博弈论GameTheory
博弈论定义与主要思想
Selten and Harsanyi
泽尔腾(1965)将纳 而海萨尼则发展了刻
什均衡的概念引入了 动态分析,提出了 “精炼纳什均衡”概念; 以及进一步刻画不完 全信息动态博弈的 “完备贝叶斯纳什均
画不完全信息静态博 弈的“贝叶斯纳什均 衡”(1967-1968)。 总之,他俩进一步将 纳什均衡动态化,加 入了接近实际的不完 全信息条件。他们的
著名经济学家保罗.萨缪尔森说:“要想在现代 社会做一个有文化的人,您必须对博弈论有一 个大致了解。”
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的 思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式 。
2005年诺奖授予有以色列和美国双重国籍的罗 伯特·奥曼和美国人托马斯·谢林,以表彰他们 在博弈论领域作出的贡献。
主要思想
博弈论并不是经济学的一个分支,它只是一种 方法,这也是为什么许多人将其看成数学的一 个分支的缘故。
在对参与者行为研究这一点上,博弈论和经济 学家的研究模式是完全一样的。经济学越来越 转向人与人关系的研究,特别是人与人之间行 为的相互影响和相互作用,人与人之间利益和 冲突、竞争与合作,而这正是博弈论的研究对 象。
4、信息指的是参与人在博弈中所知道的 关于自己以及其他参与人的行动、策略 及其得益函数等知识;
5、得益是参与人在博弈结束后从博弈中 获得的效用,一般是所有参与人的策略 或行动的函数,这是每个参与人最关心 的东西;
博弈论百度百科
博弈论约翰·冯·诺依曼博弈论的概念博弈论又被称为对策论(Game Theory),它是现代数学的一个新分支,也是运筹学的一个重要组成内容。
在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。
按照2005年因对博弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法,博弈论就是研究互动决策的理论。
所谓互动决策,即各行动方(即局中人[player])的决策是相互影响的,每个人在决策的时候必须将他人的决策纳入自己的决策考虑之中,当然也需要把别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情形进行决策,选择最有利于自己的战略(strategy)。
博弈论的应用领域十分广泛,在经济学、政治科学(国内的以及国际的)、军事战略问题、进化生物学以及当代的计算机科学等领域都已成为重要的研究和分析工具。
此外,它还与会计学、统计学、数学基础、社会心理学以及诸如认识论与伦理学等哲学分支有重要联系。
按照Aumann所撰写的《新帕尔格雷夫经济学大辞典》“博弈论”辞条的看法,标准的博弈论分析出发点是理性的,而不是心理的或社会的角度。
不过,近20年来结合心理学和行为科学、实验经济学的研究成就而对博弈论进行一定改造的行为博弈论(behavoiral game theory )也日益兴起。
博弈论的发展博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。
1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
博弈论
博弈论是一种处理竞争与合作问题的数学决策方法;研究竞争中参加者为争取最大利益应当如何做出决策的数学方法;根据信息分析及能力判断,研究多决策主体之间行为相互作用及其相互平衡,以使收益或效用最大化的一种对策理论;研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题。
博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
