在一定的歧义性,如评价词语“高”在以下三个句子中的使用.¾Sen1: 凯越的油耗真高.¾Sen2: 捷达的性价比相当的高.¾Sen3: 这辆车有1m多高.Sen1和Sen2是情感句,但是评价词语“高”在修饰不同的评价对象时表现出不同的极性.如在Sen1中“高”表示贬义,而在Sen2中则表示褒义.此外,评价词语往往也会出现在非情感句中,如Sen3.因此仅考虑单独的评价词语在情感分析中的应用是远远不够的.研究者们发现有些包含评价词语的“组合评价单元”(如:组合“油耗-高”,“相当-高”)对于处理情感分析的上层任务更有帮助.下面将具体的介绍各种形式的组合评价单元.1.4.1 主观表达式的抽取主观表达式(Subjective Clues)是指表示情感文本单元主观性的词语或词组. 1.1节的评价词语是主观表达式的一部分.此外,某些词语的组合(如:“village idiot”或“get out of here”)也能很明显的标识文本的主观性,虽然它们中的任何一个词语单独可能都并非评价词语.如何获取这些有意义的词组是主观表达式抽取的重点.Wiebe和Wilson是这项任务的引领者[38].近几年来,他们挖掘大量的主观表达式形成主观表达式库,并基于此完成文本的主客观分类和褒贬分类.具体的,他们首先从语料中抽取出所有的n元词语/词组(1≤n≤4)作为候选主观表达式;继而通过对比训练语料中的标准的主观表达式,为每个候选主观表达式计算出可能成为主观表达式的概率;最后通过对概率值的分析,获得这些主观表达式.Wiebe和Wilson[39]在随后的工作中又引入了“主观表达式密度”协助判断主观表达式.2004年,Wiebe和Wilson将他们前期的工作进行了总结[40],从不同的语料中扩充了大量的主观表达式,主要包括手工收集的一部分主观表达式以及自动从标注/未标注语料中学习而来的一部分主观表达式.此外,他们首次利用句法分析的结果发掘了句法主观表达式[41].随后,Wiebe和Wilson采用多种特征及机器学习方法对他们获取的大量的主观表达式的情感程度(strong或weak)进行了识别.1.4.2 评价短语的抽取评价短语表现为一组连续出现的词组,但不同于主观表达式,该词组往往是由程度副词和评价词语组合而成,如:“very good”等.因此,这种组合评价单元不仅顾及了主观表达式的情感极性,还考察了其修饰成分.这些修饰成分或加强或减弱或置反了主观表达式的情感极性,使得评价短语成为一种情感色彩丰富的组合评价单元.有学者采用基于一些情感词典的方法识别这种评价短语.如Whitelaw[42]结合WordNet使用半自动的方法构建了形容词性的评价词词典以及修饰词词典.对于一个含有评价词语的情感文本,该方法首先查看评价词前面的词语,如果属于修饰词词典,获取这个词组作为评价短语.根据两个词典中的属性值计算出情感极性.这种方法由于基于较为细致的词典,因此准确率较高.然而,由于词典中词语有限而限制了召回率.还有学者使用依存句法结构(如ADV、ATT以及DE结构),在句法树上获取评价短语[27].这种方法巧妙的利用了评价短语中所含词语之间的句法修饰关系,但是较为依赖句法分析的结果.评价短语考察的是连续出现的词组,然而,有些表示修饰关系的词语并非总是和评价词语连续出现. 如在情感句“[I did [not]- have any [doubt]- about it.]+”中,修饰词“not”和评价词“doubt”并非连续出现,但它们共同决定了情感句的最终极性. Moilanen等人[43]和Choi等人[44]将其定义为“组合语义单元”(Compositional Semantics),具体表现为一组非连续的词语,通过相互作用来表达出某种情感极性.“组合语义单元”可以看作一种更复杂的评价短语,多使用人工总结或半自动生成的模板来识别.1.4.3 评价搭配的抽取评价搭配是指评价词语及其所修饰的评价对象二者的搭配,表现为二元对<评价对象,评价词语>,如情感句“凯越的油耗很高”中的“油耗-高”.前面所介绍的“主观表达式”和“评价短语”主要是考察含有情感极性的一些词和短语,然而情感句中出现的某些“主观表达式”和“评价短语”并非真正的表现出情感极性.如情感句s1“车跑的好快啊”中的词语“好”并不存在情感极性,需要过滤掉.此外,还有一些“主观表达式”和“评价短语”存在一定的歧义,其极性需要根据上下文而确定.“评价搭配”则可以很好的解决上述两点问题.针对评价搭配的抽取任务,大部分学者采用了基于模板的获取方法. Kobayashi等人[45]考察评价对象和评价词语之间的修饰关系,并用8个共现模板来描述.然而,由于模板太过简单且修饰关系仅仅停留在词表面,该方法产生了大量的噪声.为了深入挖掘评价对象和评价词语之间的修饰关系,一部分学者尝试使用句法关系模板. Bloom等人[46]利用Stanford Parser手工构建了31条句法规则.此外, Popescu等人[29]利用MINIPAR Parser手工构建了10条依存句法抽取模板来获取评价搭配.同时,国内的姚天昉等人[47]基于依存句法分析总结出“上行路径”和“下行路径”的匹配规则;后续总结出SBV极性传递规则,用于评价搭配的识别.