2018聚焦中考数学(甘肃省)考点跟踪突破26直线与圆的位置关系

合集下载

九年级数学直线和圆的位置关系

九年级数学直线和圆的位置关系

高档题型解析及思路拓展
例题3
解析
思路拓展
已知直线$l_{1}$和圆$O_{1}$相切于点 $P$,直线$l_{2}$过点$P$且与圆 $O_{1}$相交于另一点$Q$,求直线 $l_{2}$的方程。
由于直线$l_{1}$和圆$O_{1}$相切于点 $P$,因此点$P$是切点,且直线 $l_{1}$在点$P$处的切线斜率与直线 $l_{2}$的斜率相等。我们可以通过求 出点$P$的坐标和切线斜率,再利用点 斜式求出直线$l_{2}$的方程。
若直线与圆相切,则直线到圆心的距 离等于半径,由此可求出切线方程。
直线与圆的交点坐标
联立直线方程和圆方程求解,可得交 点坐标。若有两个交点,则它们关于 圆心对称。
02
直线与圆的位置关系分类
相离关系
定义
直线与圆没有公共点,称为相离。
判定方法
通过比较圆心到直线的距离与圆的 半径大小来判断。若圆心到直线的 距离大于圆的半径,则直线与圆相 离。
直线与圆的交点个数
通过观察图形或计算,确定直线与圆的交点个数。若有两个交点,则直线与圆 相交;若有一个交点,则直线与圆相切;若没有交点,则直线与圆相离。
综合应用举例
解法一
联立直线l和圆C的方程,消去一 个未知数得到一个一元二次方程 。根据判别式的值判断位置关系 。
解法二
计算圆心(a,b)到直线l的距离d,根 据d与半径r的大小关系判断位置关 系。
圆的性质
圆上任意一点到圆心的距 离等于半径;圆的任意弦 所对的圆周角等于弦所对 圆心角的一半。
圆的切线
与圆有且仅有一个交点的 直线称为圆的切线,切线 与半径垂直。
直线与圆的交点问题
直线与圆的位置关系
直线与圆的切线问题

关于解决直线与圆的位置关系问题的几种常用方法

关于解决直线与圆的位置关系问题的几种常用方法

关于解决直线与圆的位置关系问题的几种常用方法李志民1 直线与圆的位置关系有三种:相交、相切、相离。

判断直线与圆的位置关系常见的有三种方法:判别式 相交1.1代数法: 相切Δ=b2-4ac 相离1.2 几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r 相交,d=r 相切,d>r相离(三)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.此法适用于动直线问题。

2 计算直线被圆截得的弦长的常用方法2.1 几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算。

2.2 代数方法一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是运用韦达定理及弦长公式|AB|= |x A-x B|=.]4))[(1(22BABAxxxxk-++说明:圆的弦长、弦心距的计算常用几何方法。

3 求过点P(x0,y0)的圆x2+y2=r2的切线方程3.1 若P(x0,y0)在圆x2+y2=r2上, 则以P为切点的圆的切线方程为:x0x+y0y=r23.2 若P(x0,y0)在圆x2+y2=r2外,则过P的切线方程可设为:y-y0=k(x-x0),利用待定系数 法求解。

说明:k为切线斜率,同时应考虑斜率不存在的情况.4 例题选讲:例1. 已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12。

(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长。

(1)证明 由消去y得(k2+1)x2-(2-4k)x-7=0,因为Δ=(4k-2)2+28(k2+1)>0,所以不论k为何实数,直线l和圆C总有两个交点.(2)解 设直线与圆交于A(x1,y1)、B(x2,y2)两点,则直线l被圆C截得的弦长|AB|=1+k2|x1-x2|=28-4k+11k21+k2=2 11-4k+31+k2,令t=4k+31+k2,则tk2-4k+(t-3)=0,当t=0时,k=-34,当t≠0时,因为k∈R,所以Δ=16-4t(t-3)≥0,解得-1≤t≤4,且t≠0,故t=4k+31+k2的最大值为4,此时|AB|最小为27。