博弈的分类根据不同的基准也有所不同。
一般认为,博弈主要可以分为合作博弈和非合作博弈。
它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。
博弈论介绍
•
为什么博弈论在经济学领域会产生如此大的影响呢?这 是因为博弈论改变了传统微观经济学的某些基本假设,从 一个独特的视角帮助我们更加深刻地理解和把握经济现象, 并指导更加有效的经济政策制订。博弈论作为现代经济学 的前沿领域,已成为占据主流的基本分析工具。
一、博弈论的基本概念
博弈论,英文为Game theory,是研究相互依赖、相互影响的 决策主体的理性决策行为以及这些决策的均衡结果的理论。 • 这些相互依赖、相互影响的决策行为及其结果的组合称为博 弈(Game)。
行动次序
信息
静态 纳什均衡 纳什 贝叶斯均衡 海萨尼
动态 子博弈精练 纳什均衡 泽尔腾 精炼贝叶斯均衡 泽尔腾等
完全信息
不完全信息
二、博弈的种类
• 一、完全信息静态博弈 • (一)完全信息静态博弈定义 • 所谓完全信息静态博弈指的是各博弈方同时决策,或者决 策行动虽有先后,但后行动者不知道先行动者的具体行动 是什么且各博弈方对博弈中各种策略组合情况下所有参与 人相应的得益都完全了解的博弈。 • 在博弈论中,一个博弈可以用两种不同的方式来表达: • 一种是策略式表达:另一种是扩展式表达.策略式表达更适 合于静态博弈,而扩展式表达更适合于讨论动态博弈。
•性别战(battle of sexes) 女 足球 男 足球 芭蕾 2,1 0,0 芭蕾 0,0 1,2
• 斗鸡博弈(chicken game)(胆小鬼博弈)
B 进 退
A
进 退
-3,-3
0,2
2,0
0,0
• 进入阻挠(entry deterrance) 在位者 默许 斗争
进入者
进入 不进入
40,50
0,300
-10,0
0,300
博弈论介绍 Game Theory
2. 生活中的“囚徒困境”例子
例子1 商家价格战 例子1
出售同类产品的商家之间本来可以 通过共同将价格维持在高位而获利,但 实际上却是相互杀价,结果都赚不到钱。 当一些商家共谋将价格抬高,消费 者实际上不用着急,因为商家联合维持 高价的垄断行为一般不会持久,可以等 待垄断的自身崩溃,价格就会掉下来。
表2 智猪博弈 小猪 按 按 大猪 等待 5,1 9, -1 等待 4,4 0,0
这个博弈大猪没有劣战略。但是,小猪有 一个劣战略“按”,因为无论大猪作何选择, 小猪选择“等待”是比选择“按”更好一些 的战略。 所以,小猪会剔除“按”,而选择“等 待”;大猪知道小猪会选择“等待”,从而 自己选择“按”,所以,可以预料博弈的结 果是(按,等待)。这称为“ 重复剔除劣战略 的占优战略均衡 ”,其中小猪的战略“等待” 占优于战略“按”,而给定小猪剔除了劣战 略“按”后,大猪的战略“按”又占优于战 略“等待”
表4 有补贴时的博弈 空中客车 开发 开发 波音 不开发 -10,10 0, 120 不开发 100,0 0,0
这时只有一个纳什均衡,即波音公司 不开发和空中客车公司开发的均衡(不 开发,开发),这有利于空中客车。 在这里,欧共体对空中客车的补贴就 是使空中客车一定要开发(无论波音是 否开发)的威胁变得可置信的一种“承 诺行动”。
类似的例子还有: 渤海中的鱼愈来愈少了,工业化中的大气 及河流污染,森林植被的破坏等。解决公共 资源过度利用的出路是政府制订相应的规制 政策加强管理,如我国政府规定海洋捕鱼中, 每年有一段时间的“休渔期”,此时禁止捕 鱼,让小鱼苗安安静静地生长,大鱼好好地 产卵,并对鱼网的网眼大小作出规定,禁用 过小网眼的捕网打鱼,保护幼鱼的生存。又 如在三峡库区,为了保护库区水体环境,关 闭了前些年泛滥成灾的许多小造纸厂等。 问题:1、为什么在城市中心道路上禁止汽车鸣 喇叭?
