(完整版)《用向量法求二面角的平面角》教案
二面角法向量求法
二面角的表示方法
二面角是由两个半平面所组成 的图形,其大小由两个半平面
的夹角决定。
二面角可以用角度制或弧度制 来表示,与平面角和空间角类
似。
二面角的大小与两个半平面的 方向有关,与半平面的大小无 关。
在求解二面角的大小时,通常 需要先找到两个半平面的法向 量,然后计算两个法向量之间 的夹角即可得到二面角的大小 。
二面角法向量求法
汇报人:XX 2024-01-23
• 引言 • 二面角的表示方法 • 法向量的求解方法 • 二面角法向量的性质 • 二面角法向量的应用 • 总结与展望
01
引言
二面角的定义
二面角是由两个半平面所组成的 图形,其大小由这两个半平面的
夹角决定。
二面角的大小范围在0°到180°之 间,当两个半平面重合时,二面 角为0°;当两个半平面形成一条
面积射影定理
根据面积射影定理,二面角的余弦值等于两个半 平面在棱上的投影面积之比。因此,可以通过求 出两个半平面在棱上的投影面积,然后利用面积 射影定理求出二面角的大小。
三垂线定理及其逆定理法
利用三垂线定理或其逆定理,可以构造出与二面 角的棱垂直的线段,进而通过解三角形求出二面 角的大小。
空间向量夹角公式
03
法向量的求解方法
平面法向量的求解方法
直接法
如果平面上的一个向量 已知,则该向量即为平 面的法向量。
待定系数法
设平面的法向量为 n=(x,y,z),根据平面的 方程可以列出关于x,y,z 的方程组,通过求解方 程组得到法向量。
向量积法
如果平面上有两个不共 线的向量a和b,则平面 的法向量n可以通过计 算向量a和b的向量积得 到,即n=a×b。
求二面角大小的直接计算法(讲稿)
求二面角大小的直接计算法肖德凯利用向量求二面角,如何判断所求二面角是锐角或钝角?现行中学数学教材或教辅资料给出的方法是通过观察图形来确定;常见的大学数学教材亦未涉及此问题.由于一个平面有共线且方向相反的两个法向量,所以两个平面所成二面角的平面角的大小与其法向量所成之角可能相等, 也可能互补;而现行中学数学教材是用点积的办法来求法向量的, 点积法的缺陷是不能控制法向量的方向, 所以也就无法准确判断所求二面角究竟是钝角或锐角.本文介绍一种利用向量外积控制平面法向量方向,借助两平面法向量所成角与两平面所成二面角的关系,直接计算二面角并判断其为锐角或钝角的方法. 为此我们首先介绍向量外积概念及运算法则. 1 二阶行列式的概念及运算法则由于二阶行列式与向量外积的计算密切相关,故我们先简要介绍二阶行列式. 二阶行列式源于解二元一次方程组,它的定义是:11122122x y x y x y x y =-例1.1 计算 3437(2)42182927=⨯--⨯=+=-.2 向量外积2.1设a 、b 为同一平面内起点重合的非共线向量,则a 、b 外积n 表示为n =a ⨯b ,其结果n 仍然是一个向量,方向与a 、b 所在平面垂直.向量外积的确切的方向根据右手法则确定(如图2.1):伸开右手掌,使拇指与其余四指垂直,将手腕与a 和b 的始端重合,拇指之外的四指与a 同向,使得手掌弯曲指向b ,但这时a 到b 的角度必须小于180 ,此时大拇指指向的方向就是a ⨯b 的方向,即a 、b 所在平面的法向量的一个方向[一个平面的法向量的方向共有两个(共线的两个),指向平面的两侧,通常并不确定是其中哪一个方向].2.2 向量外积的计算法则 若()111x ,y ,z a=,()222x ,y ,z b =,则()()()111222111111222222122112211221x ,y ,z x ,y ,z y z x z x y ,,y z x z x y y z y z ,x z x z ,x y x y .a b ⨯=⨯⎛⎫=- ⎪⎝⎭=--+-例2.1 已知11(,,1)22a =-,11(,,1)22b =---;求a b ⨯.11,,12211,,1221111112222,,111111222211,0,.2ab ⎛⎫⨯=- ⎪⎝⎭⎛⎫⨯--- ⎪⎝⎭⎛⎫--⎪ ⎪=- ⎪------ ⎪⎝⎭⎛⎫=- ⎪⎝⎭解3 求二面角大小的直接算法如图1, 设二面角C-AB-E 的大小为θ,平面ABEF 的法向量为n , 平面ABCD 的法向量为m 1;n 、m 1的夹角为1θ,那么θ=π-1θ,1cos cos n m n mθθ⋅=-=-.如图2, 设二面角C-AB-E 的大小为θ,平面ABEF 的法向量为n , 平面ABCD 的法向量为m ; n 、m 的夹角为2θ,则2θθ=,2cos cos n m n mθθ⋅==.那么,如何确定两平面的法向量才能保证其所成之角恰好就是我们所要求的二面角呢?其实,只要利用向量外积概念,我们就可以做到这一点.在图2中,按照如下顺序求出n 、m ,我们就可保证所求二面角与计算结果完全一致,nAB AF =⨯ ,mA B A D =⨯ , cos n mn mθ⋅=.上述方法的要点是: ① 确立公共点A(每个向量都以点A 为起始点); ② 确定公共向量AB(每个法向量的计算都以AB为基础); ③ 遵守严格的运算顺序(nAB AF =⨯ ,m AB AD =⨯)求法向量n 与m.例 3.1 (2010全国高考理科试题(I 卷)第19题) 如图3, 四棱锥S-ABCD中,SD ⊥底面ABCD,AB//DC ,AD ⊥DC, AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC.(1) 证明:SE =2EB ;(2) 求二面角A-DE-C 的大小.解 以D 为坐标原点,DA ﹑DC ﹑DS 边所在直线为x 轴﹑y 轴﹑z 轴建立空间直角坐标系(图4),相应各点坐标为D ()0,0,0,A ()1,0,0, C ()0,2,0, S ()0,0,2.(1) (略)(2) 由(1) 得E 222,,333⎛⎫⎪⎝⎭, 于是222(,,)333D E = ,(1,0,0)D A =,(0,2,0)D C = ,那么,平面DEA 的法向量222(,,)333(1,0,0)222222,,3333330011022(0,,)33nD E D A =⨯=⨯⎛⎫ ⎪=- ⎪ ⎪⎝⎭=-平面DEC 的法向量222(,,)333(0,2,0)222222,,33333320244(,0,)33mD E D C =⨯=⨯⎛⎫ ⎪=- ⎪ ⎪⎝⎭=-若平面DEA 与平面DEC 所成的角为θ, 则81cos 0233n mn mθ-⋅===-<. 又 []0,θπ∈,所以23θπ=.例3.2(2005高考江苏试题 第21题 第3问) 如图5,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE,SA=AB=AE =2,3==DE BC ,︒=∠=∠=∠120CDE BCD BAE .求二面角B-SC-D 的大小(用反三角函数值表示解 连接BE ,延长BC 、ED 交于点F (图6), 则∠DCF=∠CDF =600,∴△CDF 为正三角形, ∴CF=DF . 又BC=DE, ∴BF=EF , 故△BFE 为正三角形, 因为△ABE 是等腰三角形,且∠BAE =1200, ∴∠ABC =900.以A 为坐标原点, AB 、AS 棱所在的直线分别为x 轴、z 轴, 以平面ABC 内垂直于AB 的直线为y 轴,建立空间直角坐标系(图6), 相应各点坐标为A (0,0,0),B (2,0,0),S (0,0,2),且()2,0C,1,,022D ⎛⎫⎪⎪⎝⎭. 于是()2,2C S =-,()0,0C B =,3,022C D ⎛⎫=- ⎪ ⎪⎝⎭. 平面CSB 的法向量()()2,20,02222,,00000,nC S C B =⨯=-⨯⎛--=-⎝= ;平面CSD 的法向量()2,230222222,,33002223,2mC S CD =⨯=-⎛⎫⨯- ⎪ ⎪⎝⎭⎛-- =- -- ⎝⎛=-- ⎪⎝⎭ .若平面CSB 与平面CSD 所成的角为θ,即二面角B —SC —D 的大小为θ, 则cos 082n m n mθ⋅===-<.又 []0,θπ∈,arccos82θπ=-例3.3 (2005高考重庆理科试题 第20题 第2问)如图7,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB =2,BB 1=2,BC =1,∠BCC 1=3π,求:二面角A—EB 1—A 1的平面角的正切值.