六年级数学知识点:正比例与反比例
正比例和反比例六年级知识点
正比例和反比例六年级知识点一、正比例。
1. 定义。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
例如:汽车行驶的速度一定时,行驶的路程和时间就是成正比例的量。
因为路程÷时间 = 速度(一定)。
2. 表达式。
- 如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为y = kx(k一定)。
3. 正比例关系的判断方法。
- 首先看这两种量是否是相关联的量,即一种量的变化会引起另一种量的变化。
然后看这两种量相对应的数的比值是否一定。
例如:购买苹果时,总价和数量是相关联的量,总价÷数量 = 单价,如果单价是固定不变的,那么总价和数量就成正比例关系。
4. 正比例关系的图像。
- 正比例关系的图像是一条经过原点的直线。
例如y = 2x,当x = 0时,y=0;当x = 1时,y = 2;当x = 2时,y = 4等等,把这些点(0,0)、(1,2)、(2,4)等连接起来就是一条直线。
二、反比例。
1. 定义。
- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
例如:当长方形的面积一定时,长和宽就是成反比例的量。
因为长×宽 = 面积(一定)。
2. 表达式。
- 如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用式子表示为xy=k(k一定)。
3. 反比例关系的判断方法。
- 先确定两种量是否相关联,再看这两种量相对应的数的乘积是否一定。
例如:总路程一定时,速度和时间是相关联的量,速度×时间 = 路程(一定),所以速度和时间成反比例关系。
4. 反比例关系的图像。
- 反比例关系的图像是一条曲线。
例如xy = 6,当x = 1时,y = 6;当x = 2时,y = 3;当x = 3时,y = 2等,把这些点(1,6)、(2,3)、(3,2)等连接起来是一条曲线。
六年级下册正比例和反比例数学知识点
六年级下册正比例和反比例数学知识点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
二、正比例1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。
2. 应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。
三、画一画正比例的图像是一条直线。
四、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:xy=k(一定)。
2. 判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。
五、观察与探究当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。
六、图形的放缩一幅图放大或缩小,只有按照相同的比来画,画的图才像。
七、比例尺1. 比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。
图上距离=实际距离比例尺实际距离=图上距离比例尺2. 比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。
根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。
3. 比例尺的应用:(1)、已知比例尺和图上距离,求实际距离课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
人教版六年级数学下册讲义-正比例和反比例(含答案)
正比例和反比例的课堂讲义教材导入:1.两种相关联的量:一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
总价和数量是成正比例的量,总价与数量成正比例关系。
2.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
高度和底面积是成反比例的量,高度与底面积成反比例关系。
(一)正比例的意义例1 一列火车行驶的时间和所行的路程如下表:填空:1、表中有和两种量,当时间是1小时,路程是当时间是2小时,路程是,这说明时间这种量变化了,路程这种量也。
2、观察表格:我们从左往右观察,时间扩大2倍,对应的路程也倍,时间扩大3倍,对应的路程也倍……从右往左观察,时间缩小8倍,对应的路程也;时间缩小7倍,对应的路程也……通过观察,我们发现路程是随着的变化而变化的。
时间扩大路程也扩大,时间缩小路程也。
它们扩大、缩小的规律是。
3、比值60,实际上是火车的:将这些式子所表示的意义写成一个关系式:路程=速度(—定)。
时间4、小结:通过刚才的观察和分析.我们知道路程和时间是两种 的量。
(两种相关联的量。
)路程和时间这两种量的变化规律是 。
(路程和时间的比的比值(速度)总是一定的。
)【规律方法】理解成正比例的意义。
判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
【变式训练1】【难度分级】 A1、下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价。
②汽车行驶速度一定,行驶的路程和时间。
③工作效率一定,工作时间和工作总量。
小学数学重点知识:正比例与反比例
小学数学重点知识:正比例与反比例
比和比例
一、比和比例的联系与区别:
二、比同分数、除法的联系与区别:
三、求比值与化简比的区别:
四、化简比:
①整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数。
②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。
③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。
五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。
六、比例尺=图上距离︰实际距离比例尺= 图上距离/ 实际距离
正比例、反比例
一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
三、正比例与反比例的区别:。
六年级数学课件正比例和反比例
正比例的意义
定义:两个量之间的比值相等 性质:当一个量增加时,另一个量也按相同的比例增加 举例:速度、路程和时间之间的关系 应用:在生活和生产中的实际应用
正比例的应用
定义:两个量之间 的比值保持不变, 即为正比例关系
应用场景:速度、 时间、距离等
Hale Waihona Puke 实例:汽车匀速行 驶,速度与时间成 正比
数学模型:y=kx ,其中k为比例系 数
题目:一辆汽车从甲地开往乙地,3小时行了150千米。照这样的速度,再行5小时到达乙地, 甲地到乙地相距多少千米?
