圆的基本概念和性质—知识讲解(提高)
新人教版九年级上册数学[圆的基本概念和性质—知识点整理及重点题型梳理](提高)
知识点梳理及重点题型巩固练习
圆的基本概念和性质—知识讲解(提高)
【学习目标】
1.知识目标:理解圆的有关概念和圆的对称性;
2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,•圆的对称性进行计算或证明;
3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯.
类型一、圆的定义
1.已知:如图,矩形ABCD的对角线AC与BD相交于点O,求证:点A、B、C、D在以点O为圆心的同一个圆上.
【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等. 举一反三:【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()
A.正方形
B.菱形
C.矩形
D.等腰梯形
类型二、圆及有关概念
3.(2015秋•丹阳市校级月考)下列说法中,正确的是()
A.两个半圆是等弧
B.同圆中优弧与半圆的差必是劣弧
C.长度相等的弧是等弧
D.同圆中优弧与劣弧的差必是优弧
类型三、圆的对称性
4.圆O所在平面上的一点P到圆O上的点的最大距离是10,最小距离是2,求此圆的半径是多少?
【变式2】(1)过____________________上的三个点确定一个圆.
(2)交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.5.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP的长的取值范围是 .
举一反三:
【变式】已知⊙O的半径为13,弦AB=24,P是弦AB上的一个动点,则OP的取值范围是___ ____.。
圆的基本概念和性质—知识讲解(基础)
圆的基本概念和性质—知识讲解(基础)【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.在下列说法中:①圆心决定圆的位置;②半径决定圆的大小;③半径相等的圆是同心圆;④两个半径相等且圆心不同的圆是等圆,你认为正确的结论有()A.1个B.2个C.3个D.4个【答案】C.【解析】对照圆的定义及同心圆、等圆的概念进行判断.显然①②④正确,③不正确.【总结升华】考查确定圆的条件,同心圆、等圆的定义.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个B.2个C.3个D.4个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√②×③×④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】下列说法错误的是( )A.半圆是弧B.圆中最长的弦是直径C.半径不是弦D.两条半径组成一条直径【答案】弧有三类,分别是优弧、半圆、劣弧,所以半圆是弧,A正确;直径是弦,并且是最长的弦,B 正确;半径的一个端点为圆心,另一个端点在圆上,不符合弦的定义,所以不是弦,C正确;两条半径只有在同一直线上时,才能组成一条直径,否则不是,故D错误.所以选D.3.直角三角形的三个顶点在⊙O上,则圆心O在 .【答案】斜边的中点.【解析】根据圆的定义知圆心O到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等.4.判断正误:有AB、CD,AB的长度为3cm, CD的长度为3cm,则AB与CD是等弧. 【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O中的优弧AmB,中的劣弧CD,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交小圆于C,D.求证:AC=BD.【答案与解析】证明:过O点作OM⊥AB于M,交大圆与E、F两点.如图,则EF所在的直线是两圆的对称轴,所以AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.。
华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)
中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】 连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C ;【解析】连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB ,∴AD=BD ,即AB=2BD ,∵∠CEB=30°,∴∠COB=60°,∵OD=1, ∴BD=1×tan60°=,∴AB=2,故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是( )A 、2cmB 、3cmC 、4cmD 、221cm【答案】 解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,∴AB=2AM ,∵CD=5cm ,∴OD=OA=12CD=12×5=52cm , ∵OM :OD=3:5,∴OM=35OD=×=, ∴在Rt △AOM 中,AM =22OA OM -=2253()()22-=2,∴AB=2AM=2×2=4cm.故选C .类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长.【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2.∵ OD =OB ,OC =OC .∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°,∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴AD BD OB BC =, ∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得22226242BD AB AD =-=-=.∴ 342622BC ⨯==.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC 中,∠ADC =90°,∴ ∠A+∠ACD =90°.又∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点,∴ AG =GE =DG ,∴ ∠A =∠AEG .又∵ OE =OC ,∴ ∠OEC =∠ACD .又∵ ∠A+∠ACD =90°,∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG .∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】 解:(1)图1:∵点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动,∴∠BAM=∠CBN ,又∵∠APN=∠BPM ,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n 中,.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积.【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=35,求tan∠PCB的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE ∥PC ,∴∠PCB=∠CBE ,∵sin ∠BAC==, ∴=, ∵AB=AC ,∴tan ∠CBE===,∴tan ∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【高清课堂:圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+.又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【高清课堂:圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°, ∴ 2sin 45222AB AC '==⨯=°.。
