一元二次方程的解法公式法教学提纲
用公式法解一元二次方程学习目标1.使学生理解一元二次方程的求根
用公式法解一元二次方程学习目标1.使学生理解一元二次方程的求根公式的推导过程。
2.引导学生熟记求根公式并理解公式中的条件3.使学生能熟练地运用求根公式解一元二次方程。
学习重点:1.掌握一元二次方程的求根公式。
2.熟练地运用求根公式解一元二次方程。
学习难点:求根公式的推导教学过程(一)复习引入我们学过了一元二次方程的两种解法,它们是1.直接开平方法:2.配方法:(提问步骤)(二)探索新知1.学生尝试用配方法推导一元二次方程的求根公式:2.交流讨论:分析公式的特点,记忆公式。
3.例题学习例1、解方程(学生自主解答,教师点拨)小结:方程满足一般式,确定、、后代入求根公式,即可求出方程的根。
例2、解方程(小组交流合作完成)小结:方程不是一般式,先化为一般形式后再求方程的根。
例3、解方程(自主完成,小组交流)小结:方程的二次项系数为负数,通常先把它化为正数,再求根较好,而且<0可以用算术平方根的意义得到方程没有实数根。
4.反馈练习(1)(2)(3)(4)(学生先练习,老师后点评)(三)课堂总结:(1)要牢记一元二次方程的求根公式(2)利用求根公式求一元二次方程的根的步骤:①化方程为一般形式②确定方程中的、、的值③算出的值④代入求根公式求方程的根(3)求根公式是在时求方程的根,如果<0时,则方程在实数范围内无解。
(四)拓展练习(1)用公式法解方程得到方程的根是。
(2)已知能使的值等于的值的值是。
(3)若代数式与的值是互为相反数,则的值为。
(4)关于的一元二次方程的常数项为0,则关于的一元二次方程的一般式为。
一元二次方程的解法(公式法)教案
一元二次方程的解法(公式法)一、教学目标:1.理解一元二次方程求根公式的推导过程;2.会利用求根公式解简单数字系数的一元二次方程;3.经历探索求根公式的过程,发展学生合情合理的推理能力;4.通过运用公式法解一元二次方程,提高学生的运算能力,并让学生在学习活动中获得成功的体验,建立学好数学的自信心。
二、教学重难点:1、重点:求根公式的推导和公式法的应用2、难点:一元二次方程求根公式的推导三、教学过程(一) 创设情境,导入新课:前面我们己学习了用配方法解一元二次方程,想不想再探索一种比配方法更简单,更直接的方法? 大家一定想,那么这节课我们一同来研究。
下面我们先用配方法解下列一元二次方程1.01422=--x x 2.x x 35.12-=+完成后小组内进行交流,并进行反馈矫正。
引导学生总结用配方法解一元二次方程的步骤教师板书:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为()n m x =+2的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.问题:通过以上四个方程的求解,你能试着猜想一下上述问题的求解的一般规律吗?学生独立思考(二)新知探索作进一步引导,如果每一个一元二次方程都通过配方法解,那么计算就较繁杂,针对于一般的一元二次方程02=++c bx ax (0≠a ) 能否也用配方法导出一般求解模式呢?动手试一试。
学生动手亲自解方程02=++c bx ax (0≠a ) 找一名同学板演。
现在我们大家共同观察黑板上的探索过程02=++c bx ax (0≠a )c bx ax -=+2移项ac x a b x -=+2 将二次项的系数化为1 22222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++a b a c a b x a b x 即 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+ 配方 a ac b a b x 2422-±=+ 开平方运算思考:有条件限制吗?当04422≥-aac b 时,才可以开平方 问题1:在什么2244b aca -才能大于或等于0?学生(思考、回答)因为0≠a 所以042>a ,如果使 04422≥-a ac b ,那么只有 042≥-ac b问题2:如果 042<-ac b 时,可以进行开平方运算吗?不可以,因为负数没有平方根那么我们来总结一下,在用配方法解02=++c bx ax (0≠a )时,需注意什么?归纳总结:对于02=++c bx ax (0≠a ),当042≥-ac b 时,在这里我们把称 为一元二次方程的求根公式,用公式可以直接解一元二次方程。
用公式法求解一元二次方程教学设计
第二章一元二次方程3.用公式法求解一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。
所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。
其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。
