力、牛顿运动定律(扶中2)

合集下载

牛顿第二定律详解

牛顿第二定律详解

牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。

2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。

(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。

(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。

(2) 瞬时性a与F同时产生、同时变化、同时消失。

作用力突变,a的大小方向随着改变,是瞬时的对应关系。

(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。

因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。

(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。

牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。

《牛顿运动定律的应用(二)——共点力的平衡》新人教原创

《牛顿运动定律的应用(二)——共点力的平衡》新人教原创
F1 F1 G F2 G O
F2
多 力 平 衡
多力平衡条件: 物体受到几个共点力的作用而平衡时,其中 的任意一个力必定与余下的其他力的合力等 大反向。 如图所示,某物体在四个共 点力作用下处于平衡状态, 若将F4=5N的力沿逆时针方 向转动90°,其余三个力的 大小和方向都不变,求此时 物体所受的合力。 F2 F1
第四章
牛顿运动定律
7、牛顿运动定律的应用(二) ——共点力的平衡
共 点 力 的 平 衡 条 件
一个物体在共点力作用力下,如果 保持静止或者做匀速直线运动,我 们就说这个物体处于平衡状态。
静止或 匀速直 线运动
△ v= 0
a=0
F 合=0
共点力作用下 的平衡条件
思 考
静止与速度v=0 是一回事吗? 竖直向上抛出一个物体,当物体到达最高 点时,速度为0 ,加速度为0 吗?或者说合 外力为0 吗?
G
注意:加速度为0 时速度不一定为0 ;速 度为0 时加速度不一定为0 。
二 力 平 衡
二力平衡条件: 两个力大小相等、方向相反、作用在同一 条直线上。
一对平衡力 FN
F
G G
三 力 平 衡
三力平衡条件: 任意两个力的合力与第三个力大小相等、方 向相反、作用在同一条直线上。
FB= G cosθ
FB= F2= G cosθ
Ff
θ
FN 水平方向:FN-F2 =0
竖直方向:F1-Ff -G=0
④ ⑤
G
F


G 由①②③④⑤得 F= cos -μsin θ θ
F1= F cosθ
Ff=μFN
F2= F sinθ FN= F 2

F

2牛顿运动定律

2牛顿运动定律

第二章 牛顿运动定律(Newton’s Laws of Motion )§1 牛顿运动定律▲第一定律(惯性定律)(First law ,Inertia law ): 任何物体都保持静止或作匀速直线运动的状态,除非作用在它上面的力迫使它改变这种状态。

⎩⎨⎧概念定性给出了力与惯性的定义了“惯性系” 惯性系(inertial frame ):牛顿第一定律成立的参考系。

力是改变物体运动状态的原因,而并非维持物体运动状态的原因。

▲第二定律(Second lawF ρ:物体所受的合外力。

m :质量(mass ),它是物体惯性大小的量度,也称惯性质量(inertial mass )。

若m = const. ,则有:a m F ρρ= a ρ:物体的加速度。

第一定律▲第三定律(Third Law ):2112F F ρρ-=说明:1.牛顿定律只适用于惯性系;2.牛顿定律是对质点而言的,而一般物体可认为是质点的集合,故牛顿定律具有普遍意义。

Δ§2 SI 单位和量纲(书第二章第2节)Δ§3 技术中常见的几种力(书第二章第3节)Δ§4基本自然力(书第二章第4节)m 1 m 2 F 12 F 21§5 牛顿定律应用举例书第二章第2节的各个例题一定要认真看,下面再补充一例,同时说明作题要求。

已知:桶绕z轴转动,ω= const.水对桶静止。

求:水面形状(z - r关系)解:▲选对象:任选表面上一小块水为隔离体m ;▲看运动:m作匀速率圆周运动raρρ2ω-=;▲查受力:受力gmρ及Nρ,水面⊥Nρ(∵稳定时m受周围水及空气的切向合力为零);▲列方程:⎩⎨⎧-=-=-)2(sin)1(cos2rmNrmgNzωθθ向:向:θtg为z(r)曲线的斜率,由导数关系知:rzddtg=θ(3)由(1)(2)(3)得:rgrz2ddtgωθ==分离变量: r r gz d d 2ω= 积分: ⎰⎰=zz rr r g z 002d d ω得: 0222z r g z +=ω(旋转抛物面) 若已知不旋转时水深为h ,桶半径为R ,则由旋转前后水的体积不变,有: ⎰=⋅R h R r r z 02d 2ππ⎰=+Rh R r r z r g 02022d 2)2(ππω 得 g R h z 4220ω-=▲验结果: 0222z r g z +=ω ·单位:[2ω]=1/s 2 ,[r ]=m ,[g ]=m/s 2][m m/sm )/s 1(]2[2222z g ==⋅=ω,正确。

初中物理牛顿三大定律

初中物理牛顿三大定律

初中物理牛顿三大定律在初中物理的学习中,牛顿三大定律是极其重要的基础知识,它们为我们理解物体的运动和相互作用提供了关键的理论框架。

牛顿第一定律,也被称为惯性定律,其内容是:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。

简单来说,就是如果一个物体原本是静止的,没有受到力的作用,它就会一直保持静止;如果一个物体原本在做匀速直线运动,没有受到力的作用,它就会一直以这个速度和方向运动下去。