六年级上册数学《圆》知识点整理
六年级上册数学《圆》知识点整理
圆是数学中的一个重要概念,是指平面上所有到固定点的距离都相等的点的集合。
六年级上册数学《圆》主要包括以下几个知识点:
1. 圆的基本概念:圆由圆心和半径确定。
圆心是圆上任何一点到圆心的距离都相等的点,半径是圆心到圆上任意一点的距离。
2. 圆的性质:
- 所有点到圆心的距离都相等。
- 圆上任意两点间的距离最短。
- 圆与直线的关系:直线与圆相交于两点、一点或者无交点。
3. 圆的要素之间的关系:
- 半径的两端是圆上的两个点。
- 直径是连接圆上任意两点的线段,且通过圆心,其长度等于两个半径的和。
- 弦是连接圆上任意两点的线段,且不通过圆心。
- 弧是圆上的一段弯曲的部分,两端是圆上的两点,弧比弦长。
4. 圆的部分:
- 扇形:是由圆心、圆上一点和圆上两点所确定的部分。
- 弓形:是由圆心和圆上一点所确定的部分。
- 圆心角:是由圆心和圆上两点所确定的角,度数等于所对弧的角度。
5. 圆的计算:
- 圆的面积:面积公式为πr²,其中π≈3.14,r为圆的半径。
- 圆的周长:周长公式为2πr,其中π≈3.14,r为圆的半径。
以上是六年级上册数学《圆》的知识点整理,希望对你有帮助!。
沪科版九年级数学下册24章:圆知识点梳理及练习
圆的基本性质【知识点】1.圆的有关概念:(1)圆:(2)圆心角: (3)圆周角: (4)弧: (5)弦: 2.圆的有关性质:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;900的圆周角所对的弦是直径. 3.三角形的内心和外心:(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心:三角形三条边的垂直平分线的交点,即外接圆的圆心。
(3)三角形的内心:三角形三条内角平分线的交点,即内切圆的圆心4. 圆心角的度数等于它所对弧的度数.圆周角的度数等于它所对弧的度数一半. 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半. 【例题】例题1.如图,公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为 ( ) A .5米 B .8米 C .7米 D .53米例题2.如图⊙O 的半径为5,弦AB=8,M 是弦AB 上的动点,则OM 不可能为( ) A .2 B .3 C .4 D .5例题1图 例题2图 例题3图 例题4图例题3.如图⊙O 弦AB=6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 半径为( ) A .5 B .4 C .3 D .2例题4.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为( )A.30°B.60°C.30°或150°D.60°或120°【检测】1.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为 9,则弦AB 的长为( ) A .3 B .4 C .6 D .92.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( ) A .28° B .56° C .60° D .62°第1题图 第2题图 第3题图3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E,∠CDB =30°, ⊙O 的半径为cm 3,则弦CD 的长为( ) A .3cm 2B .3cmC .23cmD .9cm4.⊙O 的半径为10cm ,弦AB =12cm ,则圆心到AB 的距离为( ) A . 2cm B . 6cm C . 8cm D . 10cm直线与圆、圆与圆的位置关系【知识点】5=R60%1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r ) 相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算. 【例题】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含 例2. 如图1,⊙O 内切于ABC △,切点分别为DEF ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 则EDF ∠等于( )A .40°B .55°C .65°D .70°例3.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例4.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 【检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( ) A .相离 B .外切 C .内切 D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( ) A .10cm B .6cm C .10cm 或6cm D .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15 B. 30C. 45 D. 60圆的有关计算【知识梳理】1. 圆周长公式:2. n°的圆心角所对的弧长公式:3. 圆心角为n°的扇形面积公式: 、 .4. 圆锥的侧面展开图是 ;底面半径为r ,母线长为l 的圆锥的侧面积公式为: ;圆锥的表面积的计算方法是:5.圆柱的侧面展开图是: ;底面半径为r ,高为h 的圆柱的侧面积公式是: ;圆柱的表面积的计算方法是: 【例题】【例1】如图,AB 为⊙O 的直径,CD ⊥AB 于点E ,交⊙O 于点D ,OF ⊥AC 于点F . (1)请写出三条与BC 有关的正确结论;(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.D O A FE 例题2图 C B A OF D E【例2】如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的 一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为( ) A.3cm B.4cm C.21cm D.62cm【检测】1.圆锥的底面半径为3cm ,母线为9cm ,则圆锥的侧面积为( ) A .6π2cm B .9π2cm C .12 π2cm D .27π2cm2.圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为( ) A .38 cm B .316cm C .3cm D .34cm 3.已知圆锥的底面半径是2㎝,母线长是4㎝,则圆锥的侧面积是 ㎝2. 4.如图,两个同心圆的半径分别为2和1,∠AOB=120°,则阴影部分的面积为圆的综合【例题】1.如图,已知圆心角78BOC ∠=,则圆周角BAC ∠的度数是( ) A .156 B .78C .39D .122.