同济六版高等数学第八章第六节课件.ppt

合集下载

《高等数学》第六版上册同济大学出版社课件PPT

《高等数学》第六版上册同济大学出版社课件PPT

1 x
0
1
1

1 t4

1 t2
d
t

t 2 0 1t4
d
t
ห้องสมุดไป่ตู้
0
1
d
x x4

1 2


0 1
d
x x4

x2
0 1 x4
d
x

1
2
1 01

x2 x4
d
x
17
目录 上页 下页 返回 结束
1
2
0
1 x2
1
1 x2
二无界函数的反常积分第四节常义积分积分限有限被积函数有界推广一无穷限的反常积分反常积分广义积分反常积分第五章1一无穷限的反常积分引例
第四节 反常积分
第五章
积分限有限 常义积分 被积函数有界
推广
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分

F (b)
F(c )
F(c ) F(a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分
解: 显然瑕点为 a , 所以
原式


arcsin x a

a 0

arcsin1
π 2
例5. 讨论反常积分
的收敛性 .
解所下:以述1反1解dx常x2法积是分0否1dx1x正x2 确11:0发1dxx散21.11x2 ,0∴1 积 分 1x收敛01

x2

同济版高数下册第八章课件ppt

同济版高数下册第八章课件ppt

四、利用坐标作向量的线性运算
第一节
一、向量的概念
二、向量的线性运算
三、空间直角坐标系
五、向量的模、方向角、投影
向量及其线性运算
第八章
表示法:
向量的模 :
向量的大小,
一、向量的概念
向量:
(又称矢量).
既有大小, 又有方向的量称为向量
自由向量:
与起点无关的向量.
单位向量:
模为 1 的向量,
设又有 b= a ,
“ ”

例1. 设 M 为
解:
ABCD 对角线的交点,
已知 b= a ,
b=0
a , b 同向
a , b 反向
a∥b




ห้องสมุดไป่ตู้



三、空间直角坐标系
由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
坐标原点
坐标轴
x轴(横轴)
y轴(纵轴)
z 轴(竖轴)
等距
解: 设该点为
解得
故所求点为

思考:
(1) 如何求在 xOy 面上与A , B 等距离之点的轨迹方程?
(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?
离的点 .
(1) 如何求在 xOy 面上与A , B 等距离之点的轨迹方程?
(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?
例如,
在坐标轴上的投影分别为
设 a 与 u 轴正向的夹角为 ,
, 即
投影的性质
2)
1)
(为实数)
例9.
设立方体的一条对角线为OM, 一条棱为 OA, 且

高数同济下8—6

高数同济下8—6

yoz 面上的投影曲线, 面上的投影曲线 投影曲线,
xoz面上的投影曲线, 面上的投影曲线 投影曲线,
R( y , z ) = 0 x = 0
T ( x , z ) = 0 y = 0
25
机动 目录 上页 下页 返回
【例 4】求抛物面 y + z = x 与平面 x + 2 y − z = 0 】 的截线在三个坐标面上的投影曲线方程. 的截线在三个坐标面上的投影曲线方程.
1
一、空间直线的一般方程 二、空间直线的对称式方 程与参数方程
1、方向向量 2、方程的建立
上 次 课 内 容 回 顾
三、两直线的夹角
1、定义与夹角公式 2、两直线的位置关系
四、直线与平面的夹角
1、定义与夹角公式 2、直线与平面的位置关系: 直线与平面的位置关系:
1
机动 目录 上页 下页 返回
2
第六节 旋转曲面和二次曲面
的投影柱面
特征: 投影柱面的特征 投影柱面的特征: 曲线关于 xoy
以此空间曲线为准线,垂直于所投影的坐标面. 以此空间曲线为准线,垂直于所投影的坐标面.
24
机动 目录 上页 下页 返回
25
面上的投影曲线 空间曲线在xoy面上的投影曲线
H ( x, y) = 0 z = 0
类似地: 类似地:可定义空间曲线在其他坐标面上的投影
17
机动 目录 上页 下页 返回
18
一、空间曲线的一般方程
空间曲线C 可看作空间两曲面的交线. 空间曲线 可看作空间两曲面的交线.
z
F ( x, y, z ) = 0 G ( x , y , z ) = 0
o
S1
C