第三节博弈论(GameTheory)
第三节博弈论(Game Theory)在国际关系的研究过程中,我们时常会运用到博弈论这样一个工具。
博弈论在英语中称之为“Game Theory”。
很多人会认为这是一种所谓的游戏理论,其实不然,我们不能把Games 与Fun 同论,而应该将博弈论称之为是一种“Strategic interaction”(策略性互动)。
“博弈”一词现如今在我们的生活中出现的已经很频繁,我们经常会听说各种类型的国家间博弈(如:中美博弈),“博弈论”已经深刻的影响了世界局势和地区局势的发展。
在iChange创设的危机联动体系中,博弈论将得到充分利用,代表也将有机会运用博弈论的知识来解决iChange 核心学术委员会设计的危机。
在这一节中,我将对博弈论进行一个初步的介绍与讨论,代表们可以从这一节中了解到博弈论的相关历史以及一些经典案例的剖析。
(请注意:博弈论的应用范围非常广泛,涵盖数学、经济学、生物学、计算机科学、国际关系、政治学及军事战略等多种学科,对博弈论案例的一些深入分析有时需要运用到高等数学知识,在本节中我们不会涉及较多的数学概念,仅会通过一些基本的数学分析和逻辑推理来方便理解将要讨论的经典博弈案例。
)3.1 从“叙利亚局势”到“零和博弈”在先前关于现实主义理论的讨论中,我们对国家间博弈已经有了初步的了解,那就是国家是有目的的行为体,他们总为了实现自己利益的最大化而选择对自己最有利的战略,其次,政治结果不仅仅只取决于一个国家的战略选择还取决于其他国家的战略选择,多种选择的互相作用,或者策略性互动会产生不同的结果。
因此,国家行为体在选择战略前会预判他国的战略。
在这样的条件下,让我们用一个简单的模型分析一下发生在2013年叙利亚局势1:叙利亚危机从2011年发展至今已经将进入第四个年头。
叙利亚危机从叙利亚政府军屠杀平民和儿童再到使用化学武器而骤然升级,以2013年8月底美国欲对叙利亚动武达到最为紧张的状态,同年9月中旬,叙利亚阿萨德政府以愿意向国际社会交出化学武器并同意立即加入《禁止化学武器公约》的态度而使得局势趋向缓和。
博弈论的定义和主要思想
清华诚志
9
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的 思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式 。
清华诚志
12
两种均衡
占优策略是无论其他局中人采取什么策 略对于自己来说都是最好的策略。
占优均衡所有局中人都有占优策略而形 成的均衡。
纳什均衡是指某一局中人在其他局 中人的策略给定时选择最好策略而 形成的均衡。
清华诚志
13
占优均衡一定是纳什均衡,但 纳什均衡不一定是占优均衡。
占优均衡
– “不管你做什么,我所做的都是最佳选择。” – “不管我做什么,你所做的都是最佳选择。”
纳什均衡
– “给定你的行为,我所做的是最佳选择。” – “给定我做什么,你所做的是最佳选择。”
清华诚志
14
博弈的分类
1)根据参与人的多少,可将博弈分为两人 博弈和多人博弈;
2)根据博弈结果的不同,又可分为零和博 弈、常和博弈和变和博弈;
3)根据博弈方策略的数量,可分为有限博 弈和无限博弈;
清华诚志
清华诚志
5
Selten and Harsanyi
泽尔腾(1965)将纳 什均衡的概念引入了 动态分析,提出了 “精炼纳什均衡”概 念;以及进一步刻画 不完全信息动态博弈 的“完备贝叶斯纳什 均衡”
博弈论-game-theory-两人轮流进行游戏
当k∞时 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… g(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 …… 这有啥用
游戏的联合
定义:对于n个给定的公平组合博弈G1, G2, …, Gn,定义他 们集的合联 ;合对为于G一=个G1局+G面2+x…i属+G于n.X对i,于设游F戏i(xGi)i表Байду номын сангаас示设xXi的i为后它继的局局面面集 合对。于G那的么一G个的局局面面x集=合{x1X,x=2,X…1*,xXn2}*,…它*X的n(后其继中局*为面笛集卡合儿积);
gn(x1,x2,…,xn) = g(x1)⊕g(x2)⊕…⊕g(xn)
= x1⊕x2⊕…⊕xn
经典Nim游戏
图的游戏
3
0
2 0
1
3 ⊕0 ⊕0=3
0 0
1 0
1
Anti-Nim
有n堆石子,每堆ai个,两个人轮流游戏,每次游戏者 取走某一石碓中至少1枚,至多k枚的石子。谁取走最 后一颗石子算谁输。
一方算输 无论游戏如何进行,总可以在有限步之内结束。(the
Ending Condition)
N局面,P局面
N局面——先手必胜局面
winning for the Next player
P局面——后手必胜局面
winning for the Previous player
定义:
每一个最终局面都是P局面 对于一个局面,若至少有一种操作使它变成一个P局面,
还扩展
游戏4:游戏有n堆石子,第i堆有ai枚,两人轮流进行 游戏,每次游戏者可以从任意一堆取走任意多枚石子, 也可以将任意的一堆石子任意的分成两堆。谁取走最 后一颗石子为胜。
博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支 ...