为此,本节课的教学目标是:①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。
④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力三、教学过程分析本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;回忆巩固活动内容:①用配方法解下列方程:(1)2x 2+3=7x (2)3x 2+2x+1=0全班同学在练习本上运算,可找位同学上黑板演算②由学生总结用配方法解方程的一般方法:第一题: 2x2+3=7x解:将方程化成一般形式: 2x2-7x +3=0两边都除以一次项系数:2 023272=+-x x配方:加上再减去一次项系数一半的平方 0231649)47(2722=+-+-x x即: 01625)47(2=--x1625)47(2=-x两边开平方取“±” 得:4547±=-x 4547±=x写出方程的根 ∴ x1=3 , x2=21第二题: 3x2+2x+1=0解:两边都除以一次项系数:3 031322=++x x配方:加上再减去一次项系数一半的平方 02391)31(3222=+-++x x即: 01825)31(2=++x1825)31(2-=+x ∵01825<-∴原方程无解活动目的:(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。
一元二次方程的解法之公式法
1 一元二次方程的解法(3)--公式法一.知识回顾:用配方法解一元二次方程a x 2+bx+c=0(a ≠0)二.知识点:1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式:042≥-ac b ) 2.用公式法解一元二次方程的关键是解题步骤:①.先写出a ,b ,c ②.再求出ac b 42- ③.最后代入公式当 042≥-ac b 时,有两个实数根;当 042<-ac b 时,方程无实数根。
3.一元二次方程ax 2+bx+c=0 (a ≠0) 的根的判别式Δ=b 2-4ac ,当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根 。
(反过来也成立)4. 例.用公式法解下列方程.(1)2x 2-4x-1=0; (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 ;(4)4x 2-3x+1=0 ; (5)212308x x -+= (6)x 2-2a x-b 2+a 2=0; .三.自我训练:1.选择题1.用公式法解方程4x 2-12x=3,得到( ).A .B .C .D .22的根是( ).A .x 1x 2B .x 1=6,x 2C .x 1x 2D .x 1=x 23.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).A .4 B .-2 C .4或-2 D .-4或24.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a ;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值.。
用公式法解一元二次方程说课稿
2.3用公式法解一元二次方程说课稿今天我说课的内容是北师大版九年级数学上册第二章《2.3用公式法解一元二次方程》。
我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明.一、教材分析(一)教材的地位和作用“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。
通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。
一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式二、教学法分析教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习——课时小结——布置作业。
一元二次方程的解法公式法教案
第五课:一元二次方程的解法(4)教学目的:1、把握一元二次方程求根公式的推导进程;2、熟练把握用公式法解一元二次方程;重点:一元二次方程求根公式解法;难点:用配方式推导求根公式。
教学进程:一、温习:用配方式解方程:1)0542=+-x x 2)05422=--x x二、新课:1、探讨:用配方式来解一元二次方程ax 2+bx +c =0(a ≠0).解:因为a ≠0,方程两边都除以a ,得移项配方2、一元二次方程ax 2 +bx +c =0的求根公式:)(042422≥--±-=ac b aac b b x 3、用公式法解一元二次方程的一样步骤是:(1) 一化:将方程化为一元二次方程的一样形式;(2) 二定:确信ac b c b a 42-的值及,,的值;(3) 三代:代入求根公式;(4) 四写:写出原方程的解。