如图2所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB ( ) A .是正方形 B . 是长方形 C . 是菱形 D .以上答案都不对 3.圆锥的底面半径为3cm ,母线为9cm ,则圆锥的侧面积为( )A .6π2cmB .9π2cmC .12 π2cmD .27π2cm4.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A .(45)+ cm B .9 cm C . 45cm D . 62cm .【检测】1.下列命题中,真命题的个数为( )①对角线互相垂直平分且相等的四边形是正方形②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半③在一个圆中,如果弦相等,那么所对的圆周角相等④已知两圆半径分别为5,3,圆心距为2,那么两圆内切 A .1 B .2 C .3 D .4 2.圆O 是等边三角形ABC 的外接圆,圆O 的半径为2,则等边三角形ABC 的边长为( )A .3B .5C .23D .253.如图,圆O 的半径为1,AB 与圆O 相切于点A ,OB 与圆O 交于点C ,OD OA ⊥,垂足为D ,则cos AOB ∠的AO B 120o 120°OAB第1题图 第2题图第3题图 第4题图值等于( ) A .OD B .OAC .CD D .AB4.如图,AB 是圆O 的弦,半径2OA =,2sin 3A =,则弦AB 的长为( ) A.3B.3C .4D.35.如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为( )A.⎪⎪⎭⎫ ⎝⎛-5823, B .()13,- C .⎪⎭⎫⎝⎛-5954, D .()31,- 6.如图4,⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( )A .2.5 B .3.5 C .4.5 D .5.57.高速公路的隧道和桥梁最多,如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA 为( )A .5B .7C .375 D .3778.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A .25πB .65πC .90πD .130π9.如图,AB 是圆O 的一条弦,OD AB ⊥,垂足为C ,交圆O 于点D ,点E 在圆0上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.第3题图 第9题图第7题图 第6题图第5题图 第4题图。
第01讲圆的基本概念和性质(知识解读)(原卷版)
第01讲圆的基本概念和性质1.在探索过程中认识圆,理解圆的本质属性;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;2.了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.通过圆的学习养成学生之间合作的习惯.知识点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心,线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。
圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。
确定圆的条件:1)圆心;2)半径。
备注:圆心确定圆的位置,半径长度确定圆的大小。
【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。
圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
知识点2 :圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
⏜,读作圆弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。
以A、B为端点的弧记作AB弧AB或弧AB。
等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
【题型1 圆的定义及性质】【典例1】(2021秋•大同区校级期末)能决定圆的位置的是()A.圆心B.半径C.直径D.周长【变式11】(2022秋•椒江区校级月考)下列图形为圆的是()A.B.C.D.【变式12】(2022春•广饶县期末)画圆时圆规两脚间可叉开的距离是圆的()A.直径B.半径C.周长D.面积【变式13】(2022秋•巴东县期中)一个圆的面积为πcm2,则它的半径为()cm.A.±1B.πC.0D.1【变式14】(2022秋•涪城区期中)下列结论正确的是()A.半径相等的两条弧是等弧B.半圆是弧C.半径是弦D.弧是半圆【典例2】(2022秋•朝阳区校级月考)如图,在△ABC中,∠C=90°,以点C 为圆心,BC为半径的圆交AB于点D,交AC于点E.若∠A=25°,求∠DCE 的度数.【变式21】(海口模拟)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°【变式22】(崆峒区期末)如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.【典例3】(2022秋•公安县月考)已知⊙O的半径是4cm,则⊙O中最长的弦长是()A.4cm B.6cm C.8cm D.10cm【变式31】(2021秋•互助县期末)已知⊙O的直径为10cm,则⊙O的弦不可能是()A.4cm B.5cm C.9cm D.12cm【变式32】(2021秋•玉林期末)如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【题型2 圆的有关概念】【典例4】(2022秋•长顺县月考)下列4个说法中,正确的有()①直径是弦②弦是直径③任何一条直径所在的直线都是圆的对称轴④弧是半圆A.1个B.2个C.3个D.4个【变式41】(2022秋•巧家县期中)下列说法中,正确的是()A.过圆心的直线是圆的直径B.直径是圆中最长的弦C.相等长度的两条弧是等弧D.顶点在圆上的角是圆周角【变式42】(2022秋•下城区校级月考)下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等【变式43】(2022春•莘县期末)下列说法:①直径是弦;②弦是直径;③半径相等的两个半圆是等弧;④长度相等的两条弧是等弧;⑤半圆是弧,但弧不一定是半圆.正确的说法有()A.1个B.2个C.3个D.4个1.(2023•怀宁县一模)如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=87°,则∠E等于()A.42°B.29°C.21°D.20°2.(2023•增城区一模)如图,在半圆所对应圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定3.(2022•南山区校级模拟)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是()A.学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”B.车轮做成圆形,应用了“圆是中心对称图形”C.射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”D.地板砖可以做成矩形,应用了“矩形对边相等”4.(2022•路南区三模)在平面内与点P的距离为1cm的点的个数为()A.