解 以B 为坐标原点, BB 1 、BA 棱所在的直线分别为y 轴、z 轴,以平面BCC 1B 1内垂直于BB 1的直线为x 轴,建立空间直角坐标系(图8),相应各点坐标为B (0,0,0),B 1(0,2,0), A (0,0,2), A 1 (0,2,2), 且可根据已知条件设,02E a ⎛⎫⎪ ⎪⎝⎭,则12,022EA EB a a ⎛⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭23204a a =+-=. 解之12a =(或3,2a =若3,2a =则点E 在棱CC 1之外,故舍去),故1,,022E ⎛⎫⎪ ⎪⎝⎭.于是13,022EB ⎛⎫=- ⎪ ⎪⎝⎭,122EA ⎛=-- ⎝⎭, 13,22EA ⎛=- ⎝⎭. 平面EB 1A 的法向量13,0221,22332222112222,22nEB EA ⎛⎫=⨯=- ⎪ ⎪⎝⎭⎛⨯-- ⎝⎭⎛⎫--⎪ ⎪=- ⎪---- ⎪⎝⎭⎛= ⎝⎭; 平面EB 1A 1的法向量113,02232233222233222222m EB EA⎛⎫=⨯=-⎪⎪⎝⎭⎛⨯-⎝⎭⎛⎫--⎪⎪=-⎪--⎪⎝⎭⎛⎫= ⎪⎪⎝⎭.若平面EB1A与平面EB1A1所成的角为θ,即二面角A-EB1-A1的大小为θ,则cos03n mn mθ⋅===>.又[]0,θπ∈,tan2θ=.DEAB 4练习1.(2009全国1文)19. 如图,四棱锥S A B C D -中,底面A B C D 为矩形,SD ⊥底面A B CD ,AD =2D C SD ==,点M 在侧棱S C 上,∠ABM=60.(I )证明:M 是侧棱S C 的中点;()II 求二面角SA MB --的大小。
3.2向量法求二面角
3.2向量法求二面角(16-1)编制人:闵小梅 审核人:王志刚【使用说明及学法指导】 1.完成预习案中的相关问题;2.尝试完成探究案中合作探究部分,注意书写规范;3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。
【学习目标】会用法向量求二面角的大小 【教学重点】向量法求二面角的大小【教学难点】建立适当的坐标系,准确写出点的空间坐标 一、复习引入 【复习】知识点1.向量法求两条异面直线所成的角(范围:]2,0(πθ∈)|||||,cos |cos n m=><=θ知识点2.向量法求直线与平面所成角(范围:[θ∈sin |cos ,|n AB θ=<>=r uu u r类比以上求法,思考如何用向量法求二面角? 回顾二面角的有关概念: (1) 二面角的定义平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角。
(2)二面角的平面角①过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角,[0,]AOB π∠∈。
②一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角,[0,]AOB π∠∈。
abαθO12)【引入】知识点3.向量法求二面角(范围:[0,]θπ∈)①方向向量法:将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。
如图,设二面角βα--l 的大小为θ,其中βα⊂⊥⊂⊥CD l CD AB l AB ,,,.结论:②法向量法如图1、2所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即 ;如图3、4所示时,二面角l αβ--的平面角与平面α、β的法向量1n r ,2n r的夹角12,n n <>r r相等,即结论:cos θ= 或 cos θ=二面角l αβ--为锐二面角时,cos θ=二面角l αβ--为钝二面角时,cos θ= 【尝试练习】1.已知两平面的法向量分别为1n r =(0,1,0),2n r=(0,1,3),则两平面所成的二面角余弦值为____ 2.(课本P107练习2改编)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB 。
向量法在求二面角中的应用
探索篇•课题荟萃一、二面角的两个半平面的法向量的夹角与二面角的关系1.确定法向量的指向如图1,n 1指向二面角的内部,n 2指向二面角的外部。
在空间直角坐标系下,可将法向量的起点移至坐标原点,然后观察法向量的指向。
图32.确定两个法向量的夹角与二面角的关系如图1,当两个法向量一个指向二面角的内部,一个指向二面角的内部时,法向量的夹角就是二面角;如图2和图3,当两个法向量都指向内或者都指向外时,法向量的夹角就是二面角的补角。
二、法向量在求二面角中的应用求二面角的大小或二面角的余弦值:当二面角为锐二面角时,二面角的余弦值为正值,当二面角为钝二面角时,二面角的余弦值为负值,二面角和它的补角的余弦值不相等。
用向量法解决这类型题时需判断法向量的指向以保证两向量的夹角就是二面角。
例1.【2017全国1卷(理)】如图4所示,在四棱锥P-ABCD 中,AB ∥CD ,且∠BAP=∠CDP =90°(1)证明:平面PAB ⊥平面PAD 。
(2)若PA =PD=AB=DC ,∠APD =90°,求二面角A-PB-C 的余弦值。
【解析】(1)证明:因为∠BAP=∠CDP =90°,所以PA ⊥AB ,PD ⊥CD 。
又因为AB ∥CD ,所以PD ⊥AB ,又因为PD ∩PA =P ,PD 、PA ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD 。
(2)取AD 中点O ,BC 中点E ,联结PO ,OE ,因为AB ∥=CD ,所以四边形ABCD 为平行四边形,所以OE ∥AB 。
由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ,所以OE ⊥PO ,OE ⊥AD 。
又因为PA =PD ,所以PO ⊥AD ,所以PO 、OE 、AD两两垂直,所以以O 为坐标原点,建立如图5,所示的空间直角坐标系O-xyz 设PA =2,所以D (-2√,00),B (2√,0,0),P (0,0,2√)C (-2√),所以PD =(-2√,0,-2√),PB 2√,2,-2√),BC-22√,0,0)设n =)为平面PBC 的法向量,由n ·PB =0n ·BC =0{,得2√x +2y -2√z =0-22√x =0{.令y =1,则z =2√,x =0,可得平面PBC 的一个法向量n =(0,1,2√)(将该法向量移动至坐标原点,判断指向二面角的外部)因为∠APD=90°,所以PD ⊥PA ,又知AB ⊥平面PAD ,PD ⊂平面PAD ,以PD ⊥AB ,又PA ∩AB=A ,所以PD ⊥平面PAB ,即PD 是平面PAB 的一个法向量,PD =-2√,0,-2√)(判断该法向量指向二面角)所以cos (PD ,n )PD ·-223√=-3√3。
原创1:1.2.4 二面角
夹角,但要注意其异同.
(2)法向量法:分别求出两平面的法向量n1,n2,则两平面的夹角为〈n1,n2〉
若二面角为锐角,则为〈n1,n2〉;若二面角为钝角,则为π-〈n1,n2〉.
跟踪练习
练习.正方形ABCD所在平面外一点P,PA⊥平面ABCD,若PA=AB,则平面PAB与
1
,
2
1
2
, ),
易知是平面PAB的法向量, 是平面PCD的法向量,
∴cos〈 , 〉=
2
2
,∴平面PAB与平面PCD的夹角为45°.
B
x
D
C
y
课堂小结
用空间向量解决立体几何问题的“三步曲”.
(1)建立立体图形与空间向量的联系,用空间向量表示问题中
涉及的点、直线、平面,把立体几何问题转化为向量问题;
以O为原点,如图建立空间直角坐标系,
C1
O
B
x
A1
y
B1
典例精析
则B(1,0,0),D(-1,1,0),
z
A1(0,2, 3),A(0,0, 3),B1(1,2,0).
A
设平面A1AD的法向量为n=(x,y,z),
AD=(-1,1,- 3),AA1=(0,2,0).
