平面图形的认识(1)

合集下载

苏教版七年级上册数学[《平面图形的认识(一)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学[《平面图形的认识(一)》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《平面图形的认识(一)》全章复习与巩固(基础)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.正确理解“相交”、“互相平行”、“互相垂直”等概念,发展空间想象力.【知识网络】【要点梳理】要点一、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图: 4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PNMBA(4)线段的延长线:如下图,图①称为延长线段AB ,或称为反向延长线段BA ;图②称为延长线段BA ,或称为反向延长线段AB. 图中延长的部分叫做原线段的延长线.要点二、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB =2∠1=2∠2. ∠β 锐角 直角 钝角 平角 周角 范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°类似地,还有角的三等分线等.5.余角、补角、对顶角(1)余角、补角:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. 结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.(2)对顶角:对顶角相等.要点三、平行与垂直1.同一平面内的两条直线的位置关系:平行与相交. 平行用符号“∥”表示.要点诠释:只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.2.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【典型例题】类型一、概念或性质的理解1.(2016春•永登县期中)下列叙述中,正确的是()A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角【思路点拨】根据直线的关系,平行线的定义,可得答案.【答案】C【解析】解:A、在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B、在同一个平面内,不相交的两条直线叫平行线,故B错误;C、两条直线的铁轨是平行的,故C正确;D、我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选:C.【总结升华】本题考查了平行线,在同一个平面内,不相交的两条直线叫平行线,注意相等的角不一定是对顶角.举一反三:【变式】(2015春•通辽期末)下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选【答案】A.类型二、角的度量2.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【思路点拨】画出图形,利用钟表表盘的特征解答.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.举一反三:【变式】100°-60°52′10″=【答案】39°7′50″类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法3. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N 分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴ 2x+3x+4x=90,x=10,∴AB=20 cm, BC=30 cm, CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD 的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD -∠BOC=100°-60°=40°.2.分类的思想方法4.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有 ( ) .①已知A、B、C三点,过其中两点画直线一共可画三条.②过已知任意三点的直线有1条.③三条直线两两相交,有三个交点.A.0个 B.1个 C.2个 D.3个【答案】A3.类比的思想方法【图形认识初步章节复习399079 类比思想例5】5.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容.类型四、平行与垂直6.(2015春•印江县期末)如图,点B在点A的南偏东60°方向,点C在点B的北偏东30°方向,且BC=12km,则点C到直线AB的距离是.【答案】12km.【解析】解:∵AD∥BE,∴∠EBA=∠A=60°,∴∠ABC=∠ABE+∠CBE=90°,∴点C到直线AB的距离是BC,即12km,故答案为:12km.【总结升华】本题考查的是方位角和点到直线的距离,正确理解方位角和点到直线的距离的概念是解题的关键.举一反三:【变式1】梯形中,()是平行的.A.上底和下底 B.上底和腰 C.两条腰【答案】A【变式2】已知:如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,AC=12cm ,且CD⊥AB于D.则CD的长.【答案】60 13cm。

七年级数学上册 第六章 平面图形的认识(一) 交点、垂直、垂足知识拓展 (新版)苏科版

七年级数学上册 第六章 平面图形的认识(一) 交点、垂直、垂足知识拓展 (新版)苏科版

交点、垂直、垂足
两条直线相交,只有一个交点(intersection p oint). 两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直(perpen dicular),其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足(foot of a perpendicular).
直线AB 、CD 互相垂直,记作“AB ⊥CD ”.两直线互相垂直时,所成的四个角都是直角. ⊥垂直号
建筑工人在砌墙时,常用一端系有铅锤的线,来检查所砌的墙面是否和水平面垂直,如图1.这条带铅锤的线叫做铅垂线.测量时,这条线在空中自由摆动划出了圆弧,当它静止下来时,铅垂线和地面成直角.当铅垂线与墙壁面平行时,自然墙面和水平面就垂直了.
在平面几何中,把相交成直角的两条直线叫做两条直线互相垂直.“垂直”用“⊥”表示,读作“垂直于”.在图2中,直线AB 和CD 垂直时,记作:AB ⊥CD . 垂直号简便易写,是几何学里常用的符号之一.空间直线和平面垂直,平面和平面垂直,两条异面直线互相垂直等,都是通过平面里两条直线的垂直来判定的,因而可以看作是平面几何里垂直概念的拓广. 如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直. 如图3中,直线l 垂直于平面α,记作:l ⊥α.
可以证明:只要直线l 垂直于平面α内两条相交直线,就有l ⊥α. 同样,两个平面相交,如果所成的二面角是直二面角,叫做两个平面互相垂直. 图4中,当平面α和平面β垂直时,记作α⊥β. 也可以证明:若平面α通过一条垂直于平面β的直线,则α⊥β.
C A
D B
垂直号“⊥”十分形象地表达了直线与直线、直线与平面、平面与平面的垂直关系,是几何中常用的符号之一.
图3图4。