中考数学考点跟踪训练26-圆的基本性质

中考数学考点跟踪训练26-圆的基本性质

考点跟踪训练26 圆的基本性质一、选择题1.(2011·上海)矩形ABCD 中,AB =8,BC =3 5,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A. 点B 、C 均在圆P 外B. 点B 在圆P 外、点C 在圆P 内C. 点B 在圆P 内、点C 在圆P 外 D .点B 、C 均在圆P 内 答案 C解析 如图,AB =8,BP =3AP ,得BP =6,AP =2.在Rt △APD 中,PD = 3 52+22=7>BP ,所以点B 在圆P 内;在Rt △BPC 中,PC = 3 52+62=9>PD ,所以点C 在圆P外.2.(2011·凉山)如图,∠AOB =100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB 的度数为( )A .50°B .80°或50°C .130°D .50° 或130° 答案 D解析 当点C 在优弧上,∠ACB =12∠AOB =50°;当点C 在劣弧上,∠ACB =180°-50°=130°.综上,∠ACB =50°或130°.3.(2011·重庆)如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于( )A .60°B .50°C .40°D .30° 答案 B解析 在△OBC 中,OB =OC ,∠OCB =40°, ∴∠BOC =180°-2×40°=100°.∴∠A =12∠BOC =12×100°=50°.4.(2011·绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径OB =10,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .6 答案 A解析 在Rt △OBC 中,OB =10,OC =6,∴BC =102-62=8. ∵OC ⊥AB , ∴AC =BC.∴AB =2BC =2×8=16.5.(2011·嘉兴)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) A .6 B .8 C .10 D .12 答案 A解析 作弦心距OC ,得AC =BC =12×16=8.连接AO ,在Rt △AOC 中,OC =102-82=6.二、填空题6.(2011·扬州)如图,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°,则∠ACD =__________度.答案 40解析 ∵AB 是⊙O 的直径, ∴∠ADB =90°.∴∠B =90°-∠BAD =90°-50°=40°. ∴∠ACD =∠B =40°.7.(2011·安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________________.答案 5解析 画OM ⊥AB ,ON ⊥CD ,垂足分别为M 、N ,连接OD.∵AB =CD , ∴OM =ON.易证四边形OMEN 是正方形.∵CN =DN =12CD =12×(1+3)=2,∴EN =CN -CE =2-1=1. ∴ON =1.∴在Rt △DON 中,OD =12+22= 5.8.(2011·杭州)如图,点A 、B 、C 、D 都在⊙O 上,CD 的度数等于84°,CA 是∠OCD 的平分线,则∠ABD +∠CAO =________.答案 48°解析 ∵OA =OC , ∴∠CAO =∠ACO. 又∵∠ABD =∠ACD ,∴∠ABD +∠CAO =∠ACD +∠ACO =∠DCO.在△CDO 中,OC =OD ,∠COD=====mCD =84°,∴∠DCO =180°-84°2=48°,即∠ABD +∠CAO =48°.9.(2011·威海)如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =4 2,则∠AED =___________.答案 30°解析 连接DO ,画OF ⊥CD ,垂足是F.∴CF =DF =12CD =12×4 2=2 2.∵AB =AE +BE =5+1=6,∴DO =12AB =3.在Rt △DFO 中,OF =32- 2 22=1,在Rt △OFE 中,OE =3-1=2,OF =1.∴∠AED =30°.10.(2011·舟山)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC于点D ,连接CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE·AB.其中正确结论的序号是_______.答案 ①④解析 ∵OC ⊥AB ,∴A C =B C =90°. ∵AD 平分∠CAD ,∴∠CAD =∠BAD ,CD =BD =45°. ∴∠CAB=====m 12BC =45°,∠DOB=====mBD =45°,∴∠CAD =∠DOB ,AC ∥OD ;在△ACO 中,AC>AO ,AE 平分∠CAO ,∴CE≠EO;由AC ∥OD ,得△ODE ∽△CAE ,而∠CAD =∠BAO ,∠ACE≠∠AOD ,∠AEC≠∠AOD.∴△ACE 与△ADO 不相似,即△ODE 与△ADO 不相似;连接BD ,有BD =CD ,可求得∠B =67.5°,又∵∠CED =∠AEO =67.5°,∴∠B =∠CED.又∵∠CDE =∠DOB =45°,∴△CDE ∽△DOB ,CD DO =CE DB ,CD·DB=CE·DO,∴CD 2=CE·⎝ ⎛⎭⎪⎫12AB ,即2CD 2=CE·AB.故结论①、④正确. 三、解答题11.(2011·上海)如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与A B 相交于点M 、N.(1)求线段OD 的长;(2)若tan ∠C =12,求弦MN 的长.解 (1)∵CD ∥AB ,∴∠OAB =∠C ,∠OBA =∠D. ∵OA =OB ,∴∠OAB =∠OBA. ∴∠C =∠D. ∴OC =OD.∵OA =3,AC =2, ∴OC =5. ∴OD =5.(2)过点O 作OE ⊥CD ,E 为垂足,连接OM.在Rt △OCE 中,OC =5,tan ∠C =12,设OE =x ,则CE =2x.