A1
C
因为n⊥AD,n⊥AA1,
第一章
空间向量与立体几何
1.2.4 二面角
学习目标:
1.会用向量法求二面角.
2.能正确理解二面角的定义.
教学重点:会用向量法求二面角.
教学难点:会用向量法求二面角.
新知探索
二面角的平面角
设二面角αlβ的锐二面角大小为θ,且两个半平面的法向量分别为a,b,
空间向量法求二面角
徐沟中学高二年级数学学案 命制人: 董晓燕 郭凯丽 复查人:段红蕊空间向量法求二面角学习目标:1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题.新知自学:让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的夹角解图1 图2课堂互学:例1;在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B ACD --的正弦值例3:如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=21。
求侧面SCD 与面SB A 所成的二面角的大小。
总结提炼:随堂检测:1.如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小;能力提升:1.如图,在直三棱柱ABC-A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,且AA 1=AB=2.(1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为6π,求锐二面角A-A 1C-B 的大小.A BC DEF ϕω θ βlα2n 1nθ β lαϕ1n2n O (A ) B A 1 C 1 B 1D 1 D CQ zy x 图4AzyDCBS 图5ABCD1A1C1B。
向量法求二面角
用向量法求二面角
思考:能否用法向量求二面角的大小?
A n
B O
n2
n1
n1, n2
用向量法求二面角
n2 n1
同
进
同
出
n2 n1
取 补 角
n2来自n2n1 一
进
一
出
取
n1
等 角
法2:图形的特征来判定相等、互补
用向量法求二面角
例1 如所示,ABCD是一直角梯形,ABC=900 ,
SA 平面ABCD, SA AB BC 1, AD 1 , 2
求面SCD与面SBA所成二面角 z
的余弦值. 方法一:几何法
S n1
n2
方法二:向量法
B
C
易知面SBA的法向量n1
AD
1 (0, , 0)
A
x
2
面SCD的法向量可取n2 (1, 2,1)
Dy
用向量法求二面角
变式练习 如图所示,ABCD是一直角梯形,ABC=900 ,
二面角及其度量
用向量法求二面角
一、教材分析
二面角及其度量是高中数学选修2--1第3章空间向量在立体几 何中的应用中的部分内容。空间向量的引入为代数方法处理立 体几何问题提供了一种重要的工具和方法。本节课是在学生掌 握了用空间向量求线面角的基础上进行的延伸和拓展。求空间 角是立体几何的一类重要的问题,也是高考的热点之一。
二、教学目标
知识目标 :
掌握空间向量求二面角的方法;.
能力目标:
培养学生观察分析、类比转化的能力; 培养空间想象能力
法向量求解二面角的平面角
法向量求解二面角的平面角求二面角是高考中必考内容,学习过程中要备受关注,利用传统方法求解二面角的关键是首先知道二面角的平面角,再转化到三角形中解决,而利用法向量可以降低问题的难度,把问题转化为程序化的求解过程,本文就剖析如何利用法向量求解二面角.一、法向量求二面角步骤1、建立适当的直角坐标系,当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系;如果没有明显交于一点的三条直线,但图形中有一定对称关系,(如正三棱柱、正四棱柱等)利用图形对称性建立空间直角坐标系解题;此外页可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系.2、求法向量:一般用待定系数法求解,一般步骤如下:(1)设出平面的法向量为n =(x ,y ,z );(2)找出(求出)平面内的两个不共线的向量的坐标),,(111c b a a =,),,(222c b a b =;(3)根据法向量的定义建立关于x 、y 、z 的方程组⎩⎨⎧=⋅=⋅00b n a n ;(4)解方程组,取其中的一个解,即得法向量£®3、利用数量积公式求角:设1n ,2n 分别是两个半平面的法向量,则由21,cos n n n n >=<求得><21,n n ,而><21,n n 的大小或其补角的大小即为二面角的大小,应注意1n ,2n 的方向。
所以二面角的大小可以通过该二面角的两个面的法向量的夹角求得,他等于两法向量的夹角或其补角.二、考题剖析例1、在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,1(0)AB PA BC a a==>. (Ⅰ)当1a =时,求证:BD PC ⊥;(Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角Q PD A --的余弦值.A BQ DCP解:(Ⅰ)当1a =时,底面ABCD 为正方形,∴BD AC ⊥ 又因为BD PA ⊥,BD ∴⊥面PAC 又PC ⊂面PAC ,BD PC ∴⊥(Ⅱ) 因为AP AD AB ,,两两垂直,分别以它们所在直线为x 轴、y 轴、z 轴建立坐标系,如图所示,令1AB =,可得BC a =,则)1,0,0(),0,,1()0,,0(),0,0,1(P a C a D B .设m BQ =,则)0)(0,,1(a m m Q ≤≤.要使QD PQ ⊥,只要0)(1=-+-=⋅m a m QD PQ ,即210m am -+=. 由0∆=2a ⇒=,此时1m =.所以BC 边上有且只有一个点Q ,使得QD PQ ⊥时,Q 为BC 的中点,且2=a . 设面PQD 的法向量)1,,(y x p =,则00p QD p DP ⎧⋅=⎪⎨⋅=⎪⎩即⎩⎨⎧=+-=+-0120y y x 解得)1,21,21(=p ,取平面PAD 的法向量)0,0,1(=q ,则〉〈q p .的大小与二面角Q PD A --的大小相等,所以66.cos ==〉〈q p q p , 因此二面角Q PD A --的余弦值为66.点评:一般情况下求法向量用待定系数法.由于法向量没规定长度,仅规定了方向,所以有一个自由度,可把n 的某个坐标设为1,再求另两个坐标.求解法向量一般借助方程思想,几何问题代数化,求得法向量再结合向量数量积公式求得二面角.例2、在如图所示的四面体ABCD 中,AB 、BC 、CD 两两互相垂直,且BC = CD = 1.求二面角C -AB -D 的大小;分析:由于本题中没有垂直关系,需要寻找(或作出三线垂直的直线).解:根据已知容易证明BCD AB 平面⊥,设以过B 点且∥CD 的向量为x 轴,BC BA 、为y 轴和z 轴建立如图所示的空间直角坐标系,设AB = a ,则A (0,0,a ),C (0,1,0),D (1,1,0),BD = (1,1,0),BA = (0,0,a )平面ABC 的法向量CD = (1,0,0).设平面ABD 的一个法向量为n = (x ,y ,z ),则0000BD x y az BA ⎧⋅=+=⎧⎪⇒⎨⎨=⋅=⎩⎪⎩n n ,取n = (1,-1,0).∴cos ||||CD CD CD ⋅<>==⋅n n n ,∴二面角C -AB -D 的大小为45°点评:解决本题关键是建立合适的直角坐标系,求得点的坐标,从而求得法向量。
立体几何中的向量方法及二面角的平面角求法总结