2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版

2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版
情感升华:
结合余角、补角、对顶角内容,引导学生思考数学与生活的联系,培养学生的社会责任感。鼓励学生分享学习心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的余角、补角、对顶角内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
-及时反馈:教师应及时将作业的批改结果反馈给学生,让学生了解自己的学习效果。对于表现优秀的学生,教师可以给予表扬和奖励,以激发他们的学习动力。对于表现一般或较差的学生,教师应给予鼓励和指导,帮助他们提高学习成绩。
-鼓励学生继续努力:在作业评价中,教师应鼓励学生继续努力,不断提高自己的学习能力。教师可以提供一些学习方法和技巧,帮助学生提高学习效果。同时,教师还可以鼓励学生之间的合作和互助,让他们相互学习,共同进步。
-材料三:《生活中的几何图形》
本材料通过生活中的实例,如建筑设计、艺术作品等,展示了余角、补角、对顶角在实际生活中的应用,增强学生对几何知识实用性的认识。
2.课后自主学习和探究
-探究一:余角和补角在实际图形中的应用
鼓励学生在家中或学校周围寻找含有余角和补角的图形,如窗户的角、墙角等,并进行测量和计算,观察余角和补角的实际效果。
-难点四:解决含有多个余角、补角的复合问题。在复杂问题中,学生需要能够理清角度之间的关系,正确求解。
举例:设计一些综合性的问题,如一个多边形内多个角的余角和补角的计算,训练学生综合运用所学知识。
教学方法与手段
1.教学方法
-方法一:讲授法。对于余角、补角、对顶角的基本概念和性质,采用讲授法进行教学。通过生动的语言、具体的例子,引导学生理解和掌握这些基本知识。

2024秋七年级数学上册第6章平面图形的认识(一)6.2角2角的比较与运算说课稿(新版)苏科版

2024秋七年级数学上册第6章平面图形的认识(一)6.2角2角的比较与运算说课稿(新版)苏科版
标题:角的比较与运算
1.角的定义:由一点引出的两条射线所围成的图形。
2.角的分类:锐角、直角、钝角、平角和周角。
3.角的性质:角的大小比较方法,角的加减运算。
4.角的实际应用:测量物体的角度,设计几何图案。
九、板书设计
标题:角的运算
1.角的加减运算规则。
2.角的乘除运算规则。
3.角的复合运算规则。
4.角的的能力,使学生能够将所学知识应用于日常生活和其他学科中,提高学生的数学应用能力和解决实际问题的能力。
教学难点与重点
1.教学重点:
(1)角的定义:学生需要理解并掌握角的定义,即由一点引出的两条射线所围成的图形。
(2)角的分类:学生需要了解并区分锐角、直角、钝角、平角和周角等不同类型的角。
答案:该等腰三角形的周长为6 + 4 + 4 = 14厘米。
c.一个圆的直径为8厘米,求该圆的周长和面积。
答案:圆的周长公式为C = πd,面积公式为A = πr²。将直径d = 8厘米代入公式,得到C = π × 8 = 25.12厘米,A = π × (8 / 2)² = 50.24平方厘米。
板书设计
(3)角的性质:学生需要掌握角的大小比较方法,如通过观察两边叉开的大小来判断角的大小。
(4)角的运算:学生需要学会角的加减运算,并能运用角的性质解决实际问题。
2.教学难点:
(1)角的定义:学生对于角的概念可能存在模糊的理解,难以把握角的本质特征。
(2)角的分类:学生可能对各种类型角的名称和特征记忆不清晰,容易混淆。
1.数学思维:通过学习角的定义、分类和性质,培养学生对数学概念的理解和逻辑思维能力,使学生能够运用角的性质进行数学推理和解决问题。
2.数学交流:鼓励学生在课堂上积极发言,与同伴进行讨论和交流,提高学生的数学表达能力和沟通技巧。