由勾股定理得x 2+(2x)2=52,解得x 1=5,x 2=-5(舍去).∴OE = 5.在Rt △OME 中,OM =OA =3,∴ME =OM 2-OE 2=32-52=2.∴MN =2ME =4.12.(2011·江西)如图,已知⊙O 的半径为2,弦BC 的长为2 3,点A 为弦BC 所对优弧上任意一点(B 、C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值.(参考数据:sin60°=32,cos30°=32,tan30°=33.)解 (1) 解法一:连接OB 、OC ,过O 作OE ⊥BC 于点E(如图).∵OE ⊥BC ,BC =2 3, ∴BE =EC = 3.在Rt △OBE 中,OB =2,∵sin ∠BOE =BE OB =32,∴∠BOE =60°, ∴∠BOC =120°,∴∠BAC =12∠BOC =60°.解法二:连接BO 并延长,交⊙O 于点D ,连接CD.(如图)∵BD 是直径,∴BD =4,∠DCB =90°. 在Rt △DBC 中,sin ∠BDC =BC BD =2 34=32,∴∠BDC =60°,∴∠BAC =∠BDC =60°.(2)因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处.如图,过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB 、AC ,则AB =AC ,∠BAE =12∠BAC =30°.在Rt △ABE 中,∵BE =3,∠BAE =30°,∴AE =BEtan 30°=3,∴S △ABC =12×2 3×3=3 3.答:△ABC 面积的最大值是3 3. 13.(2011·德州) ●观察计算当a =5,b =3时, a +b2与ab 的大小关系是__________________;当a =4,b =4时, a +b2与ab 的大小关系是__________________.●探究证明如图所示,△ABC 为圆O 的内接三角形,AB 为直径,过C 作CD ⊥AB 于D ,设AD =a ,BD =b.(1)分别用a 、b 表示线段OC 、CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a 、b 的式子表示). ●归纳结论根据上面的观察计算、探究证明,你能得出a +b2与ab 的大小关系是:________________________.●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.解 观察计算: a +b 2>ab ;a +b2=ab. 探究证明:(1)∵AB =AD +BD =2OC ,∴OC =a +b 2.∵AB 为⊙O 直径, ∴∠ACB =90°.∵∠A +∠ACD =90°,∠ACD +∠BCD =90°, ∴∠A =∠BCD. ∴△ACD ∽△CBD. ∴AD CD =CD BD . 即CD 2=AD·BD =ab , ∴CD =ab.(2)当a =b 时,OC =CD, a +b2=ab ;a≠b 时,OC>CD, a +b2>ab.结论归纳: a +b2≥ab.实践应用:设长方形一边长为x 米,则另一边长为1x 米,设镜框周长为l 米,则l =2(x +1x ) ≥4x·1x=4 . 当x =1x,即x =1(米)时,镜框周长最小.此时四边形为正方形时,周长最小为4 米.14.(2011·肇庆)已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连接AD.(1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)若⊙O 的半径为5,AF =152,求tan ∠ABF 的值.解 (1)证明:∵BD 平分∠CBA ,∴∠CBD =∠DBA.∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD. ∴∠DAC =∠DBA.(2)证明:∵AB 为直径,∴∠ADB =90°. 又∵DE ⊥AB 于点E ,∴∠DEB =90°. ∴∠ADE +∠EDB =∠ABD +∠EDB =90°. ∴∠ADE =∠ABD =∠DAP.∴PD =PA.又∵∠DFP +∠DAC =∠ADE +∠PDF =90°, 且∠ADE =∠DAC ,∴∠PDF =∠PFD ,∴PD =PF.∴PA =PF ,即P 是线段AF 的中点.(3)解:∵∠DAF =∠DBA ,∠ADB =∠FDA =90°, ∴△FDA ∽△ADB , ∴AD DB =AF AB. ∴在Rt △ABD 中,tan ∠ABD =AD DB =AF AB =15210=34,即tan ∠ABF =34.15.(2011·广州)如图1,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中∠DCE 是直角,点D 在线段AC 上.(1)证明:B 、C 、E 三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN =2OM ;(3)将△DCE 绕点C 逆时针旋转α(00<α<900)后,记为△D 1CE 1(图2),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若成立,请证明;若不成立,说明理由.解 (1)证明:∵ AB 是⊙O 的直径, ∴ ∠ACB =90°. ∵ ∠DCE =90°,∴∠ACB +∠DCE =180°, ∴ B 、C 、E 三点共线.(2)证明:如图,连接ON 、AE 、BD ,延长BD 交AE 于点F.∵ ∠ABC =45°,∠ACB =90°,∴ BC =AC. 又∠ACB =∠DCE =90°,DC =EC , ∴ △BCD ≌△ACE.∴ BD =AE ,∠DBC =∠CAE.∴∠DBC +∠AEC =∠CAE +∠AEC =90°. ∴ BF ⊥AE.∵ AO =OB ,AN =ND ,∴ ON =12BD ,ON ∥BD.∵ AO =OB ,EM =MB ,∴ OM =12AE ,OM ∥AE.∴ OM =ON ,OM ⊥ON. ∴ ∠OMN =45°.又 cos ∠OMN =OMMN ,∴ MN =2OM.(3) M 1N 1=2OM 1成立,证明同(2)。