无数个B.3个C.2个D.1个5.(2022•潮安区模拟)如图,在△ABC中,∠C=90°,AB=10.若以点C 为圆心,CA长为半径的圆恰好经过AB的中点D,则⊙C的半径为()A.B.8C.6D.5 6.(2022•广陵区二模)如图,在扇形AOB中,D为上的点,连接AD并延长与OB的延长线交于点C,若CD=OA,∠O=75°,则∠A的度数为()A.35°B.52.5°C.70°D.72°7.(2022•金沙县一模)下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心8.(2022•南山区模拟)一个点到圆的最小距离为3cm,最大距离为6cm,则该圆的直径是()cm cmcmcm D.3cm或9cm9.(2023•南关区一模)如图,已知空间站A与星球B距离为a,信号飞船C 在星球B附近沿圆形轨道行驶,B,C之间的距离为b.数据S表示飞船C与空间站A的实时距离,那么S的最大值是()A.a B.b C.a+b D.a﹣b1.下列说法中,正确的是()A.长度相等的弧是等弧B.在同圆或等圆中,等弦对等弧C.优弧一定比劣弧长D.在同圆或等圆中,相等的圆心角所对的弦相等2.下列图形中表示的角是圆心角的是()A.B.C.D.3.如图,AB是⊙O的直径,==,若∠COD=35°,则∠AOE的度数是()A.35°B.55°C.75°D.95°4.在⊙O中=2,则弦AB与弦CD的大小关系是()A.AB>2CD B.AB=2CD C.AB<2CD D.AB=CD 5.下列说法正确的是()A.等弧所对的弦相等B.相等的弦所对的弧相等C.相等的圆心角所对的弧相等D.相等的圆心角所对的弦相等6.如图,半径OC⊥AB,弧BC的度数为70°,则∠AOC=()A.20°B.35°C.55°D.70°7.如图,一枚半径为r的硬币沿着直线滚动一圈,圆心经过的距离是()A.4πr B.2πr C.πr D.2r8.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1B.2C.3D.49.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧中,正确的命题有()A.1个B.2个C.3个D.4个10.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定11.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π12.如图,在⊙O中,点A,O,D在一条直线上,点B,O,C在一条直线上,那么图中有弦()A.2条B.3条C.4条D.5条13.如图,在⊙O中,∠AOB=45°,则∠COD=()A.60°B.45°C.30°D.40°二.填空题(共2小题)14.如图,小量角器的0°刻度线在大量角器的0°刻度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在大量角器上对应的度数为40°,那么在小量角器上对应的度数为.(只考虑小于90°的角度)15.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.。
圆的复习教案
圆的复习优秀教案一、教学目标1. 知识与技能:(1)理解圆的定义、特点及圆心、半径的概念。
(2)掌握圆的画法、圆的周长和面积的计算方法。
(3)能够运用圆的相关知识解决实际问题。
2. 过程与方法:(1)通过复习,巩固圆的基本概念和性质。
(2)培养学生的空间想象能力和逻辑思维能力。
(3)学会运用圆的周长和面积公式解决实际问题。
3. 情感态度与价值观:(2)培养学生的团队协作精神,提高解决问题的能力。
二、教学内容1. 圆的定义及特点2. 圆心、半径的概念3. 圆的画法4. 圆的周长和面积的计算方法5. 实际问题中的应用三、教学重点与难点1. 教学重点:(1)圆的基本概念和性质。
(2)圆的周长和面积的计算方法。
(3)运用圆的相关知识解决实际问题。
2. 教学难点:(1)圆的周长和面积公式的运用。
(2)解决实际问题时,灵活运用圆的相关知识。
四、教学方法1. 采用讲练结合的方法,巩固圆的基本概念和性质。
2. 利用几何画板或实物模型,演示圆的画法和周长、面积的计算过程。
3. 创设实际问题情境,引导学生运用圆的知识解决问题。
4. 分组讨论,培养学生的团队协作能力和沟通能力。
五、教学过程1. 复习导入:(1)回顾圆的定义及特点。
(2)复习圆心、半径的概念。
(3)总结圆的画法、周长和面积的计算方法。
2. 知识讲解:(1)讲解圆的周长和面积公式。
(2)举例说明圆的周长和面积公式的应用。
3. 课堂练习:(1)设计一些有关圆的练习题,让学生独立完成。
(2)选几位学生上黑板演示圆的画法和计算过程。
4. 实际问题解决:(1)创设一个实际问题情境,引导学生运用圆的知识解决问题。
(2)分组讨论,让学生提出解题思路和方案。
5. 总结与反思:(1)对本节课所学内容进行总结。
(2)学生分享自己的学习心得和收获。
6. 作业布置:(1)设计一些有关圆的练习题,巩固所学知识。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现,了解学生的学习状态和掌握程度。
九年级上册圆的知识点讲解
九年级上册圆的知识点讲解圆的知识点讲解一、圆的定义和性质圆是指由平面上任意一点到另一点距离保持不变的点的集合。
其中,距离保持不变的点称为圆心,距离称为半径(r)。
圆的边缘称为圆周,圆周上的任意两点到圆心的距离均相等。
圆的性质包括以下几个方面:1. 圆心角:以圆心为顶点的角,其对应的弧长与圆周长的比称为圆心角的度数。
2. 弧长:圆周上的一段部分称为弧,其长度称为弧长。
3. 弦长:圆上任意两点间的线段称为弦,弦的长度称为弦长。
4. 弧度制:角度制是一种常用的度量角的方法,而弧度制是一种比较精确的度量角的方法。
弧度是以旋转角的一种特殊单位,记作“rad”。
而对于一个完整的圆而言,它的圆心角所对应的弧长就是半径的弧度数。
二、圆的重要公式1. 圆面积公式:圆的面积S等于Pi乘以半径的平方,即S = πr²。
2. 圆周长公式:圆的周长L等于Pi乘以直径d,即L = πd。
3. 圆弧长度公式:圆的弧长L等于圆心角度数θ除以360度乘以圆周长L,即L = (θ/360) × L。
三、常见圆相关术语1. 直径:通过圆心,并且两端点都在圆上的线段称为直径。
直径的两倍等于半径的长度。
2. 弦:在圆上连接两点的线段称为弦。
3. 弦分割的弧:当一条弦把圆分割成两个部分时,它所分割的两段弧称为弦分割的弧。
4. 切线:与圆相切且只与圆有一个交点的直线称为切线。
切线与半径所在的直线垂直。
5. 弧度:以半径长为1的圆所对应的弧长。
四、圆的相关定理和推论1. 圆的半径相等:圆周上的任意两个半径均相等。
2. 在圆周上,等弧对应的圆心角相等。
3. 在同一个圆中,圆心角相等的弧相等。
4. 在同一个圆中,弦相等的圆心角相等。
反之亦成立。
5. 在同一个圆中,过圆心的弦是直径。
反之亦成立。
五、应用实例1. 已知圆的半径为5cm,求圆的面积和周长。
解答:根据公式,可知圆的面积S等于πr²,圆的周长L等于πd。
代入半径r=5cm,可得圆的面积S = π × 5² = 25π cm²,圆的周长L = π × 2 × 5 = 10π cm。
圆的知识点总结及典型例题
圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。
2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。
3. 圆的确定不在同一条直线上的三点确定一个圆。
4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。
推论2圆的两条平行弦所夹的弧相等。