高数(同济第六版)第八章总结

高数(同济第六版)第八章总结

第八章空间解析几何与向量代数第一节向量及其线性运算
1、右手定则方向角
2、记Prju r或(r)u :向量r在u轴上的投影
第二节数量积向量积混合积
1、a*b
=
大小——a·b·sin
方向——右手定则确定
2、a*b=a=(a1,a2,a3)b=(b1,b2,b3)
3、混合积为(a*b)·c记作[abc]的作用:
①平行六面体的体积
②[abc]=0时说明三向量共面
③满足轮换对称性:[abc]= [bca] = [cab]
第三节曲面及其方程
①椭圆锥面
③单叶双曲面④双叶双曲面
⑤椭圆抛物面⑥双曲抛物面
第四节空间曲线及其方程
1、一般方程:F(x,y,z)=0
G(x,y,z)=0
x=x(t)
2、参数方程:y=y(t)
z=z(t)
第五节平面及其方程
1、点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0
[其中法向量n=(A,B,C) M0为(x0,y0,z0)]
2、一般方程:Ax+By+Cz+D=0(一般需要四个平面上的点求出)第六节空间直线及其方程
1、一般方程:A1x+B1y+C1z+D1=0
A2x+B2y+C2z+D2=0
2、点向式:
[其中方向向量为s=(p,m,n) 已知点为M0(x0,y0,z0)] 3、平面束方程的重要应用:P48。

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

同济版高等数学第六版课件第八章第六节空间曲线及其方程

同济版高等数学第六版课件第八章第六节空间曲线及其方程
直角坐标方程
直角坐标方程是另一种描述空间曲线 的方法,它由一个方程组组成,表示 曲线上任意一点的坐标与三个直角坐 标轴之间的关系。
02
空间曲线的方程
空间曲线的一般方程
空间曲线的一般方程是两个三维空间 的方程联立得到的,通常表示为: F(x,y,z)=0 和 G(x,y,z)=0。
一般方程描述了空间中曲线的形状和 位置,通过解方程组可以求得曲线上 点的坐标。
参数方程
参数方程是描述空间曲线 的一种常用方法,其中参 数的变化反映了曲线上点 的运动轨迹。
空间曲线的弯曲程度
曲率
曲率描述了曲线在某一点 的弯曲程度,曲率越大, 弯曲程度越剧烈。
挠率
挠率描述了曲线在某一点 的方向变化速率,与曲线 的形状和类型有关。
曲率和挠率的关系
曲率和挠率共同决定了空 间曲线的弯曲程度和形状 。
原曲线与投影曲线的位置关系
通过比较原曲线和投影曲线的形状,可以确定它们之间的位 置关系,如相交、相切或相离。
投影曲线的面积与原曲线的关系
投影曲线面积的求解
根据投影曲线的方程,利用定积分计算其面积。
投影曲线面积与原曲线的关系
通过比较投影曲线面积和原曲线的面积,可以分析它们之间的数量关系,如相等 、成比例或相差一个常数倍。
02
极坐标方程的一般形式为:ρ=ρ(θ),其中 ρ 是极径,θ是极角

极坐标方程可以用来表示各种形状的空间曲线,如球面曲线、
03
柱面曲线等。
03
空间曲线的性质
空间曲线的方向
01
02
03
方向向量
空间曲线的方向由其上的 方向向量决定,方向向量 表示了曲线上任意两点的 相对位置。
切线向量