可以看出,他们的工作融入了更多对评价对象和评价词语之间深层关系的挖掘.然而,由于匹配规则或模板的制定参与了过多的人工,覆盖率较低.因此,在未来工作中我们应该侧重于研究自动生成评价对象和评价词语之间的匹配规则的策略.2 情感信息分类情感信息的分类任务可大致分为两种,一种是主、客观信息的二元分类;另一种是主观信息的情感分类,包括最常见的褒贬二元分类以及更细致的多元分类[48].赵妍妍等:情感倾向性分析纵览2.1 主客观信息分类在对情感文本进行情感分析时,往往由于情感文本中夹杂着少量的客观信息而影响了情感分析的质量[49],因此将情感文本中的主观信息和客观信息进行分离变得非常必要.由于情感文本单元表现格式比较自由,且区分主、客观文本单元的特征并不明显,在很多情况下,情感文本的主客观识别比主观文本的情感分类更有难度.一部分学者通过考察文本内部是否含有情感知识(具体表现为第1部分情感信息抽取的结果)来完成主客观信息分类[14,50].然而,我们发现许多客观句中也可能会包含评价词语,如客观句“这位英雄名叫张三丰”同样含有评价词语“英雄”.为了更大程度上消除歧义性,很多学者挖掘并使用情感文本中的组合评价单元,如 1.4节中提到的“主观表达式”, “评价短语”和“评价搭配”等组合信息.此外,还有学者[12]构建情感模板识别情感文本的主客观性(如贬义模板:“<x> drives <y> up the wall”).以上这些基于情感知识的主客观分类方法的工作重心在于情感文本中情感知识的挖掘,以及各种情感知识融合的方法研究.还有一部分学者将情感文本单元的主客观分类定义为一种二元分类任务,即对任意给定的情感文本单元,由分类器协助判断其主客观性.这种方法的关键在于分类器和分类特征的选取.具体的,Hatzivassiloglou[51]使用了词语作为特征,并采用了NB (Naïve Bayes)分类器完成篇章级情感文本的主客观分类.Yao[52]着重从一些特殊的特征角度考察了主客观文本,如:标点符号角度,人称代词角度,数字角度等等.Pang[53]则采用基于图的分类算法完成句子级的主客观分类.基于特征分类的方法目前还是主客观信息分类的主流方法,这种方法定义明确,根本的问题在于特征的选取.因此,尝试使用更深层,更复杂的分类特征也许是这类方法的突破方向之所在.2.2 主观信息情感分类主观信息情感任务按不同的文本粒度可分为词语级、短语级、句子级和篇章级等.其中第1部分已经对词语级和短语级的情感分类方法进行了总结,因此本节将着重介绍句子级和篇章级的主观信息情感分类方法.一般而言,研究者将主观本文的极性分为褒义和贬义两类(Thumbs up? Thumbs down?).纵观目前的研究工作,和主客观信息分类类似,可分为两种研究思路:基于情感知识的方法以及基于特征分类的方法.相似的,前者主要是依靠一些已有的情感词典或领域词典,以及主观文本中带有情感极性的组合评价单元进行计算,来获取主观文本的极性.后者主要是使用机器学习的方法,选取大量的有意义的特征来完成分类任务.这两种研究思路有很多代表性的研究工作.文献[14,51,54-55]首先分析句子/篇章中的评价词语或组合评价单元的极性,然后进行极性加权求和.这种方法的重点一般都放在评价词语或组合评价单元的抽取和极性判断方法的研究上.在基于特征分类的方法中,Pang[56]首次将机器学习的方法应用于篇章级的情感分类任务中.他们尝试使用了n-gram 词语特征和词性特征,并对比了NB、ME和SVM(Support Vector Machine)三种分类模型,发现unigram特征效果最好.然而, Cui[57]通过实验证明,当训练语料较少的时候,unigram的效果较优,但随着训练语料的增多,n-gram(n>3)发挥了越来越重要的作用. Kim[58]除了考察传统的n-gram模型外,还引入了位置特征和评价词特征来完成句子级的褒贬分类.Zhao[59]则将句子级情感分类任务提炼为一个三层分类任务,利用各层之间类别标签的相互作用,并考虑上下句之间情感的互相影响,使用CRF模型将这些特征进行融合..类似于主客观信息分类任务,基于特征的方法的研究重点在于有效特征的发现,以及特征选择和特征融合等问题的研究.除了对主观文本信息的褒贬二元分类之外,还有一些研究工作进行更细致的情感分类任务.Pang[60]将褒贬等级分为三类,并使用了one-vs-all多元分类算法和回归分类算法完成情感分类.Goldberg[61]则使用了一种基于图的半指导的分类算法,完成评论的褒贬包括四个等级的分类.2.3 观点分类与挖掘情感分类还可以体现在对某些事件的观点分类上面.Lin[8]主要使用三种分类模型识别有关“巴以冲突”主题的评论文本所表达的观点,即是“支持巴方”还是“支持以方”.而Kim[9]主要对美国大选时涌现出来的大量的评论文章进行分类汇总,来推断大部分选民是支持“共和党”还是“民主党”.该文献同样也是使用分类器和分类特征相结合的算法,其中作者对分类特征进行了泛化,取得了较好的效果.和主观信息情感分类不同的是, “观点分类与挖掘”任务除了需要使用情感知识之外,还需要发掘一部分和“观点”相关的知识.。