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一)一、选择题1、下列结论:①两点确定一条直线;②直线AB 与直线BA 是同一条直线;③线段AB 与线段BA 是同一条线段;④射线OA 与射线AO 是同一条射线.其中正确的结论共有( )个.A .1B .2C .3D .42、根据下图,下列说法中不正确的是( ) A .图①中直线经过点B .图②中直线,相交于点l A a b AC .图③中点在线段上D .图④中射线与线段有公共点C AB CD AB 3、如图,是北偏东方向的一条射线,若射线 与射线垂直,则的方位角是()OA 30°OB OA OB A .北偏东 B .北偏西 C .西偏北 D .北偏西30°30°60︒60︒(3题) (7题) (8题)4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .95、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或 D .或3cm 5cm 3cm 7cm 5cm 7cm6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°9、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°(9题) (10题)10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB =40,则MN =_____.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.(13题) (14题) (16题) (17题)14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.17、如图,一副三角板按图示放置,已知∠AOC =65°,则∠AOB =______°.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠23、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE= °;(变式拓展)小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).答案一、选择题1、下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④射线OA与射线AO是同一条射线.其中正确的结论共有()个.A.1B.2C.3D.4C【分析】根据直线、线段和射线以及直线的公理进行判断即可.解:①两点确定一条直线,正确;②直线AB与直线BA是同一条直线,正确;③线段AB与线段BA是同一条线段,正确;④射线OA与射线AO不是同一条射线,错误;故选C.2、根据下图,下列说法中不正确的是()l A a b AA.图①中直线经过点B.图②中直线,相交于点C AB CD ABC.图③中点在线段上D.图④中射线与线段有公共点C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【详解】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.OA30°OB OA OB3、如图,是北偏东方向的一条射线,若射线与射线垂直,则的方位角是()A .北偏东B .北偏西C .西偏北D .北偏西30°30°60︒60︒D 【分析】根据垂直,可得∠AOB 的度数,根据角的和差,可得答案.【详解】解:∵射线OB 与射线OA 垂直,∴∠AOB =90°,∴∠1=90°-30°=60°,故射线OB 的方向角是北偏西60°,故选:D .4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .9A 【分析】由D 是线段AB 的中点可计算出AD 的长度,结合CD =2可求得AC =8,再由E 是线段AC 的中点可求得CE 的长度,最后根据DE =CD +CE 即可得出答案.【详解】解:∵D 是线段AB 的中点,AB =20,∴AD =AB =10,12又∵CD =2,∴AC =AD -CD =10-2=8,∵E 是线段AC 的中点,AC =8,∴CE =AC =4,∴DE =CD +CE =2+4=6.故选:A .125、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或D .或3cm 5cm 3cm 7cm 5cm 7cmC【分析】根据题意知,点在点左侧时,;点在点右侧时,,因为C B MN BM BN =-C B +MN BM BN =点是线段的中点,点是线段的中点,分别算出长度,代入计算即可.M AB N BC ,BM BN 【详解】解:因为点是直线上一点,所以需要分类讨论:C AB (1)点在点左侧时,作图如下:C B∵,,∴,,10cm AB =4cm BC =152BM AB cm ==122BN BC cm ==又∵,∴.MN BM BN =-=523MN cm -=(2)当点在点右侧时,作图如下:C B由(1)知,,,152BM AB cm ==122BN BC cm ==∵,∴,+MN BM BN =+=5+2=7cm MN BM BN =综上所述,的长度是或.故选:CMN 3cm 7cm 6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.【详解】解:点10分时,分针在指在2时位置处,时针指在4时过10分钟处,4 由于一大格是,10分钟转过的角度为,30°1030560⨯︒=︒因此4点10分时,分针与时针的夹角是.故选:.230565⨯︒+︒=︒B7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°D 【分析】根据角的和差关系求解即可.【详解】解:∵∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴∠BOD =∠COD -∠BOC =60°.故选:D .8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°B 【分析】根据垂线的性质、角平分线的定义得出含∠AOD 的等式求解即可.【详解】解:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC =∠COD +∠AOD =90°+∠AOD ,∵OD 平分∠AOB ,OE平分∠AOC ,∠BOE =15°,∴∠AOE =∠AOC =∠BOE +∠AOB =15°+2∠AOD ,12∴15°+2∠AOD =(90°+∠AOD ),∴∠AOD =20°,故选:B .129、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°D 【分析】根据折叠求出∠CFG =∠EFG =∠CFE ,根据∠BFE =3∠BFH ,∠BFH =20°,即可求出12∠GFH =∠GFE +∠HFE 的度数.【详解】解:∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =∠CFE ,12∵∠BFE =3∠BFH ,∠BFH =20°,∴∠BFE =60°,∴∠CFE =120°,∴∠GFE =60°,∵∠EFH =∠EFB ﹣∠BFH ,∴∠EFH ==40°,∴∠GFH =∠GFE +∠EFH =60°+40°=100°.故选:D .10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°C【分析】根据角平分线定义求出∠AOA 1=∠AOB=32°,同理即可求出答案.12∵∠AOB=64°,OA 1平分∠AOB ,∴∠AOA 1=∠AOB=32°,12∵OA 2平分∠AOA 1,∴∠AOA 2=∠AOA 1=16°,12同理∠AOA 3=8°,∠AOA 4=4°,故选:C .二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB ②④【分析】根据两点之间,线段最短的性质,对各个选项逐个分析,即可得到答案.【详解】①用两个钉子就可以把木条固定在墙上,可用两点可确定一条直线解释;②把弯曲的公路改直,就能缩短路程,可用两点之间,线段最短解释;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,可用两点可确定一条直线解释;④从地到地架设电线,总是尽可能沿着线段架设,可用两点之间,线段最短解释;故②④.A B AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB=40,则MN =_____.20【分析】由题意易得,进而可得,进而问题可11,22MC AC CN CB ==111222MN MC CN AC CB AB =+=+=求解.【详解】解:∵M 、N 分别为AC 、BC 的中点,∴,11,22MC AC CN CB ==∵AB =40,∴;11120222MN MC CN AC CB AB =+=+==故答案为20.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.40°【分析】运用对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角、邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角,求解即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠COE =50°,∴∠AOC =90°﹣∠COE =90°﹣50°=40°,∴∠BOD =∠AOC =40°.故40°.14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.65°【详解】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)2=65°.÷15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 2或8【分析】根据点C 在直线AB 上,可以从两种情况进行分析计算:当点C 在线段AB 上时和当点C 不在线段AB 上时,即可计算得到答案.