博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论已经成为经济学的标准分析工具之一。
在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
自从博弈论被引入经济学以来,现在经济的许多领域都发生了巨大变化。
博弈论在强调经济活动的利益主体行为所产生的相互作用和相互影响的同时,也在突出反映社会制度的本质。
人们或组织需要更多的信息在预期其他参与方行动决策的情况下做出自己的行动选择期求更大的利益。
而我们所谓的制度就是均衡行动选择的本质特征,被参与方普遍认可并与他们的行动息息相关。
下面以最近的南海争端作为案例用博弈论的知识对争端各方所认同的制度进行研究。
由于南海问题牵涉利益参与方较多,争端较为复杂,我们只考虑中国和南海诸国双边的政治博弈。
首先看南海争端的地理位置。
南沙群岛陆地面积虽然只有二平方公里,但是整个海域面积达八十二万三千平方公里,而且地理位置非常重要。
南沙群岛地处越南金兰湾和菲律宾苏比克湾两大海军基地之间,战略位置突出,扼西太平洋至印度洋海上交通要冲,通往非洲和欧洲的咽喉要道。
再次,南海的资源也成为各国关注的焦点。
南海地处中、菲、越、日、马各国交界地带,渔业矿产资源丰富,各国利益争端复杂,这也成为南海争端形成的必要条件。
二十世纪六十年代开始,越、菲、马等国以军事手段占领南沙群岛部分岛礁,在南沙群岛附近海域进行大规模的资源开发活动并提出主权要求。
众所周知,作为一个行为主体忽略和偏离制度对其而言是无利可图甚至产生消极效应。
从60年代至今,中方与南海边界小国以及美日印诸国产生了重复参与博弈的战略互动的稳定状态。
上世纪80年代末90年代初,这些国家开始分别在所占据的岛礁上修建飞机跑道,建海港、灯塔和旅游观光点,并纷纷与外国石油公司合作,开采南沙地区的油气资源。
博弈论和运筹学
博弈论和运筹学
博弈论和运筹学是两个与决策和优化相关的学科,尽管它们有一些共同点,但也存在明显的区别。
博弈论(Game Theory)是研究决策者在相互作用下做出决策的数学理论。
它研究以多方参与的决策情境为基础的策略选择和决策过程。
博弈论主要关注决策者的利益、策略和收益,并考虑不同决策者之间的相互依赖关系。
博弈论被广泛应用于经济学、管理学、政治学等领域,用于分析和解决与决策者的冲突、合作、竞争相关的问题。
与之相比,运筹学(Operations Research)是一个研究如何最优地利用有限资源来解决实际问题的学科。
运筹学涉及数学建模、优化算法、模拟等方法,以帮助决策者做出最佳的决策。
它在多个领域中应用广泛,如供应链管理、生产调度、库存控制等。
运筹学通过分析问题的结构、建立数学模型并运用数学优化方法,提供了一种系统化的方法来解决复杂的决策问题。
尽管博弈论和运筹学都关注决策和优化,但它们的重点和方法有所不同。
博弈论注重决策者之间的竞争和合作关系,研究决策者如何做出最佳策略。
而运筹学则注重如何通过有效地分配资源和优化决策,来解决特定的问题,并达到最佳结果。
因此,博弈论和运筹学可以被看作是从不同角度和层面来研究决策和优化的学科。
game theory博弈论
game theory博弈论
游戏理论,也被称为博弈论,是一种研究人类决策和行为的数学框架。
它旨在理解在人类决策中存在的不确定性和竞争条件下,每个参与者的决策如何影响整个系统的结果。
从二战后的经济学开始,游戏理论已经成为经济学、政治学、心理学、哲学和博弈理论的重要研究领域。
它也成为了解决现实生活中许多社会问题的一种有力工具,例如市场竞争、调解博弈、投票、拍卖、国际贸易等。
游戏理论中的核心概念包括博弈、策略、收益和均衡等。
博弈是指参与者之间的相互作用,策略是指参与者制定的行动计划,收益是指参与者对于结果的评价,均衡是指没有参与者有动机改变他们的策略的状态。
