LN417YPH中文资料

合集下载

17-4PH马氏体沉淀不锈钢

17-4PH马氏体沉淀不锈钢

Product DescriptionSteel 17-4 PH Stainless Steel is a martensitic precipitation- hardening steel that provides an outstanding combination of high strength, corrosion resistance, good mechanical properties at temperatures up to 600 °F (316 °C), toughness in both base metal a nd welds, and short-time, low-temperature heat treatments that minimize warpage and scaling.*ASTM A693 requirements call for Niobium plus Tantalum = 0.15 - 0.45.AVAILABLE FORMSSteel 17-4 PH Stainless Steel is produced in sheet and strip thicknesses from 0.015 – 0.125 in. (0.38 – 3.18 mm). In these forms, the alloy is supplied in Condition A, ready for fabrication and subsequent hardening by the user. Since the material transforms to martensite on cooling to room temperature, flatness requirements should be considered and discussed as part of the order.SPECIFICATIONSThe following specifications are listed without revision indications. Contact ASTM Headquarters for latest ASTM revision. For AMS revision, contact AMS Division of SAE.AMS 5604 Sheet, Strip and Plate ASTM A693 Plate, Sheet and Strip(Listed as Grade 630 - UNS S17400)The values shown in this bulletin were established in U.S. customary units. The metric equivalents may be approximate.Standard Heat TreatmentsAs supplied from the mill in Condition A, Steel 17-4 PH Stainless Steel can be heat treated at a variety of temperatures to develop a wide range of properties. Eight standard heat treatments have been developed. The following chart outlines the times and temperatures required.This alloy exhibits useful mechanical properties in Condition A. Tests conducted at an exposed marine atmosphere on a 80 ft. (24.4 m) lot, 82 ft. (25 m) from the waterline, show excellent stress corrosionresistance. Condition A material has been used successfully in numerous applications. The hardness and tensile properties fall within the range of those for Conditions H 1100 and H 1150.However, in critical applications, the alloy is used in the precipitation- hardened condition, rather than Condition A. Heat treating to the hardened condition, especially at the higher end of the temperature range, stress relieves the structure and may provide more reliable resistance to stress corrosion cracking than in Condition A.TABLE 1 – STANDARD HEAT TREATMENTSCondition A Solution Treated at 1900 °F ± 25 °F (1038 °C ± 14 °C) or Air cool below 90 °F (32 °C).H 900900 °F (482 °C)1AirH 925925 °F (496 °C)4AirH 10251025 °F (551 °C)4AirH 10751075 °F (580 °C)4AirH 11001100 °F (593 °C)4AirH 11501150 °F (621 °C)4AirH 1150 + 11501150 °F (621 °C)1150 °F (621 °C)4followed by4AirAirH 1150-M1400 °F (760 °C)1150 °F (621 °C)2followed by4AirAirMechanical PropertiesSteel 17-4 PH Stainless Steel provides excellent mechanical properties. For applications requiring high strength and hardness plus corrosion resistance, this alloy is an outstanding choice.In addition, it is more cost effective than many high-nickel, non-ferrous alloys.TABLE 2 – TYPICAL MECHANICAL PROPERTIESUTS, ksi. (MPa)160(1103)200(1379)190(1310)170(1172)165(1138)150(1034)137(945)0.2% YS, ksi. (MPa)115(793)185(1275)175(1207)165(1138)160(1103)130(896)111(765)Elongation,59910111217 % in 2" (50.8 mm)Rockwell Hardness, C35454338373331 TABLE 3 – PROPERTIES ACCEPTABLE FOR MATERIAL SPECIFICATION*UTS, ksi. (MPa)185 max.(1276)190 min.(1310)170 min.(1172)155 min.(1069)145 min.(1000)140 min.(965)135 min.(931)0.2% YS, ksi. (MPa)160 max.(1103)170 min.(1172)155 min.(1069)145 min.(1000)125 min.(862)115 min.(790)105 min.(724)Elongation,3 min. 5 min. 5 min. 5 min. 5 min. 5 min.8 min.% in 2" (50.8 mm)Rockwell Hardness, C38 max.40 – 4838 – 4635 – 4331 – 4031 – 4028 – 38*Sheets and strip.TABLE 4 – PIN BEARING PROPERTIES OF SHEET*H 925273 (1882)304 (2096)308 (2124)401 (2765)190 (1310)191 (1317)H 1025242 (1669)270 (1862)288 (1986)359 (2475)172 (1186)172 (1186)H 1100233 (1606)257 (1772)262 (1806)337 (2324)160 (1103)160 (1103)H 1150203 (1400)234 (1613)236 (1627)313 (2158)146 (1007)150 (1034)A211 (1455)226 (1558)276 (1903)296 (2041)158 (1089)158 (1089)*Average of duplicate tests on one heat of 0.065 in. (1.65 mm) sheet material.** Offset equals 2% of pin diameter.*** Yield equals ultimate tensile strengths due to rounding.†e/D = Distance from edge of specimen to edge of hole + hole diameter.Mechanical PropertiesELEVATED TEMPERATURE PROPERTIESMechanical properties of Steel 17-4 PH Stainless Steel ConditionH 1150 after long-time exposure at elevated temperatures are shown in Table 4. When tested at room temperature after exposure, a slight loss of toughness and gain in strength can be noted. However, H 1150 properties can be restored by heat treating at 1150 °F (621 °C) for four hours after original exposure. By taking advantage of this re-aging treatment, the service life of parts exposed at elevated temperature to 750 °F (339 °C) can be extended indefinitely.Elevated temperature properties for short-time exposures were determined for Conditions H 900 and H 1150. Specimens were heated rapidly by resistance methods and reached exposure temperatures within two seconds. Specimens were then held at temperature for the times indicated and tested both at exposure temperature and at room temperature. (See Tables 6, 7 and 8).TABLE 5 –EFFECT OF ELEVATED TEMPERATURE EXPOSURE ON MECHANICAL PROPERTIES –CONDITION H 1150*Re-aged at 1150 °F (621 °C) for 4 hours after exposure.Mechanical PropertiesTABLE 6 – EFFECT OF SHORT-TIME ELEVATED TEMPERATURE EXPOSURE ON MECHANICAL PROPERTIES – CONDITION H 900 TESTED AT ROOM TEMPERATUREControl Sample: UTS, 215. 