【详解】解:当点C 在A 、B 之间时,如图1所示∵线段AB =6cm ,O 是AB 的中点,∴OA =AB =×6cm =3c m ,1212∴OC =CA ﹣OA =5cm ﹣3cm =2cm .当点C 在点A 的左边时,如图2所示,∵线段AB =6cm ,O 是AB 的中点,CA =5cm ,∴OA =AB =×6c m =3cm ,1212∴OC =CA +OA =5cm +3c m =8c m 故答案为2或8.16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.∠=︒,∠AOC=90°,∴∠BOC=64°,【详解】解:∵126∵∠2+∠BOC=180°,∴∠2=116°.故116°.17、如图,一副三角板按图示放置,已知∠AOC=65°,则∠AOB=______°.155【分析】根据图形中角之间的关系即可求得∠AOB的度数.【详解】解:∵∠BOC=90°,∴∠AOB=∠AOC+∠BOC=65°+90°=155°故155.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x 分钟到达图书馆,由题意得:(6°﹣0.5°)x =165°﹣11°或(6°﹣0.5°)x =165°+11°,解得:x =28或x =32,经检验,28分,32分钟均符合题意,故28或32.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠(1)画图见解析,(2)画图见解析【分析】(1)连接点D 与点D 向左平移一个单位,向下平移三个单位的点的直线即可;(2)过点D ,连接以D 为顶点边长为2的正方形对角线,和以D 为顶点边长为1和3的长方形对角线,两条对角线组成的角就是所求的角.【详解】解:(1)如图所示,DM 就是所求直线;(2)如图所示,就是所求角.EDF ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 2【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论.【详解】∵D 为线段AB 的中点,∴AD =AB =×12=6,1212∵AC =AB ,13∴AC =×12=4,13∴CD =AD -AC =6-4=2.21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);(1)80°;(2)360°-2α【分析】(1)根据OC ⊥OD ,∠DOE =140°可求出∠COE ,再根据射线OE 平分∠BOC .求出BOE ,最后根据平角的意义求出答案;(2)利用(1)的方法,用代数式表示角度即可.【详解】解:(1)∵OC ⊥OD ,∠DOE =140°,∴∠COE =∠DOE -∠COD =140°-90°=50°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =50°,∴∠AOC =180°-∠COE -∠BOE =180°-50°-50°=80°;(2)∵OC ⊥OD ,∠DOE =α,∴∠COE =∠DOE -∠COD =α-90°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =α-90°,∴∠AOC =180°-∠COE -∠BOE =180°-(α-90°)-(α-90°)=360°-2α,故360°-2α.22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠(1)3;(2);(3)12114AOB ∠=︒【分析】(1)根据∠COB=2∠AOC ,∠COB+∠AOC=∠AOB 可得∠AOB=3∠AOC ,(2)由OD 平分 ∠AOB ,∠COD=∠AOD-∠AOC 可得∠COD 与∠AOC 的关系.(3)由OD 平分∠AOB 得到∠AOD=∠AOB 又由∠AOD=∠AOC+∠COD ,可得∠COD 与∠AOB12的关系,从而求出∠AOB 的度数.【详解】解:(1)∵∠COB=2∠AOC , ∠COB+∠AOC=∠AOB∴∠AOB=∠AOC+2∠AOC=3∠AOC (2)∵∠COD=∠AOD-∠AOC= ∠AOB- ∠AOB= ∠AOB121316又∵∠AOB=3∠AOC ∴∠COD=∠AOB=×3∠AOC=∠AOC161612(3)∵OD 平分∠AOB ∴∠AOD=∠AOB 12又∵∠AOD=∠AOC+∠COD ∴∠AOB=∠AOB+19°1213∠AOB=19° ∠AOB=114° 故(1) 3;(2) ;(3) ∠AOB=114°161223、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.(1)①4;②3;(2),;(3)不变,.()2cm 05AB t t =≤≤()()202cm 510AB t t =-<≤5EC =【分析】(1)①根据即可得出结论;②先求出BD 的长,再根据C 是线段BD 的中点即可得到CD 2AB t =的长;(2)分类讨论即可;(3)直接根据中点定义即可得到结论;【详解】(1)①当时,(cm ),2t =224AB =⨯=②此时,(cm ),∵C 是线段BD 的中点,则;1046BD =-=3CD cm =(2)①∵B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动,∴当时,,∴;05t ≤≤2AB t =()2cm 05AB t t =≤≤②当时,,∴;510t <≤()10210202A B t t =--=-()()202cm 510AB t t =-<≤(3)不变;因为AB 的中点为E ,C 是BD 的中点,所以,,所以,.()1122EC AB BD AD =+=11052EC =⨯=24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α,∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α,∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α,∠EOF =∠AOF +∠AOE =135°+2α,∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意;②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意;③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意;综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30°时,互补角有1个,为EOB ∠.25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.【分析】(1)先根据直角计算的度数,再根据角平分线的定义计算的度数,最后利用平角DOE ∠AOD ∠的定义可得结论;(2)类似(1)的方法解答即可;(3)设,则,根据角平分线的定义表示,再利用互余的关系求BOD β∠=180AOD β∠=︒-BOE ∠的度数,可得结论.COE ∠(1)若,20COE ∠=︒,,90COD ∠=︒ 902070EOD ∴∠=︒-︒=︒平分,,OE AOD ∠2140AOD EOD ∴∠=∠=︒;18014040BOD ∴∠=︒-︒=︒(2)若,,COE α∠=90EOD α∴∠=-平分,,OE AOD ∠22(90)1802AOD EOD αα∴∠=∠=-=-;180(1802)2BOD αα∴∠=︒--=故;2α(3),理由是:2BOD COE ∠=∠设,则,BOD β∠=180AOD β∠=︒-平分,,OE AOD ∠118090222EOD AOD ββ︒-∴∠=∠==︒-,,即.90COD ∠=︒ 90(90)22COE ββ∴∠=︒-︒-=2BOD COE ∠=∠26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠AOC =30°,∠BOC =90°,求∠DOE 的度数”,小明在做题中发现:解决这个问题时∠AOC 的度数不知道也可以求出∠DOE 的度数.也就是说这个题目可以简化为:如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠BOC =90°,求∠DOE 的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC =m °,则∠DOE = °;(变式拓展)小明继续探究:(3)已知直线AM 、BN 相交于点O ,若OC 是∠AOB 外一条射线,且不与OM 、ON 重合,OD 、OE 分别平分∠AOB 、∠AOC ,当∠BOC =m °时,求∠DOE 的度数(自己在备用图中画出示意图求解).(1)45°;(2);(3)2m °2m °【分析】(1)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,推出∠DOE 即可;(2)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,用m °表示∠DOE 即可;(3)分三种情况讨论,第一种:OC 在AM 上,第二种:OC 在AM 下侧,∠MON 之间,第三种:OC 在∠AON 之间,即可得到∠DOE ,【详解】解:(1)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+90°,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+90°)﹣a °==45°;121212121902⨯︒(2)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=,故;121212122m °2m °(3)①当OC 在AM 上,即OC 在∠BOM 之间,设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=;121212122m °②当OC 在直线AM 下方,且OC 在∠MON 之间时,∠BOC =∠AOB +∠AOC =m °,∠DOE =∠AOE ﹣∠AOD =∠AOC +∠AOB =∠BOC =;1212122m °③当OC 在直线AM 下方,且OC 在∠AON 之间时,由②得,∠BOC =m °,∠DOE =∠AOC +∠AOB =12∠BOC =2m °;综上所述,∠DOE =2m °.1212。