4、例题:用公式法解以下方程:(1) x 2+4x =2; (2) 2 x 2+x -6=0;解:移项,得:=a ,=b ,=c=-ac b 42 ∴=-±-=aac b b x 242 ∴原方程的解是=1x ,=2x(3)5x 2-4x -12=0; (4)4x 2+4x +10=1-8x.5、巩固练习:应用求根公式解方程:(1) x 2-6x +1=0; (2)2x 2-x =6;(3)4x 2-3x -1=x -2; (4)3x (x -3) =2(x -1) (x +1).(5)0132=++x x (6)x x x 2222=+6、依照一元二次方程求根公式的推导进程,说明代数式ac b 42-与方程根的情形关系。
ac b 42->0,方程有 实数根;ac b 42-=0,方程有 实数根;ac b 42-<0,方程 实数根;三、堂上练习:1、用公式法解以下方程:(1)0232=-+x x(2)0762=+-x x(3)08692=-+x x(4)y y 4010202...=-(5)121=+)(x x(6)22322x x x =-+)((7)24422=-x x(8)是常数)、b a a b ax x (2222-=-2、不解方程,判别以下方程的根的情形;(1)04322=-+x x ; (2)y y 249162=+解:∵ac b 42-=∴(3)07152=-+x x )( (4)026232=+-t t3、链接中考;1、(99)以下方程中,无实数根的方程是( )A )012=+xB )02=+x xC )012=-+x xD )02=-x x2、(03)关于x 的一元二次方程012=-+-)(a a x x 有两个不相等的正根。
一元二次方程解法(公式法)教学案
一元二次方程的解法(公式)【目标导航】1.理解一元二次方程求根公式的推导过程,了解公式法的解一元二次方程的一般步骤,会熟练应用公式法解一元二次方程; 2.初步了解一元二次方程根的情况;3.通过解决问题,让学生体验问题解决的成功感,从而养成积极思考、主动探究的学习习惯.【预习引领】1.用配方法解下列方程(1)6x 2-7x +1=0 (2)4x 2-3x =52总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项;(2)化二次项系数为1;(3)方程两边加上一次项系数一半的平方; (4)原方程变形为(x +m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.2.如果这个一元二次方程是一般形式ax 2+b x+c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax 2+bx +c =0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx = 二次项系数化为1,得x 2+bax= 两边加上一次项系数一半的平方(配方)得:x 2+b a x+( )2=-ca+( )2即 (x + )2=∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0直接开平方,得:x +2ba =∴这个方程的根是x 1x 2由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.3.利用上述推导得到的公式求下列方程的根 (1)2x 2-4x -1=0 解:(1)a =2,b =-4,c =-1b 2-4ac =(-4)2-4×2×(-1)=24>0 x==∴x 1x 2小结:以上解一元二次方程的方法叫公式法.【要点梳理】1.用公式法解一元二次方程的一般步骤: (1)把方程化为一般形式,确定a ,b ,c 的值(各项系数若有分数,通常化为整数) ; (2)求出ac b 42-的值,根据ac b 42-的值的情况确定是否可以利用公式求解; (3)如果ac b 42-≥0,可以将一般式中的a ,b ,c 的值代入求根公式x 1x 22.注意问题:(1)用公式法解一元二次方程时,一定要将方程化成ax 2+bx +c =0(a ≠0)的一般形式,否则,找a ,b ,c 时,很容易发生符号错误.(2)当ac b 42-=0时 ,方程的根写成abx x 221-==的形式,从而说明一元二次方程有两个根,而不是一个根. 例1 解下列方程: (1)0182=+-x x ; 【答案】1,8,1=-==c b a060114)8(422>=⨯⨯--=-ac b1542608±=±=x154,15421-=+=x x(2) 5x +2=3x 2;【答案】 原方程可化为:02532=--x x2-,5,3=-==c b a0492-34)5(422>=⨯⨯--=-)(ac b67532495±=⨯±=x31-,221==x x(3) ()()0532=--x x ;【答案】 原方程可化为:0101132=+-x x10,11,3=-==c b a011034)11(422>=⨯⨯--=-ac b611132111±=⨯±=x 35,221==x x(4) 01342=+-x x ;【答案】 1,3,4=-==c b a07-144)3(422<=⨯⨯--=-∴ac b ∴原方程无解。