讲义:立体几何中的向量方法及二面角的平面角求法总结一、几种角的范围1、 _________________________________ 二面角平面角的范围:2、 _________________________________ 线面角的范围:3、 _________________________________ 直线倾斜角范围:4、异面直线夹角范围:_______________5、向量夹角范围:_________________二、立体几何中的向量方法1.三个重要向量(1)直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的向量,一条直线的方向向量有 ______ .(2)平面的法向量:直线I丄平面a取直线I的方向向量,则这个向量叫做平面a的法向量.显然一个平面的法向量有 ____ ,它们是共线向量.(3)直线的正法向量:直线L:Ax+By+C=O的正法向量为n=(A,B).2.直线的方向向量与平面的法向量在确定直线和平面位置关系中的应用(1)直线l i的方向向量为u 1= (a i, b i, c i),直线l2的方向向量为比=(a2, b2, C2).女口果丨1 //丨2,那么U1 // U2? 5=右2? _____________________________ ;女口果丨1丄l2, 那么U1丄U2? U1 U2= 0? ________________⑵直线I的方向向量为u= (a1, b1, C1),平面a的法向量为n= (a2, b2, C2).若I // a 贝U u 丄n? u n = 0? _________________若I 丄a 贝U u // n? u = k n? _____________________(3)平面a的法向量为U1 = (a1, b1, C1),平面B的法向量为u2= (a2, b2, C2).若all B U1 / U2? U1 = k u2? (a1, b1, G)=_________ ;若a丄B 贝y U1 丄U2? U1 U2= 0? ____________________3.利用空间向量求空间角(1)求两条异面直线所成的角:设a, b分别是两异面直线I1, I2的方向向量,则(2) 求直线与平面所成的角:设直线I 的方向向量为a ,平面a 的法向量为n ,直线I 与平面a 所成的角为 0,则 si nA |cos 〈 a , n > |=(3) 求二面角的大小:(I )若 AB , CD 分别是二面角a — I — B 的两个半平面内与棱I 垂直的异面直线,则二面角的大 小就是向量AB , CD 的夹角(如图①所示).(H )设n i , n 2分别是二面角a — I — B 的两个半平面a, B 的法向量,贝U 向量n i 与n 2的夹角(或其补角)的大小就是二面角的大小(如图②③).4. 求点面距:平面a 外一点P 到平面a 的距离为:其中n 为平面a 的法向量,PQ 为平面a 的斜线,Q 为斜足 5. 平面法向量的求法设出平面的一个法向量n = (x , y , z),利用其与该平面内的两个不共线向量垂直,即数量积为 0, 列出方程组,两个方程,三个未知数,此时给其中一个变量恰当赋值,求出该方程组的一个非零 解,即得到这个法向量的坐标.注意,赋值不同得到法向量的坐标也不同, 法向量的坐标不唯一. 6. 射影面积公式:二面角的平面角为 a ,则cos a=7. 利用空间向量求角要注意的问题(1)异面直线所成的角、直线和平面所成的角、二面角都可以转化成空间向量的夹角来求.⑵空间向量的夹角与所求角的范围不一定相同,如两向量的夹角范围是[0, n,两异面直线所成的角的范围是o , n . (3)用平面的法向量求二面角时,二面角的大小与两平面法向量的夹角有相等和互补两种情况 .三、二面角的平面角的求法1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角 ,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线d=② ③所成的角的大小就是二面角的平面角。
3.2利用空间向量求二面角
SD. 得n (2, 1,1)
0, 0)是平面SAB的法向量,
cos AD, n AD n 6 | AD || n | 3
4.求两法向量夹角
所求二面角的余弦值为: 6 3
5.定值
巩固练习1: 正方体ABCD—A1B1C1D1的棱长为2,点Q 是BC的中点,求二面角A—DQ—A1的余弦 值.
3.2利用空间向量求二面角
温故知新
已学习:二面角及二面角的平面角的概念
会:建立空间直角坐标系 进行向量坐标运算 求平面的法向量
已掌握:用向量求解线线角、线面角的方法
温故知新 1.二面角的定义
从一条直线出发的两个半平面所组成的图形叫做二面角。
2.二面角的范围: [0, ]
O
探究方法
问题1:
求直线和平面所成的角可转化成直线的方向向量与 平面的法向量的夹角,那么二面角的大小与两个半 平面的法向量有着怎样的关系呢?
高考链接
(2019.18)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4, AB=2,∠BAD=60°,E,M,N 分别是BC,BB1,A1D 的中点.
(1)证明:MN∥平面C1DE; (2)求二面角A-MA1-N的正弦值.
z
【点睛】
本题考查线面平行关系的证明、空
间向量法求解二面角的问题.求解二
面角的关键是能够利用垂直关系建
立空间直角坐标系,从而通过求解
O
法向量夹角的弦值来得到二面角
的正弦值,属于常规题型.
x
y
n
a
n1 n2
l
探究方法
问题2:二面角的大小与两个平面法向量夹角的关系?
n1,n2
n1,n2
二面角教学设计
教学过程设计教学步骤教学内容学生活动设计意图时间分配一、复习引入1.作二面角平面角的方法2.线线角公式3.线面角公式学生前后四个人一小组交流讨论,小组派代表回答问题。
为后面引出利用空间向量求二面角作好铺垫,提升学生数学抽象的核心素养。
2min二、概念生成问题1:如何通过空间向量来确定平面呢?几点注意:1.法向量一定是非零向量2.一个平面的法向量并非只有一条,所有的法向量互相平行3.向量n是平面的法向量,向量m与平面平行或在平面内,则有mn=0问题2:二面角的平面角能否转化为空间向量夹角?1212,,n nn nαβαβθθ问题3:如果分别是平面,的一个法向量设与所成角的大小为,通过作图讨论与的关系学生归纳,师生共同补充。
教师引导学生弄清二面角与两个平面法向量的关系思考交流,小组派代表回答问题。
结论:如图(2)(4)中<n1,n2>就是二面角α-l-β的平面角的补角;如图(1)(3)中<n1,n2>就是二面角α-l-β的平面角.通过问题的解决,让学生明确平面与法向量的关系,提升学生的分析归纳能力。
通过对问题的分析,让学生体会由具体到抽象的思想方法,感知从特殊到一般的认知过程。
鼓励学生通过实验得到二面角与两个平面法向量夹角的关系,因为不少科学的发明、发现都是依靠直觉提出猜想和预见,然后再通过大量的试验或科学论证,才得到证实或否定,进而18min用空间向量求二面角的大小(1)如果n1,n2分别是平面α1,α2的一个法向量,设α1与α2所成角的大小为θ,则有θ=<n1,n2>或θ=π-<n1,n2>,特别地,sinθ=sin<n1,n2>.(2)设二面角α-l-β为θ,平面α,β的法向量分别为n1,n2,有|cos θ|=|cos<n1,n2>|成立.小组合作归纳出利用空间向量求二面角大小的方法推动科学技术的发展。
通过梳理求解二面角的基本方法和步骤,提升运算速度和准确度,让学生感受,用代数方法解问题决立体几何问题。
用法向量求二面角
探究新知
• 结论 •
法向量的夹角与二面角的大小是相等或
互补。
尝试:已知两平面的法向量分别为m=(0,1,0),
n=(0,1,1),则两平面所成的二面角为( C )
A.45°
B.135°
C.45°或135°
D.90°
解析
cos m , n
|
m m
n || n
|
1 1
2
2, 2
即〈m,n〉=45°,其补角为135°.
启示:
求二面角的平面角可转化为求两法向量的夹角。
如图,ABCD是直角梯形,ABC BAD 90,
又SA 面ABCD,
SA
AB
BC
1,
AD
1 2
,
求面
SCD
与面SAB 所成的二面角的余弦值。
解:建立如图所示的空间直角坐标系 A xyz,
则 A(0,0,0), 设n (x, y,
又SA 面ABCD, SA AB BC 1, AD 1 ,
2
求面SCD与面 SAB 所成的二面角的余弦值。
S
你能找到所求 二面角的棱吗?
B
C
A
D
探究新知
问题:
二面角的平面角与两个半平面的法向量的夹角有没
有关系?