高数课本_同济六版

高数课本_同济六版

第一章函数与极限(考研必考章节,其中求极限是本章最重第二章要的内容,要掌握求极限的集中方法)第三章第四章第一节映射与函数(一般章节)第五章一、集合(不用看)二、映射(不用看)三、函数(了解)第六章注:P1--5 集合部分只需简单了解第七章P5--7不用看第八章P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界第九章P17--20 不用看第十章P21 习题1.1第十一章1、2、3大题均不用做第十二章4大题只需做(3)(5)(7)(8)第十三章5--9 均做第十四章10大题只需做(4)(5)(6)第十五章11大题只需做(3)(4)(5)第十六章12大题只需做(2)(4)(6)第十七章13做14不用做15、16重点做第十八章17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)二、P26--28 例1、2、3均不用证三、p28--29 定理1、2、3的证明不用自己证但要会理解四、P30 定理4不用看五、P30--31 习题1-2六、1大题只需做(4)(6)(8)七、2--6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题)一、(了解)二、(了解)二、P33--34 例1、2、3、4、5只需大概了解即可三、P35 例6 要会做例7 不用做四、P36--37 定理2、3证明不用看定理3’4”完全不用看五、六、p37习题1--3七、1--4 均做5--12 均不用做第四节(重要)第五节第六节一、无穷小(重要)二、无穷大(了解)第七节第八节 p40 例2不用做 p41 定理2不用证第九节 p42习题1--4第十节第十一节 1做 2--5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)第六节p43 定理1、2的证明要理解第七节p44推论1、2、3的证明不用看第八节p48 定理6的证明不用看第九节p49 习题1--5第十节1题只需做(3)(6)(7)(8)(10)(11)(13)(14)第十一节2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明第七节第八节第九节p50 准则1的证明要理解第十节p51 重要极限一定要会独立证明(经典重要极限)第十一节第十二节p53另一个重要极限的证明可以不用看第十三节p55--56柯西极限存在准则不用看第十四节第十五节p56习题1--7第十六节第十七节1大题只做(1)(4)(6)第十八节2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)第八节p58--59 定理1、2的证明要理解第九节p59 习题1--7 全做第十节第八节(基本必考小题)第九节p60--64 要重点看第八节基本必出考题第十节p64 习题1--8第十一节第十二节1、2、3、4、5要做其中4、5要重点做第十三节6--8不用做第九节(了解)第十节p66--67 定理3、4的证明均不用看第十一节p69 习题1--9第十二节1、2要做第十三节3大题只做(3)——(6)第十四节4大题只做(4)——(6)第十五节5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)第十一节第十二节一、(重要)二、(重要)p72三、一致连续性(不用看)第十三节p74习题1--10第十四节1、2、3、5要做,要会用5的结论。

高数同济六版课件D8-6空间直线

高数同济六版课件D8-6空间直线
1. 空间直线方程
一般式
对称式
参数式
内容小结
直线
2. 线与线的关系
直线
夹角公式:
平面 :
L⊥
L //
夹角公式:
3. 面与线间的关系
直线 L :
作业 P48 3,4,5,7,9
P48 题2, 10
思考与练习
解:
相交,求此直线方程 .
的方向向量为
例如, 当
和它的方向向量
3. 参数式方程

得参数式方程 :
例1.用对称式及参数式表示直线
解:先在直线上找一点.
再求直线的方向向量
令 x = 1, 解方程组
,得
交已知直线的两平面的法向量为
是直线上一点 .
故所给直线的对称式方程为
参数式方程为
解题思路:
先找直线上一点;
再找直线的方向向量.
是直线上一点
第六节
一、空间直线方程
二、线面间的位置关系
空间直线及其方程
第八章
一、空间直线方程
因此其一般式方程
1. 一般式方程
直线可视为两平面交线,
(不唯一)
2. 对称式方程
故有
说明: 某些分母为零时, 其分子也理解为零.
设直线上的动点为

此式称为直线的对称式方程(也称为点向式方程)
直线方程为
已知直线上一点
过 A 点及
面的法向量为则所求直线的方向量方法1 利用叉积.
所以
一直线过点
且垂直于直线
又和直线
备用题
设所求直线与 L2 的交点为
待求直线的方向向量
方法2 利用所求直线与L2 的交点 .