惯性定律告诉我们,物体具有保持原有运动状态的性质,这就是惯性。

比如,在一辆行驶的汽车突然刹车时,乘客会因为惯性向前倾倒。

牛顿第二定律是:物体的加速度跟作用力成正比,跟物体的质量成反比,且加速度的方向跟作用力的方向相同。

这个定律可以用一个公式来表示:F = ma ,其中 F 表示作用力,m 表示物体的质量,a 表示加速度。

这意味着,当对一个物体施加更大的力时,它的加速度就会更大;而物体的质量越大,要产生相同的加速度,就需要更大的力。

例如,推动一辆空车比推动一辆装满货物的车要容易得多,因为空车的质量小,相同的力作用下产生的加速度大。

牛顿第三定律指出:两个物体之间的作用力和反作用力,总是大小相等,方向相反,且作用在同一条直线上。

比如说,当你用力推墙时,墙也会对你施加一个大小相等、方向相反的力。

你推墙的力就是作用力,墙对你的反作用力会让你感觉到自己无法推动墙。

又比如,火箭能够升空,是因为火箭向下喷射高温高压的气体,这些气体给火箭一个向上的反作用力,推动火箭向上飞行。

在日常生活中,牛顿三大定律无处不在。

当我们踢足球时,脚对足球施加的力使足球获得加速度,从而改变其运动状态,这是牛顿第二定律的体现。

而足球在空中飞行时,由于没有水平方向的力作用,会保持水平方向的匀速直线运动,直到受到空气阻力等外力影响,这又符合牛顿第一定律。

当足球撞击球门柱反弹回来,球门柱给足球一个反作用力,这反映了牛顿第三定律。

在交通运输方面,牛顿定律也发挥着重要作用。

牛顿三大定律内容及表达式

牛顿三大定律内容及表达式

牛顿三大定律内容及表达式一、牛顿三大定律内容牛顿三大定律是经典力学的基础,为物质运动提供了基本的描述方式。

它们分别是:1.第一定律(惯性定律):一个物体在没有任何外力作用的情况下,将保持静止状态或者匀速直线运动状态。

也就是说,物体具有惯性,即保持其运动状态不变的性质。

2.第二定律(动量定律):物体运动的改变量等于作用力与时间之积。

公式表示为:F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。

这个定律揭示了力对物体运动状态改变的作用方式。

3.第三定律(作用力和反作用力定律):对于两个相互作用物体,作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。

这个定律说明了力的相互性,是牛顿力学中最为基础和重要的定律之一。

二、牛顿三大定律表达式1.第一定律的数学表达式为:F=0(或者d(mv)/dt=0),其中F表示外力矢量,m表示物体的质量,v表示物体的速度矢量,t表示时间。

当外力为零时,物体的运动状态(包括静止和匀速直线运动)不会改变。

2.第二定律的数学表达式为:F=ma,其中F表示作用力矢量,m表示物体的质量,a表示物体的加速度矢量。

这个公式揭示了力对物体运动状态改变的作用方式,是经典力学中最基本的公式之一。

3.第三定律的数学表达式为:F=-F',其中F和F'是一对作用力和反作用力矢量。

这个公式说明了作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。

三、牛顿三大定律的意义和影响牛顿三大定律的提出标志着经典力学的诞生,对人类科学和技术的发展产生了深远的影响。

这三大定律构成了经典力学的基础,为后来的物理学和工程学提供了基本的理论支持。

具体来说,牛顿三大定律的意义和影响包括以下几个方面:1.提供了描述物质运动的统一框架:牛顿三大定律为物质运动提供了统一的描述框架,使得人们可以更加精确地预测和描述物体的运动状态和变化规律。