反比例的练习题及解析
题目:一个工厂生产了200台机器,每台机器需要10个零件。如果该工厂决定生产更多的机器,但零件数量不变,那么每台新机器的 成本将会如何变化?
解析:这道题目考察了反比例的概念。当一个变量增加时,如果另一个变量保持不变,那么第一个变量与第二个变量之间 的比率将会保持不变。因此,如果该工厂生产的机器数量增加,但零件数量保持不变,那么每台新机器的成本将会降低。
生活中的反比例实例
汽车油箱:油箱容 量固定,行驶距离 与耗油量成反比
速度与时间:速度 越快,所需时间越 短,成反比关系
价格与需求量:价 格上涨,需求量减 少,成反比关系
杠杆原理:动力×动 力臂=阻力×阻力臂 ,当动力臂增加, 阻力臂减少时,动 力作用效果越不明 显
正比例和反比例在数学中的应用实例
化
反比例:两个 量之间的乘积 是一定的,当 一个量变化时, 另一个量也按 相反的比例变
化
区别:正比例 是比值一定, 反比例是乘积
一定
联系:正反比 例都是成比例 关系,当其中 一个量变化时, 另一个量也按 一定的比例变
化
应用上的区别与联系
数学中的正比例与反比例
数学中的正比例与反比例数学中的比例关系在许多实际问题中具有重要意义,可以用于描述两个或多个变量之间的关系。
其中,正比例与反比例是比例关系的两种常见形式。
本文将从定义、特点和实际应用等方面介绍数学中的正比例与反比例。
一、正比例关系正比例关系指的是两个变量之间的比例关系为正比。
如果两个变量x 和 y 满足 y = kx(其中 k 为常量),那么称两个变量 x 和 y 之间存在正比例关系。
其中,k 为比例常数,表示变量 y 在 x 增加一个单位时的增量。
在正比例关系中,随着 x 的增加,y 也相应地以相同的比例增加。
可以通过绘制散点图或直线图来表示正比例关系,直线呈现出从原点开始并经过所有散点的规律。
正比例关系具有以下特点:1. 常量比例因子:正比例关系中的比例常数 k 是固定的,不随 x 或y 的变化而变化。
2. 原点经过性:正比例关系通过原点,即当 x=0 时,必有 y=0。
3. 相对增长性:随着 x 的增大,y 也相应地增大;随着 x 的减小,y 也相应地减小。
正比例关系在许多实际问题中得到广泛应用。
例如,速度与时间的关系、人口增长与时间的关系等都可以表示为正比例关系。
使用正比例关系可以方便地计算和预测变量之间的关系。
二、反比例关系反比例关系指的是两个变量之间的比例关系为反比。
如果两个变量x 和 y 满足 y = k/x(其中 k 为常量),那么称两个变量 x 和 y 之间存在反比例关系。
其中,k 为比例常数,表示变量 y 在 x 增加一个单位时的相应减少量。
在反比例关系中,一个变量的增大导致另一个变量的减小,并且它们的乘积始终保持不变。
可以通过绘制散点图或曲线图来表示反比例关系,曲线呈现出一个平移的双曲线形状。
反比例关系具有以下特点:1. 常量比例因子:反比例关系中的比例常数 k 是固定的,不随 x 或y 的变化而变化。
2. 原点非经过性:反比例关系不经过原点,即当 x=0 时,并不一定有 y=0。
正反比例知识点
正反比例知识点正反比例是数学中常见的概念,用来描述两个变量之间的关系。
在正反比例中,当一个变量的值增加时,另一个变量的值相应地减少;反之亦然。
下面是关于正反比例的相关知识点:1. 正比例:正比例是指两个变量之间的关系是一种直线关系,当一个变量的值增加时,另一个变量的值也相应增加;当一个变量的值减少时,另一个变量的值也相应减少。
2. 反比例:反比例是指两个变量之间的关系是一种反比关系,当一个变量的值增加时,另一个变量的值相应减少;当一个变量的值减少时,另一个变量的值相应增加。
3. 正比例常数:在正比例中,两个变量之间的关系可以用一个常数来表示。
这个常数被称为正比例常数,通常用字母k表示。
正比例常数表示了两个变量之间的增长或减少的比例关系。
4. 反比例常数:在反比例中,两个变量之间的关系可以用一个常数来表示。
这个常数被称为反比例常数,通常用字母k表示。
反比例常数表示了两个变量之间的变化趋势。
5. 正比例图表:正比例关系可以通过绘制图表来表示。
图表中的数据点呈一条直线,斜率代表了正比例常数的值。
通常我们可以通过计算两个变量的比值来确定斜率。
6. 反比例图表:反比例关系也可以通过绘制图表来表示。
图表中的数据点呈一条曲线,而且曲线与x轴和y轴都不会相交。