在游戏理论中,有许多不同的博弈模型,例如零和博弈、合作博弈、非合作博弈等。
在每种模型中,参与者的决策和行为都会受到不同的影响和限制。
通过了解游戏理论,我们可以更好地理解许多人类行为的原理和动机,同时也可以更好地理解和预测许多社会问题的发展趋势。
- 1 -。
博弈论简介
但并不是所有重复博弈都有事先确定的重复次数,也就是停止重复时间的, 有些重复博弈似乎是会不断重复下去的。我们称这样的重复博弈为“无限次重 复博弈”(Infinitely Repeated Games)
14
(六)博弈的信息结构
所谓信息,是指关于事物运动的状态和规律的表征,也是关
于事物运动的知识。 信息就是用符号、信号或消息所包含的内容,来消除对客观 事物认识的不确定性。它普遍存在于自然界、人类社会和人 的思维之中。 信息的概念是人类社会实践的深刻概括,并随着科学技术的 发展而不断发展。 这里,我们博弈中的信息,是指在博弈中博弈方对其他博弈
方的特征、战略空间及得益函数等的知识。
15
1.关于得益的信息
博弈中最重要的信息之一是关于得益的信息,即每个博弈方 在每种结果(策略组合)下的得益情况。在许多博弈问题中,各 个博弈方不仅对自己的得益情况完全清楚,而且对其他博弈方 的得益也都很清楚。如在囚徒的困境博弈中,因为两囚徒所处 的地位是相同的,而且警察把他们双方的处境给他们都交代清 楚了,因此两个博弈方都对双方在每种情况下的得益非常清楚。
11
2.动态博弈
除了各博弈方同时决策的静态博弈以外,也有大量现实决
策活动构成的博弈中,各博弈方的选择和行动不仅有先后次序,
而且后选择、后行动的博弈方在自己选择、行动之前,可以看 到其他博弈方的选择、行动,甚至还包括自己的选择和行动。
博弈论
• 4. 战略(strategy)
• 指参与人在给定信息集的情况下的行动规则, 它规定参与人在什么时候选择什么行动。 • (1)一般用si 表示第i个参与人的一个特定战 略,Si = {si}代表第i 个参与人的所有可选择 的战略集合。如果n个参与人每人选择一个战略, n维向量s=(s1,…,si,…,sn )称为一个战略组 合(strategy profile),其中si是第i个参与人 选择的战略。
•
囚徒困境引出重要结 论: 一种制度(体制)安 排,要发生效力,必须是 一种纳什均衡。否则,这 种制度安排便不能成立。 现实中囚徒困境问题: 军备竞赛、公共产品私 人提供、寡头竞争等。
领域
纳什均衡 (增产,增 产)
制度安排
寡头竞争 公共产品 私人 提供
• (2)战略与行动是两个不同的概念,战略是行动 的规则而不是行动本身。 • 例如:“人不犯我,我不犯人;人若犯我,我 必犯人”是一种战略,“犯”与“不犯”是两种 行动,战略规定了什么时候“犯”,什么时候 “不犯”。 • (3)作为一种行动规则,战略必须是完备的,它 要给出参与人在每一种可想象到的情况下的行动 选择,即使参与人并不预期这种情况会实际发生。
博 弈 论
西 北 大 学 经济管理学院
课程主体结构
一、博弈论概述 二、博弈论的基本概念 三、完全信息静态博弈 四、完全信息动态博弈
课程主体结构
五、不完全信息静态博弈
六、不完全信息动态博弈
一、博弈论概述
• 1.博弈论概念(game theory) • (1)博弈:又称为对策或游戏,是指一些人或组 织在“策略相互依存”情形下相互影响、互相作 用的状态。 • (2)博弈论:研究决策主体的行为发生直接相互 作用时的决策,以及这种决策的均衡问题,即当 一个主体的选择受到其他主体选择的影响,而且 反过来影响到其他主体选择时的决策问题和均衡 问题。
博弈论 Game Theory
• •