9 ksi. (1489 MPa)0.2% YS,196 ksi. (1352 MPa)Elong., % in 2" (50.8 mm) – 8.5TABLE 7 –EFFECT OF SHORT-TIME EXPOSURE AT 1400 °F (760 °C) ON MECHANICAL PROPERTIES – CONDITION H 1150Control Sample: UTS, 157 ksi. (1082 MPa)0.2% YS, 143 ksi. (986 MPa)Elong., % in 2" (50.8 mm) – 12.0Mechanical PropertiesTABLE 8 – EFFECT OF ELEVATED TEMPERATURE EXPOSURE FOR 30 SECONDS ON MECHANICAL PROPERTIES – CONDITION H 1150Control Sample: UTS, 157 ksi. (1082 MPa)0.2% YS, 143 ksi. (986 MPa) Elong., % in 2" (50.8 mm) – 12.0FIGURE 1 – EFFECT OF 30 SECOND ELEVATED TEMPERATURE EXPOSURE ON ROOM TEMPERATURE PROPERTIES15001400 1300120011001000 900800700Exposure Temperature, (°F)50060070080090010001100Exposure Temperature, (°C)NOTE: These tests represent instant heating of the entire cross section of the test specimens. Under actual conditions, heating rates would depend on heat source, surface conditions and thermal conductivity ofSteel 17-4 PH Stainless Steel (see Physical Properties). Times and temperatures shown in the tables apply only after parts have reached temperatures.U l t i m a t e T e n s i l e S t r e n g t h , (M P a )U l t i m a t e T e n s i l e S t r e n g t h , (k s i.)Physical PropertiesTABLE 9 – PHYSICAL PROPERTIESDensity, lbs./in3. (g/cm3)0.28 (7.78)0.282 (7.80)0.283 (7.81)0.284 (7.82) Electrical Resistivity, µΩ•cm9877––Specific Heat, BTU/lbs./°F (kJ/kg/K)32 – 212 °F (0 – 100 °C)0.11 (0.46)0.11 (0.46)––Thermal Conductivity,BTU/hr./ft2./°F (W/m/K)300 °F (149 °C) 500 °F (260 °C) 860 °F (460 °C) 900 °F (482 °C)––––124 (17.9)135 (19.5)156 (22.5)157 (22.6)––––––––Mean Coefficient of Thermal Expansion, in./in./°F (μm/m/K)-100 –70 °F (-73 – 21 °C) 70 – 200 °F(21 – 93 °C) 70 – 400 °F (21 – 204 °C) 70 – 600 °F (21 – 316 °C) 70 – 800 °F (21 – 427 °C) 70 – 900 °F (21 – 482 °C)–6.0 x 10-6 (10.8)6.0 x 10-6 (10.8)6.2 x 10-6 (11.2)6.3 x 10-6 (11.3)–5.8 x 10-6 (10.4)6.0 x 10-6 (10.8)6.0 x 10-6 (10.8)6.3 x 10-6 (11.3)6.5 x 10-6 (11.7)––6.3 x 10-6 (11.3)6.5 x 10-6 (11.7)6.6 x 10-6 (11.9)6.8 x 10-6 (12.2)–6.1 x 10-6 (11.0)6.6 x 10-6 (11.9)6.9 x 10-6 (12.4)7.1 x 10-6 (12.8)7.2 x 10-6 (13.0)7.3 x 10-6 (13.1)Modulus of Elasticity, ksi. (MPa)–28.5 x 106 (197 x 103)––Modulus of Rigidity, inTorsion, ksi. (MPa)9.68 x 103 (67 x 103)11.00 x 103 (76 x 103)–10.10 x 103 (70 x 103) Poisson's Ratio (all conditions)–0.272––Dimensional ChangeDIMENSIONAL CHANGE IN HARDENINGAs indicated by the density values, Steel 17-4 PH Stainless Steel undergoes a volume contraction when it is hardened. This produces a predictable change in dimensions that must be taken into consideration i f parts made of this alloy must be manufactured to close tolerances.TABLE 10 –CONTRACTION FROMHEAT TREATMENTH 9000.00045H 9250.00051H 10250.00053H 11000.0009H 11500.0022H 1150-M1400 ––––> 0.000371150 ––––> 0.00206...1400 + 1150 ––––> 0.00243Data represent single tests from one heat.FIGURE 2 – DIMENSIONAL CHANGE IN HARDENING0 200 400 600 8001000 1200 1400 1600 1800 2000Temperature, (°F)0 2004006008001000Temperature, (°C)Corrosion ResistanceCORROSION RESISTANCESteel 17-4 PH Stainless Steel provides excellent corrosion resistance. It withstands corrosive attack better than any of the standard hardenable stainless steels and is comparable to Type 304 in most media. This has been confirmed by actual service in a wide variety of corrosive conditions in the petrochemical, petroleum, paper, dairy and food processing industries, and in applications such as boat shafting. Additional proof of its durability is the replacement of chromium-nickel stainless steels and high-alloy non-ferrous metals by this alloy for a broad range of parts requiring excellent resistance to corrosion.LABORATORY TESTSHundreds of laboratory corrosion tests have been conducted onSteel 17-4 PH Stainless Steel to provide data for comparison with other stainless steels. As chemically pure reagents were used, the data are useful as a guide to the comparative ranking of this alloy with the other materials, but are not a measure of their performance under actual operating conditions. Typical corrosion rates for the material in a variety of media are listed in Table 11 along with comparable data for Type 304.In general, the corrosion resistance of Steel 17-4 PH Stainless Steel is similar to Type 304 in the media tested, depending on heat-treated conditions. For specific applications, see the details of Table 11 or conduct pilot corrosive tests.ATMOSPHERIC EXPOSUREIn rural and mild industrial atmospheres, Steel 17-4 PH Stainless Steel has excellent resistance to general corrosion in all heat-treated conditions. It is equivalent to Type 304 stainless steel in these environments. The alloy exposed to seacoast atmosphere will gradually develop overall light rusting and pitting in all heat-treated conditions. It is almost equal toType 304 and much better than the standard hardenable stainless steels in this environment.SEAWATER EXPOSUREThe combination of high mechanical strength and good corrosion resistance makes this alloy well suited for many marine applications such as valve and pump parts. However, in common with other stainless steels, the material is subject to crevice attack if exposed to stagnant seawater for any length of time. If equipment exposed to seawater is not operated continuously, cathodic protection is highly