高数同济六版课件D85平面方程

高数同济六版课件D85平面方程

平面的截距式
截距式:Ax+By+C=0
性质:平面的截距式表示平面 上任意一点到原点的距离
特点:截距式可以表示任意平 面,包括平行平面和垂直平面
应用:截距式在解决立体几何 问题、解析几何问题等方面有 广泛应用
平面的斜率式
斜率式:平面方程的一种表示形式, 用于描述平面的斜率和截距
截距:平面与x轴或y轴的交点,表 示平面在坐标轴上的位置
● a. 选取已知点P(x0, y0, z0) ● b. 计算向量AP(x1, y1, z1)和向量BP(x2, y2, z2) ● c. 计算向量AP和向量BP的叉乘 ● d. 计算叉乘的结果与向量AP和向量BP的点积 ● e. 求解平面方程
● 应用:适用于求解已知点的平面方程
一般式求解
平面方程的一般式:Ax+By+Cz+D=0 单击此处输入你的项正文,文字是您思想的提炼,言简的阐述观点。
添加标题
添加标题
添加标题
添加标题
斜率:平面与x轴或y轴的夹角,表 示平面的倾斜程度
斜率式的应用:用于求解平面方程、 判断平面的性质和特点等
平面的点向式
点:平面上的任意一点
点向式:平面方程的一种表 示形式,由一个点和一个向 量组成
向量:平面的法向量,垂直 于平面
性质:点向式可以表示平面 上任意一点的位置和方向
求解步骤: a. 代入已知点坐标,得到关于A、B、C、D的方程组 b. 解方程组, 得到A、B、C、D的值 a. 代入已知点坐标,得到关于A、B、C、D的方程组 b. 解方程组,得到A、B、C、D的值 特殊情况: a. 当A=B=C=0时,平面方程为D=0,表示一个常数平面 b. 当 A=B=C=1时,平面方程为D=0,表示一个常数平面 a. 当A=B=C=0时,平面方程为D=0,表示一个常数平面 b. 当A=B=C=1时,平面方程为D=0,表示一个常数平面

同济版高数下册第八章课件

同济版高数下册第八章课件

1 2
直角坐标系下的二重积分计算
通过将二重积分转化为累次积分,逐一计算x和y 方向的积分,得到最终结果。
极坐标系下的二重积分计算
利用极坐标与直角坐标的转换关系,将二重积分 转化为极坐标形式,简化计算。
3
区域的可加性和可数性
利用二重积分的性质,将被积区域划分为若干个 子区域,分别计算后再求和或求极限。
由矢量构成的场,每个点对应一个矢量。
标量场
由标量构成的场,每个点对应一个标量。
流场
由流线与矢量构成的场,描述流体运动状态。
梯度与散度
梯度
表示标量场中某点处函数增量的方向和大小,即函数在该点 的变化率。
散度
表示矢量场在某点处发散的程度,即矢量场流入或流出的程 度。
01
多重积分
二重积分的概念与性质
二重积分的定义
01
二重积分是定积分在二维平面上的扩展,表示二维曲顶柱体的
体积。
二重积分的性质
02
二重积分具有可加性、可交换性、可数性等性质,这些性质有
助于简化计算和证明。
二重积分的几何意义
03
二重积分在几何上表示二维曲顶柱体的体积,其中被积函数表
示曲顶的函数值。
二重积分的计算方法
曲面积分性质
曲面积分具有一些重要性质,如 线性性质、可加性、奇偶性等, 这些性质在计算和证明中具有重 要作用。
曲面积分的应用
曲面积分在物理学、工程学等领 域有广泛的应用,如计算曲面质 量、面密度、通量等。
ห้องสมุดไป่ตู้ 01
场论初步
场论的基本概念