信息是博弈论中重要的内容。 完全博弈是指在博弈过程中,每一位博弈 者对其他博弈者的特征、策略空间及收益函数 有准确的信息。严格地讲,完全信息博弈是指 博弈者的策略空间及策略组合下的支付,是博 弈中所有博弈者的“公共知识”(Commom Knowledge)的博弈。 • 完美信息是指博弈者完全清楚到他决策时 为止时, 所有其他博弈者的所有决策信息,或者 说,了解博弈已进行过程的所有信息。
• 2 . 猜硬币游戏
猜方 正面 盖 正面 方 反面 -1,1 1,-1 反面 1,-1 -1,1
• 3. “田忌赛马” • “田忌赛马”是我国古代一个非常有名的故 事,讲的是发生在齐威王与大将田忌之间的赛 马的故事。田忌在谋士孙膑的帮助下,运用谋 略帮助田忌以弱胜强战胜了齐威王。这个故事 讲的其实是一个很典型的博弈问题。
田 上 中 下 上中下 上下中 齐 中上下 威 中下上 王 下上中 下中上 3,-3 1,-1 1,-1 -1,1 1,-1 1,-1 上 下 中 1,-1 3,-3 -1,1 1,-1 1,-1 1,-1 中 上 下 1,-1 1,-1 3,-3 1,-1 1,-1 -1,1
忌 中 下 上 1,-1 1,-1 1,-1 3,-3 -1,1 1,-1 下 上 中 -1,1 1,-1 1,-1 1,-1 3,-3 1,-1 下 中 上 1,-1 -1,1 1,-1 1,-1 1,-1 3,-3
•
动态博弈是指在博弈中,博弈者的行动有 先后顺序(Sequential-Move),且后行动者能 够观察到先行动者所选择的行动或策略,因此, 动态博弈又叫做序贯博弈。
•
2.如果按照博弈者对其他博弈者所掌握的 信息的完全与完备程度进行分类,博弈可以划 分为完全信息博弈(Game with Complete Information)与不完全信息的博弈(Game with Incomplete Information),以及完美信息的博弈 (Game with Perfect Information)与不完美信息 的博弈(Game with Imperfect Information),确定 的博弈(Game of Certainty)与不确定的博弈 (Game of Uncertainty),对称信息的博弈(Game of Symmetric Information)与非对称信息的博弈 (Game of Asymmetric Information)等。
博弈论
1.什么是博弈论?“博弈论”译自英文“Game Theory”,直译就是“游戏理论”。
博弈论是研究行为人在矛盾和对抗性关系中的行为决策中一般性规律规律的学科。
是系统研究各种博弈问题,寻求在各博弈方具有充分或者有限理性、能力的条件下,合理的策略选择和合理选择策略时博弈的结果,并分析这些结果的经济意义、效率意义的理论和方法。
博弈:一些个人、组织,面对一定的环境条件,在一定的规律下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。
包括:博弈的参加者,各博弈方的全部策略或行为集合,进行博弈的次序,博弈方的得益四方面。
纳什均衡:设存在一个策略组合Bx’和By’,且Bx’∈Bx(Bx1,Bx2,……,BxN),By’∈By(By1,By2,……,ByN) ,当x选择Bx’时,y的最优策略选择是By’,同时,当y选择By’时,x的最优选择是Bx’,因此,x和y选择了Bx’和By’时,谁都不会再改变策略。
这种局面称为Nash均衡,是Nash最早提出并证明了它的存在。
1951年Nash提出了Nash均衡的概念,并证明了Nash均衡的存在——真正奠定了博弈论作为一门学科的基础。
之前,虽然有很多人致力于研究博弈对策的规律,但总没有得出有意义的成果,直到Nash。