通常我们可以通过计算两个变量的积来确定反比例关系。
7. 正反比例的应用:正反比例关系在日常生活中有着广泛的应用。
例如,速度和时间之间的关系可以用正比例来描述;面积和边长之间的关系可以用反比例来描述。
了解正反比例的概念可以帮助我们解决实际问题。
总结:正反比例是数学中的重要概念,用来描述两个变量之间的关系。
正比例关系是一种直线关系,而反比例关系是一种反比关系。
通过了解正反比例的知识点,我们可以更好地理解和应用数学。
小学六年级数学正反比例
小学六年级数学正反比例一、什么是正反比例1、正比例:正比例是指两个变量之间的变化率是一致的,当其中一个变量增大时,另一个也会相应地增大,反之亦然。
两个值之间的正比例可以用y=ax+b (a>0)这样的函数表达出来。
2、反比例:反比例是指两个变量之间的变化率相反,当其中一个变量增大时,另一个会相应地减小,反之亦然。
反比例可以用y=a/x+b (a>0)的函数表示出来。
二、小学六年级数学中的正反比例1、小学六年级数学中常见的正反比例实例有:(1)时间与内容的正比例:学习的时间与学习的内容正比,也就是说,投入的时间越多,学习的内容就会比较多。
(2)距离与时间的反比例:一般来说,距离和所耗时间是反比例的。
也就是说,距离越大,耗费的时间也就越长。
(3)质量与价格的反比例:大家购买物品也是质量和价格是反比例的。
也就是说,质量越高,价格也就越高。
三、正反比例在小学六年级数学中的应用1、分数的反比例:比如有一个划分为两部分的数,其中一部分是原数的3分之一,另一部分是原数的2分之1,这就是表达反比例的例子,可以让学生掌握反比例的概念。
2、重量和体积的反比例:利用试管、称重的方式,让学生观察自己所得的试管中重量和体积的反比例关系,并且按照规律画出反比例的图像,总结出反比例特点,这样就可实现对正反比例的洞察和掌握。
3、面积与周长之间的正比例:通过画图测量形状的面积和周长,从中可以观察面积与周长之间的正比例关系,让学生把正反比例概念掌握其中,从而可以解决有关正反比例的问题。
4、实际问题求解:可以用折线图、比例图等形式来表示,在给定2个变量情况下,实现对反比例、正比例的概念掌握,从而解决实际问题,培养学生使用正反比例进行实际问题求解的能力。
六年级数学下册正比例和反比例知识点
六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。
好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。
反比例则是当两个量中的其中一个增加时,另一个会减少。
像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。
掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。
1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。
我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。
在学习正比例和反比例之前,我们要先打好基础。
回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。
买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。
这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。
比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。
再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。
明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。
完整版)六年级数学正反比例
完整版)六年级数学正反比例正,反比例正比例和反比例是初中数学中的重要概念。
下面我们来整理一下相关知识点。
判断两种量是否成正比例,需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的比值是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的比值,正比例关系可以用y=kx表示。