这一框架在后来的物理学和工程学中得到了广泛应用和发展。

牛顿定律全部公式

牛顿定律全部公式

牛顿定律全部公式全文共四篇示例,供读者参考第一篇示例:牛顿定律是描述物体运动规律的基本定律,由英国物理学家牛顿提出。

牛顿定律共有三条,分别是惯性定律、运动定律和作用-反作用定律。

这三条定律描述了物体在受力作用下的运动规律,是现代物理学的基石。

下面我们来具体介绍一下牛顿定律的全部公式。

第一条定律,惯性定律,也称作牛顿第一定律。

它阐述了物体在没有外力作用下的运动状态:若一个物体受力均为零,则该物体将保持匀速直线运动或静止状态。

其表达式为F=0,其中F表示合力,为零表示没有外力作用。

第二条定律,运动定律,也称作牛顿第二定律。

它给出了物体在受力作用下的加速度与作用力之间的关系:物体的加速度与作用在其上的合力成正比,与物体的质量成反比。

其数学表达式为F=ma,其中F为合力,m为物体的质量,a为物体的加速度。

第三条定律,作用-反作用定律,也称作牛顿第三定律。

它说明了任意两个物体之间的相互作用:对一个物体施加的力,同样会有一个大小相等、方向相反的反作用力作用在另一个物体上。

其表达式为F12=-F21,其中F12为物体1对物体2施加的力,F21为物体2对物体1施加的反作用力。

以上就是关于牛顿定律全部公式的介绍。

这三条定律贯穿物理学各个领域,被广泛应用于工程、航天、地球科学等领域。

牛顿定律的提出,极大地推动了物理学的发展,为现代科学的进步打下了坚实的基础。

希望通过对牛顿定律的深入理解,可以更好地探索自然界的规律,为人类的科学进步做出更大的贡献。

第二篇示例:牛顿定律是物理学基础知识之一,被认为是现代物理学的开端。

它由英国科学家艾萨克·牛顿于17世纪提出,包括三条基本定律。

这些定律描述了物体运动的规律,为我们理解自然界提供了极为重要的基础。

在此文章中,我们将详细介绍牛顿三大定律的公式表达及其应用。

第一定律,也称为惯性定律,它提出了一个简单的概念:如果物体没有受到外力作用,它将保持静止或匀速直线运动。

这个定律可以用公式表示为:ΣF = 0这里ΣF是合力,表示作用在物体上的所有力的矢量和。

牛顿第一第二第三定律公式

牛顿第一第二第三定律公式

牛顿第一第二第三定律公式牛顿第一、第二、第三定律,那可是物理学中的“大明星”呀!咱们先来说说牛顿第一定律,也叫惯性定律。

它就像是一个固执的家伙,认定了物体如果没有外力作用,就会保持原来的运动状态,要么静止不动,要么匀速直线运动。

这就好比我之前坐公交车的经历,车突然启动,我没站稳往后倒,这就是因为我的身体有保持原来静止状态的“惯性”。

牛顿第二定律呢,F=ma,力等于质量乘以加速度。

这就好像是在说,你越用力推一个东西,它跑得就越快;东西越重,要让它动起来就越费劲。

记得有一次我帮邻居搬东西,一个大箱子特别重,我使了好大的劲才推动一点点,这就是因为箱子质量大,需要更大的力才能产生明显的加速度。

牛顿第三定律,作用力与反作用力大小相等、方向相反。

比如说,你用力推墙,墙也会用同样大小的力反推你。

我曾经在公园里看到小朋友玩跷跷板,一个小朋友用力压下去,另一个小朋友就被翘起来,这两个小朋友施加给跷跷板的力和跷跷板给他们的反作用力就是大小相等、方向相反的。

在咱们的日常生活中,牛顿这三大定律简直无处不在。

就拿骑自行车来说吧,你不蹬车的时候,车子会慢慢停下来,这是因为地面的摩擦力这个“捣蛋鬼”在起作用,打破了车子原本的匀速直线运动状态,这就是牛顿第一定律的体现。

当你使劲蹬车,速度加快,这是因为你施加的力让车子有了更大的加速度,符合牛顿第二定律。

而当你骑车撞到一个障碍物,你会感觉到被反弹回来,这就是障碍物给你的反作用力,和你撞上去的力是相互的,这就是牛顿第三定律在发挥作用啦。

再比如说,咱们踢足球的时候。

一脚大力抽射,足球飞出去老远,这里面就有牛顿第二定律的功劳。

脚给足球施加的力越大,足球的质量不变,加速度就越大,球就飞得更快更远。

而当足球撞到球门框被弹回来,这就是牛顿第三定律的表现,球门框给足球的反作用力让足球改变了运动方向。

甚至是我们简单的走路,也是牛顿定律在默默支撑着。

当我们向前迈步,脚向后蹬地,地就给我们一个向前的反作用力,推动我们前进。

牛顿三大定律

牛顿三大定律

牛顿三大运动定律牛顿运动定律(Newton's laws of motion)是由艾萨克-牛顿爵士(Sir Isaac Newton)总结于17世纪并发表于《自然哲学的数学原理》的牛顿第一运动定律(Newton's first law of motion)即惯性定律(law of inertia)、牛顿第二运动定律(Newton's second law of motion)和牛顿第三运动定律(Newton's third law of motion)三大经典力学基本运动定律的总称。

牛顿三大定律第一定律:所有物质向支点方向做有速运动,直到平衡第二定律:作用力与反作用力是平衡的方向相反的。

作用力小于物质力时,作用力与相等的物质力平衡,支点压力是作用力和反作用力之和压力向物质承受能力弱的方向做有速运动直到平衡。

作用力的方向相同与物质力方向,作用力加速度到与物质力平衡。

第三定律:作用力大于物质力时物质以作用力最快的速度做运动叫惯性。

物质运动的方向与大于物质力的作用力相同,速度以振动方式传递消失,作用力以压力方式存在,压力释放产生作用力作用力速度作用力方向,向支点方向做有速运动直到平衡。

牛顿第一定律:内容:表述一:任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态,直到有作用在它上面的外力迫使它改变这种状态为止。

原来静止的物体具有保持静止的性质,原来运动的物体具有保持运动的性质,因此我们称物体具有保持运动状态不变的性质称为惯性。

一切物体都具有惯性,惯性是物体的物理属性。

所以此定律又称为“惯性定律”。

表述二:当质点距离其他质点足够远时,这个质点就作匀速直线运动或保持静止状态。

即:质量是惯性大小的量度。

惯性大小只与质量有关,与速度和接触面的粗糙程度无关。

质量越大,克服惯性做功越大;质量越小,克服惯性做功越小。

力不是保持物体运动状态的原因,而是改变物体运动状态的原因。

牛顿三大定律内容

牛顿三大定律内容

牛顿三大定律内容
牛顿三大定律,也叫牛顿定律(Newton's Laws of Motion),是英国牛顿力学中的三条基本定律,是当今力学的基础,广泛用于太阳系和地球科学、宇宙学以及其它学科如流体力学、技术力学等,是现代物理学和现代工程学研究的基本依据。