5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。
推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。
圆心角的度数等于它所对的弧的度数。
6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
圆的基本概念和性质—知识讲解提高-精品
圆的基本概念和性质一知识讲解(提高)【学习目标】1.知识目标:理解圆的有关概念和圆的对称性;2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,圆的对称性进行计算或证明;3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯.【要点梳理】要点一、圆的定义及性质1.(1)动态:如图,在一个平面内,线段0A绕它固定的一个端点0旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点0叫做圆心,线段0A叫做半径.以点0为圆心的圆,记作“。
0”,读作“圆0”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为0,半径为r的圆是平面内到定点0的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是。
0的直径,CD 是。
0中任意一条弦,求证:AB2CD.证明:连结OC 、OD〈AB=AO+OB=C0+0D2CD (当且仅当CD 过圆心O 时,取“二”号)・・・直径AB 是。
圆的基本性质与计算公式(知识点总结)
圆的基本性质与计算公式(知识点总结)圆是几何学中的重要概念,具有许多特殊的性质和计算公式。
本文将从不同的角度来总结和介绍圆的基本性质和计算公式,以帮助读者更好地理解和应用这些知识。
一、圆的基本概念和性质1. 定义:圆是由平面上任意一点到一个固定点的距离等于常数的所有点的集合。
2. 圆心:固定点称为圆心,通常用字母O表示。
3. 半径:圆心到圆上任意一点的距离称为半径,通常用字母r表示。
4. 直径:通过圆心的一条线段,两个端点在圆上的线段称为直径,直径等于半径的两倍。
5. 弦:在圆上任意两点之间的线段称为弦,圆的直径也是一种特殊的弦。
6. 弧:在圆上两点之间的一段弧,圆心夹的角称为圆心角,它等于所对圆弧的一半。
7. 切线:与圆相切于圆上一点的直线称为切线,切线与半径的夹角为90度。
二、圆的计算公式1. 圆的周长:周长即圆的周长,用C表示,由于圆是一个闭合曲线,所以其周长是所有弧长的总和。
周长计算公式为C = 2πr,其中π取近似值3.14。
2. 圆的面积:面积是圆所包围的平面区域,用A表示,计算公式为A = πr²。
3. 弧长:弧长是指圆上一段弧的长度,用字母L表示。
弧长的计算公式为L = 2πr(θ/360),其中θ表示圆心角的度数。
4. 扇形面积:扇形是由圆心和两个弧上的点组成的区域,扇形面积即扇形所包围的平面区域,用字母S表示。
扇形面积的计算公式为S = 0.5πr²(θ/360),其中θ表示圆心角的度数。
5. 弓形面积:弓形是由圆上的弧和圆心到弧的两条切线组成的区域,弓形面积即弓形所包围的平面区域,用字母A表示。
弓形面积的计算公式为A = 0.5r²(θ/360 - sinθ),其中θ表示圆心角的度数。
三、应用举例1. 例题一:已知一个圆的半径为6cm,求其周长和面积。
解:周长C = 2πr = 2π × 6 ≈ 37.68 cm,面积A = πr² = π × 6² ≈ 113.04 cm²。
圆的基本概念和性质—知识讲解(基础)
圆的基本概念和性质—知识讲解(基础)【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.在下列说法中:①圆心决定圆的位置;②半径决定圆的大小;③半径相等的圆是同心圆;④两个半径相等且圆心不同的圆是等圆,你认为正确的结论有()A.1个B.2个C.3个D.4个【答案】C.【解析】对照圆的定义及同心圆、等圆的概念进行判断.显然①②④正确,③不正确.【总结升华】考查确定圆的条件,同心圆、等圆的定义.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个B.2个C.3个D.4个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√②×③×④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】下列说法错误的是( )A.半圆是弧B.圆中最长的弦是直径C.半径不是弦D.两条半径组成一条直径【答案】弧有三类,分别是优弧、半圆、劣弧,所以半圆是弧,A正确;直径是弦,并且是最长的弦,B 正确;半径的一个端点为圆心,另一个端点在圆上,不符合弦的定义,所以不是弦,C正确;两条半径只有在同一直线上时,才能组成一条直径,否则不是,故D错误.所以选D.3.直角三角形的三个顶点在⊙O上,则圆心O在 .【答案】斜边的中点.【解析】根据圆的定义知圆心O到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等.4.判断正误:有AB、CD,AB的长度为3cm, CD的长度为3cm,则AB与CD是等弧. 【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O中的优弧AmB,中的劣弧CD,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交小圆于C,D.求证:AC=BD.【答案与解析】证明:过O点作OM⊥AB于M,交大圆与E、F两点.如图,则EF所在的直线是两圆的对称轴,所以AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.。
圆的基本概念与性质
圆的基本概念与性质圆是数学中的基本几何形状之一,它有着独特的性质和重要的应用价值。
本文将介绍圆的基本概念和性质,帮助读者更好地理解和应用这一几何形状。
一、基本概念圆是由平面上的一点到另一点的距离相等的所有点构成的集合。
这两个点分别称为圆心和半径,圆心用O表示,半径用r表示。
记作圆O(r)。
圆由无数不重叠的点组成,其中任意两点之间的距离都相等。
这个相等的距离称为圆的半径,用r表示。
除此之外,圆还有一些特殊位置的点,如直径的中点、切点等等。
二、性质1. 圆的直径圆的直径是任意通过圆心的线段,它的两个端点在圆上。
直径的长度是半径的两倍,即直径d=2r。
2. 圆的周长圆的周长是所有点到圆心的距离之和,也称为圆周长。
根据圆的定义可知,圆的周长是一个封闭曲线,没有起点和终点。
圆的周长公式是C=2πr,其中π是一个常数,约等于3.14159。
3. 圆的面积圆的面积是圆内部的所有点构成的区域,常用符号A表示。
圆的面积公式是A=πr²。
可以看出,圆的面积与半径的平方成正比。
4. 圆的弧圆上的一段弧被称为圆弧。
圆弧的弧度是圆心角所对应的弧长与圆的半径之比。
常用符号θ表示,弧长用s表示,半径用r表示。
弧长与半径的关系为s=rθ。
5. 圆的扇形圆上的一个扇形是由圆心、两个半径和它们所确定的圆弧构成的。
扇形的面积是圆的面积乘以圆心角所占的比例,即A=πr²(θ/360°)。
6. 圆的切线切线是与圆只有一个交点且与圆相切的直线。
切线与半径垂直,垂直于半径的直线被称为半径的切线。
切线的斜率等于半径在该点处的斜率的负倒数。
三、应用举例圆作为一种基本的几何形状,在生活和工作中有着广泛的应用。
以下是一些常见的应用举例:1. 圆形建筑物和构件:例如圆形的钟楼、塔楼和拱顶等,圆形结构在建筑中具有稳定性和美观性。