判断两种量是否成反比例,同样需要看它们是否相关联,一种量变化时,另一种量是否随之变化,以及它们的乘积是否一定。
我们可以用字母x和y表示这两种量,用k表示它们的乘积,反比例关系可以用xy=k表示。
常见的正反比例题型包括圆的周长和半径、圆的面积和半径、平行四边形面积一定时的底和高等。
下面是一些典型例题:例1:某车间造纸时间和造纸总吨数的数据如下表所示。
我们可以在坐标系中描出对应的点,并根据图像的特点判断它们成正比例关系。
例2:这道题列举了多种量的情况,需要判断它们是否成比例,如果成比例,是正比例还是反比例。
例3:这道题给出了3:A = 5:B的比例关系,需要求出A与B的比例关系。
根据比例的性质,可以得出A与B成反比例关系。
2.如果3:B = A:5,则A与B成什么比例?为什么?根据题意,可以得到以下等式:3:B = A:5将等式两边乘以5,得到:15:B = A因此,A与B成15:B的比例。
这是因为等式中的比例关系是等价的,即3:B与A:5是等价的,所以它们的比例关系也是等价的。
因此,可以通过等式中的比例关系来确定A与B之间的比例关系。
举一反三:1.a和b相关联的两种量,下面哪个式子表示a和b成正比例?⑤b=7a因为当a增加时,b也会增加,且它们之间的比例关系保持不变,因此a和b成正比例。
2.x、y、z是三种相关联的量,已知x×y=z。
当(x+z)一定时,(y+z)和(y-x)成正比例。
拓展提升:1.如果ab=24,那么a和b成反比例;如果a÷b=18,那么a和b成正比例。
2.一个比例式,两个外项之和是37,差是13,两个比的比值是2.5,那么比例式为5:2.3.甲乙两人步行速度之比是7:5,甲乙分别从a、b两地同时出发,如果相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要多长时间?题型一:按要求选四个数字组成各一个比例式子12的因数有1、2、3、4、6、12,选四个数字可以得到比例式1:2:3:4.举一反三:1.从36的因数有1、2、3、4、6、9、12、18、36,选四个数字可以得到比例式1:2:3:6.2.写出一个比值是24的比例式是3:1.题型五:人员调配问题一个车间有两个小组,第一个小组与第二个小组的人数比是5:3.如果第一个小组的14人到了第二个小组时,第一小组与第二小组的人数比是1:2,原来两个小组各有多少人?设第一个小组原来有5x人,第二个小组原来有3x人,则有以下等式:5x-14 : 3x+14 = 1 : 2解方程得到x=14,因此第一个小组原来有70人,第二个小组原来有42人。
六年级数学正比例与反比例的知识点
六年级数学正比例与反比例的知识点什么叫正比例?两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y 正比例的意义满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。
显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。
例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。
注意:k不能等于0.正比例的例子:正方形的周长与边长(比值4)。
圆的周长与直径(比值π)。
购买的总价与购买的数量(比值单价)。
路程的例子:1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成反比例。
都是定一个,变一个。
例如aX=Y中,a不变,则X与Y成正比例。
正比例和反比例相同与联系相同之处1.事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。
2016年小升初数学反比例的定义及考点什么叫反比例?两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成反比例的'量。
它们的关系叫做反比例关系。
用k=y*x(一定)x不等于0,k不等于0来表示。
简单点来说,就是如果一样事物增加了,另一样事物减少,他减少了,另一样事物增加,这两个事物的关系就叫做反比例。
反比例的意义满足关系式xy=k(k为常量)的两个变量,我们称这两个变量的关系成反比例;显然,若y与x成反比例,则xy=k(k为常量);反之亦然。