desirable to prevent such attack.Corrosion ResistanceTABLE 11 –CORROSION RATES OF STEEL 17-4 PH STAINLESS STEEL IN VARIOUS CHEMICAL MEDIAH2SO412512989835803580NilNil418Nil5NilNil719Nil5NilNil11113Nil7NilNil9117Nil62857240350480––HCI 0.5135235217435181665033240HNO3255065Boiling147012563585747107831792410 (c)Formic Acid510803213132581100Acetic Acid 3360Boiling62624242300250H3PO42.5205070Boiling Nil1486Nil1457Nil1360Nil25119Nil27 (c)32 (c)NaOH 3050305080Boiling538480 (1)537450 (1)7411560 (1)8511560 (1)Nil168 (1)80 (1)Ammonium Hydroxide10Boiling Nil Nil Nil Nil Nil10% HNO3– 1% HF–35150015001500150038010% HNO3– 3% HF––4300430043004300840Cola Soft Drink Syrup Concentrated35Nil Nil Nil Nil NilSalt-Sugar-Vinegar–Boiling Nil Nil Nil Nil Nil(a) Rates were determined by total immersion of 0.625 in. (15.8 mm) diameter x 0.625 in. (15.8 mm) long cylindrical test specimens for five 48-hour periods. Specimens were electrolytically activated for the last three periods except for the boiling 65 percent nitric acid test and also for Type 304 bar in boiling sodium hydroxide. For Type 304 bar, passive periods were not averaged. In most cases, where rates of replicates varied, the highest is given. Other exceptions to all of foregoing are marked.(b) Numbers in parentheses indicate the number of periods in testing. Nil - indicates rates of less than 1 mil/year.(c) Rates increase from period to period. Rate is average of 5 periods.Data Reference: J. J. Halbig & O. B. Ellis, “Observations on Corrosion Resistance of High Strength Stainless Steels for Aircraft,” Corrosion, Vol 14., pp. 389t-395t (1958)17-4 PH® STAINLESS STEEL Corrosion ResistanceSTRESS CORROSION CRACKINGStress corrosion cracking, although occurring infrequently, can bea source of failure in stainless steels. It usually takes place in highly stressed parts that are exposed under conditions that permit local concentration of chlorides.Tests using smooth bent beam specimens stressed up to the0.2% yield strength of the material and exposed to marine atmosphere on the 80 ft. (24.4 m) lot, 82 ft. (25 m) from the waterline, showthat Steel 17-4 PH Stainless Steel is quite susceptible to stress corrosion cracking when in Condition H 900. In Condition A, and when h ardened at temperatures of 1025 °F (552 °C) and higher; the alloyis highly resistant to stress corrosion cracking. In addition, many years of service experience in marine atmospheres and in high-purity water at high temperatures demonstrate the resistance of the alloy to this type of failure.For maximum resistance to chloride stress corrosion cracking, the alloy should be hardened at the highest aging temperature that will yield required properties, but not less than 1025 °F (552 °C).Another set of smooth bent beam specimens involving weldedSteel 17-4 PH Stainless Steel in Conditions H 900, H 1025, H 1075 and H 1150 were stressed at 90% of the 0.2% yield strength o f the material and exposed to a marine atmosphere on the 80 ft. (24.4 m) lot, 82 ft. (25 m) from the waterline. The samples were divided into three groups:1. Not Welded (Solution Treated + Aged)2. Solution Treated + Welded + Aged3. Welded + Solution Treated + Aged All specimens in Condition H 900 failed in 68 days or less, regardless of whether welded or not. None of the other specimens failed after more than 25 years in test.In addition, welded specimens were made by fusing 2 in. (50.8 mm) diameter circular weld beads onto one face of 1/4 in. (6.35 mm) thick Steel 17-4 PH Stainless Steel plate. After welding and final heat treatment, the surfaces were ground to a smooth finish. The internal stresses caused by welding are very high and can equal or exceed the y ield strength of the material. These specimens were exposed to quiet seawater at Wrightsville Beach, North Carolina. The welding andheat-treating conditions were as follows:1. Solution Treated + Aged to Conditions H 1025, H 1075,H 1150 + Welded.2. Welded + Solution Treated + Aged to Conditions H 1025, H 1075,H 1150.3. Solution Treated + Welded + Aged to Conditions H 1025, H 1075,H 1100.Careful examination showed there was no evidence of stress corrosion cracking in any of the test specimens after one year in test.TABLE 12 – STRESS CORROSION CRACKING*A (Heat 2)12493(855) – 100% YS(641) – 75% YS3NF3NFH 900 (Heat 2)187140(1289) – 100% YS(965) – 75% YS2-21 days, 1-37 days1-21 days, 1-28 days, 1-35 daysH 925 (Heat 2)173130(1193) – 100% YS(896) – 75% YS1-61 months, 1-139 months, 1NF1-53 months, 1-52 months, 1NFH 975 (Heat 2)168126(1158) – 100% YS(869) – 75% YS3NF1-78 months, 2 NFH 1025 (Heat 1)140116(965) – 90% YS(800) – 75% YS5NF5NFH 1075 (Heat 1)135113(931) – 90% YS(779) – 75% YS5NF5NFH 1150 (Heat 1)10285(703) – 90% YS(586) – 75% YS5NF5NF*Smooth bent beam strip specimens were exposed on the 80 ft. (24.4 m) lot, 82 ft. (25 m) from the waterline. Five replicates of 0.090 in. (2.3 mm) thick strip from Heat 1 were exposed. Samples of 0.062 in. (1.6 mm) thick strip from Heat 2 were exposed in triplicate in each heat-treated condition.