在空间中定义点的集合,每个点具有一个或多个与之相关的数或量。
矢量场
知识结构

《高等数学》(同济六版)教学课件★第6章.定积分的应用

《高等数学》(同济六版)教学课件★第6章.定积分的应用
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
表示为
定积分定义
目录 上页 下页 返回 结束
二 、如何应用定积分解决问题 ?
第一步 利用“化整为零 , 以常代变” 求出局部量
近的似值
微分表达式
dU f (x) dx
第二步 利用“ 积零为整 , 无限累加 ” 求出整体量的
精确值
积分表达式
b
U a f (x) dx
这种分析方法称为元素法 (或微元分析法 )
元素的几何形状常取为: 条, 带, 段, 环, 扇, 片, 壳 等
第二节 目录 上页 下页 返回 结束
第二节
第六章
定积分在几何学上的应用
一、 平面图形的面积
二、 平面曲线的弧长 三、已知平行截面面积函数的
立体体积
目录 上页 下页 返回 结束
例8. 求双纽线
所围图形面积 .
解: 利用对称性 , 则所求面积为
y
1 a2 cos2 d
2
π 4
π
a2 4 cos 2 d (2 ) 0
O
ax
a2sin 2 a2
π 4
思考: 用定积分表示该双纽线与圆 r a 2 sin
所围公共部分的面积 .
答案:
π
A 2 6 a2 sin2 d 0
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
目录 上页 下页 返回 结束
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
1 y2 dx
因此所求弧长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
m12 +n12 + p12 m22 +n22 + p22
首页
上页
返回
下页
结束

方向向量分别为(m1, n1, p1)和(m2, n2, p2)的直线的夹角余弦:
cosj =
|m1m2 +n1n2 + p1p2 |
.
m12 +n12 + p12 m22 +n22 + p22
例例22
求直线
L1:
mn p
例3 求过点(1, -2, 4)且与平面2x-3y+z-4=0垂直的直线的 方程.
所给直线的对称式方程为 x-1= y +2 = z . 4 -1 -3
所给直线的参数方程为 x=1+4t, y=-2-t, z=-3t .
提示先:当s令求=x(直xi=4+-1线1j时=+上ky,-的)+有 12(一2=i点-y--z+y3,j++z再==33t求kz-,=)2=这有221,i直x此-=线111j方+的k314程t方,=组y4向=i的--向2j解-量-t3为,skz.=.y-=3-t2., z=0.
❖两直线垂直与平行的条件
设有两直线
L1:
x- x1 = m1
y - y1 n1
=
z - z1 p1
,
L2:
x- x2 m2
=
y - y2 n2
= z - z2 p2
,

L1 L2m1m2+n1n2+p1p2=0;
L1
L2
m1 m2
= n1 n2
=
p1 p2
.
首页
上页
返回
下页
结束

四、直线与平面的夹角
首页
上页
返回
下页
结束

通过点M0(x0, y0, x0), 方向向量为s=(m, n, p)的直线方程:
x-x0 m
= y-y0 n
= z-z0 p
.
❖直线的参数方程
设 x-x0 = y- y0 = z-z0 =t, 得方程组 mn p
xy==xy00++mntt . z=z0 + pt 此方程组就是直线的参数方程.
设直线L的方向向量为s=(m, n, p), 平面 的法线向量为
n=(A, B, C), 则
L A = B = C ;
mn p
L// Am+Bn+Cp=0.
首页
上页
返回
下页
结束

设直线L的方向向量为s=(m, n, p), 平面 的法线向量为
n=(A, B, C), 则
L A = B = C ; L// Am+Bn+Cp=0.
§8.6 空间直线及其方程
一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两直线的夹角 四、直线与平面的夹角 五、杂例
首页
上页
返回
下页
结束