人教版数学九年级上册22.2.4《一元二次方程解法》(公式法1)说课稿
人教版数学九年级上册22.2.4《一元二次方程解法》(公式法1)说课稿一. 教材分析《一元二次方程解法》是人教版数学九年级上册第22.2.4节的内容,属于初中数学的代数部分。
本节内容是在学生已经掌握了方程的解法、一元二次方程的定义和性质等知识的基础上进行教学的。
本节课的主要内容是一元二次方程的公式法求解,是解决一元二次方程问题的重要方法之一。
教材通过具体的例子引导学生掌握公式法的步骤和应用,培养学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元二次方程的概念和性质有一定的了解。
但是,学生对于公式法的理解和运用可能还存在一些困难。
因此,在教学过程中,我需要关注学生的学习需求,针对学生的实际情况进行教学设计和调整。
三. 说教学目标1.知识与技能目标:使学生理解和掌握一元二次方程的公式法,能够熟练运用公式法求解一元二次方程。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生自主探索一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:一元二次方程的公式法及其应用。
2.教学难点:理解一元二次方程的公式法,能够灵活运用公式法解决实际问题。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动参与课堂,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,使教学内容更加直观和生动。
六.说教学过程1.导入新课:通过一个实际问题,引导学生思考如何解决一元二次方程,激发学生的学习兴趣。
2.讲解新课:介绍一元二次方程的公式法,通过具体的例子解释公式法的步骤和应用。
3.实践操作:学生分组进行练习,运用公式法求解一元二次方程,教师巡回指导。
4.总结提升:引导学生总结公式法的解题步骤和注意事项,归纳一元二次方程的解法。
一元二次方程解法公式法教案 公式法解二元一次方程教案
一元二次方程解法公式法教案公式法解二元一次方程教案一元二次方程解法公式法教案一、教学目标1. 理解一元二次方程及其解的概念;2. 学习使用求根公式求解一元二次方程;3. 掌握运用求根公式解一元二次方程的方法。
二、教学重难点1. 了解一元二次方程解的概念;2. 理解求根公式的意义和用法。
三、教学准备1. 教师准备:课件、黑板、粉笔、教材、习题册等;2. 学生准备:书本、笔等。
四、教学过程Step 1 引入新知1. 教师通过实例引导学生了解一元二次方程及解的概念,例如:解方程x^2 - 3x + 2 = 0,学生根据因式分解法的知识可以得到(x-2)(x-1)=0,从而得到方程的解x=2和x=1。
教师提问:如何找到方程的解?是否有更简单的方法?引导学生思考:是否可以通过某种公式直接求解?Step 2 介绍求根公式1. 教师出示一元二次方程ax^2 + bx + c = 0的求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)解释公式中的每个符号的含义。
Step 3 求解实例1. 教师通过实例详细解释如何使用求根公式求解一元二次方程。
例1:求解方程x^2 - 3x + 2 = 0。
解:根据公式,a=1,b=-3,c=2。
带入公式:x = (-(-3) ± √((-3)^2 - 4×1×2)) / (2×1)= (3 ± √(9-8)) / 2= (3 ± 1) / 2= 2或1方程的解为x=2和x=1。
Step 4 练习题1. 教师通过一些练习题帮助学生巩固求根公式的应用。
例2:求解方程2x^2 + 3x - 2 = 0。
例3:求解方程x^2 - 6x + 9 = 0。
例4:求解方程3x^2 + 4x + 2 = 0。
学生独立完成习题,并与同桌讨论结果。
五、课堂小结1. 教师对本节课的内容进行小结,强调学习了一元二次方程求解的公式法;2. 强调求解一元二次方程时需要注意判别式的值,判别式为0时有一个实根,大于0时有两个实根,小于0时无实根;3. 提醒学生多加练习,巩固所学知识。
公式法解一元二次方程说课稿2
《公式法解一元二次方程》说课稿迳口中学黄桂英各位评委,各位老师:大家好!我是来自花东镇迳口中学的数学教师黄桂英,今天我说课的内容是人教版数学九年级上册第22章一元二次方程中《公式法解一元二次方程》。