六年级数学正比例和反比例的意义性质+练习+总结
正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。
行数就少了。
生活中还有哪些成正比例的量如: A.长方形的宽一定,面积和长成正比例。
B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。
C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
D.地砖的面积一定,教室地板面积和地砖块数成正比例。
2. 例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……填表时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。
根据计算,你发现了什么相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
即:路程/时间=速度(一定)2、例2:(1(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来 x/y=k(一定)PS:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
六年级数学知识点:正比例与反比例
六年级数学知识点:正比例与反比例六年级数学知识点:正比例与反比例什么叫正比例?两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y正比例的意义满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。
显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。
例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。
注意:k不能等于0.正比例的例子:正方形的周长与边长(比值4)。
圆的周长与直径(比值π)。
购买的总价与购买的数量(比值单价)。
路程的例子:1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成反比例。
都是定一个,变一个。
例如aX=Y中,a不变,则X与Y成正比例。
正比例和反比例相同与联系相同之处1.事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。
2019年小升初数学反比例的定义及考点什么叫反比例?两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成反比例的量。
它们的关系叫做反比例关系。
用k=y*x(一定)x不等于0,k不等于0来表示。
简单点来说,就是如果一样事物增加了,另一样事物减少,他减少了,另一样事物增加,这两个事物的关系就叫做反比例。
反比例的意义满足关系式xy=k(k为常量)的两个变量,我们称这两个变量的关系成反比例;显然,若y与x成反比例,则xy=k(k为常量);反之亦然。
六年级下册数学-正比例与反比例
• 小明家正东方向600米处有座图书大厦,图书大厦西 偏北70度方向400米处有个科技馆,科技馆的东偏南 25度方向800米处有个邮局。选择合适的比例尺,再 平面图上画出这些地点。
.
小明家
(3)反比例的意义:两种相关联的量, 一种量变化,另一种量也随着变化,如 果这两种量中相对应的两个量的积一定, 那么这两种量就叫做成反比例的量,它 们的关系叫做反比例关系。
字母公式:X×Y=K(一定)
(4)比例尺的意义: 图上距离:实际距离=比例尺
(5)比例尺的分类: 数值比例尺 如:1:8000000正比例、反 Nhomakorabea例、比例尺
(1)正比例的意义:两种相关联的量,一种量 变化,另一种量也随着变化,如果这两种量中 的对应的两个量的比值(或者说商)一定,这 两种量就叫做成正比例的量,它们的关系叫做 正比例关系。
字母公式: y÷x=k(一定) (2)当两个变量成正比例关系时,所绘出的
图 是一条直线,也就是说所有的点都在同 一条直线上。
线段比例尺 如:0 30 60 90km
1. 生活中有哪些成正比例的例子? 2. 生活中有哪些成反比例的例子?