2. 圆形交通设施:例如圆形的环形交叉口、交通岛和转盘等,圆形交通设计有助于交通流畅和减少交通事故。
初三数学知识点总结归纳(3篇)
初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
人教版六年级上数学《圆 》课堂笔记
《圆》课堂笔记
以下是整理的关于人教版六年级数学《圆》的课堂笔记:
一、圆的认识
1.圆的概念:圆是由曲线围成的封闭图形,它可以看作是所有到
定点(圆心)的距离等于定长(半径)的点的集合。
2.圆心:圆的中心点叫做圆心,用字母“O”表示。
3.半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”
表示。
4.直径:通过圆心且两个端点都在圆上的线段叫做直径,用字母“d”表示。
5.半径与直径的关系:在同一个圆中,直径是半径的2倍,即d=2r。
二、圆的周长
1.圆的周长的概念:圆的周长是围成圆的曲线的长度,用字母“C”
表示。
2.周长公式:圆的周长等于2π乘以半径,即C=2πr。
其中π
是一个特殊的数,约等于3.14159。
3.圆周率:圆的周长与直径的比值叫做圆周率,用字母“π”表示。
4.周长的推导公式:根据周长公式和圆的直径与半径的关系,可
以推导出周长公式C=πd或C=2πr。
三、圆的面积
1.圆的面积的概念:圆的面积是圆所占平面的大小,用字母“S”
表示。
2.面积公式:圆的面积等于π乘以半径的平方,即S=πr²。
3.面积的推导公式:根据面积公式和圆的半径与直径的关系,可
以推导出面积公式S=π(d/2)²或S=π(r²)。
4.圆的大小比较:两个圆的大小可以通过它们的半径或直径来比
较。
两个圆的半径相等时,它们的直径也相等;直径相等时,它们的半径也相等。
以上是关于人教版六年级数学《圆》的课堂笔记整理,希望对您有所帮助。
沪教版初中总复习专题训练中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(提高)
沪教版初中数学中考总复习知识点梳理重点题型(常考知识点)巩固练习中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(提高)【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD,(2)CD⊥AB,(3)AM=MB,(4),(5).若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点诠释:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r.要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即 (S为三角形的面积,P为三角形的周长,r为内切圆的半径).3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC.(2)如图所示,E是△ABC的两外角平分线的交点,.(3)如图所示,E是△ABC内角与外角的平分线的交点,.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为上一点,则.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.【思路点拨】要用好60°角,构造直角三角形.在圆中常用的是作出弦的弦心距,由弦心距,半弦长及半径构成直角三角形.【答案与解析】解:过O作OM⊥BC于M,连接OC.在Rt△OPM中,∠OPC=60°,OP,∴PM=1,OM=.在Rt△OMC中,BC=2MC=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.2.如图所示,在⊙O中,弦AB与CD相交于点M,,连接AC.(1)求证:△MAC是等腰三角形;(2)若AC为⊙O直径,求证:AC2=2AM·AB.【思路点拨】(1)证明∠MCA=∠MAC;(2)证明△AOM∽△ABC.【答案与解析】证明:(1) ∵,∴∠MCA=∠MAC.∴△MAC是等腰三角形.(2)连接OM.∵AC为⊙O直径,∴∠ABC=90°.∵△MAC是等腰三角形,OA=OC,∴MO⊥AC.∴∠AOM=∠ABC=90°.∵∠MAO=∠CAB,∴△AOM∽△ABC,∴,∴AO·AC=AM·AB,∴AC2=2AM·AB.【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中.举一反三:【变式】如图所示,在⊙O中,AB=2CD,则( )A. B.C. D.与的大小关系无法确定【答案】解:要比较与的大小有两种思路.(1)把的一半作出来,比较与的大小;(2)把作出来,比较与的大小.如图所示,作OE⊥AB,垂足为E,交于F.则,且.∵AB=2CD.∴AE=CD.在Rt△AFE中,AF>AE=CD.∴AF>CD.∴,即.答案A.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题2】3.已知:如图所示,△ABC内接于⊙O,BD⊥半径AO于D.(1)求证:∠C=∠ABD;(2)若BD=4.8,sinC=,求⊙O的半径.【思路点拨】过O作OE⊥AB于E,连接BO,再由垂径定理及三角函数进行证明与求解.【答案与解析】解法一:(1)过O作OE⊥AB于E,连接BO(如图所示),则.又∵ BD⊥AO,∴∠ABD+∠BAD=90°.∵∠AOE+∠BAD=90°,∴∠ABD=∠AOE=∠C.(2)在Rt△ABD中,,∴.设AD=4k,则AB=5k,BD=3k=4.8,k=1.6.∴AB=8,AE=4.∵,∴.∴OA=5.解法二:(1)延长AO交⊙O于C′.(如图所示)∴∠C′=∠C.∵AC′为⊙O的直径,∴∠ABC′=90°.∴∠C′+∠BAD=90°.∵∠BAD+∠ABD=90°,∴∠ABD=∠C′=∠C.(2)在Rt△BDC′中,,∴.在Rt△ABC′中,∵,∴设AB=4k,则AC′=5k,BC′=3k=6.∴k=2.∴.【总结升华】解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心.类型二、圆的切线判定与性质的应用4.(2014秋•兴化市月考)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.【思路点拨】(1)根据切线的性质可得结论;(2)连接OE,根据圆周角定理得∠ACB=90°,进而可推导得出△PCF是等腰三角形;(3)先在Rt△ACB中,根据勾股定理计算出AB=10,最终算得BE的值.【答案与解析】(1)证明:∵PD为⊙O的切线,∴OC⊥DP,∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵O A=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB;(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,而∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,而∠OCF=∠OEF,∴∠PCF=∠CFP,∴△PCF是等腰三角形;(3)解:在Rt△ACB中,∵AC=8,BC=6,∴AB==10,∴OB=5,∵∠BOE=90°,∴△BOE为等腰直角三角形,∴BE=OB=5.【总结升华】本题考查了切线的性质,圆周角定理和等腰三角形的判定.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.举一反三:【变式】(2015•毕节市)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.