2016聚焦中考数学(甘肃省)考点跟踪突破26直线与圆的位置关系

2016聚焦中考数学(甘肃省)考点跟踪突破26直线与圆的位置关系

考点跟踪突破26直线与圆的位置关系一、选择题(每小题6分,共24分)1.(2015·张家界)如图,∠O =30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是(C )A .相离B .相交C .相切D .以上三种情况均有可能,第1题图),第2题图)2.(2015·嘉兴)如图,△ABC 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为(B )A .2.3B .2.4C .2.5D .2.63.(2015·南充)如图,PA 和PB 是⊙O 的切线,点A 和B 是切点,AC 是⊙O 的直径,已知∠P =40°,则∠ACB 的大小是(C )A .60°B .65°C .70°D .75°,第3题图),第4题图)4.(2014·内江)如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC ,BC 相切于点D ,E ,则AD 为(B )A .2.5B .1.6C .1.5D .1解析:连接OD ,OE ,设AD =x ,∵半圆分别与AC ,BC 相切,∴∠CDO =∠CEO =90°,∵∠C =90°,∴四边形ODCE 是矩形,∴OD =CE ,OE =CD ,∴CD =CE =4-x ,BE =6-(4-x)=x +2,∵∠AOD +∠A =90°,∠AOD +∠BOE =90°,∴∠A =∠BOE ,∴△AOD ∽△OBE ,∴AD OE =OD BE ,∴x 4-x =4-x x +2,解得x =1.6,故选B 二、填空题(每小题7分,共28分)5.(2014·湘潭)如图,⊙O 的半径为3,P 是CB 延长线上一点,PO =5,PA 切⊙O 于A 点,则PA =__4__.,第5题图),第6题图)6.(2015·徐州)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若∠C =20°,则∠CDA =__125°__.7.(2015·宜宾)如图,AB 为⊙O 的直径,延长AB 至点D ,使BD =OB ,DC 切⊙O 于点C ,点B 是CF 的中点,弦CF 交AB 于点E ,若⊙O 的半径为2,则CF =__23__.解析:连结OC ,BC.∵DC 切⊙O 于点C ,∴∠OCD =90°,∵BD =OB ,⊙O 的半径为2,∴BC =BD =OB =OC =2,即△BOC 是等边三角形,∴∠BOC =60°,∵AB 为⊙O的直径,点B 是CF ︵的中点,∴CE =EF ,AB ⊥CF ,即△OEC 为直角三角形,∵在Rt △OEC。

《直线与圆的位置关系》(精选5篇)

《直线与圆的位置关系》(精选5篇)

《直线与圆的位置关系》(精选5篇)《直线与圆的位置关系》篇1一、教学目标知识与技能:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。