第一定律:保持状态定律(Law of Inertia):表明物体在看不见的力的作用下也将保持原来的状态,即直线运动的物体保持直线运动,曲线运动的物体保持曲线运动,无论它在何种状态下,保持它的速度和方向直到外力作用改变它。

第二定律:力的定律:物体的加速度与施加在物体上的外力成正比,即F = ma(力F 等于质量m与加速度a的乘积)。

第三定律:力和反作用定律:力存在必有反作用,物体施加于其他物体的力与受力物体施加于发动物体的反作用力大小相同,方向相反,即物体间的力相互对等,互为反作用力。

此外,牛顿还提出了质量-能量守恒的定律,即质量守恒定律和能量守恒定律,他指出质能在物质之间相互转换,但总量不变,他将物质转换为能量和能量转换为物质他概括为“质量-能量守恒”。

因此,牛顿提出的三大定律不但是物理学上的重大突破,也是原子物理模型建立的基石,成为现代物理学的基础。

牛顿第二定律_例题详解

牛顿第二定律_例题详解

牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中,F的单位是N,m的单位是kg,a的单位是m/s2.【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则()A.a1=a2 ;B.a1>a2 C.a1<a2 D.无法判断二、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。

B.不可伸长:即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。

(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。

B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。

不能承受压力。

C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。

【例2】如图(a)所示,一质量为m的物体系于长度分别为l1、12的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。

《牛顿第二定律》-完整ppt课件

《牛顿第二定律》-完整ppt课件
弹簧接触,直至速度为零的过程中,关于小球运动状态的下
列几种描述中,正确的是 [
]
• A.接触后,小球作减速运动,加速度的绝对值越来越大 速度越来越小,最后等于零
• B.接触后,小球先做加速运动,后做减速运动,其速度 先增加后减小直到为零
• C.接触后,速度为零的地方就是弹簧被压缩最大之处, 加速度为零的地方也是弹簧被压缩最大之处
(2)若在3s末给物体再加上一个大小也是2N,方向水平向左 的拉力F2,则物体的加速度是多大?(0)
(3)3s后物体的加速度为0,那是不是说3s后F1不再产生加速 度了呢?
物体受到几个力的作用时,每 个力各自独立地使物体产生一个 加速度,就像其他力不存在一样, 这个性质叫做力的独立性原理。 物体的加速度等于各个分力分别 产生的加速度的矢量和。
(sin37° =0.6,cos37° =0.8, g=10m/s2 。)
35
拓展题:
1.光滑水面上,一物体质量为1kg,初速度为0,从0时刻开始 受到一水平向右的接力F ,F随时间变化图如下,要求作出速 度时间图象。
3 F/N
2
1
0
t/s
1 2 34
v(m/s)
3
2
1
0
1
2 34
t(s)
36
• 2、如图所示,一小球自空中自由落下,与正下方的直立轻质
16
练习二:
质量为1kg 的物体受到两个大小 分别为2N 和4N 的共点力作用。则物 体的加速度大小可能是 A、5m/s2 B、3m/s2 C、2m/s2
D答、案2:ABC
17
例1:光滑水平面上有一个物体,质量是2㎏,
受到互成120o角的两个力F1和F2的作用。这

牛顿第二定律

牛顿第二定律

第三章 牛顿运动定律第二单元 牛顿第二定律[知识梳理]:1.牛顿第二定律的表述:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F =ma (其中的F 和m 、a 必须相对应)2.对定律的理解:(1)矢量性:牛顿第二定律公式是矢量式。

公式mFa =只表示加速度与合外力的大小关系。

矢量式的含义在于加速度的方向与合外力的方向始终一致。

(2)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。

合外力变化时加速度也随之变化。

合外力为零时,加速度也为零。

(3)独立性:当物体受到几个力的作用时,各力将独立的产生与其对应的加速度,而物体表现出来的实际加速度是各力产生的加速度的矢量和。

3.牛顿第二定律确立了力和运动的关系牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。

联系物体的受力情况和运动情况的桥梁或纽带就是加速度。

[典型例题](一)牛顿第二定律的矢量性、瞬时性、独立性 (1)牛顿第二定律的矢量性、瞬时性 牛顿第二定律公式mFa =是矢量式。

加速度的方向与合外力的方向始终一致。

加速度的大小和方向与合外力是瞬时对应的,当力发生变化时,加速度瞬时变化。

【例1】如图(1)所示,一质量为m 的物体系于长度分别为L 1 、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。

现将L 2线剪断,求剪断瞬时物体的加速度。

(1)下面是某同学对该题的某种解法:解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下处于平衡。

=θcos 1T mg ,21sin T T =θ,解得2T =mg tan θ,剪断线的瞬间,T 2突然消失,物体却在T 2反方向获得加速度,因为mg tanθ=ma 所以加速度a =g tan θ,方向在T 2反方向。

(完整版)高中物理二级结论(最新整理)