**NF indicates No Failure after 15 years of exposure.17-4 PH® STAINLESS STEELCorrosion ResistanceHYDROGEN EMBRITTLEMENTHydrogen embrittlement is a potential threat to all high strength martensitic steels wherever the reduction of hydrogen ions to atomic hydrogen may monplace examples are aqueous corrosion,cathodic protection to prevent corrosion, galvanic coupling with less noble metals and electroplating.When exposed to18%HCl-1%SeO2solution and stressed to100,000ksi. (690MPa)in direct tension, Steel 17-4 PH Stainless Steel aged at temperatures ranging from900–1050°F(482–566°C)failed from hydrogen embrittlement within four hours.Aging at temperatures above 1100 °F (593 °C) conferred immunity to cracking, while at 1100 °F (593 °C) a borderline situation existed, with material sometimes resistant to cracking and sometimes not.Despite the susceptibility of Steel 17-4 PH Stainless Steel to hydrogen embrittlement that is shown by this severe test, only a few isolated instances of its failure in service by this mechanism have been recorded.Apparently,under nearly all conditions of use,this alloy possesses adequate resistance to hydrogen embrittlement.Where this problem is acute and strength requirements permit,the alloy should be aged at temperatures of1100°F(593°C) or higher to ensure freedom from cracking.SULFIDE STRESS CRACKINGLaboratory tests run in synthetic sour well solution(5%sodium chloride+1/2%acetic acid saturated with hydrogen sulfide)in accordance with NACE Test Method TM-01-77show that,for best resistance to this aggressive medium,the alloy should either be in Condition H1150-M or aged at1150°F(620°C) for two4-hour periods.In either of these heat-treated conditions,Steel 17-4 PH Stainless Steel is considered by NACE as acceptable for use in sour(sulfide) service and is included in MR-01-75.17-4 PH® STAINLESS STEELPropertiesWELDABILITYThe precipitation hardening class of stainless steels is generally considered to be weldable by the common fusion and resistance techniques. Special consideration is required to achieve optimum mechanical properties by considering the best heat-treated conditions i n which to weld and which heat treatments should follow welding.This particular alloy is the most common member of the class and is generally considered to have the best weldability. When aweld filler is needed, AWS E/ER 630 is most often specified.Steel 17-4 PH Stainless Steel is well known in reference literature and more information can be obtained in the following ways:ANSI/AWS A5.9, A5.22, and A5.4 (stainless steel filler metals, welding electrode specifications).“Welding of Stainless Steels and Other Joining Methods,” SSINA ().HEAT TREATMENTFor maximum hardness and strength, material in the solution-treated condition is heated for one hour at 900 °F ± 15 °F (482 °C ± 8.4 °C) and air cooled to room temperature. If the material is purchased in the solution-treated condition (Condition A) and not subsequently hot worked, the hardening treatment can be performed without solution treating before hardening.Where ductility in the hardened condition is of importance, better toughness can be obtained by raising the temperature of the hardening heat treatment. Unlike regular hardenable materials that require hardening plus a tempering or stress relieving treatment, this alloy can be hardened to the final desired properties in one operation. By varying the heat-treating procedure between 900 – 1150 °F (482 – 621 °C) for one to four hours, a wide range of properties can be attained.If the alloy is not sufficiently ductile in any given hardened condition, it can be reheated at a higher hardening temperature to increase impact strength and elongation. This can be accomplished without a solution treatment prior to final heat treatment. However, strength will be reduced.For hot-worked or overaged material, a solution treatment at 1875 – 1925 °F (1024 – 1052 °C) for three minutes for each 0.1 in. (2.5 mm) of thickness, followed by cooling to at least 90 °F (32 °C) must be done prior to hardening. The solution treatment refines the grain size and makes hardened material more uniform.When fabricating Steel 17-4 PH Stainless Steel, it is important to keep in mind the low temperatures at which the start of transformation to martensite (Ms) and the completion of the martensite transformation (Mf) occur.These temperatures are approximately 270 °F (132 °C) and 90 °F (32 °C) respectively.Because of this characteristic, it is necessary to cool parts in process at least to 90 °F (32 °C) prior to applying subsequent heat treatments if normal final properties are to be obtained. This practice is essential to assure grain refinement and to assure good ductility.DescalingHardening treatments produce only a light heat tint on surfaces. This tint can be removed easily by mechanical means such as wet grit blasting or with a short pickle in 10% nitric – 2% hydrofluoric acid (by volume) at 110 – 140 °F (43 – 60 °C). Where pickling is undesirable, heattint may be removed by a light electropolishing operation. The latter two treatments also clean and passivate the surfaces for maximum corrosion resistance.Where solution treating is performed, the following pickling method satisfactorily removes surface scale. The use of molten salts such as sodium hydride or Kolene processes to descale is limited since these methods partially harden solution-treated material.TABLE 18 – METHOD FOR POST HEATTREAT DESCALINGStep 1Caustic Permanganate 160 – 180(71 – 82)60WaterStep 210% Nitric Acid +2% Hydrofluoric Acid110 – 140(43 – 60)2 – 3Hot water, highpressure wateror brush scrubIn pickling operations, close control of time and temperature is necessary to obtain uniform scale removal without over-etching. Scale softening methods may be used on material that has been solution treated (not pickled) and precipitation hardened.。