一、教材分析1、教材的地位和作用用求根公式解一元二次方程是在学完直接开方法、配方法的基础上学习的又一种重要的解法,它不但方便于解较复杂的一元二次方程,而且适用于解所有的一元二次方程,因此学习用公式法解一元二次方程是很有必要的,是不可缺少的一个重要内容。
它为进一步学习一元二次方程的解法及简单应用、二次函数等知识起到铺垫作用。
本节课的学习培养了学生由特殊到一般的解题思想。
2、教学目标知识目标:理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练运用公式法解一元二次方程。
能力目标:在教师的指导下,经历观察、推导、交流归纳等活动导出一元二次方程的求根公式,培养学生的合情推理与归纳总结的能力,同时通过使用求根公式解一元二次方程的练习,培养学生准确快速的计算能力。
情感目标:通过求根公式的推导,培养了学生由特殊到一般的解题思想、探索精神、独立思考的习惯及合作交流的意识。
3、重点与难点重点:正确、熟练地用一元二次方程的求根公式法解一元二次方程。
难点:求根公式推导及b2-4ac对一元二次方程的影响。
二、教法分析教法上采用启发引导,讲练结合的授课方式。
充分体现了“类比——探究——归纳“的模式”。
在教学中我通过新旧知识的类比来启发诱导学生深入思考,并通过合作交流推导出求根公式,这种教学方式有利于培养学生由特殊到一般的解题思想,探索精神,也充分发挥教师的主导作用,体现了学生主体地位,三、学法分析学习本节课以前,学生已学过用开平方法、配方法解一元二次方程,对解方程的基本思路已经比较熟悉。
依照学生的认知规律引导学生从简单的问题中发现规律,突出本节课的重点。
在训练内容的选择上考虑到学生接受新旧知识结合的能力:一是采用层层递进的方式,二是以基本技能为主,而不追求繁难的一元二次方程的解题特殊技巧。
一元二次方程四种解法
龙文教育个性化辅导教案提纲教师:陈燕玲学生:年级九日期: 星期: 时段: 课题一元二次方程的概念及解法学情分析教学目标与考点分析1.掌握一元二次方程的概念及其一般形式,能指出一元二次方程的各项及其系数。
2 能根据具体一元二次方程的特征,灵活选择方程的解法。
体会解决问题方法的多样性。
教学重点难点教学重点: 掌握常用四种一元二次方程的解法。
教学难点: 灵活选用适当方法解一元二次方程教学方法讲解法合作探究法教学过程一、一元二次方程的概念:问题(1)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.归纳:(1)只含一个未知数x;(2)最高次数是2次的;(3)•整式方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.练习:判断下列方程是否为一元二次方程? (1)3x+2=5y-3 (2) x 2=4 (3) 3x 2-5x=0 (4) x 2-4=(x+2) 2 (5) ax 2+bx+c=0 例3.求证:关于x 的方程(m 2-8m+17)x 2+2mx+1=0,不论m 取何值,该方程都是一元二次方程.练习: 一、选择题1.在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0 A .1个 B .2个 C .3个 D .4个2.方程2x 2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为( ). A .2,3,-6 B .2,-3,18 C .2,-3,6 D .2,3,6 3.px 2-3x+p 2-q=0是关于x 的一元二次方程,则( ).A .p=1B .p>0C .p ≠0D .p 为任意实数 二、填空题1.方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________. 2.一元二次方程的一般形式是__________.3.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________. 三、综合提高题1、a 满足什么条件时,关于x 的方程a (x 2+x )=3x-(x+1)是一元二次方程?2、关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?3、方程(2a —4)x 2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?4、当m 为何值时,方程(m+1)x /4m /-4+27mx+5=0是关于的一元二次方程二、一元二次方程的解:复习:方程的解一元二次方程的解也叫做一元二次方程的根.(只含有一个未知数的方程的解,又叫方程的根) 例1.下面哪些数是方程2x 2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.例2.