n1 n2
l
探究新知
n1, n2
探究新知
n1, n2
D(1 ,0,0), C (1,1,0), S(0,0,1), 2
z)是面SCD的法向量, 则
S
z
n DC,
n
02 教学设计_二面角(第1课时)(2)
1.2.4 二面角(1)本节课选自《2019人教B 版高中数学选择性必修第一册》第一章《空间向量与立体几何》,本节主要学习二面角。
学生在学习了异面直线所成角的概念及线面角的基础上,对空间角的问题有了一定的经验,二面角的问题,依然按照将空间问题化为平面问题、将立体几何问题化为空间向量运算问题的基本思路展开。
为培养学生直观想象、数学抽象、逻辑推理、数学建模和数学运算的核心素养提供舞台。
1.教学重点:会用向量法解决二面角的计算问题2.教学难点:二面角的概念.多媒体般于水平面呈一定角度,如图(2)所示,很多屋顶都是二面角的形象,你能找到日常生活中更多类似的例子吗?怎样刻画平面与平面所成的角呢?1.二面角及其度量1.在正方体ABCD-A1B1C1D1中,平面B1C1DA与平面BCDA所成二面角的大小为.答案:45°2.两个平面相交时,它们所成角的取值范围是什么?提示:(0°,90°]问题2:如图所示,设S为二面角α−AB−β的半平面α上一点,过点S 做半平面β的垂线SS′,设O为棱AB上一点(1)判断SO⊥AB是S′O⊥AB的什么条件;(2)由二面角的作法,你能得到什么启发?提示:(1)充要条件(2)若二面角α−AB−β的大小为θ,则ΔS′AB的面积与ΔSAB的面积比就是二面角的余弦,即:SΔS′ABSΔSAB=cosθ问题3:如果n1, n2分别是平面α1, α2的一个法向量,设α1与α2所成角的大小为θ,通过作图讨论θ与<n1, n2>的关系.2.用空间向量求二面角的大小(1)如果n1,n2分别是平面α1,α2的一个法向量,设α1与α2所成角的大小为θ,则有θ=<n1,n2>或θ=π-<n1,n2>,特别地,sin θ=sin<n1,n2>.(2)设二面角α-l-β为θ,平面α,β的法向量分别为n1,n2,有|cos θ|=|cos <n 1,n 2>|=|n ·n 2||n1||n 2|成立.点睛: 利用公式cos <n 1,n 2>=n 1·n 2|n 1||n 2|(n 1,n 2分别为两平面的法向量)进行求解,注意<n 1,n 2>与二面角大小的关系,是相等还是互补,需结合图形进行判断.如图(2)(4)中<n 1,n 2>就是二面角α-l -β的平面角的补角;如图(1)(3)中<n 1,n 2>就是二面角α-l -β的平面角.3.判断(1)二面角的大小就是该二面角两个半平面的法向量的夹角.( ) (2)若二面角两个半平面的法向量的夹角为120°,则该二面角的大小等于60°或120°.( ) 答案:(1)× (2)√4.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的角的余弦值为( ) A .12 B .23 C .√33 D .√22解:以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0),∴A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,-1),A 1E ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-12),设平面A1ED的一个法向量为n1=(x,y,z),则{y-z=0,x-12z=0,令x=1,则y=2,z=2, ∴n1=(1,2,2).∵平面ABCD的一个法向量为n2=(0,0,1),∴cos<n1,n2>=23×1=23,即平面A1ED与平面ABCD所成角的余弦值为23.答案:B二、典例解析例1 如图所示,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-P A-C的平面角的正切值.分析由PC⊥平面ABC,知平面ABC⊥平面P AC,从而B在平面P AC上的射影在AC上,由此可用三垂线定理作出二面角的平面角.解:∵PC⊥平面ABC,∴平面P AC⊥平面ABC,交线为AC.作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面P AC,作DE⊥P A于E点,连接BE,据三垂线定理,则BE⊥P A,从而∠BED是二面角B-P A-C的平面角.设PC=a,依题意知△ABC是边长为a的正三角形,∴D是AC的中点,且BD=√32a.∵PC=CA=a,∠PCA=90°,∴∠P AC=45°,∴在Rt△DEA中,ED=AD·sin 45°=a2·√22=√24a,则在Rt△BED中,tan∠BED=BDED =2√3√2=√6.故二面角B-P A-C的平面角的正切值为√6.1.本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解.2.二面角的定义求法主要有:(1)由定义作出二面角的平面角;(2)利用三垂线定理(逆定理)作出二面角的平面角;(3)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角.跟踪训练1 如图,已知二面角α-a-β等于120°,P A⊥α,A∈α,PB⊥β,B∈β,求∠APB的大小.解:设平面P AOB∩α=OA,平面P AOB∩β=OB.∵P A⊥α,a⊂α,∴P A⊥a.同理PB⊥a.∴a⊥平面P AOB.又∵OA⊂平面P AOB,∴a⊥OA.同理a⊥OB.∴∠AOB是二面角α-a-β的平面角.在四边形P AOB中,∠AOB=120°,∠P AO=∠PBO=90°,所以∠APB=60°.例2:如图所示,已知直三棱柱ABC−A1B1C1中,∠ABC=900,AB=BC=1,AA1=2,且D是AA1的中点.求平面BDC与平面BD C1所成角的大小.解:以题意,CA,CB,C C1两两相互垂直。
立体几何向量法求二面角
立体几何向量法求二面角简介在立体几何中,二面角指的是两个平面的夹角。
为了求解二面角,我们可以使用向量法,具体就是将两个平面的法向量进行运算,得到两个向量之间的夹角。
本文将详细介绍立体几何向量法求解二面角的原理和具体步骤。
背景知识在学习立体几何向量法求解二面角之前,我们需要了解一些基础知识: 1. 平面的法向量:平面上的每一点都有一个与之垂直的向量,称为平面的法向量。
平面的法向量可以用两个不共线的向量来确定。
2. 向量的点乘:向量的点乘运算可以得到两个向量之间的夹角。
点乘的结果等于两个向量的模长乘积与它们之间夹角的余弦值的乘积。
3. 向量的模长:向量的模长表示向量的长度。
理论推导假设有两个平面,分别为平面A和平面B,我们需要求解它们之间的二面角。
要求解二面角,我们可以使用以下的步骤: 1. 确定平面A和平面B的法向量。
可以通过已知条件或者使用平面上的点来确定法向量。
2. 对平面A和平面B的法向量进行点乘运算,得到它们之间的夹角的余弦值。
3. 通过反余弦函数,将夹角的余弦值转换为夹角的度数。
以下是具体的求解步骤:步骤1:确定法向量首先,我们需要确定平面A和平面B的法向量。
实际情况中,可能已经给出了平面的法向量,也可能需要通过平面上的点来计算法向量。
假设平面A的法向量为??,平面B的法向量为??。
步骤2:点乘运算接下来,我们对平面A和平面B的法向量进行点乘运算,得到它们之间的夹角的余弦值。
点乘的结果等于两个向量的模长乘积与它们之间夹角的余弦值的乘积。
? · ?? = |??| |??| cos(?)其中,?为平面A和平面B的法向量之间的夹角。
步骤3:求解夹角最后,通过反余弦函数,我们可以将夹角的余弦值转换为夹角的度数。
得到的结果就是平面A和平面B之间的二面角。
= arccos( · ?)实例演示为了更好地理解立体几何向量法求解二面角的过程,我们来看一个具体的实例。
假设有两个平面,平面A的法向量为? = (1, 0, 0),平面B的法向量为?? = (0, 1, 0)。
如何求二面角的法向量
重点和难点
难点:二面角与两个半平面的法向
量夹角的关系
三、教学方法的选择
1
教学方法
教师启发引导 学生自主探究
2
教学手段
多媒体辅助
四、教学过程的设计与实施
1 温故知新
2
探究方法
3
实践操作
4
归纳总结
四、教学过程的设计与实施
1
温故知新
如何度量二面角α—l—β的大小
B O A
l
四、教学过程的设计与实施
1
温故知新
异面直线所成的角
v1
v2
|
v1
v2
v1 , v2
v1, v2
四、教学过程的设计与实施
1
温故知新
直线与平面所成的角
直线的方向向量为
a ,平面的法向量为 n
n
a
a
B
2
a, n
n
a, n
2
四、教学过程的设计与实施
3
通过经历向量法求 二面角大小的推导 过程,培养大胆探 索精神,提高学习 立体几何的兴趣.
所成的角、直线与
平面所成角的解决 方法,得到用向量
求二面角大小的方
法,并能用之解决 有关问题,体会向 量方法在研究几何 问题中的作用.
问题的能力.
二、教学目标的确定
教学的重点和难点
重点:用法向量夹角求二面角的方 法的探究及应用
1 AD SA⊥平面ABCD,SA=AB=BC=1, , 2
求平面SAB与SCD 所成二面角的余弦值.