核反应堆用174PH不锈钢的性能研究

核反应堆用174PH不锈钢的性能研究

二、材料与方法
1、材料准备
1、材料准备
174PH不锈钢基体材料,Stellite6合金粉末作为涂层材料。
2、激光熔覆实验
2、激光熔覆实验
采用激光熔覆技术在174PH不锈钢表面熔覆一层Stellite6合金涂层。激光熔 覆过程中,对涂层的厚度、成分、晶粒大小等进行检测与控制。
3、疲劳试验
3、疲劳试验谢谢观看 Nhomakorabea研究方法
2、实验设计:根据研究目的,设计相应的实验方案,包括材料制备、热处理、 力学性能测试、腐蚀实验、辐照实验等。
研究方法
3、数据采集与处理:通过实验获取相关数据,如材料的力学性能数据、腐蚀 速率数据、辐照后的微观结构变化等,并对这些数据进行整理、分析和处理。
研究方法
4、模拟计算:采用有限元模拟等方法,对核反应堆中的材料行为进行模拟计 算,以评估材料的承载能力、抗疲劳性能和抗辐射损伤能力等。
2、高周疲劳性能比较
2、高周疲劳性能比较
对比未进行激光熔覆的174PH不锈钢材料试样,激光熔覆Stellite6合金涂层 的174PH不锈钢疲劳寿命显著提高。在相同应力水平下,激光熔覆试样的疲劳寿 命是其未进行激光熔覆的基体材料的1.5-2倍。这表明激光熔覆技术在提高材料 表面高周疲劳性能方面具有显著效果。
1、深入探讨辐照对174PH不锈钢性能的影响机制,为提高其在核反应堆中的 抗辐射损伤能力提供理论指导。
参考内容
一、引言
一、引言
随着工业技术的不断进步,对于材料表面的耐磨性、耐腐蚀性及抗疲劳性等 性能的要求越来越高。在诸多表面改性技术中,激光熔覆技术因其在改善材料表 面性能方面的显著优势而受到广泛。本次演示以174PH不锈钢为基体,通过激光 熔覆技术在表面熔覆一层Stellite6合金涂层,对其高周疲劳行为进行研究。