过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。

情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。

二、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。

三、教学设计问题设计意图师生活动1.初中学过的平面几何中,直线与圆的位置关系有几类?2. 图形中的圆与直线的位置都是一样的吗?启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.2.直线与圆的位置关系有哪几种呢?得出直线与圆的位置关系的几何特征与种类.师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.问题设计意图师生活动生:观察图形,利用类比的方法,归纳直线与圆的位置关系.3.在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?使学生回忆初中的数学知识,培养抽象概括能力.师:引导学生回忆初中判断直线与圆的位置关系的思想过程.生:回忆直线与圆的位置关系的判断过程.4.你能说出判断直线与圆的位置关系的两种方法吗?抽象判断直线与圆的位置关系的思路与方法.师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,寻找两种方法的数学思想.5.你能两种判断直线与圆的位置关系的数学思想解决例1的问题吗?体会判断直线与圆的位置关系的思想方法,关注量与量之间的关系.师:指导学生阅读教科书上的例1.生:阅读科书上的例1,并完成教科书第128页的练习题2.6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?使学生熟悉判断直线与圆的位置关系的基本步骤.师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.生:交流自己总结的步骤.师:展示解题步骤.7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?进一步深化“数形结合”的数学思想.师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.问题设计意图师生活动8.通过例2的学习,你发现了什么?明确弦长的运算方法.师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.9.完成教科书第128页的练习题1、2、3、4.巩固所学过的知识,进一步理解和掌握直线与圆的位置关系.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.10.课堂小结:教师提出下列问题让学生思考:(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?作业:习题4.2a组:1、3.《直线与圆的位置关系》篇2教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。

中考数学直线与圆的位置关系专题含答案

中考数学直线与圆的位置关系专题含答案

【知识梳理】1、点与圆的位置关系:设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。

2、直线和圆的位置关系:直线和圆有三种位置关系,具体如下:知识点梳理:直线与圆的位置关系______ ______ ______ 图形公共点的个数______ ______ 0公共点的名称交点______ 无直线名称割线______ 无d与r的关系d________r d________r d________r 【经典例题1】在矩形ABCD 中,AB=5,BC=12,点 A 在⊙B 上.如果⊙D 与⊙B 相交,且点 B 在⊙D 内,那么⊙D 的半径长可以等于.(只需写出一个符合要求的数)【解析】∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在B上,∴B的半径为5,∵如果D与B相交,∴D的半径R满足8∵点B在D内,∴R>13,∴14符合要求,故答案为:14(答案不唯一).练习1-1在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为 ()A.E,F,GB.F,G,HC.G,H,ED.H,E,F练习1-2已知☉O的直径等于12,圆心O到直线l的距离恰好为一元二次方程2x2-10x+3=0的两根的和,那么直线l和☉O的位置关系是.练习1-3如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=23.将⊙P沿着与y轴平行的方向平移,使⊙P与x轴相切,则平移距离为_____.练习1-4(20上海中考)如图,在矩形ABCD 中,AB=6,BC=8,点O 在对角线AC 上,⊙O 的半径为2,如果⊙O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是 .320310<<x练习1-5如图,已知矩形ABCD 中,AB=2,BC=32,O 是AC 上一点,AO=m ,且O 的半径长为1,求:(1)线段AB 与O 没有公共点时m 的取值范围。

中考数学思维方法讲义【第13讲】直线和圆的位置关系(含答案)

中考数学思维方法讲义【第13讲】直线和圆的位置关系(含答案)

状元廊学校数学思维方法讲义之十三年级:九年级第13讲直线和圆的位置关系圆的知识在平面几何中乃至整个初中教学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何知识的综合运用,又是在学习了点和圆的位置关系的基础上进行的,在几何证明与计算中,将起到重要的作用,是中考必考查点。

【知识纵横】§Ⅰ直线和圆的位置关系:设圆的半径为r,圆心到直线的距离为d.⑴直线与圆相交⇔d__ ____ r;⑵直线与圆相切⇔d__ ____ r;⑶直线与圆相离⇔d__ ____r。

§Ⅱ圆的切线:1.一个定义:与圆只有一个公共点的直线叫做圆的__ ___;这个公共点叫做__ ___;2.两种判定:⑴若圆心到直线的距离等于半径,则该直线是圆的切线;⑵经过直径的一端,并且垂直于这条直径的直线是圆的切线;3.判定直线和圆的位置,一般考虑如下“三步曲”:一“看”:看看题目中有没有告诉我们直线和圆有几个公共点;二“算”:算算圆心到直线的距离d和圆的半径为r之间的大小关系,然后根据上述关系作出判断;三“证明”:证明直线是否经过直径的一端,并且与该直径的位置关系是否垂直。

4.四条性质:切线有许多重要性质⑴圆心到切线的距离等于圆的_ ____;⑵过切点的半径垂直于_ ____;⑶经过圆心,与切线垂直的直线必经过___ __;⑷经过切点,与切线垂直的直线必经过____ _。