若x=1是关于x 的一元二次方程a x 2+bx+c=0(a ≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x 的一元二次方程(a-1) x 2+x+a 2-1=0的一个根为0,则求a 的值例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0三、一元二次方程的解法(一)、直接开平方法问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?方程x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.解一元二次方程的共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•这种思想称为“降次转化思想”.由应用直接开平方法解形如x2=p(p≥0),那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±p,达到降次转化之目的.若p<0则方程无解练习:一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.a +b2-12b+36=0,那么ab的值是_______.3.如果a、b为实数,满足34三、综合提高题1.解关于x的方程(x+m)2=n.(二)、配方法1、解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?2、要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9左边写成平方形式→(x+3)2=•25 •降次→x+3=±5 即x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.通过配方使左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程配方法解一元二次方程的一般步骤:(1)将方程化为一般形式;(2)二次项系数化为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-12=0例2.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0例4、用配方法解方程:ax2+bx+c=0(a≠0)练习:一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().A.1 B.-1 C.1或9 D.-1或94.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0 C.(x-13)2=89D.(x-13)2=1095.下列方程中,一定有实数解的是().A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(12x-a)2=a6.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A .1B .2C .-1D .-2 二、填空题1.方程x 2+4x-5=0的解是________.2.代数式2221x x x ---的值为0,则x 的值为________. 3.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 4.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,•所以求出z 的值即为x+y 的值,所以x+y 的值为______. 三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 2+3=23x2.已知:x 2+4x+y 2-6y+13=0,求222x yx y -+的值.3.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长.4.如果x 2-4x+y 2+6y+2z ++13=0,求(xy )z 的值.5、求证:无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是正数(三)公式法由上例4可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=242b b ac a-±-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
初三数学一元二次方程解法关于公式法