bc417蓝牙模块中文资料

bc417蓝牙模块中文资料

bc417蓝牙模块中文资料BC417蓝牙模块中文资料概述BC417是一款高性能蓝牙2.1+EDR(增强数据速率)模块,由台湾艾睿电子公司(AITRUE)生产。

作为一款蓝牙无线通信模块,BC417具有广泛的应用领域,例如无线数据传输、音频传输、远程控制等。

主要特性1. 蓝牙2.1+EDR标准:BC417采用最新的蓝牙2.1+EDR标准,支持高速数据传输,提供更稳定和高效的连接。

2. 支持多种蓝牙协议:BC417支持多种蓝牙协议,包括串口协议(SPP)、音频传输协议(A2DP)、人机接口协议(HID)等,可以满足不同应用场景下的需求。

3. 高度集成的射频电路:BC417集成了高度集成的射频电路,具有较低的功耗和敏感度,可实现稳定的无线通信。

4. 强大的处理能力:BC417搭载了高性能的处理器,具有强大的计算和处理能力,可以处理复杂的蓝牙通信任务。

5. 丰富的接口:BC417提供了丰富的接口,包括UART、I2C、SPI 等,方便与主控设备进行通信和控制。

6. 简化开发流程:BC417提供了丰富的软件开发包(SDK),开发者可以基于SDK进行快速开发,简化开发流程。

应用领域1. 无线数据传输:BC417可以实现设备之间的无线数据传输,例如手机与电脑之间的文件传输、打印机与电脑之间的数据传输等。

2. 音频传输:BC417支持音频传输协议(A2DP),可以实现高质量的音频传输,例如将手机上的音乐通过蓝牙模块传输到汽车音响系统。

3. 远程控制:BC417可以与其他设备进行远程控制,例如将手机与智能家居设备连接,通过手机控制灯光、空调等。

4. 无线鼠标和键盘:BC417支持人机接口协议(HID),可以实现将蓝牙模块与鼠标、键盘等设备连接,实现无线控制。

5. 传感器数据采集:BC417可以与传感器设备连接,实现无线数据采集和传输,例如温度传感器、湿度传感器等。

总结BC417蓝牙模块是一款功能强大且广泛应用的蓝牙模块,具有高性能、低功耗、稳定可靠的特点。

17-4PH热处理方法

17-4PH热处理方法

17-4PH热处理方法一:对应牌号:17-4PH/0Cr17Ni4Cu4Nb/05Cr17Ni4Cu4Nb/AISI630,UNSS17400/SUS630/ X5CrNiCuNb16-4/1.4542/ 1.4548沉淀硬化不锈钢二:化学成分碳 C :≤0.07 硅 Si:≤1.00 锰 Mn:≤1.00 硫 S :≤0.030 磷P :≤0.035铬Cr:15.50~17.50 镍Ni:3.00~5.00 铜Cu:3.00~5.00 铌 Nb:0.15~0.45三:应用范围应用领域:常年现货库存圆棒板材无缝管卷带!适用于制造要求耐腐蚀好且要求高强度的设备零件。

如发动机部件,泵轴、齿轮、活塞柱及特性要求的紧固件。

力学性能抗拉强度σb (MPa):480℃时效,≥1310; 550℃时效,≥1060; 580℃时效,≥1000; 620℃时效,≥930,条件屈服强度σ0.2 (MPa):480℃时效,≥1180;550℃时效,≥1000;580℃时效,≥865;620℃时效,≥725,伸长率δ5 (%):480℃时效,≥10;550℃时效,≥12;580℃时效,≥13;620℃时效,≥16,断面收缩率ψ (%):480℃时效,≥40;550℃时效,≥45;580℃时效,≥45;620℃时效,≥50硬度:固溶,≤363HB和≤38HRC;480℃时效,≥375HB和≥40HRC; 550℃时效,≥331HB和≥35HRC;580℃时效,≥302HB和≥31HRC;620℃时效,≥277HB和≥28HRC四:概况是一种马氏体沉淀硬化不锈钢材料。

除马氏体转变易强化外,还可以通过时效进一步强化,且其耐蚀性能和可焊接性都比一般马氏体钢好,于18-8型奥氏体钢相似。

17-4PH的材料简介

17-4PH的材料简介

关于17—4PH的材料简介我厂(兰州水泵总厂)在新型BB3泵( HDM1000—400/5与HDM600-400/5)研发上取得了新突破,众所周知,材料的选取对泵的性能有很大的影响,因此我部门研究人员通过共同努力,不断的尝试各种材料,通过计算它们的力学性能以及对比它们的物理性能与化学性能,最终决定选取17—4PH马氏体沉淀硬化不锈钢作为这次新泵的主导材料。

17-4PH是美国的牌号,对应的我国牌号为0Cr17Ni4Cu4Nb.由于此钢低碳、高铬、且含铜,马氏体转变温度高于室温,经马氏体转变后,再经480-620℃时效处理,便可在马氏体基体中析出弥散的富铜相,使强度进一步增强,由于含碳量低,故其加工性能、耐腐蚀性能和焊接性能均比Cr13型及9Cr18、1Cr17Ni2等马氏体不锈钢为好。

它的化学成分如下表所示:表1 17-4PH的化学成分元素% C Si Mn Cr Ni Cu Nb P S17-4PH ≤0.07 ≤1.00 ≤1。

0015。

5—17。

5 3—5 3—50。

15—0。

45≤0。

035≤0。

03并且该钢固溶处理后具有奥氏体钢的优点,易于加工;随后经中间调节处理+时效处理可以获得较高的强度,因此被广泛用于压力容器、飞行器和汽轮机叶片等领域.由于它所具有的这些优越性能,所以它被使用在我厂HDM1000-400/5与HDM600-400/ 5新泵的重要零部件上,这些零部件有轴、各级叶轮、螺柱、螺母、泵体口环、级间衬套等。