5.弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角;定理:弦切角等于它所夹的弧所对的圆周角.推论:a)两个弦切角所夹的弧相等,这两个弦切角也相等;b)弦切角的度数等于它所夹弧度数的一半。

【典例精析】考点1: 直线和圆的位置关系【例1】1、如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠=︒,点P在数轴上运动,若过点P且与OA平行的直线与⊙O AOB45=,则x的取值范围是__________.有公共点, 设OP x2、射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,3为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒).变式一:1、如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =43D在线段AC 上(不与点A 、C 重合),过点D 作DE ⊥AC 交AB 边于点E . (1)当点D 运动到线段AC 中点时,DE = ;(2)点A 关于点D 的对称点为点F ,以FC 为半径作⊙C ,当DE = 时,⊙C 与直线AB 相切.2、如图,在直角梯形ABCD 中,已知AD ∥BC ,∠C =90°,且AB >AD+ BC ,AB 是⊙O 直径,则直线CD 与⊙O 的位置关系为_____ _.考点2: 圆的切线的性质基本运用【例2】已知直线PD 垂直平分⊙O 的半径OA 于点B ,PD 交⊙O 于点C 、D ,PE 是⊙O 的切线,E 为切点,连结AE ,交CD 于点F . (1)若⊙O 的半径为8,求CD 的长; (2)证明:PE =PF ;(3)若PF =13,sinA =513,求EF 的长.变式二: 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .(1)证明:AF 平分∠BAC ;(2)证明:BF=FD ;(3)若EF =4,DE =3,求AD 的长.O AD B ED O A B C考点3:切线的判定定理运用【例4】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.【例5】如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=14,求BN的长.12NGEOB M变式三:如图,Rt ABC △中,90ABC ∠=°,以AB 为直径作O ⊙交AC 边于点D ,E 是边BC 的中点,连接DE .(1)求证:直线DE 是O ⊙的切线;(2)连接OC 交DE 于点F ,若OF CF =,求tan ACO ∠的值.【思维拓展】【例6】如图,P A 为⊙O 的切线,A 为切点,直线PO 交⊙O 与点E ,F ,过点A 作PO 的垂线AB 垂足为D ,交⊙O 与点B ,延长BO 与⊙O 交与点C ,连接AC ,BF . (1)求证:PB 与⊙O 相切;(2)试探究线段EF ,OD ,OP 之间的数量关系,并加以证明; (3)若AC =12,tan ∠F =12,求cos ∠ACB 的值.C EBA OF D【例7】已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当OC=22,求证:CD是⊙O的切线;(2)当OC>22CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.变式四:如图,在边长为2的正方形ABCD中,以点D为圆心、DC为半径作AC,点E在AB上,且与A、B两点均不重合,点M在AD上,且ME=MD,过点E作EF⊥ME,交BC于点F,连接DE、MF.(1)求证:EF是AC所在⊙D的切线;(2)当MA=34时,求MF的长;(3)试探究:△MFE能否是等腰直角三角形?若是,请直接写出MF的长度;若不是,请说明理由.AM【课后测控】1、如图1,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .2、如图2,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .图1 图2 图33、如图,在Rt △AOB 中,OA =OB =3,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .4、如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上。

2018年甘肃省中考数学试卷(含答案解析)

2018年甘肃省中考数学试卷(含答案解析)

2018年甘肃省中考数学试卷(含答案解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年甘肃省中考数学试卷(含答案解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年甘肃省中考数学试卷(含答案解析)的全部内容。

2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( )A .—2018B .2018C .D .2。

下列计算结果等于的是( )A .B .C .D . 3.若一个角为65°,则它的补角的度数为( )A .25°B .35°C .115°D .125°4。

已知,下列变形错误的是( )A .B .C .D . 5. 若分式的值为0,则的值是( )A. 2或-2B. 2C. -2 D 。

06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:平均数(环)方差s 2 )A .甲B .乙C .丙D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( )A .k≤﹣4B .k <﹣4C .k≤4D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )12018-120183x 62x x ÷4x x -2x x +2x x ⋅(0,0)23a b a b =≠≠23a b =23a b =32b a =32a b =24x x -A. 5 B 。

中考(甘肃)数学总复习课件:第21讲 与圆有关的位置关系(共28张PPT)

中考(甘肃)数学总复习课件:第21讲 与圆有关的位置关系(共28张PPT)