判断下列各题中的两个量是否成比例,成什么比例? 并说明理由。
1 用砖块铺地,每块砖的大小和所需的块数。 (反比例 ) 2 比的前项一定,比的后项与比值。( 反比例 ) 3 圆柱的侧面积一定,底面周长和高。 ( 反比例 ) 4 六一班的出勤率一定,出勤人数和总人数 。 ( 正比例 ) 5 一条绳的长度一定,剪去部分和剩下的部分.( 不成比例 ) 6 圆锥的体积一定,底面积和高 。( 反比例 ) 7 长方形的周长一定,长和宽 。( 不成比例 ) 8 订阅<少年报>的份数和总价 。 ( 正比例 ) 9 正方形的面积和边长 。( 不成比例 ) 10 圆的直径和周长。( 正比例 )
(完整版)正比例和反比例意义知识点总结加典型例题
正比率和反比率的意义知识点一:正比率和反比率的意义( 1)正比率两种相关系的量,一种量变化,另一种量也随着变化,若是这两种量中相对应的两个数的比值(也就是商)必然,这两种量变叫做成正比率的量,它们的关系叫做正比率关系。
用字母 x 和y表示两种相关系的量,用k 表示必然的量,那么正比率关系可以写成:yk必然x比方,总价随着数量的变化而变化,总价和数量的比的比值(单价)是必然的,我们就说,总价和数量是成正比率的量。
工总=工效(必然)工总和工时是成正比率的量工时行程=速度(必然)所以行程与时间成正比率。
时间( 2)反比率两种相关系的量,一种量变化,另一种量也随着变化,若是这两种量中相对应的两个数的积必然,这两种量就叫做成反比率的量,它们的关系叫做反比率关系。
用字母 x 和y表示两种相关系的量,用k表示必然的量,那么反比率关系可以写成:x ×y = k(必然)比方,长×宽=面积(必然)长和宽是成反比率的量每本的页数×装订的本数=纸的总页数(必然)每本的页数和装订的本数是成反比率的量知识点二:正比率和反比率有什么相同点和不相同点?( 1)相同点:正、反比率都是研究两种相关系的量之间的关系,即一种量变化,另一种量也随着变化。
(2)不相同点:正比率是两种相关系的量中相对应的两个数的比值(商)必然;反比率是两种相关系的量中相对应的两个数的积必然。
正比率反比率相同点不同点知识点三:正比率和反比率的图像是一条什么线?( 1)正比率关系的图象是一条过原点的直线。
( 2)反比率关系的量是一条但是原点的曲线。
知识点四:正比率和反比率的判断(1)先判断两种量x和 y 可否是相关系的量,即一种量变化,另一种量也随着变化。
()若吻合y必然,则x和 y 成正比率;若吻合x×y = k (必然),则x和2kxy 成反比率;否则,这两种量就不行比率关系。
【典型例题】题型一:依照图标填写信息例 1 :购买面粉的重量和钱数以下表,依照表填空。
小学六年级:数学基础知识(正比例与反比例)
小学六年级:数学基础知识(正比例与反比例)什么叫正比例?两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y正比例的意义满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例.显然,若y与x成正比例,则y/x=k(k为常量);反之亦然。
例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。
注意:k不能等于0。
正比例的例子:正方形的周长与边长(比值4).圆的周长与直径(比值π)。
购买的总价与购买的数量(比值单价)。
路程的例子:1.速度一定,路程和时间成正比例.2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成反比例.都是定一个,变一个。
例如aX=Y中,a不变,则X与Y成正比例。
正比例和反比例相同与联系相同之处1。
事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。
2016年小升初数学反比例的定义及考点什么叫反比例?两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量。
它们的关系叫做反比例关系.用k=y*x(一定)x不等于0,k不等于0来表示。
简单点来说,就是如果一样事物增加了,另一样事物减少,他减少了,另一样事物增加,这两个事物的关系就叫做反比例.反比例的意义满足关系式xy=k(k为常量)的两个变量,我们称这两个变量的关系成反比例;显然,若y与x成反比例,则xy=k(k为常量);反之亦然。
六年级数学正比例和反比例的意义性质+练习+总结
正比例和反比例的意义一、成正比例的量1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,例如:(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多,牛奶的总质量也多;包数少,总质量也少。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。
行数就少了。
生活中还有哪些成正比例的量如: A.长方形的宽一定,面积和长成正比例。
B.每袋牛奶质量一定,牛奶袋数和总质量成正比例。
C.衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。
D.地砖的面积一定,教室地板面积和地砖块数成正比例。
2. 例:1出示:一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……填表时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。
根据计算,你发现了什么相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。
用式子表示他们的关系是:路程/时间=速度(一定)(2)小结:同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
即:路程/时间=速度(一定)2、例2:(1(2)观察图表,发现规律用式子表示它们的关系:总价/米数=单价(一定)3、正比例的意义(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。
(2)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来x/y=k(一定)PS:三个要素:第一、两种相关联的量;第二、其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学知识点:正比例与反比例
六年级数学知识点:正比例与反比例
什么叫正比例?