类型三、切线的性质与等腰三角形、勾股定理综合运用5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且,求证△DCE≌△OCB.【思路点拨】(1)由于AB是直径,那么∠ACB=90°,而∠ABC=30°,易求∠BAC=60°,结合OA=OC,易证△AOC 是正三角形,于是∠OCD=60°,结合CD是切线,易求∠DCE=30°,在Rt△AEF中,易求∠E=30°,于是∠DCE=∠E,可证△CDE为等腰三角形;(2)在Rt△ABC中,由于∠A=60°,AB=2,易求AC=AO=1,利用勾股定理可求BC=,CE=AE-AC=,那么BC=CE,而∠OBC=∠OCB=∠DCE=∠DEC=30°,从而可证△OBC≌△DCE.【答案与解析】解:(1)∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC是正三角形.∵CD是切线,∴∠OCD=90°.∴∠DCE=180°-60°=90°-30°.∴∠DCE=∠DEC而ED⊥AB于F,∴∠CED=90°-∠BAC=30°.故△CDE为等腰三角形.(2)证明:在△ABC中,∵AB=2,AC=AO=1,∴BC=.,∴.又∵∠AEF=30°,∴AE=2AF=.∴CE=AE-AC==BC.而∠OCB=∠ACB-∠ACO=30°=∠ABC,故△CDE≌△COB.【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质.解题的关键是证明△AOC是正三角形.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.【答案】解:连接PQ并延长交AB于E,设大圆的圆心为O,连接OA.设AB=2x,则AE=x,OB=2x-2.在Rt△OAE中,OA=5,∵OA2=OE2+AE2,即52=(2x-2)2+x2,∴x=3.∴AB=6.答案:66.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC 交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.【思路点拨】(1)作辅助线,连接OC,根据切线的性质知:OC⊥PC,由∠CPO的值和OC的长,可将PC的长求出;(2)通过角之间的转化,可知:∠CMP=(∠COP+∠CPO),故∠CMP的值不发生变化.【答案与解析】解:(1)连接OC,则∠OCP=90°.∵ OA=OC,∴∠COP=2∠CAP=60°.∴ CP=OC·tan60°=AB·tan60°=,∴ CP=.∵ PM平分∠CPA,∴.∴∠CMP=30°+15°=45°.(2)设∠CPA=α,∵ PM平分∠CPA,∴∠MPA=∠CPA.∵∠OCP=90°,∴∠COP=90°-α.又∵ OA=OC,∴∠CAP=.∴∠CMP=∠CAP+∠MPA.(3)∠CMP的大小没有变化∵∠CMP=∠A+∠MPA=∠COP+∠CPO=(∠COP+∠CPO)=×90°=45°.【总结升华】解第(2)小题时,引用“设∠CPA=α”这一方法,用代数方法计算得出结论,降低了解题的难度.本题主要考查切线的性质及对直角三角形性质的运用.举一反三:【变式】如图所示,AB是⊙O的直径,C是的中点,CD⊥AB于D,CD与AE相交于F.(1)求证:AC2=AF·AE;(2)求证:AF=CF.【答案】证明:(1)如图所示,连接CE,延长CD交⊙O于G,连接AG.∵AB是⊙O直径,CD⊥AB,∴.∴∠2=∠3.又∵∠1=∠1,∴△AFC∽△ACE.∴.∴ AC2=AF·AE.(2)由(1)得.又∵C是的中点,∴.∴∠2=∠1.∴AF=CF.。
六年级关于圆的知识点
六年级关于圆的知识点圆是我们日常生活中常见的几何形状之一,下面是关于圆的一些基本知识点。
1. 圆的定义圆是平面上一组到一个定点的距离都相等的点的集合。
这个定点称为圆心,而距离圆心最远的点与圆心的距离称为半径。
所有在圆上的点到圆心的距离都等于半径的长度。
2. 圆的要素一个圆由两个要素确定,即圆心和半径。
在几何图形中我们通常用大写字母O表示圆心,小写字母r表示半径。
用符号π表示圆周率,近似值为3.14或22/7。
3. 圆的性质(1) 圆周长:一个圆的周长等于圆的半径乘以2π,即C=2πr。
(2) 圆的面积:一个圆的面积等于圆的半径的平方乘以π,即A=πr²。
(3) 弧长和扇形面积:圆的一部分叫做弧,弧的度数除以360度后乘以2πr即可计算弧长;扇形是由圆心、两个弧和弧所夹的一部分圆组成,扇形的面积可以用扇形的弧长乘以半径的一半得到。
(4) 直径和弦:直径是连接圆上两个点,并且通过圆心的线段,它的长度是半径的两倍;弦是圆上任意两点之间的线段。
(5) 切线和切点:切线是与圆交于一点的直线,并且与圆在这一点的切点相切。
4. 圆的应用圆在生活中有广泛的应用。
例如,车轮、轮胎、钟表、饼干等形状都是圆的。
此外,圆也在数学和物理学等领域中发挥着重要的作用,如在圆的运动、圆锥曲线等方面。
总结:通过上述对圆的基本知识点的介绍,我们了解到圆的定义、要素和性质。
圆在日常生活和学科领域中都有着广泛的应用,深入学习和理解圆的知识对于我们的数学学习和对周围世界的认识具有重要的意义。
希望本文所述的内容对您有所帮助。
初三数学圆的知识点
初三数学圆的知识点1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。
固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。
(2)圆可以看作是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为圆的半径。
说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。
2.圆的有关概念(1)弦:连结圆上任意两点的线段。
(如右图中的CD)。
(2)直径:经过圆心的弦(如右图中的AB)。
直径等于半径的2倍。
(3)弧:圆上任意两点间的部分叫做圆弧。
(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。
(4)圆心角:如右图中∠COD就是圆心角。
3.圆心角、弧、弦、弦心距之间的关系。
(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。
(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
4.过三点的圆。
(1)定理:不在同一条直线上的三点确定一个圆。
(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。
5.垂径定理。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。
(2)圆的两条平行弦所夹的弧相等。
6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。
③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。
(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半;③同弧或等弧所对的圆周角相等;④半圆(或直径)所对的圆周角相等;⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的基本概念和性质—知识讲解(提高)
【学习目标】
1.知识目标:理解圆的有关概念和圆的对称性;
2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,•圆的对称性进行计算或证明;
3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯.