∴r=2.4 cm,故选B.
2
2
考法1
考法2
考法3
考法4
方法点拨斜边上的高即为圆的半径是解决本题的突破点.根据直 线与圆相切的数量关系知:当圆C与直线AB相切时,圆心C到直线 AB的距离与圆的半径相等,于是利用勾股定理求出斜边AB的长,再 由等面积法求出斜边上的高,即得半径r的值.
考法1
考法2
考法3
(1)判断DE与☉O的位置关系,并说明理由; 1 (2)若☉O的半径R=5,tan C= 2 ,求EF的长.
考法1
考法2
考法3
考法4
解(1)如图,连接OD,BD, ∵BC是☉O的直径, ∴∠BDC=90°, ∴BD⊥AC. ∵AB=BC,∴AD=DC.∵OC=OB,∴OD∥AB. ∵DE⊥AB,∴DE⊥OD,∴直线DE是☉O的切线.
考法1
考法2
考法3
考法4
(2)过 D 作 DH⊥BC 于 H,∵☉O 的半径 R=5,tan C=2, ∴BC=10,设 BD=k,则 CD=2k, ∴BC= 5k=10, ∴k=2 5,∴BD=2 5,CD=4 ∴OH= OD2 -DH2 =3. ∵DE⊥OD,DH⊥OE,∴OD2=OH· OE, ∴OE= 3 ,∴BE= 3 .
第21讲 与圆有关的位置关系
考点一
考点二
考点三
考点一点与圆的位置关系 1.点与圆的位置关系有:点在圆内、点在圆上、点在圆外三种. 2.数量关系:设圆的半径为r,点与圆心的距离为d,则(1)点在圆内 ⇔d<r ; (2)点在圆上⇔d=r ; (3)点在圆外⇔d>r .
考点一
考点二
考点三
考点二直线与圆的位置关系 1.直线与圆的位置关系有相离、相切、相交三种.如下图:

聚焦中考数学(甘肃省)考点跟踪突破18概率的应用

聚焦中考数学(甘肃省)考点跟踪突破18概率的应用

考点跟踪突破18 概率的应用一、选择题(每小题7分,共35分)1.(2013·宜昌)2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( A )A .科比罚球投篮2次,一定全部命中B .科比罚球投篮2次,不一定全部命中C .科比罚球投篮1次,命中的可能性较大D .科比罚球投篮1次,不命中的可能性较小2.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.153.(2014·黄石)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动的概率是( A )A.23B.56C.16D.124.(2015·自贡)如图,随机闭合开关S 1,S 2,S 3中的两个,则灯泡发光的概率是( B )A.34B.23C.13D.125.(2014·泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( C )A.38B.12C.58D.34二、填空题(每小题7分,共21分)6.(2014·长沙)100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为__120__.7.(2015·深圳)从1,2,3这三个数中,任意抽取两个不同的数字组成一个两位数,则这个两位数能被3整除的概率是__13__.8.(2015·烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为__34__.三、解答题(共44分)9.(10分)(2013·常州)一个不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为23(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以P(两次摸出的球都是白球)=26=1310.(10分)(2015·常德)商场为了促销某件商品,设置了如图所示一个转盘,它被分成3个相同的扇形,各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取.每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作指向右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买该商品的价格不超过30元的概率是多少?解:画树状图如下:由树状图可知,在9种等可能的结果中,不超过30元的只有三种,∴顾客购买该商品的价格不超过30元的概率P =39=1311.(12分)(2014·安徽)如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1. (1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.解:(1)小明可选择的情况有3种,每种发生的可能性相等,恰好选中绳子AA 1的情况为1种,所以小明恰好选中绳子AA 1的概率P =13(2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种情况,列表或画树状图表示如下,每种发生的可能性相等.其中左、右结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.所以能连接成为一根长绳的情况有6种:①左端连AB ,右端连A 1C 1或B 1C 1;②左端连BC ,右端连A 1B 1或A 1C 1;③左端连AC ,右端连A 1B 1或B 1C 1.故这三根绳子连接成为一根长绳的概率P =69=2312.(12分)(2015·广州)4件同型号的产品中,有1件不合格产品和3件合格品. (1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?解:(1)P(抽到的是不合格品)=11+3=14(2)所有抽取情况共有12种,其中抽到的都是合格品的情况有6种,故P(抽到的都是合格品)=612=12 (3)由题意,得3+x 4+x=0.95,解得x =16,故x 的值大约为162016年甘肃名师预测1.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( C )A .47B .49C .29D .192.在四边形ABCD 中,(1)AB∥CD,(2)AD∥BC ,(3)AB =CD ,(4)AD =BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是__23__.。