(完整版)高中物理二级结论(最新整理)

高三物理——结论性语句及二级结论一、力和牛顿运动定律1.静力学(1)绳上的张力一定沿着绳指向绳收缩的方向.(2)支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。

(3)两个力的合力的大小范围:|F 1-F 2|≤F ≤F 1+F 2。

(4)三个共点力平衡,则任意两个力的合力与第三个力大小相等,方向相反,多个共点力平衡时也有这样的特点.(5)两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值.图1(6)物体沿斜面匀速下滑,则tan μα=.2.运动和力(1)沿粗糙水平面滑行的物体:a =μg (2)沿光滑斜面下滑的物体:a =g sin α(3)沿粗糙斜面下滑的物体:a =g (sin α-μcos α) (4)沿如图2所示光滑斜面下滑的物体:(5)一起加速运动的物体系,若力是作用于m 1上,则m 1和m 2的相互作用力为N =错误!,与有无摩擦无关,平面、斜面、竖直方向都一样.(6)下面几种物理模型,在临界情况下,a =g tan α.(7)如图5所示物理模型,刚好脱离时,弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析.(8)下列各模型中,速度最大时合力为零,速度为零时,加速度最大.(9)超重:a 方向竖直向上(匀加速上升,匀减速下降). 失重:a 方向竖直向下(匀减速上升,匀加速下降). (10)系统的牛顿第二定律 x x x x a m a m a m F 332211++=∑(整体法——求系统外力) y y y y a m a m a m F 332211++=∑二、直线运动和曲线运动一、直线运动1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)的常用比例时间等分(T ):①1T 末、2T 末、3T 末、…、nT 末的速度比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . ②第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比:x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).③连续相等时间内的位移差Δx =aT 2,进一步有x m -x n =(m -n )aT 2,此结论常用于求加速度a =错误!=错误!.位移等分(x ):通过第1个x 、第2个x 、第3个x 、…、第n 个x 所用时间比:t 1∶t 2∶t 3∶…∶t n =1∶(错误!-1)∶(错误!-错误!)∶…∶(错误!-错误!).2.匀变速直线运动的平均速度①v =v 错误!=错误!=错误!。

物理基础知识牛顿运动定律和万有引力定律

物理基础知识牛顿运动定律和万有引力定律

物理基础知识牛顿运动定律和万有引力定律牛顿运动定律和万有引力定律物理学是自然科学的基础学科之一,它探究着自然界中的各种物理现象和规律。

牛顿运动定律和万有引力定律是物理学中两个非常重要的定律,它们在研究运动和力学问题时起着重要的作用。

本文将详细介绍牛顿运动定律和万有引力定律的基本原理和应用。

一、牛顿运动定律牛顿运动定律,也称为牛顿三定律,是由英国物理学家艾萨克·牛顿在17世纪提出的。

它由三个部分组成,分别为惯性定律、运动定律和作用力与反作用力定律。

1. 惯性定律:惯性定律表明,物体在没有外力作用时保持匀速直线运动,或者保持静止。

这意味着物体的速度和方向不会自发改变,除非有外力作用。

2. 运动定律:运动定律描述了物体的加速度与作用力之间的关系。

牛顿提出了著名的公式F=ma,其中F代表物体所受的净外力,m代表物体的质量,a代表物体的加速度。

通过这条定律,我们可以计算出物体的加速度,也可以通过已知的加速度来确定所需的力。

3. 作用力与反作用力定律:根据牛顿的第三定律,任何两个物体之间都会相互作用力。

这两个力大小相等,方向相反。

例如,当我们站在地面上时,我们会受到地面向上的支持力,而地面受到我们向下的压力。

牛顿运动定律不仅适用于力学中的直线运动,还适用于旋转、加速、碰撞等各种复杂的运动过程。

这些定律为解释和预测物体的运动提供了基础。

二、万有引力定律万有引力定律是由牛顿在1687年提出的。

它描述了任意两个物体之间存在引力,并且该引力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。

万有引力定律可以用下面的公式表示:F =G * (m1 * m2) / r^2其中F代表两个物体之间的引力,G是一个常数被称为万有引力常数,m1和m2分别代表两个物体的质量,r代表两个物体之间的距离。