使用在这些部位主要是因为这些部位要么是与介质接触部位,要么就是受力很大的部位。

比如叶轮与介质直接接触,这就要要求它的使用材料的抗腐蚀性能很强;轴要带动叶轮等转子部件一起转动,所以它要受很大的力,所需要的强度和韧性都要非常好,因此它的使用材料所需要的力学性能要非常好.而17—4PH这种材料它的抗腐蚀性能和力学性能恰好符合我们这两种新泵的要求.它的这两种性能介绍具体如下:一、抗腐蚀性能17-4 PH 合金的抗腐蚀能力优于其它任何的标准的可硬化的不锈钢。

核反应堆用17-4PH不锈钢的性能研究的开题报告

核反应堆用17-4PH不锈钢的性能研究的开题报告

核反应堆用17-4PH不锈钢的性能研究的开题报告一、研究背景和意义核反应堆作为一种能源供应设施,对于我国及全球的能源结构和能源战略具有十分重要的意义。

而核反应堆的结构及其所用材料的性能则直接影响着其安全、可靠、稳定运行。

17-4PH不锈钢是一种常用的核反应堆结构材料,其在高温、高压等特殊环境下具有良好的机械性能和耐腐蚀性能。

该材料的研究将有助于提高核反应堆的性能和长期运行的稳定性,从而推动我国核能产业的发展和健康可持续发展。

二、研究目的本研究旨在探究17-4PH不锈钢在核反应堆中的特殊机械性能和耐腐蚀性能,以及相关应用技术。

具体研究目的包括:1. 对17-4PH不锈钢的成分、组织结构、热机械加工工艺进行分析和探究。

2. 研究17-4PH不锈钢在核反应堆中的工作环境,如高温、高压、放射性等因素对其影响,并分析其耐腐蚀性能。

3. 对17-4PH不锈钢在核反应堆中的应用进行研究,如辐射芯片、反应堆容器、核燃料壳管等,以及在核废料的储存和处理中的应用。

4. 对17-4PH不锈钢制品所需的相关测试方法和试验设备等技术手段进行探究,以提高其制品的测试精度和可靠性。

三、研究方法本研究将采用实验研究、理论分析和数值模拟等多种方法进行分析。

1.实验研究:对17-4PH不锈钢进行成分分析、金相显微分析、高温高压等物理试验,以及对样品在辐射环境下的耐腐蚀性能进行测定。

2.理论分析:采用材料力学、金属材料学等理论对17-4PH不锈钢在核反应堆中的应用进行分析,结合实验数据进行验证。

3.数值模拟:利用有限元分析等数值模拟方法,对17-4PH不锈钢在核反应堆中的应力、变形和疲劳等特性进行模拟分析。

四、研究内容本研究主要内容包括以下几个方面:1.17-4PH不锈钢的成分、组织结构、热机械加工工艺分析。

2.17-4PH不锈钢在核反应堆中的工作环境及其耐腐蚀性能分析研究。

3.对17-4PH不锈钢在核反应堆中的应用、测试方法及试验设备等技术手段进行探究研究。

Inconel617棒材Inconel617成分标准

Inconel617棒材Inconel617成分标准

Inconel617棒材Inconel617成分标准inconel617概述:Inconel617是在高温下具有优秀的机械型能的镍铬钴钼合金,该合金具有耐高温腐蚀性能,如氧化和碳化。

对应牌号:UNS NO7617,W.Nr.2.4663,NiCr23Co12Mo(德国)化学成分:C(%):0.07Si(%):—Mn(%):—Cr(%):22Ni(%):54Mo(%):9Co(%):13W(%):—Al(%):1Cu(%):—Ti(%):—Fe(%):—其他(%):—物理性能:密度g/cm38.4熔点℃1330-1380机械性能:热导率13.4(100℃)λ/(W/m?℃)比热容420J/kg?℃弹性模量212GPa电阻率1.22μΩ?m线膨胀系数11.6(20~100℃) a/10-6℃-1力学性能:热处理方式固溶处理抗拉强度680σb/MPa屈服强度300σp0.2/MPa延伸率30σ5 /%金相组织结构:该合金为面心立方晶格结构,具有很好的晶相稳定性。

通过固溶硬化具有了优秀的高温强度,合金没有时效硬化。

工艺性能与要求:1、合金合适的热加工温度为1200-950℃,冷却方式可以是水淬或其他快速冷却方式,材料须在加热炉达到最高炉温时入炉。

2、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。

3、合金焊缝附近的氧化物要比不锈钢的更难以去除。

机械或化学方法都可以采用,用机械方法时,要避免产生金属污染和高的表面变形。

在硝酸和氢氟酸的混合酸中酸洗之前,也要用砂纸去除氧化物或进行盐浴预处理。

4、合金很适合于焊接,包括钨电极电弧焊(GTAW/TIG)、手工电弧焊(GMAW/MIG)、脉冲弧焊和保护气体弧焊。

特性及应用:●在高达1100℃高温下具有很好的瞬时和长期机械性能●在1100℃时具有高抗氧化性●在1100℃时具有高抗碳化性●良好的焊接性能应用于工业和航空汽轮机部件、空气加热器、马弗罐和辐射馆、高温热交换器、阀和弹簧、高温气体冷却核反应堆,如核反应堆高温部件-氦/氦介质热交换器、化工设备、石化工业中的螺旋管和管道等。

17-4不锈钢是什么牌号?

17-4不锈钢是什么牌号?