人教部初三九年级数学上册 24.2.2直线和圆的位置关系 名师教学PPT课件

人教部初三九年级数学上册 24.2.2直线和圆的位置关系 名师教学PPT课件

d Or l AB
2个 交点 割线
d<r
相切
d Or A
l
1个
切点
切线
d=r
相离
O dr
l 没有 - - d>r
圆的直径是 13 cm,如果直线和圆心的距离分别是 ① 4.5 cm;② 6.5 cm;③ 8 cm,
那么直线和圆分别是什么位置关系?有几个公共点?
例Rt△ABC,∠C=90°,AC=3 cm,BC=4 cm,
4. 在△ABC中,AB=5cm, AC=3cm,
BC=4cm,
(1)若以C为圆心,2cm长为半径画⊙C,则直线 AB与⊙C的位置关系如何?
(2)若直线AB与半径为r的⊙C相切,求r的值。
(3)若直线AB与半径为r的⊙C相交,试求r的取 值范围。
1.直线和圆的位置关系有三种:相离、相切和相交.
2.识别直线和圆的位置关系的方法: (1)一种是根据定义进行识别:
C
A
呢?怎么求这个距离?
解:过 C 作 CD⊥AB,垂足为 D.
在 Rt△ABC 中, AB= AC 2 BC 2 32 42 5(cm)
根据三角形面积公式有
CD ·AB=AC ·BC
∴ CD= AC BC 3 4 2.(4 cm).
AB
5
即圆心C到AB的距离d = 2.4cm.
B d=2.4 cm
1.能否根据基本概念判断直线和圆的位置关系?
直线L和⊙O 没有公共点 直线 L和⊙O 相离. 直线L和⊙O 只有一个公共点 直线L和⊙O 相切. 直线L和⊙O 有两个公共点 直线L和⊙O 相交.
用公共点的个数来判断直线和圆的位置关系. 2.是否还有其他的方法判断直线和圆的位置关系呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪突破26 直线与圆的位置关系
一、选择题(每小题6分,共24分)
1.(2015·张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C 为圆心,半径为3的圆与OA的位置关系是( C )
A.相离B.相交
C.相切D.以上三种情况均有可能
,第1题图) ,第2题图)
2.(2015·嘉兴)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( B )
A.2.3 B.2.4 C.2.5 D.2.6
3.(2015·南充)如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( C )
A.60°B.65°C.70°D.75°
,第3题图) ,第4题图)
4.(2014·内江)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC,BC相切于点D,E,则AD为( B ) A.2.5 B.1.6 C.1.5 D.1
解析:连接OD,OE,设AD=x,∵半圆分别与AC,BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,∴
CD =CE =4-x ,BE =6-(4-x)=x +2,∵∠AOD +∠A =90°,∠AOD +∠BOE
=90°,∴∠A =∠BOE ,∴△AOD ∽△OBE ,∴AD OE =OD BE ,∴x 4-x =4-x x +2
,解得x =1.6,故选B
二、填空题(每小题7分,共28分)
5.(2014·湘潭)如图,⊙O 的半径为3,P 是CB 延长线上一点,PO =5,PA 切⊙O 于A 点,则PA =__4__.
,第5题图) ,第6题图)
6.(2015·徐州)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若∠C =20°,则∠CDA =__125°__.
7.(2015·宜宾)如图,AB 为⊙O 的直径,延长AB 至点D ,使BD =OB ,DC 切⊙O 于点C ,点B 是CF 的中点,弦CF 交AB 于点E ,若⊙O 的半径为2,
则CF =.
解析:连结OC ,BC.∵DC 切⊙O 于点C ,∴∠OCD =90°,∵BD =OB ,⊙O 的半径为2,∴BC =BD =OB =OC =2,即△BOC 是等边三角形,∴∠BOC =60°,
∵AB 为⊙O 的直径,点B 是CF ︵的中点,∴CE =EF ,AB ⊥CF ,即△OEC 为直角
三角形,∵在Rt △OEC 中,OC =2,∠BOC =60°,∠OEC =90°,∴CF =2CE =2OC ·sin ∠BOC =2 3
,第7题图) ,第8题图)
8.(2013·咸宁)如图,在Rt △AOB 中,OA =OB =32,⊙O 的半径为1,。

相关文档
最新文档