一元二次方程的解法2.2.2 公式法【知识与技术】1.经历推导求根公式的过程,增强推理技术的训练.2.会用公式法解简单系数的一元二次方程.【过程与方法】经过由配方法推导求根公式,培育学生推理能力和由特别到一般的数学思想.【感情态度】让学生体验到全部一元二次方程都能运用公式法去解,形成全面解决问题的踊跃感情,感觉公式的对称美、简短美,产生热爱数学的感情.【教课要点】求根公式的推导和公式法的应用.【教课难点】理解求根公式的推导过程.一、情形导入,初步认知1.用配方法解方程:(1)x2+3x+2=0;( 2) 2x2-3x+5=0.2.由用配方法解一元二次方程的基本步骤知:对于每个详细的一元二次方程,都使用了同样的一些计算步骤,这启迪我们思虑,能不可以对一般形式的一元二次方程 ax2+bx+c=0( a≠ 0)使用这些步骤,而后求出解x 的公式?【教课说明】这样做了此后,我们能够运用这个公式来求每一个详细的一元二次方程的解,获得一通百通的成效.二、思虑研究,获得新知1.用配方法解方程: ax2+bx+c=0( a≠ 0)剖析:前面详细数字已做了好多,我们此刻不如把a、b、c 也当作一个详细数字,依据上边的解题步骤就能够向来推下去.解:移项,得: ax2+bx=-c【概括结论】由上可知,一元二次方程 ax2+bx+c=0( a≠ 0)的根由方程的系数 a、b、c 而定,所以:(1)解一元二次方程时,能够先将方程化为一般形式 ax2+bx+c=0,当 b2-4ac≥ 0 时,将 a、 b、c 代入式子便可求出方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【重申】用公式法解一元二次方程时,一定注意两点:(1)将 a、b、c 的值代入公式时,必定要注意符号不可以犯错 .(2)式子 b2≥0是公式的一部分.-4ac【教课说明】让学生思虑对于一般形式的一元二次方程ax2≠能+bx+c=0(a 0)否用配方法求出它的解?经过解方程发现概括一元二次方程的求根公式.2.展现课本P36 例5(1),(2),按课本方式指引学生用公式法解一元二次方程,并提示学生在确立 a,b,c 的值时,先要将一元二次方程式化为一般形式,注意a,b,c 的符号 .3.指引学生达成 P37 例 6.4.你能总结出用公式法解一元二次方程的一般步骤吗?【概括结论】第一要把原方程化为一般形式,进而正确地确立 a,b,c 的值;其次要计算 b2-4ac 的值,当 b2-4ac≥ 0 时,再用求根公式求解 .三、运用新知,深入理解1.用公式法解以下方程.2x2 +3=7x剖析:用公式法解一元二次方程,需先确立a、b、c 的值、再算出b2-4ac的值、最后辈入求根公式求解.解: 2x2- 7x+3=0a=2,b=-7,c=3∵b2- 4ac=(- 7) 2- 4× 2× 3=25>02.某数学兴趣小组对对于x 的方程( m+1)xm2+1+(m-2)x-1=0 提出了以下问题.(1)若使方程为一元二次方程, m 能否存在?若存在,求出 m 并解此方程.(2)若使方程为一元一次方程m 能否存在?若存在,恳求出.你能解决这个问题吗?剖析:(1)要使它为一元二次方程,一定知足 m2 +1=2,同时还要知足(m+1)≠0.(2)要使它为一元一次方程,一定知足∶解:(1)存在.依据题意,得:m2+1=2m2=1m=± 1当m=1 时, m+1=1+1=2≠ 0当m=-1 时,m+1=-1+1=0(不合题意,舍去)∴当 m=1 时,方程为 2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×( -1)=1+8=92所以,该方程是一元二次方程时,m=1,两根 x1=1,x =-12.由于当 m=0 时,(m+1)+(m-2)=2m-1=-1≠ 0所以 m=0 知足题意.②当 m2+1=0,m 不存在.③当 m+1=0,即 m=-1 时, m-2=-3≠0所以 m=-1 也知足题意.当m=0 时,一元一次方程是 x-2x-1=0,解得: x=-1当m=-1 时,一元一次方程是 -3x-1=0解得 x=-1/3所以,当 m=0 或-1 时,该方程是一元一次方程,而且当 m=0 时,其根为 x=-1;当 m=-1 时,其一元一次方程的根为 x=-1/3.【教课说明】主体研究、研究利用公式法解一元二次方程的一般方法,进一步理解求根公式.四、师生互动、讲堂小结先小组内沟通收获和感想尔后以小组为单位派代表进行总结.教师作以增补 .部署作业:教材“习题”中第 4 题 .。
《一元二次方程的解法:公式法》精品教案
一元二次方程的解法公式法教学目标1、理解求根公式法与配方法的联系.2、会用求根公式法解一元二次方程.3、注意培养学生良好的运算习惯.重点难点重点:会运用求根公式法解一元二次方程.难点:由配方法导出一元二次方程的求根公式.教学过程(一)创设情境由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2+bx+c=0(a≠0)使用这些步骤,然后求出解x的公式这样做了以后,我们可以运用这个公式来求每一个具体的一元二次方程的解,取得一通百通的效果.(二)探究新知按课本P35的方式引导学生,用配方法导出一元二次方程ax2+bx+c=0(a≠0),当b2-40c≥0时的求根公式为:a acbbx24 2-±-= (b2-4ac≥0).