一、空间直线的一般方程
空间直线可以看作是两个平面的交线.
设直线L是平面1和2的交线, 平面的方程分别为
A1x+B1y+C1z+D1=0和A2x+B2y+C2z+D2=0, 那么直线L可以用方程组
首页
上页
返回
下页
结束

例例11
用对称式方程及参数方程表示直线
x+ y + z =1 2x- y +3z =
4
.
解 在直线的一般方程中令x=1, 可得y=-2, z=0.
于是(1, -2, 0)是直线上的一点.
以平面x+y+z=-1和2x-y+3z=4的法线向量的向量积作为 直线的方向向量 s:
s=(i+j+k)(2i-j+3k) =4i-j-3k.
设M(x, y, z)为直线上的任一点,
则从M0到M的向量平行于方向向量: (x-x0, y-y0, z-z0)//s ,
从而有
x-x0 m
= y-y0 n
= z-z0 p
. >>>注
这就是直线的方程, 叫做直线的对称式方程.
直线的任一方向向量s的坐标m、n、p叫做这直线的一 组方向数. 向量s的方向余弦叫做该直线的方向余弦.
x -1 1
=
y -4
=
z
+ 1
3

L2:
x 2
=
y +2 = z 的夹角. -2 -1
解 两直线的方向向量分别为(1, -4, 1)和(2, -2, -1).
设两直线的夹角为j , 则
cosj = |12+(-4)(-2)+1(-1)| = 1 = 2 ,
12 +(-4)2 +12 22 +(-2)2 +(-1)2 2 2
-2)+1(-1)| = 1 = 2 , 22 +(-2)2 +(-1)2 2 2
所以 j
=
4
.
首页
上页
返回
下页
结束

方向向量分别为(m1, n1, p1)和(m2, n2, p2)的直线的夹角余弦:
cosj =
|m1m2 +n1n2 + p1p2 |
.
m12 +n12 + p12 m22 +n22 + p22
首页
上页
返回
下页
结束

三、两直线的夹角
两直线的方向向量的夹角(通常指锐角)叫做两直线的夹
角.
设直线L1和L2的方向向量分别为 s1=(m1, n1, p1)和s2=(m2, n2, p2),
那么L1和L2的夹角j满足 cosj =|cos(s1 ^, s2)|
=
|m1m2 +n1n2 + p1 p2 |
提示:
j =| -(s ^, n)| , sinj =|cos(s ^, n)| .
2
首页
上页
返回
下页
结束

方向向量为(m, n, p)的直线与法线向量为(A, B, C)的平面
的夹角j 满足
sinj =
| Am+ Bn+Cp|
.
A2 + B2 +C2 m2 +n2 + p2
❖直线与平面垂直和平行的条件当直线与平面不垂直时, 直线和它在平面上的投影直线
的夹角j称为直线与平面的夹角, 当直线与平面垂直时, 规定
直线与平面的夹角为90.
设直线的方向向量为s=(m, n, p), 平 面的法线向量为n=(A, B, C), 则直线与平
面的夹角j 满足
sinj =
| Am+ Bn+Cp|
.
A2 + B2 +C2 m2 +n2 + p2
做这条直线的方向向量. 直线上任一向量都平行于该直线的方向向量.
❖确定直线的条件 当直线L上一点M0(x0, y0, x0)和它的
一方向向量s=(m, n, p)为已知时, 直线L 的位置就完全确定了.
首页
上页
返回
下页
结束

❖直线的对称式方程
求通过点M0(x0, y0, x0), 方向向量为s=(m, n, p)的直线的方 程.
A1x+B1 y+C1z+D1=0 A2 x+B2 y+C2 z+D2=0
.
来表示. 这就是空间直线的一般方程.
分析:点M在直线L上点M同时在这两个平面上, 点M的坐标同时满足这两个平面的方程.
首页
上页
返回
下页
结束

二、空间直线的对称式方程与参数方程
❖方向向量 如果一个非零向量平行于一条已知直线, 这个向量就叫
相关文档
最新文档