平面图形的认识(一)复习课

平面图形的认识(一)复习课

8.请动手做一做: 已知线段AB,阅读下列语句,分别画出相 应的图形。
⑴延长线段AB到C,使BC=2AB; ⑵在AB所在的直线外取一点D; ⑶连接BD; ⑷画射线DA; (5)过点D画DE⊥AB,垂足为E; (6)过点D画DF∥AB
9.如图,已知AB=8,AP=5,OB=6,则OP的长是 ( ) A.2 B.3 C.4 D.5
图形的画法
线段的延长与反向延长、线段的中点、角 的平分线、画一个角等于已知角、余角补
角的画法、平行线的画法、垂线的画法。
题组练习一:
1.下列说法中正确的是
(C)
A线段MN就是M、N两点之间的距离;
B两点之间直线最短;
C两点之间的距离就是指连接两点的线段的长度;
D汽车从徐州开往南京所行驶的路程就是徐州到南
京的距离.
2.如图,O作为线段的端点,
共有线段 ( )
O
A、6条 B、8条 C、10条 D、12条
B
C
3.钟面上3点整时,时针与分针所成的角 度数为______,13点30分时,时针与分 针的夹角的度数为_______。
4.相邻的两个角又互为余角,则这两个角 的平分线夹角为 ;相邻的两个角又互 为补角,则这两个角的平分线夹角为 。
A
O
P
B
10.如图,C,D,E将线段AB分成四部分,且
AC:CD:DE:EB=2:3:4:5,M,P,Q,N 分别是
AC,CD,DE,EB的中点,且MN=21cm,求PQ的长.
MP
Q
N
AC D
E
B
典型例题:
1.已知AB=10cm,直线AB上有一点C, BC=4cm,M是线段AC的中点,求 AM的长。