四、教学过程的设计与实施
学案1:1.2.4 二面角
1.2.4 二面角【新知初探】1.二面角的概念(1)半平面:平面内的一条直线把平面分为两部分, 都叫做半平面. (2)二面角:从一条直线出发的 所组成的图形叫做二面角,这条直线叫做二面角的 , 叫做二面角的面.棱为l ,两个面分别为α,β的二面角的面,记作 ,若A ∈α,B ∈β,则二面角也可以记作 ,二面角的范围为 .(3)二面角的平面角:在二面角αl β的棱上 ,以O 为垂足,分别在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则 叫做二面角αl β的平面角.提醒:二面角的大小等于它的平面角大小,平面角是直角的二面角称为直二面角. 思考:如何找二面角的平面角?2.用空间向量求二面角的大小如果n 1,n 2分别是平面α1,α2的一个法向量,设α1与α2所成角的大小为θ.则θ= 或θ= ,sin θ= .【初试身手】1.思考辨析(正确的打“√”,错误的打“×”) (1)二面角的范围是⎣⎡⎦⎤0,π2.( )(2)若二面角αl β的两个半平面的法向量分别为n 1,n 2,则二面角的平面角与两法向量夹角〈n 1,n 2〉一定相等.( )(3)二面角的大小通过平面角的大小来度量. ( )2.在正方体ABCD A 1B 1C 1D 1中,二面角A 1BC A 的余弦值为( ) A .12 B .23 C .22 D .333.已知二面角αl β,其中平面α的一个法向量m =(1,0,-1),平面β的一个法向量n =(0,-1,1),则二面角αl β的大小可能为________.4.在正方体ABCD A 1B 1C 1D 1中,二面角A 1BD C 1的余弦值是________.【合作探究】类型一用定义法求二面角【例1】 如图,设AB 为圆锥PO 的底面直径,P A 为母线,点C 在底面圆周上,若△P AB 是边长为2的正三角形,且CO ⊥AB ,求二面角P AC B 的正弦值.[规律方法]用定义求二面角的步骤(1)作(找)出二面角的平面角(作二面角时多用三垂线定理). (2)证明所作平面角即为所求二面角的平面角. (3)解三角形求角. [跟进训练]1.已知矩形ABCD 的两边AB =3,AD =4,P A ⊥平面ABCD ,且P A =45,则二面角A BD P的正切值为________.类型二用向量法求二面角[探究问题]1.构成二面角的平面角有几个要素?2.二面角的大小与其两个半平面的法向量的夹角有何关系?【例2】如图所示,四棱柱ABCDA1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.[母题探究]1.(变问法)本例(2)条件不变,求二面角BA1CD的余弦值.2.(变条件、变问法)本例四棱柱中,∠CBA=60°改为∠CBA=90°,设E,F分别是棱BC,CD的中点,求平面AB1E与平面AD1F所成锐二面角的余弦值.[规律方法]利用坐标法求二面角的步骤设n1,n2分别是平面α,β的法向量,则向量n1与n2的夹角(或其补角)就是两个平面夹角的大小,如图.用坐标法的解题步骤如下:(1)建系:依据几何条件建立适当的空间直角坐标系.(2)求法向量:在建立的坐标系下求两个面的法向量n1,n2.(3)计算:求n1与n2所成锐角θ,cos θ=|n1·n2||n1|·|n2|.(4)定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.提醒:确定平面的法向量是关键.类型三空间中的翻折与探索性问题【例3】如图甲,在直角梯形ABCD中,AB∥CD,AB⊥BC,CD=2AB=2BC=4,过A 点作AE⊥CD,垂足为E,现将△ADE沿AE折叠,使得DE⊥EC.取AD的中点F,连接BF,CF,EF,如图乙.甲乙(1)求证:BC⊥平面DEC;(2)求二面角CBFE的余弦值.[规律方法]1.与空间角有关的翻折问题的解法要找准翻折前后的图形中的不变量及变化的量,再结合向量知识求解相关问题.2.关于空间角的探索问题的处理思路利用空间向量解决空间角中的探索问题,通常不需要复杂的几何作图、论证、推理,只需先假设结论成立,设出空间的坐标,通过向量的坐标运算进行推断,把是否存在问题转化为点的坐标是否有解的问题来处理.[跟进训练]2.如图1,在等腰梯形ABCD中,AD∥CB,AD=2CB=4,∠ABC=120°,E为AD的中点,现分别沿BE,EC将△ABE和△ECD折起,使得平面ABE⊥平面BCE,平面ECD⊥平面BCE,连接AD,如图2.图1图2(1)若在平面BCE内存在点G,使得GD∥平面ABE,请问点G的轨迹是什么图形?并说明理由.(2)求平面AED与平面BCE所成锐二面角的余弦值.【课堂小结】1.学会利用空间向量求二面角与定义法求二面角的方法.2.利用向量法求二面角的基本思想是把空间角转化为求两个向量之间的关系.首先要找出并利用空间直角坐标系或基向量(有明显的线面垂直关系时尽量建系)表示出向量,然后运用向量的运算即可,其次要理清要求角与两个向量夹角之间的关系.【学以致用】1.三棱锥A BCD 中,平面ABD 与平面BCD 的法向量分别为n 1·n 2,若〈n 1,n 2〉=π3,则二面角A BD C 的大小为( )A .π3B .2π3C .π3或2π3D .π6或π32.已知△ABC 和△BCD 均为边长为a 的等边三角形,且AD =32a ,则二面角A BC D 的大小为( )A .30°B .45°C .60°D .90°3.如图所示,在正四棱锥P ABCD 中,若△P AC 的面积与正四棱锥的侧面面积之和的比为6∶8,则侧面与底面所成的二面角为( )A .π12B .π4C .π6D .π34.在正方体ABCD A 1B 1C 1D 1中,E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为________.5.三棱锥P ABC ,P A =PB =PC =73,AB =10,BC =8,CA =6,求二面角P AC B 的大小.【参考答案】【新知初探】1.二面角的概念 (1)其中的每一部分 (2)两个半平面棱 每个半平面αl βA l B[0,π](3)任取一点O∠AOB思考:[提示] (1)定义法由二面角的平面角的定义可知平面角的顶点可根据具体题目选择棱上一个特殊点,求解用到的是解三角形的有关知识. (2)垂面法作(找)一个与棱垂直的平面,与两面的交线就构成了平面角.(3)三垂线定理(或逆定理)作平面角,这种方法最为重要,其作法与三垂线定理(或逆定理)的应用步骤一致.2.用空间向量求二面角的大小 〈n 1,n 2〉π-〈n 1,n 2〉sin 〈n 1,n 2〉 【初试身手】1.[答案] (1)× (2)× (3)√ [提示] (1)× 不是.是[0,π]. (2)× 不一定.可能相等,也可能互补. (3)√2.C [易知∠A 1BA 为二面角A 1 BC A 的平面角,cos ∠A 1BA =AB A 1B =22.]3.60°或120° [cos 〈m ,n 〉=m ·n |m |·|n |=-12·2=-12,∴〈m ,n 〉=120°,∴二面角αl β的大小为60°或120°.] 4.13 [如图,建立空间直角坐标系,设正方体的棱长为1, 则D (0,0,0),B (1,1,0),A 1(1,0,1),DA 1→=(1,0,1),DB →=(1,1,0). 设n =(x ,y ,z )是平面A 1BD 的一个法向量,则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,即⎩⎪⎨⎪⎧x +z =0,x +y =0,令x =1,则y =-1,z =-1,∴n =(1,-1,-1). 同理,求得平面BC 1D 的一个法向量m =(1,-1,1), 则cos 〈m ,n 〉=m·n |m||n|=13,所以二面角A 1BD C 1的余弦值为13.] 【合作探究】类型一用定义法求二面角【例1】[解] 如图,取AC 的中点D ,连接OD ,PD ,∵PO ⊥底面,∴PO ⊥AC ,∵OA =OC ,D 为AC 的中点,∴OD ⊥AC , 又PO ∩OD =O ,∴AC ⊥平面POD ,则AC ⊥PD , ∴∠PDO 为二面角P AC B 的平面角. ∵△P AB 是边长为2的正三角形,CO ⊥AB , ∴PO =3,OA =OC =1,OD =22, 则PD =(3)2+⎝⎛⎭⎫222=142.∴sin ∠PDO =PO PD =3142=427,∴二面角P AC B 的正弦值为427.[跟进训练]1.13[过A 作AO ⊥BD ,交BD 于O ,连接PO ,∵矩形ABCD 的两边AB =3,AD =4,P A ⊥平面ABCD ,且P A =45,∴BD =32+42=5,PO ⊥BD ,∴∠POA 是二面角A BD P 的平面角,∵12×BD ×AO =12×AB ×AD ,∴AO =AB ×AD BD =125, ∴tan ∠POA =P A AO =45125=13,∴二面角A BD P 的正切值为13.]