万有引力定律解释了行星运动、地球上物体的重力和人造卫星轨道等众多现象。

它充分展示了物体之间相互作用的普遍性和统一性。

牛顿三大运动定律和万有引力定律

牛顿三大运动定律和万有引力定律

牛顿三大运动定律和万有引力定律在物理学中,牛顿三大运动定律和万有引力定律是我们理解运动和力的基础。

这些定律由英国数学家和物理学家艾萨克·牛顿在17世纪提出,并对整个物理学领域产生了深远的影响。

这篇文章将详细介绍牛顿三大运动定律和万有引力定律的含义和应用。

牛顿的第一定律,也被称为惯性定律,说明了物体的运动状态将保持不变,直到受到外力的作用。

换句话说,物体会保持静止或匀速直线运动,直到有其他力使其改变运动状态。

这意味着如果没有外力的作用,一个静止的物体将继续保持静止,而一个运动的物体将保持以恒定速度匀速前进。

例如,当我们在地面上放置一个书本时,它会保持静止,直到我们施加一个力来推动它。

牛顿的第二定律描述了物体的加速度以及所受到的力之间的关系。

根据这个定律,当一个物体受到的力增加时,它的加速度也会增加;当所受的力减小时,加速度也会减小。

具体表达式为F=ma,其中F代表力,m代表物体的质量,a代表物体的加速度。

这个公式说明了力与物体的质量和加速度之间的关系。

例如,如果我们用相同的力推动两个物体,其中一个质量较小,另一个质量较大,较小质量的物体将获得更大的加速度。

牛顿的第三定律被称为作用与反作用定律,描述了物体之间相互作用的力的性质。

根据这个定律,对于任何一个物体受到的力,都会存在一个大小相等、方向相反的力作用在另一个物体上。

这意味着力总是成对存在的,且方向相反。

例如,当我们站在地面上时,我们感受到地球对我们的引力,与此同时,地球也受到由我们产生的引力,只是地球质量远大于我们,所以我们几乎感觉不到。

与牛顿三大运动定律密切相关的是万有引力定律。

这个定律是牛顿在1687年首次提出的,被视为描述物质间相互作用力的重要定律之一。

万有引力定律说明了物体之间的引力与它们的质量和距离的平方成正比,与这两者成反比。

具体表达式为F=G(m1m2/r^2),其中F代表物体之间的引力,m1和m2分别代表两个物体的质量,r代表它们之间的距离,G为万有引力常数。

《牛顿第二定律》运动和力的关系PPT

《牛顿第二定律》运动和力的关系PPT

D.物体的加速度的大小为 2.5 m/s2,方向为南偏东 37° 解析:根据牛顿第二定律,F1=ma1,解得 a1=1.5 m/s2,方向水 平向东,故 A 正确;F2=ma2,解得 a2=2 m/s2,方向水平向南, 故 B 正确。而物体的加速度由 F 合=ma,解得 a=2.5 m/s2,方向
为南偏东 37°,故 C 错误,D 正确。 答案:ABD
解 力
得 x 轴和 y 轴的合力 Fx 和 Fy,得方程:FFyx==0ma
分 若物体所受各力都在互相垂直的方向上,但加速度却
解 不在这两个方向上,这时可以力的方向为 x 轴、y 轴
加 正方向,只需分解加速度 a,得 ax 和 ay,根据牛顿第
速 度
二定律得方程:FFxy==mmaayx
[典例1] 自制一个加速度计,其构造是:一
解析:物体在水平推力作用下由静止开始做匀加速直线运动,物 体水平方向受到推力和滑动摩擦力,水平推力从开始减小到与滑 动摩擦力大小相等的过程中,物体受到的推力大于摩擦力,做加 速运动,合力减小,加速度减小,物体做加速度减小的加速运动; 此后推力继续减小,推力小于滑动摩擦力,合力与速度方向相反, 做减速运动,合力反向增大,加速度反向增大,物体做加速度增 大的减速运动;所以物体速度先增大后减小,加速度先减小后增 大,故选项 D 正确,A、B、C 错误。 答案:D
确的是
()
A.甲的惯性较大
B.乙的惯性较大
C.甲、乙两物体的惯性一样大
D.无法比较两物体的惯性大小 解析:由牛顿第二定律 F=kma,可知 m 甲∶m 乙=5∶4,质量
大的物体所具有的惯性大,可知甲的惯性大于乙的惯性,故 A
正确,B、C、D 错误。 答案:A
二、力的单位