2024秋七年级数学上册第6章平面图形的认识(一)6.2角1角教案(新版)苏科版

2024秋七年级数学上册第6章平面图形的认识(一)6.2角1角教案(新版)苏科版
角的定义与性质:
-射线
-公共端点
-非公共部分
-大小与张开程度有关
-与边的长短无关
角的分类:
-锐角
-直角
-钝角
-平角
-周角
角的测量与计算:
-量角器
-度数
-加法
-减法
-乘法
-除法
角的实际应用:
-测量
-设计
-制作
a.角的加法:将两个角的度数相加。
b.角的减法:将两个角的度数相减。
c.角的乘法:将角的度数与一个数相乘。
d.角的除法:将角的度数除以一个数。
教学评价与反馈
1.课堂表现:学生在课堂上的表现是评价其学习态度和参与度的重要依据。通过观察学生在课堂上的发言、提问、互动和完成练习的情况,可以了解他们对角的概念、性质和计算的掌握程度。
2.教学年级和班级:七年级1班
3.授课时间:2024年9月20日
4.教学时数:45分钟
核心素养目标
本节课旨在培养学生的数学核心素养,主要包括逻辑推理、直观想象、数学建模和数据分析四个方面。通过学习角的定义和性质,学生能够提高直观想象能力,能够运用逻辑推理分析角的大小和分类,从而培养数学思维。同时,通过角的测量和计算,学生能够提升数据分析能力,解决实际问题。此外,通过小组合作和讨论,学生能够培养团队合作精神,提高问题解决能力。
-句描述:锐角是大于0度小于90度的角,直角是等于90度的角,钝角是大于90度小于180度的角,平角是等于180度的角,周角是等于360度的角。
③角的测量与计算:
-知识点:角的大小可以通过量角器来进行测量。角的大小比较和计算方法。
-关键词:量角器、度数、加法、减法、乘法、除法
-句描述:使用量角器测量角的大小时,要将量角器的中心点与角的顶点重合,将量角器的零刻度线与角的一条边重合,读取另一条边与量角器上的刻度线的交点处的度数。角的加法是将两个角的度数相加,角的减法是将两个角的度数相减,角的乘法是将角的度数与一个数相乘,角的除法是将角的度数除以一个数。

七上 平面图形的认识 第1课时 线段、射线、直线(一)练习 含答案 题型全

七上 平面图形的认识 第1课时 线段、射线、直线(一)练习 含答案 题型全

第六章平面图形的认识(一)第1课时线段、射线、直线(一)1.过一点可作_________条直线,过两点可作_________条直线,过不在同一直线上的三点可作_________条直线.2.(1)如图①,有_________条射线,能用图中字母表示的射线是_________;(2)如图②,以A为一个端点的线段有_________条,它们是_________.3.沪宁高速公路有一段弯曲的路段,需要把它改直,根据公理_________可以缩短路程.4.如图,已知A、B、C、D四点,按下列要求画图:(1)画直线AB;(2)画射线DC;(3)画线段BC、DA,并相交于点O.5.根据直线、射线、线段的性质,图中一定能相交的是( )6.射线BA与射线BC是同一条射线的图是( )7.下列说法中,错误的是( ) A.两点确定一条直线B.直线上任意两点都可以表示这条直线C.三点确定一条直线D.过一点有无数条直线8.如果A、B、C三点不在同一条直线上,那么经过其中任意两点,一共可画_________条直线,它们可分别表示为___________________________.9.绷紧的琴弦、人行横道线给我们以_________的形象,_________有两个端点.10.看图写话:(1)根据图①:_____________________________________________________________.(2)根据图②:____________________________________________________________.11.在平面上,三条直线两两相交;可把平面分成_________个部分.12.如图,直线l是一条笔直的公路,点A、B是某公司的两个仓库,位于公路的两旁,请在公路上找一点建货物中转站C,使AC与BC之和最小,并说明理由.13.阅读下表.解答下列问题:(1)在表中空白处画出图形,写出结果.(2)猜测线段的总条数N与线段上的点数n(包括线段的两个端点)之间的关系.(3)求当n=10时,N的值.参考答案1.无数一三2.(1)6 射线AB、射线BA、射线BC、射线CB(2)5线段AB、线段AC、线段AD、线段AE、线段AF3.两点之间线段最短4.略5.D 6.C 7.C 8.三直线AB、直线BC、直线AC9.线段线段10.(1)点A在直线a外,点B在直线a上(2)直线a、b、c两两相交于A、B、C三点11.712.点拨:连接AB,交直线l于点C,则点C就是所要找的点,因为两点之间线段最短13.(1)图略21=6+5+4+3+2+1(2)N=(n一1)+(n一2)+…+3+2+1(3)当n=10时,N=9+8+7+6+5+4+3+2+1=45。

七年级 第六章 平面图形的认识(一)

七年级 第六章 平面图形的认识(一)