类型二用向量法求二面角[探究问题]1.[提示] (1)角的顶点在二面角的棱上;(2)角的两边分别在表示二面角的两个半平面内;(3)角的两边分别和二面角的棱垂直. 2.[提示]条件平面α,β的法向量分别为u ,v ,α,β所构成的二面角的大小为θ,〈u ,v 〉=φ图形关系 θ=φ θ=π-φ 计算 cos θ=cos φcos θ=-cos φ【例2】[解] (1)证明:因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD , 又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD , 因为AC ∩BD =O ,所以O 1O ⊥底面ABCD .(2)因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形,AC ⊥BD , 又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA =60°,所以OB =3,OC =1, 所以O (0,0,0),B 1(3,0,2),C 1(0,1,2), 平面BDD 1B 1的一个法向量为n =(0,1,0), 设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1→,m ⊥OC 1→,所以3x +2z =0,y +2z =0, 取z =-3,则x =2,y =23,所以m =(2,23,-3), 所以cos 〈m ,n 〉=m·n |m||n|=2319=25719.由图形可知二面角C 1OB 1D 的大小为锐角, 所以二面角C 1OB 1D 的余弦值为25719.[母题探究]1.[解] 如图建立空间直角坐标系.设棱长为2,则A 1(0,-1,2),B (3,0,0),C (0,1,0),D (-3,0,0). 所以BC →=(-3,1,0),A 1C →=(0,2,-2),CD →=(-3,-1,0). 设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C →=0,n 1·BC →=0,即⎩⎨⎧2y 1-2z 1=0,-3x 1+y 1=0,取x 1=3,则y 1=z 1=3,故n 1=(3,3,3). 设平面A 1CD 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·A 1C →=0,n 2·CD →=0,即⎩⎨⎧2y 2-2z 2=0,-3x 2-y 2=0,取x 2=3,则y 2=z 2=-3,故n 2=(3,-3,-3). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-1521=-57.由图形可知二面角B A 1C D 的大小为钝角,所以二面角B A 1C D 的余弦值为-57.2.[解] 以A 为坐标原点建立空间直角坐标系,如图所示,设此棱柱的棱长为1, 则A (0,0,0),B 1(1,0,1),E ⎝⎛⎭⎫1,12,0,D 1(0,1,1),F ⎝⎛⎭⎫12,1,0,AE →=⎝⎛⎭⎫1,12,0,AB 1→=(1,0,1),AF →=⎝⎛⎭⎫12,1,0,AD 1→=(0,1,1). 设平面AB 1E 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB 1→=0,n 1·AE →=0,即⎩⎪⎨⎪⎧x 1+z 1=0,x 1+12y 1=0, 令y 1=2,则x 1=-1,z 1=1,所以n 1=(-1,2,1). 设平面AD 1F 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·AD 1→=0,n 2·AF →=0,即⎩⎪⎨⎪⎧y 2+z 2=0,12x 2+y 2=0.令x 2=2,则y 2=-1,z 2=1.所以n 2=(2,-1,1).所以平面AB 1E 与平面AD 1F 所成锐二面角的余弦值为 |n 1·n 2||n 1||n 2|=|(-1,2,1)·(2,-1,1)|(-1)2+22+12·22+(-1)2+12=|(-1)×2+2×(-1)+1×1|6×6=12.类型三空间中的翻折与探索性问题【例3】[解] (1)证明:如图,∵DE ⊥EC ,DE ⊥AE ,AE ∩EC =E , ∴DE ⊥平面ABCE ,又∵BC ⊂平面ABCE ,∴DE ⊥BC , 又∵BC ⊥EC ,DE ∩EC =E ,∴BC ⊥平面DEC .(2)如图,以点E 为坐标原点,分别以EA ,EC ,ED 为x ,y ,z 轴建立空间坐标系E xyz ,∴E (0,0,0),C (0,2,0),B (2,2,0),D (0,0,2),A (2,0,0),F (1,0,1), 设平面EFB 的法向量n 1=(x 1,y 1,z 1),由EF →=(1,0,1),EB →=(2,2,0),所以⎩⎪⎨⎪⎧x 1+z 1=0,2x 1+2y 1=0,∴取x 1=1,得平面EFB 的一个法向量n 1=(1,-1,-1), 设平面BCF 的一个法向量为n 2=(x 2,y 2,z 2),由CF →=(1,-2,1),CB →=(2,0,0),所以⎩⎪⎨⎪⎧x 2=0,x 2-2y 2+z 2=0,∴取y 2=1,得平面BCF 的一个法向量n 2=(0,1,2),设二面角C BF E 的大小为α,则cos α=|n 1·n 2||n 1|·|n 2|=|-1-2|5·3=155.[跟进训练]2.[解] (1)点G 的轨迹是直线MN .理由如下:如图,分别取BC 和CE 的中点N 和M ,连接DM ,MN ,ND ,则MN ∥BE ,又MN ⊄平面BEA ,BE ⊂平面BEA ,∴MN ∥平面BEA ,依题意有△ABE ,△BCE ,△ECD 均为边长为2的正三角形,∴MD ⊥CE , 又平面ECD ⊥平面BCE ,则MD ∥平面BEA , ∴平面NMD ∥平面BEA ,∴点G 的轨迹是直线MN .(2)如图,以点M 为坐标原点,MB 为x 轴,MC 为y 轴,MD 为z 轴,建立空间直角坐标系,则E (0,-1,0),D (0,0,3),A ⎝⎛⎭⎫32,-12,3,∴EA →=⎝⎛⎭⎫32,12,3,ED →=(0,1,3),设平面AED 的法向量n =(x ,y ,z ), 则⎩⎨⎧n ·ED→=y +3z =0,n ·EA →=32x +12y +3z =0,取x =3,得n =(3,3,-3), 取平面BCE 的一个法向量m =(0,0,1), 则cos 〈n ,m 〉=n ·m |n |·|m |=-55,∴平面AED 与平面BCE 所成锐二面角的余弦值为55. 【学以致用】1.C [当二面角A BD C 为锐角时,它等于〈n 1,n 2〉=π3.当二面角A BD C 为钝角时,它应对等于π-〈n 1,n 2〉=π-π3=2π3.]2.C [如图取BC 的中点为E ,连接AE ,DE ,由题意得AE ⊥BC ,DE ⊥BC ,且AE =DE =32a , 又AD =32a ,∴∠AED =60°,即二面角A BC D 的大小为60°.] 3.D [设正四棱锥的底面边长为a ,侧面与底面所成的二面角为θ,高为h ,斜高为h ′,则12×2ah 4×12ah ′=68,∴h h ′=32,∴sin θ=32,即θ=π3.]4.23[建系如图,设正方体的棱长为1, 则D (0,0,0),A 1(1,0,1),E ⎝⎛⎭⎫1,1,12,∴DA 1→=(1,0,1),DE →=⎝⎛⎭⎫1,1,12.设平面A 1ED 的一个法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DE →=0. 即⎩⎪⎨⎪⎧x +z =0,x +y +12z =0,令x =1,得y =-12,z =-1.∴n =⎝⎛⎭⎫1,-12,-1, 又平面ABCD 的一个法向量为DD 1→=(0,0,1).则cos 〈n ,DD 1→〉=|n ·DD 1→||n ||DD 1→|=23.]5.[解] 如图在三棱锥P ABC 中,P A =PB =PC =73,AB =10,BC =8,CA =6,∴AC 2+BC 2=AB 2,∴△ABC 是以AB 为斜边的直角三角形, ∴P 在底△ABC 的射影D 是△ABC 的外心, 即斜边AB 的中点D 是P 在底△ABC 的射影, 作DE ⊥AC ,交AC 于点E ,连接PE , 则∠PED 是所求的二面角的平面角,由题意得DE =4,PE =8,cos ∠PED =DE PE =12,∴∠PED =60°,∴二面角P AC B 的大小为60°.。
向量法求二面角大小洋葱数学
向量法求二面角大小洋葱数学【原创实用版】目录一、引言二、向量法求二面角大小的基本原理1.求出所求二面角两个面上的法向量2.计算 cos(法向量 1 法向量 2)/(法向量 1 的模长法向量 2 的模长)3.根据图形判断是锐二面角还是钝二面角4.确定 cos 的符号5.用反三角函数表示这个角三、结论正文一、引言在数学中,二面角是指两个平面之间的夹角,它是一个非常重要的概念。