两种相关联的量,一种量变化,另一种量也随着化,如果这
两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成
正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y
正比例的意义
满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量
的关系成正比例。
显然,假设y与x成正比例,那么y/x=k(k为常量);反之亦然。
例如:在行程问题中,假设速度一定时,那么路程与时间成
正比例;在工程问题中,假设工作效率一定时,那么工作总量与
工作时间成正比例。
注意:k不能等于0.
正比例的例子:
正方形的周长与边长(比值4)。
圆的周长与直径(比值π)。
购买的总价与购买的数量(比值单价)。
路程的例子:
1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成反比例。
都是定一个,变一个。
例如aX=Y中,a不变,那么X与Y成正比例。
正比例和反比例相同与联系
相同之处
1.事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,那么另一个变量也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化
当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。
2019年小升初数学反比例的定义及考点
什么叫反比例?
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成反比例的量。
它们的关系叫做反比例关系。
用k=y*x(一定)x不等于0,k不等于0来表示。
简单点来说,就是如果一样事物增加了,另一样事物减少,他减少了,另一样事物增加,这两个事物的关系就叫做反比例。
反比例的意义
满足关系式xy=k(k为常量)的两个变量,我们称这两个变量
的关系成反比例;
显然,假设y与x成反比例,那么xy=k(k为常量);反之亦然。
例如:在行程问题中,假设路程一定,那么速度与时间成反
比例;在做工问题中,假设工作总量一定,那么工作效率与工作
时间成反比例。
反比例的实质
两种相关联的量,一种量随另一种量变化而变化,但这两种
量之积一定是个常数,这时,这两种量是成反比例的量,它们的关系叫做反比例关系。
通常用xy=k(常数)来表示。
反比例关系在应用题中属于归总问题。
反映在除法中,当被
除数一定,除数和商成反比例关系。
在分数中,当分数的分子一定,分母与分数值成反比例关系。
在比例中,比的前项一定,比的后项与比值成反比例关系。
如果再把总数与份数关系具体化为:在购物问题中,总价一定,单价和数量成反比例关系。
在行程问题中,路程一定,速度和时间成反比例关系。
正比例和反比例相同与联系
相同之处
1.事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发生变化时,那么另一个变量
也随之发生变化。
3.相对应的两个变数的积或商都是一定的。
相互转化
当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。
生活中的反比例
1.百米赛跑,路程100米不变,速度和时间成反比例(即路程一定,速度和时间成反比例);
2.排队做操,总人数不变,排队的行数和每行的人数成反比例;
3.做纸盒子,总个数一定,每人做的个数和人数成反比例;
4.买东西,总价一定,它的单价和数量是反比例;
5.长方形的面积一定,长和宽是反比例(提示:但是长方形的周长与长宽不成比例【既不成正比例也不成反比例】);
6.长方体的体积一定,底面积和高是反比例。
7.等分一块蛋糕,每人分到的蛋糕与人数成反比例。
8.工作总量一定,工作效率与工作时间成反比例。
9.分子一定,分母和分率成反比例。