第六章 平面图形的认识(一)一、知识点梳理2、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB3、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

4、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

(5)线段的比较:1.目测法 2.叠合法 3.度量法5、线段的中点:点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。

M 是线段AB 的中点AM=BM=21AB (或者AB=2AM=2BM ) 6、直线的性质(1)直线公理:经过两个点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

7、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,M A B这两条射线叫做这个角的边。

或:角也可以看成是一条射线绕着它的端点旋转而成的。

8、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

9、角的表示:①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。

平面图形的认识一

平面图形的认识一

6。

1线段、射线、直线知识点一1。

直线和射线、线段是整体与部分的关系。

射线和线段都是直线的一部分。

在射线上取一点可得线段。

在直线上取一点可得两条射线,取两点可得一条线段。

2。

相同点:它们都是由无数个点构成的,都是直的,都没有粗细。

3。

不同点:⑴从端点上看:线段有两个端点,射线有一个端点,直线没有端点;⑵线段不能延伸,可度量;射线向一方无限延伸,直线向两个方向无限延伸,都不可度量。

具体情况如下表:线段射线直线图例端点2个端点1个端点0个端点字母表示位置两个端点一个端点和射线上任一点直线上任意两点读法线段AB或线段BA或线段a 射线AB(从端点开始读)直线AB或直线BA或直线l长度可度量长度无限长无限长例 1 图中有几条直线?有几条射线?有几条线段?并把能用字母表示的表示出来。

知识点二直线的基本性质两点确定一条直线例2 把一根木条固定在墙上,至少要钉几个钉子?为什么?知识点三线段的基本性质及两点之间的距离1.线段的基本性质两点之间的所有连线中,线段最短。

(简称:两点之间线段最短)2.两点之间的距离两点之间的线段的长度叫做这两点之间的距离。

例3 如图所示,从公园甲到公园乙有①、②、③三条线路,假如你现在在公园甲,打算去公园乙,为了节省时间,你会选择哪条路线?为什么?知识点四线段大小的比较和线段的画法1.比较线段大小的两种方法⑴度量法:先分别用刻度尺度量出每条线段的长度,然后按它们长度的大小进行比较。

⑵叠合法:如图所示,可先把两条线段移到同一条直线上,使它们一端点重合,另一点在这一重合点同一侧。

如图甲,点A和点C重合,另一端点B和点D也重合,则说明这两条线段相等,可表示为AB=CD。

如图乙,点A和点C重合,另一端点D在线段AB上(不与点B重合),就说线段AB大于CD,可表示为AB〉CD.如图丙,点D在线段AB的外侧,就说线段AB小于CD,可表示为AB<CD.[特别提醒]线段大小的比较,实际上就是两点间距离长短的比较。

第6章平面图形的认识(一)

第6章平面图形的认识(一)

天平初中初一数学上学期期末复习教学案第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直一、知识点复习及例题选讲1、知识点1 :(1)线段、射线、直线的异同点:(2)线段的统计方法:看线上端点的个数为n个,则有n(n-1)/2条线段。

射线的统计方法:直线上端点的个数为n个,则有2n条射线;其中有2条不好用图中字母表示。

射线上端点的个数为n个,则有n条射线;其中有1条不好用图中字母表示。

2、知识点2 :(1)两点之间的所有连线中,线段最短。

(2)两点之间线段的长度叫做这两点之间的距离。

(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离。

3、知识点3 :(1)过一个点可以画无数条直线(2)经过两点有一条直线,并且只有一条直线(3)过同一平面上的三个点可以画一或三条直线(不在一直线上可画3条直线,在一直线上可画1条直线)4、知识点4 :平分一条线段的点叫线段的中点例 1、延长线段MN到P,使NP=MN,则N是线段MP的______点,MN=_____MP,MP=___NP例 2、如图,C、D是线段AB上的两个点,CD=8cm,M是AC的中点,N是DB的中点,MN=12cm,那么线段AB的长等于_______cmA M C D N B5、知识点5 :(1)在同一平面内,不相交的两条直线叫做平行线,在同一平面内,两条直线的位置关系是:_______________如果两条直线相交成直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线。