并让学生知道,运用一元二次方程的求根公式直接求每一个一元二次方程的解,这种解一元二次方程的方法叫公式法.(三)讲解例题1、按课本方式引导学生用公式法解一元二次方程,并提醒学生注意a,b,c的符号.2、引导学生完成P37,并提醒学生在确定a,b,c的值时,先要将一元二次方程式化为一般形式.3、引导学生归纳用公式法解一元二次方程的基本步骤:首先要把原方程化为一般形式,从而正确地确定a,b,c的值;其次要计算b2-4ac的值,当b2-4ac≥0时,再用求根公式求解.(四)应用新知课本P37练习,第(1)~(4)题.(五)课堂小结1、熟记一元二次方程的求根公式,并注意公式成立的条件:a≠0,b2-4ac≥0.2、熟悉用公式法解一元二次方程的基本步骤.3、公式法是解一元二次方程的通法,有普遍的适用性,即可以解任何一元二次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q b24ac(2 3) 24130
x(-2 3)
02
3
3
21
2
即 : x1 x2 3
x b b2 4ac 2a
例 3 解方程:x213x6
解:去括号,化简为一般式:
3x27x80
这里 a3 、 b =-7 、 c =8
Qb24ac( 7) 2438 4996-470
方程没有实数解。
用公式法解一元二次方程的一般步骤: 1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值,
特别注意:当 b24ac0时无实数根
3、代入求根公式 : xb b2 4ac 2a
4、写出方程的解:
x
、
1
x
2
练一练
1用公式法解下列方程
(1)x2-3x-4=0
(2)2x2+x-1=0
a
2
>0
b 式子 2 4ac的值有以下三种情况
(1)b24a c0,这b 时 24 a42ac 0
即
b
b2 4ac
x
2a
2a
此时,方程有两个不等的实数根
b
x1
b
x2
b 2 4 ac
ห้องสมุดไป่ตู้2a
b 2 4 ac
2a
即
x
b 2 2a
b2 4ac 4a2
因为a≠0,所以4
a
2
>0
b 式子 2 4ac的值有以下三种情况
(3)x2-2x=3
(4)x(x-6)=6
(5)4x2+4x-1=-10-8x (6)2x2-7x+7=0
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0 有两个相等的实数解
2、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b,c 满足什么条件时,方程的两根为 互为相反数?
一元二次方程的解法 公式法
用配方法解一般形式的一元二次方程
ax2bxc0(a≠0)
解: 把方程两边都除以 a
x2 b x c 0 aa
移项,得
x2 b x c
a
a
配方,得
x2abx2ba2ac2ba2
即
x
b 2 2a
b2 4ac 4a2
即
x
b 2 2a
b2 4ac 4a2
因为a≠0,所以4
b
2
) 0
,
2a
因此方程无实数根
ax2bxc0
b 一般地,式子 2 4ac 叫做方程
根的判别式,通常用希腊字母△表示它,即
△= b2 4ac
当△>0时,方程 ax2bxc0 (a≠0)
的实根可写为
b b2 4ac x
2a
一元二次方程的 求根公式
用求根公式解一元二次方程的方法 叫做公式法。
概念巩固
1.把方程4-x2=3x化为ax2+bx+c=0(a≠0) 形式为______,b2-4ac=____
2.用公式法解方程3x2+4=12x,下列代入公式正
确的是( )
A.x= 12 14412 2
12 14412
B.x=
2
C.x=12 14412 D.x= 12 14448
2
6
=
x b b2 4ac 2a
例 1 解方程: x27x180
解:
a 1b 7c 1 8
Q b24ac(7) 241( 18) 121>0
方程有两个不等的实数根
xb b2 4ac (7) 121711
2a
21
2
即 : x19 x22
x b b2 4ac 2a
例 2 解方程: x232 3x
解: 化简为一般式:x22 3x30 这里 a1、 b=-23、 c=3
(2)b24a c0,这b 时 2 4 a42a
c 0
即 x b b2 4ac =0
2a
2a
此时,方程有两个相等的实数根
x1
x2
b 2a
即
x
b 2 2a
b2 4ac 4a2
因为a≠0,所以4
a
2
>0
b 式子 2 4ac的值有以下三种情况
(3)b24a c0,这b 时 24 a42a
c 0
而x取任何实数都不可能使 (x
想一想
两个连续正偶数的积等于168,求这两个偶数
归纳总结
1、解一元二次方程一般有哪几种方法?
2.一元二次方程的求根公式是什么? 用公式法解一元二次方程时要注意什么?
3、任何一个一元二次方程都能用公式法求解吗?
4、若解一个一元二次方程时,b2-4ac<0,请说明
这个方程解的情况。