在实际应用中,求解二面角大小有着广泛的应用,而向量法是求解二面角大小的一种常用方法。
本文将从向量法的角度出发,详细介绍如何求解二面角大小。
二、向量法求二面角大小的基本原理1.求出所求二面角两个面上的法向量在求解二面角大小时,首先需要找到两个平面上的法向量。
法向量是垂直于平面的向量,它可以通过计算平面上两个向量的叉积得到。
假设平面 1 的法向量为 A,平面 2 的法向量为 B,则可以通过计算向量 A 和向量 B 的叉积得到法向量 C。
2.计算 cos(法向量 1 法向量 2)/(法向量 1 的模长法向量 2 的模长)接下来,需要计算二面角大小所对应的 cos 值。
根据向量内积的定义,可以得到 cos(法向量 1 法向量 2)=(法向量 1·法向量 2)/(法向量 1 的模长*法向量 2 的模长)。
其中,法向量 1·法向量 2 表示法向量 1 和法向量 2 的内积,法向量 1 的模长和法向量 2 的模长分别表示它们的模长。
3.根据图形判断是锐二面角还是钝二面角在计算出 cos 值后,需要根据图形来判断这个二面角是锐二面角还是钝二面角。
如果 cos 值为正,那么这个二面角就是锐二面角;如果 cos 值为负,那么这个二面角就是钝二面角。
4.确定 cos 的符号在计算 cos 值时,需要注意 cos 值的符号。
如果法向量 1 和法向量 2 的内积为正,那么 cos 值为正;如果内积为负,那么 cos 值为负。
在实际计算中,需要根据具体情况来确定 cos 值的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲:立体几何中的向量方法
——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。
高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。
它能利用代数方法解决立体几何问题,体现了数形结合的思想。
并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。
为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。
本文举例说明如何用向量法解决立体几何的空间角问题。
以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。
利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。
空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。
教学目标
1.使学生会求平面的法向量;
2.使学生学会求二面角的平面角的向量方法;
3.使学生能够应用向量方法解决一些简单的立体几何问题;
4.使学生的分析与推理能力和空间想象能力得到提高.
教学重点
求平面的法向量;
求解二面角的平面角的向量法.
教学难点
求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式:
1、二面角的平面角:(范围:],0[πθ∈)
结论: 或
统一为:
2、法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角.
3、用空间向量解决立体几何问题的“三步曲”:
(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几
2
12121,cos cos n n n n n n
⋅=><=θ
何问题转化为向量问题;(化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)
(3)把向量的运算结果“翻译”成相应的几何意义。
(回到图形)
Ⅱ、典例分析与练习
例1、如图,ABCD 是一直角梯形,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,2
1
=AD ,求面SCD 与面SBA 所成二面角的余弦值.
分析 分别以,,BA AD AS 所在直线为,,x y z 轴, 建立空间直角坐标系,求出平面SCD 的法向量1n , 平面SBA 法向量2n ,利用12,n n 夹角 求平面SCD 与平面SBA 的夹角余弦值。
解:如图建立空间直角坐标系xyz A -,则
)1,0,0(),0,2
1
,0(),0,1,1(),0,0,0(S D C A -
易知面SBA 的法向量为)0,21,0(1==AD n ,)1,2
1
,0(),0,21,1(-=-=SD CD
设面SCD 的法向量为),,(2z y x n =,则有⎪⎪⎩⎪⎪⎨⎧
=-=-0
2
02
z y y x ,取1=z ,得2,1==y x ,)1,21,1(2=∴n
3
6
|
|||,cos 212121=
>=
<∴n n n n 又1n 方向朝面内,2n 方向朝面外,属于“一进一出”的情况,二面角等于法向量夹角
即所求二面角的余弦值为
3
6. 点拨 求二面角的方法有两种:(1)利用向量的加法及数量积公式求出与两半平面的棱垂直的向量的夹角,从而确定二面角的大小;(2)根据几何体的特征建立空间直角坐标系,先求二面角两个半平面的法向量,再求法向量的夹角,从而确定二面角的大小。
练习1:正方体1111D C B A ABCD -的棱长为1,点E 、F 分别为CD 、1DD 的中点.求二面角
D A
E
F --的余弦值。
解:由题意知,)0,1,21(),21
,1,0(E F ,则)21,1,0(=AF )0,1,2
1(,=AE
设平面AEF 的法向量为),,(z y x n =,则
⎪⎪⎩⎪⎪⎨⎧=+=+⇒⎪⎩⎪⎨
⎧=⋅=⋅02
10210
0y x z y AE n AF n ,取1=y ,得2-==z x )2,1,2(--=∴n
又平面AED 的法向量为)1
,0,0(1=AA 32
1
32||||,cos 11
1-=⨯-=⋅>=
<∴AA n AA n AA n 观察图形知,二面角D AE F --为锐角,所以所求二面角D AE F --的余弦值为3
2
练习2:如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A ''
是矩形,。
平面平面ABCD B B A A ⊥''
试问:当A A '的长度为多少时,二面角A C A D -'-的大小为?
60
解: 如图建立空间坐标系A xyz -,则 '(1,0,)DA a =- (0,1,0)DC = 设面'
DAC 的法向量为1(,,1)n x y =
则'1100
DA n DC n ⎧⋅=⎪⎨⋅=⎪⎩ 得1(,0,1)n a = 易得面'
AAC 的法向量2(1,1,0)n =-
A B
x
D
C
1
B z
y
1
A 1
D 1
C E
F
∴向量12,n n 的夹角为60
由12122121
cos ,2
||||12n n a n n n n a ⋅-〈〉=
==+⋅ 得 1a =
∴ 当A A '=1时,二面角A C A D -'-的大小为60.
设计说明:复习面面角转化为两向量的夹角或其补角的方法,也可借此机会说明为什么这两个角相等或互补,就没有其他情况.
练习3:正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA 上任意一点. 当11BC B P ⊥时,求二面角11C B P C --的平面角的余弦值. 解:如图建立空间坐标系O xyz -,设AP a =
则1,,,A C B P 的坐标分别为(0,1,0),(0,1,0),(3,0,2)(0,1,)a -- ∵
,
1(3,1,2)
BC =-
由11BC B P ⊥,得110BC B P = 即22(2)0a +-= 1a ∴= 又11BC B C ⊥ 11BC CB P ∴⊥面
∴1(3,1,2)BC =-是面1CB P 的法向量
设面11C B P 的法向量为(1,,)n y z =,由1110
B P n B
C n ⎧⋅=⎪⎨⋅=⎪⎩得(1,3,23)n =-,
设二面角11C B P C --的大小为α,则116
cos 4||||
BC n BC n α== Ⅲ、小结与收获
1、二面角的平面角的正弦值弦值:
2、求平面法向量的方法.
2
12121,cos cos n n n n n n
⋅=><=θ
Ⅳ、课后练习
1、如图,已知四棱锥P ABCD -的底面是直角梯形,90ABC BCD ∠=∠=,
2AB BC PB PC CD ====,侧面PBC ⊥底面ABCD .
求二面角P BD C --的大小.
2、如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均相等,点D 是BC 上一点,AD ⊥C 1D. 求二面角C -AC 1-D 的大小.。