(3)如果两条直线都与第三条直线平行,那么两条直线互相平行。

6、知识点6 :(1)经过直线外一点,有且只有一条直线与已知直线平行,(2)经过一点,有且只有一条直线与已知直线垂直。

复习内容:第6一、知识点复习及例题选讲1、知识点1 :角的表示方法有几种注意点是什么?2、知识点2:角的度量单位是:__________________;3、知识点3:角平分线的定义例 1、已知∠AOB = 80o,OC是∠AOB的平分线,则∠例 2( )A、150°B、120°C、90°4、知识点4:(1)如果两个角的和是_________,这两个角叫做互为余角,简称互余,其中的一个角是另一个角的余角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面图形的理解
教学目标
1.使学生巩固线段、射线和直线的概念,使学生巩固角的概念,进一步理解角的分类及各类角的特征,使学生进一步掌握垂线和平行线的概念.
2.使学生进一步理解学过的四边形的特征及其相互之间的联系,能准确地画出长方形和正方形.进一步理解圆的特征,能准确地画圃;巩固轴对称图形的特征,能判断一个图形是不是轴对称图形,并能找出轴对称图形的对称轴.
3.进一步培养学生的判断水平和空间观点.
教学重点
能够掌握平面图形的基本特征,并且理解相互之间的联系.
教学难点
根据平面的基本特征,能够理解平面图形的相互之间的联系.
教学过程
一、复习线段、射线和直线.
1.复习特征.【演示课件“平面几何图形的理解”】
(1)请你在本上分别画出5条不同的线,然后同桌互相说说你画的是什么线,有什么特点?他们之间又有什么不同?
(2)全班汇报.
指出:线段、射线和直线都是直的,线段是直线的一部分;线段有两个端点,是有限长的;射线只有一个端点,直线没有端点,射线和直线都是无限长的.
2.判断反馈.
(1)一条射线长5厘米.()
(2)通过一点能够画无数条直线.()
(3)通过两点能够画一条直线.()
(4)通过一点能够画一条射线.()
二、复习角.【继续演示课件“平面几何图形的理解”】
1.什么叫做角?请你自己画一个任意角.
提问:根据你画的角说—说,怎样的图形是角?(板书:角)2.复习各部分名称.
学生填写各部分名称.
教师提问:(1)角的大小与什么相关?
(角的大小与两边叉开的大小相关,与边画的长短无关)
(2)角的大小的计量单位是什么?
3.复习角的分类.
教师说明:根据角的度数,能够把角分类.
教师提问:我们学习过哪几类角?每种角的特征是什么吗?
(板书:锐角直角钝角平角)
三、复习垂线和平行线.【继续演示课件“平面几何图形的理解”】
1.教师提问:在什么情况下能够说两条直线互相垂直?
你能举出日常生活里的例子吗?
在什么情况下能够说两条直线平行?
谁来举出平行线的例子?
2.画图.
让学生在练习本上画一组垂线和一组平行线.
四、复习平面图形.
(一)复习三角形的概念.【继续演示课件“平面几何图形的理解”】1.提问:什么叫做三角形?你能够画出几种不同的三角形?
老师板书分类:a.按照边分类;b.按照角分类
2.教师口述,学生作图.
(1)等腰三角形
(2)等腰直角三角形
3.判断.
出示一组三角形,让学生说说各是什么三角形.
4.复习三角形的内角和.
提问:三角形的三个内角的和是多少度?我们是怎样发现的?(二)复习四边形.【继续演示课件“平面几何图形的理解”】
教师提问:四边形是怎样的图形?我们以前学习过哪些四边形?
1.复习图形特征.
出示:
请你说说图里学过的四边形的名称、特征和字母表示的意义.
小组共同回忆:
(1)长方形有什么特征?
(2)正方形有什么特征?
(3)平行四边形有什么特征?
(4)梯形有什么特征?
2.从图上看,我们学过的四边形能够分为哪几类?正方形,长方形和平行四边形之间有什么关系?为什么?
教师小结:因为长方形、正方形两组对边都分别平行,所以长方形、正方形都是特殊的平行四边形,而正方形又是特殊的长方形.
板书:(完善四边形的关系)
(三)复习圆.【继续演示课件“平面几何图形的理解”】
1.复习圆的特征.
(1)画圆,并用字母表示圆心、半径和直径.
(2)提问:圆是怎样的一个图形?
同一个圆中直径和半径有什么关系?
2.复习轴对称图形.
(1)请同学们把圆对折.
提问:你发现圆对折后有什么特点?
再把等腰三角形、等边三角形对折,使折痕两边完全重合.(2)提问:你认为刚才对折的图形都有什么特点,是什么图形?(板书:轴对称图形)
这里对折的折痕就是什么?
(板书:对称轴)
怎样的图形是轴对称图形,什么叫对称轴?
等边三角形有几条对称轴?圆有多少条对称轴?
我们学过的其他图形里,哪些是轴对称图形?
你还能说出哪些见过的轴对称图形?
五、综合练习.
1.判断.
(1)小于180度的角叫做钝角.()
(2)平角是一条直线.()
(3)两条直线相交组成的四个角中,如果有一个角是直角,那么其他的三个角也是直角.()(4)不相交的两条线叫做平行线.()
(5)等边三角形一定是等腰三角形.()
(6)任何两个等底等高的梯形都能够拼成一个平行四边形.()
2.选择题.
(1)直角的两条边是()
①直线②射线③线段
(2)等边三角形是()
①锐角三角形②直角三角形③钝角三角形
3.下面这个图中有多少个长方形?多少个三角形?多少个梯形?
六、小结.
通过这堂课的学习,你能够说出哪些包含关系的图形?
七、板书设计.。

相关文档
最新文档