【要点梳理】
要点一、圆的定义及性质
1.圆的定义
(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.
要点诠释:
①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;
②圆是一条封闭曲线.
(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.
要点诠释:
①定点为圆心,定长为半径;
②圆指的是圆周,而不是圆面;
③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.
2.圆的性质
①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;
②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.
要点诠释:
①圆有无数条对称轴;
②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.
3.两圆的性质
两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).
要点二、与圆有关的概念
1.弦
弦:连结圆上任意两点的线段叫做弦.
直径:经过圆心的弦叫做直径.
弦心距:圆心到弦的距离叫做弦心距.
要点诠释:
直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.
为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
证明:连结OC、OD
∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)
∴直径AB是⊙O中最长的弦.
2.弧
弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧
AB”.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
优弧:大于半圆的弧叫做优弧;
劣弧:小于半圆的弧叫做劣弧.
要点诠释:
①半圆是弧,而弧不一定是半圆;
②无特殊说明时,弧指的是劣弧.
3.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.
圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.
4.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.
要点诠释:
①等弧成立的前提条件是在同圆或等圆中,不能忽视;
②圆中两平行弦所夹的弧相等.
【典型例题】
类型一、圆的定义
1.已知:如图,矩形ABCD的对角线AC与BD相交于点O,求证:点A、B、C、D在以点O为圆心的同一个圆上.
【答案与解析】
∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,
∴OA=OC=OB=OD,
∴点A、B、C、D在以点O为圆心、OA为半径的圆上.
【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等. 举一反三:
【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()
A.正方形
B.菱形
C.矩形
D.等腰梯形
【答案】C.
2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。
这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全?
【答案与解析】
导火索燃烧的时间为18
09
20
.
()
=s
相同时间内,人跑的路程为2065130
⨯=
.()
m
∴点导火索的人安全.
【总结升华】爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示.
类型二、圆及有关概念
3.(丹阳市校级月考)下列说法中,正确的是()
A.两个半圆是等弧
B.同圆中优弧与半圆的差必是劣弧
C.长度相等的弧是等弧
D.同圆中优弧与劣弧的差必是优弧
【答案】 B.
【解析】A、两个半圆的半径不一定相等,故错误;
B、同圆中优弧与半圆的差必是劣弧,正确;
C、长度相等的弧是等弧,错误;
D、同圆中优弧与劣弧的差比一定是优弧,故错误,
故选B.
【总结升华】本题考查了圆的有关概念,解题的关键是了解等弧及半圆的定义、优弧与劣弧的定义等. 举一反三:
【变式】(邗江区校级月考)点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()
A
P O B A P O B
A .2
B .3
C .4
D .5
【答案】B.
提示:由图可知,点A 、B 、E 、C 是⊙O 上的点,
图中的弦有AB 、BC 、CE ,一共3条.故选B .
类型三、圆的对称性
4.圆O 所在平面上的一点P 到圆O 上的点的最大距离是10,最小距离是2,求此圆的半径是多少?
【答案与解析】
如图所示,分两种情况:
(1)当点P 为圆O 内一点(如图1),过点P 作圆O 的直径,分别交圆O 于A 、B 两点, 由题意可得P 到圆O 最大距离为10,最小距离为2,则AP=2,BP=10,
所以圆O 的半径为
62102=+.
图1 图2
(2)当点P 在圆外时(如图2),作直线OP ,分别交圆O 于A 、B ,由题可得P 到圆O 最大距离为10,最小距离为2,则BP=10,AP=2,所以圆O 的半径
42
210=-. 综上所述,所求圆的半径为6或4.
【总结升华】题目中说到最大距离和最小距离,我们首先想到的就是直径,然后过点P 做圆的直径,得
到圆的半径.通常情况下,我们进行的都是在圆内的有关计算,这逐渐成为一种习惯,使得我们一看到题首先想到的就是圆内的情况,而忽略了圆外的情况,所以经常会出现漏解的情况.这也是本题想要提醒大家的地方.体现分类讨论的思想.
举一反三:
【变式1】平面上的一个点到圆的最小距离是4cm,最大距离是9cm ,则圆的半径是( ).
A.2.5cm
B.6.5cm
C. 2.5cm 或6.5cm
D. 5cm 或13cm
【答案】C.
【变式2】(1)过____________________上的三个点确定一个圆.
(2)交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.
【答案】(1)不在同一直线;(2) 圆的旋转不变性;
5.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 的长的取值范围是 .
【答案】3≤OP ≤5.
【解析】OP 最长边应是半径长,为5;
根据垂线段最短,可得到当OP ⊥AB 时,OP 最短.
∵直径为10,弦AB=8
∴∠OPA=90°,OA=5,由圆的对称性得AP=4, 由勾股定理得22543-=,∴OP 最短为3.
∴OP 的长的取值范围是3≤OP ≤5.
【总结升华】关键是知道OP 何时最长与最短.
举一反三: 【变式】已知⊙O 的半径为13,弦AB=24,P 是弦AB 上的一个动点,则OP 的取值范围是___ ____.
【答案】 OP 最大为半径,最小为O 到AB 的距离.所以5≤OP ≤13.。