物理学探索牛顿三大运动定律

物理学探索牛顿三大运动定律

物理学探索牛顿三大运动定律物理学是一门研究物质和能量之间相互作用的科学。

在物理学的发展过程中,人们通过观察、实验和推理,得出了许多关于自然现象的定律和规律。

牛顿三大运动定律是物理学的基石之一,在描述物体运动以及相互作用中起到了重要的作用。

第一定律,也称为惯性定律,提出了当物体受力平衡时,物体将保持静止或匀速直线运动的状态。

简言之,物体在没有受到外力作用时,将保持其原先的运动状态。

例如,当我们在平滑的桌面上推动一个硬币时,硬币会一直滑行,直到受到外力的阻碍或摩擦力使其停下来。

这个定律揭示了物体予以运动或静止的趋势,为后续运动定律的推导奠定了基础。

第二定律,也称为动量定律,描述了物体受力时的运动状态变化。

牛顿第二定律的数学表达式为F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。

该定律指出,当一个物体受到外力时,力的大小与物体加速度的乘积等于物体的质量。

简而言之,第二定律说明了物体移动速度的变化与所受力的关系。

例如,在赛车比赛中,当车手踩下油门时,引擎的推力会使赛车加速。

当推力增加时,赛车的加速度将随之增加,反之亦然。

第三定律,也称为作用反作用定律,提出了物体间相互作用的基本规律。

根据牛顿的第三定律,任何作用力都会有一个等大反向的反作用力。

例如,当我们在桌上放置一个书本时,书本受到桌面的支持力。

根据第三定律,书本与桌面之间存在一个相互作用力对。

书本对桌面施加的作用力与桌面对书本施加的反作用力等大反向。

这一定律将作用力与反作用力联系起来,揭示了力的双方作用与反作用之间的平衡关系。

牛顿三大运动定律的提出,使得人们能够更好地理解和解释物体的运动行为。

通过牛顿的第一定律,我们可以解释并预测物体在没有外力干扰下的运动状态。

通过牛顿的第二定律,我们可以计算物体在受到力的作用下的加速度和速度变化。

通过牛顿的第三定律,我们可以了解相互作用力与反作用力如何影响物体间的平衡状态。

此外,牛顿的三大运动定律不仅适用于经典力学领域,在现代物理学中也有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力、牛顿运动定律1、如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度( )(A )大小和方向均不变(B )大小不变,方向改变(C )大小改变,方向不变(D )大小和方向均改变2、一根轻质弹簧一端固定,用大小为1F 的力压弹簧的另一端,平衡时长度为1l ;改用大小为2F 的力拉弹簧,平衡时长度为2l .弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为( )A 、2121F F l l --B 、2121F F l l ++C 、2121F F l l +-D 、2121F F l l -+3、如图所示,置于水平地面的三脚架上固定着一质量为m 的照相机,三脚架的三根轻质支架等长,与竖直方向均成30︒角,则每根支架中承受的压力大小为( )(A )13mg (B )23mg (C(D4、如图所示,一物块置于水平地面上.当用与水平方向成060角的力1F 拉物块时,物块做匀速直线运动;当改用与水平方向成030角的力2F 推物块时,物块仍做匀速直线运动。

若1F 和2F 的大小相等,则物块与地面之间的动摩擦因数为( )A1 B、2 C12- D 、5、如右图,水平地面上有一楔形物块a ,其斜面上有一小物块b ,b 与平行于斜面的细绳的一端相连,细绳的另一端固定在斜面上.a 与b 之间光滑,a 和b 以共同速度在地面轨道的光滑段向左运动。

当它们刚运行至轨道的粗糙段时( )A .绳的张力减小,b 对a 的正压力减小B .绳的张力增加,斜面对b 的支持力增加C .绳的张力减小,地面对a 的支持力增加D .绳的张力增加.地面对a 的支持力减小6、L 型木板P (上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q 相连,如图所示。

若P 、Q 一起沿斜面匀速下滑,不计空气阻力。

则木板P 的受力个数为( )A . 3B .4C .5D .67、如图所示,在一根水平的粗糙的直横梁上,套有两个质量均为m 的铁环,两铁环系有等长的细绳,共同拴着质量为M 的小球,两铁环与小球均保持静止,现使两铁环间距离增大少许,系统仍保持静止,则水平横梁对铁环的支持力F N 和摩擦力f 将( )A 、F N 增大,f 不变B 、F N 增大,f 增大C 、F 不变,f 不变D 、F 不变,f 增大m m8、木块A 、B 分别重50 N 和70 N ,它们与水平地面之间的动摩擦因数均为0.2,与A 、B 相连接的轻弹簧被压缩了5 cm ,系统置于水平地面上静止不动。

已知弹簧的劲度系数为100 N/m 。

用F =7N 的水平力作用在木块A 上,如图所示,力F 作用后 ( )A .木块A 所受摩擦力大小是10NB .木块A 所受摩擦力大小是2NC .弹簧的弹力是12ND .木块B 所受摩擦力大小为12N9、在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A 与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B 加一竖直向下的力F,F 的作用线通过球心,设墙对B 的作用力为F 1,B 对A 的压力为F 2,地面对A 的支持力为F 3.若F 缓慢增大而整个装置仍保持静止,截面如上图所示,在此过程中 ( )A.F 1保持不变,F 3缓慢增大B.F 1缓慢增大,F 3保持不变C.F 2缓慢增大,F 3缓慢增大D.F 2缓慢增大,F310、放在光滑水平面上的物块1、2用轻质弹簧秤相连,如图所示。

今对物块1、2分别施以相反的水平力F 1 、F 2.且F 1大于F 2,则弹簧秤的示数( )A .一定等于F 1+F 2 B .一定等于F 1-F 2C .一定大于F 2小于F 1 D .条件不足,无法确定11、细绳拴一个质量为m 的小球,小球将左端固定在墙上的轻弹簧压缩(小球与弹簧不连接),小球静止时弹簧在水平位置,如图所示。

将细绳烧断后,下列说法中正确的是( )A .小球立即开始做自由落体运动B .小球离开弹簧后做平抛运动C .小球运动的加速度先比重力加速度小,后来和重力加速度相等D .小球离开弹簧后做匀变速运动12、如图所示,质量为m 的木块以初速度V 0在置于水平面上的木板上滑行,木板静止,木块与木板、木板与桌面间的动摩擦因数均为μ,木板质量为3m ,则木板所受桌面给的摩擦力大小为( )A.μmgB. 2μmgC. 3μmgD.4μmg 13、如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。

现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a 。

重力加速度大小为g 。

则有( )A .1a g =,2a g =B .10a =,2a g =C .10a =,2m M a g M +=D .1a g =,2m M a g M+= 14、质量为2kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦 因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等。