17-4不锈钢是什么牌号?17-4不锈钢是什么牌号?17-4PH合金是由铜、铌/钶构成的沉淀、硬化、马氏体不锈钢。

这个等级具有高强度、硬度(高达300ºC/572º F)和抗腐蚀等特性。

经过热处理后,产品的机械效能更加完善,可以达到高达1100-1300 mpa (160-190 ksi) 的耐压强度。

这个等级不能用于高于300º C (572º F) 或非常低的温度下,它对大气及稀释酸或盐都具有良好的抗腐蚀能力,它的抗腐蚀能力与304和430一样。

化学成份碳 C :≤0.07矽 Si:≤1.00锰 Mn:≤1.00硫 S :≤0.030磷 P :≤0.035铬 Cr:15.50~17.50镍 Ni:3.00~5.00铜 Cu:3.00~5.00铌 Nb:0.15~0.45产品特性:时效处理后,可获得极佳强度而不影响耐腐蚀效能。

产品应用:适用于制造要求耐腐蚀好且要求高强度的装置零件。

如发动机部件,泵轴、齿轮、活塞柱及特性要求的紧韧体。

可按要求定制产品介绍:是一种马氏体沉淀硬化不锈钢材料。

除马氏体转变易强化外,还可以通过时效进一步强化,且其耐蚀效能和可焊接性都比一般马氏体钢好,于18-8型奥氏体钢相似。

17-4不锈钢是什么材料1、17-4不锈钢相当于中国的0Cr17Ni4Cu4Nb不锈钢。

2、0Cr17Ni4Cu4Nb是由铜、铌/钶构成的沉淀、硬化、马氏体不锈钢。

这个等级具有高强度、硬度(高达300º C/572º F)和抗腐蚀等特性。

经过热处理后,产品的机械效能更加完善,可以达到高达1100-1300 mpa (160-190 ksi) 的耐压强度。

3、化学成分:C Si Mn P≤0.07 ≤1.00 ≤1.00 ≤0.035S Ni Cr Mo≤0.030 3.00-5.00 15.5-17.5 -Cu Nb 其他3.00-5.00 0.15-0.45 -ss17-4ph是什么牌号的不锈钢马氏体沉淀硬化不锈钢对应新国标牌号为05Cr17Ni4Cu4NbAISI牌号 630日本 SUS630德国X5CrNiCuNb16-41.4542用不锈钢测试液测不锈钢是什么牌号的不锈钢科学么目前很多的厂家采购时对于材质的确定主要是Cr以及Ni的含量,通常通过几个办法:1、直接采购正规厂家的货物,其质量证明书就是最好的保证。

马氏体钢17-4ph-17-7ph等材料的热处理制度和力学性能-详细

马氏体钢17-4ph-17-7ph等材料的热处理制度和力学性能-详细

供17-4PH/AISI 630圆钢、环件、锻件、钢带、钢板、螺栓紧固件等 UNS S17400/17-4PH/AISI630/SUS630/0Cr17Ni4Cu4Nb, 630合金是由铜、铌/钶构成的沉淀硬化马氏体不锈钢,具有高强度、硬度(高达300 0 C/5000 C)和抗腐蚀等特性。

经过热处理后,产品的机械性能更加完善,可以达到高达1100-1300 mpa (160-190 ksi) 的耐压强度。

这个等级不能用于高于300 0C (572 0F) 或非常低的温度下,对大气及稀释酸或盐都具有良好的抗腐蚀能力,它的抗腐蚀能力与304 和430 一样。

一般用于制造耐腐蚀性要求高,同时又要求强度高的零部件,如轴类、阀杆、机械零部件、汽轮机、水刀、喷丝板等。

(本公司材料全部采用二次电渣重熔处理)5不锈钢的海洋腐蚀[5]海洋腐蚀主要指金属在海洋环境下所发生的腐蚀,是一人复杂的电化学过程。

海洋腐蚀就其环境发球湿腐蚀,其性质是电化学腐蚀[5]。

不锈钢在海洋工程中的应用日益增多,许多重要的海洋工程设备,如热交换器、螺旋桨、泵和阀门等采用耐海水腐蚀的不锈钢。

国内广泛应用的耐海水腐蚀不锈钢有奥氏体不锈钢,高纯铁素体不锈钢,双相不锈钢和沉淀硬化不锈钢。

从海洋腐蚀环境角度出发,沿垂直方向将海洋分为五个不同特性的腐蚀区带,如下图图1海洋腐蚀环境划分示意图[6]5.1不锈钢的海水腐蚀性能不锈钢是易钝金属,其腐蚀规律与碳钢和低合金钢不同,海水中大量的Cr-对依靠钝化防腐蚀的合金破坏极大,一般是全浸区最重(Cl-离子最多,)潮差区次之,飞溅区最轻。

不同海域的环境因素及海生物附着对不锈钢的腐蚀敏感性产生重要影响。

不锈钢在海水中的耐蚀性通常高Cr钢优于低Cr钢,Ni-Cr钢优于Cr钢,随着Ni、Cr含量的提高耐蚀性增加,降低含C量可提高不锈钢耐蚀性,不锈钢中加入Mo能提高钝化膜对Cl-的抵抗力[6]。

对于不锈钢来说,提高Cr含量、加入Ni\Mo元素,或降低C含量,能增强不锈钢的钝化能力,并提高不锈钢的耐海水腐蚀性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档