从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示。

重力A.18mB.54mC.72mD.198m15、将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体( )(A )刚抛出时的速度最大 (B )在最高点的加速度为零(C )上升时间大于下落时间 (D )上升时的加速度等于下落时的加速度16、下列说法正确的是( )A .若物体运动速率始终不变,则物体所受合力一定为零B .若物体的加速度均匀增加,则物体做匀加速直线运动C .若物体所受合力与其速度方向相反,则物体做匀减速直线运动D .若物体在任意的相等时间间隔内位移相等,则物体做匀速直线运动17、在水平的足够长的固定木板上,一小物块以某一初速度开始滑动,经一段时间t 后停止.现将该木板改置成倾角为45°的斜面,让小物块以相同的初速度沿木板上滑.若小物块与木板之间的动摩擦因数为μ.则小物块上滑到最高位置所需时间与t 之比为( )A.1μ+ BCD18、如右图,木箱内有一竖直放置的弹簧,弹簧上方有一物块:木箱静止时弹自由落体处于压缩状态且物块压在箱顶上.若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为( )A .加速下降B .加速上升C .减速上升D .减速下降19、雨摘下落时所受到的空气阻力与雨滴的速度有关,雨滴速度越大,它受到的空气阻力越大:此外,当雨滴速度一定时,雨滴下落时所受到的空气阻力还与雨滴半径的α次方成正比(12α≤≤).假设一个大雨滴和一个小雨滴从同一云层同时下落,最终它们都_______(填“加速”、“减速”或”匀速”)下落.______(填“大”或“小”)雨滴先落到地面;接近地面时,______(填“大”或“小”)雨滴的速度较小.20、如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,且2AB =BC .小物块P (可视为质点)与AB 、BC 两段斜面之间的动摩擦因数分别为μ1、μ2.已知P 由静止开始从A 点释放,恰好能滑动到C 点而停下,那么θ、μ1、μ2间应满足的关系是( )A .tan θ=μ1+2μ23B .tan θ=2μ1+μ23C .tan θ=2μ1-μ2D .tan θ=2μ2-μ121、如图所示,质量为m 的小球通过轻绳悬挂在一倾角为θ的光滑斜面上,轻绳与斜面平行,开始时系统处于静止状态。

(1)求系统静止时,绳对小球的拉力大小和斜面对球的支持力大小。

(2)当系统以多大的加速度向左运动,斜面对小球支持力恰好为零?22、如图所示,质量M =32kg 的木块A 套在水平杆上,并用轻绳F=310N,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,取g=10m/s2。

求:(1)运动过程中轻绳与水平方向夹角θ;(2)木块与水平杆间的动摩擦因数为μ。

23、如图,粗细均匀的直角铁料AOB,AO与BO等长,每段都重100牛,角顶O接有光滑转轴,可在纸面内转动,OB与竖直线成60°角,A端挂有重100牛的物体P。

(1)求P对地面的压力大小;(2)若在直角铁料上作用一个最小的力可使P对地面的压力为零,求出此力的大小、方向和作用点。

24、已知如图,一根轻绳左端固定在水平天花板上,依次穿过不计质量和摩擦的动滑轮和定滑轮后,悬挂重G1的物体A,在动滑轮下悬挂重G2的物体B,系统处于静止状态。

求:⑴若G1= G2=10N,静止时细绳与天花板间的夹角α=?⑵若测得G1=10N,α=37°,那么G2=?25、如图所示,薄板形斜面体竖直固定在水平地面上,其倾角为θ=37°.一个“Π”的物体B紧靠在斜面体上,并可在水平面上自由滑动而不会倾斜,B的质量为M=2kg。

一根质量为m=1kg。

的光滑细圆柱体A搁在B的竖直面和斜面之间。

现推动B以水平加速度a=4m/s2向右运动,并带动A沿斜面方向斜向上运动。

所有摩擦都不计,且不考虑圆柱体的滚动,g=10m/s2。

(sin37°=0.6,cos37°=0.8,)求:(1)圆柱体A的加速度;(2)B物体对A的推力F的大小;(3)当A被缓慢推至离地高为h=1m的P处时停止运动,放手后A下滑时带动B一起运动,当到达斜面底端时B的速度为多大?26、如图所示,物体A 放在足够长的木板B 上,木板B 静止于水平面。

t=0时,电动机通过水平细绳以恒力F 拉木板B ,使它做初速度为零,加速度a B =1.0m/s 2的匀加速直线运动。

已知A 的质量m A 和B 的质量m B 均为2.0kg 。

A 、B 之间的动摩擦因数1μ=0.05,B 与水平面之间的动摩擦因数2μ=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g 取10m/s 2。

求(1)物体A 刚运动时的加速度a A (2)t=1.0s 时,电动机的输出功率P ;(3)若t=1.0s 时,将电动机的输出功率立即调整为P`=5W ,并在以后的运动过程中始终保持这一功率不变,t=3.8s 时物体A 的速度为1.2m/s 。

则在t=1.0s 到t=3.8s 这段时间内木板B 的位移为多少?27、在水平地面上有一质量为2kg 的物体,物体在水平拉力F 的作用下由静止开始运动,10s 后拉力大小减为F /3,该物体的运动速度随时间t 的变化规律如图所示.求:(1)物体受到的拉力F 的大小.(2)物体与地面之间的动摩擦因数。

(g 取10m /s 2)28、如图,质量M=0.2kg 的长木板静止在光滑的水平地面上,另一质量m=0.2kg 的小滑块,以V 0=1.2m/s 的速度从长木板的左端滑上长木板。

相关文档
最新文档