n人博弈纳什均衡定⏹设:G={A1,A2,A3,…….,AN;U1,U2, U3,…………,UN}⏹如果存在一个策略组合{a1*, a2*,……,aN*},其中a1*∈A1,a2*∈A2,…….,aN*∈AN,使Ui*=Ui{a1*, a2*,…,aN*} ≥Ui{a1*,…,ai-1*,aij*,ai+1*…,aN*}⏹对任意i ∈N都成立,则{a1*, a2*,……,aN*}为Nash均衡。
囚徒困境坦白B不坦白A 坦白A 不坦白两个被捕的囚徒之间的一种特殊博弈,双方的利益不仅取决于他们自己的策略选择也取决于对方的策略选择。
答(1)博弈论,英文为game theory,是研究决策主体的行为发生解析
答:(1)博弈论,英文为“game theory”,是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的,也就是说,当一个主体,好比说一个人或一个企业的选择受到其他人、其他企业选择的影响,而且反过来影响到其他人、其他企业选择时的决策问题和均衡问题。
(2)我国外贸额90%以上是同世贸组织成员发生的,此时的中国就类似于智猪博弈中的“小猪”,世贸组织成员类似于“大猪”,因为一旦发生贸易摩擦,往往以双边政治关系为“抵押”,却无权引用多边争端解决机制,从而在贸易中处于被动地位。
而无权引用乌拉圭回合反倾销协议和反补贴协议下的权益,也使中国往往成为歧视性反倾销反补贴的首要对象。
(3)加入世界贸易组织能够为中国在新世纪的发展中争取更有利的生存环境。
加入世贸组织,也将带来一些压力和挑战,如会给国内的部分企业带来更大的竞争压力。
但专家们指出,这些压力将促使企业加速技术改造,改进管理,提高产品质量,在全球化的经济环境下不断提高自身的竞争能力,进入良性循环状态。
加入WTO组织之后,由于可借助WTO 的仲裁机制,类似针对中国的单方面的制裁将会多了一个申诉的渠道,不会光吃哑巴亏。
就如斗鸡博弈理论一样,其他国家单方面对我国进行歧视性反倾销时,我国可以利用世贸组织的游戏规则行事,避免过于被动。
同时,中国作为世贸组织的正式成员将可直接参与二十一世纪国际贸易规则的决策过程,摆脱别人制定规则,中国被动接受的不利状况,而且参与制定规则,有利于使中国的合法权益得到反映;同时,可把国际贸易争端交到世贸组织的仲裁机关处理,免受不公正处罚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
譬如, 2000年我国几家生产彩电的大厂 商合谋将彩电价格维持高位,他们搞了一 个“彩电厂家价格自律联盟”,并在深圳 举行了由多家彩电厂商首脑参加的“彩电 厂商自律联盟高峰会议”。当时,国家有 关部门还未出台相关的反垄断法律,对于 这种在发达国家明显属于违法行为的所谓 “自律联盟”,国家在法律上暂时还是无 能为力的。寡头厂商在光天化日之下进行 价格合谋,并且还通过媒体大肆炒作,这 在发达国家是不可思议的。
他的故事被好莱坞拍成了电影《美丽心灵》,该影片获 得了2002年奥斯卡金像奖的四项大奖
三、
1. 囚犯困境(Prisoners’ dilemma 囚犯困境是图克(Tucker)1950年提出的 该博弈是博弈论最经典、著名的博弈 该博弈本身讲的是一个法律刑侦或犯罪学方 面的问题,但可以扩展到许多经济问题,以 及各种社会问题,可以揭示市场经济的根本 缺陷
第七章 博弈论 (Game Theory)
基本概念 二人有限非零和博弈
§1 基本概念
一、博弈论的定义
又称对策论,是研究决策主体的行为发生直 接相互作用时的决策以及这种决策的均衡问 题的学科。 是研究具有竞争、对抗、冲突性质的现象的 数学理论和方法。
二、博弈理论的历史
•
• •
我国春秋战国时期的“孙子兵法” ;
围棋,发明于我国殷代; 博弈作为一种数学理论开始于1944年。
由美国数学家冯· 诺依曼(Von. Neumann)和经济学家 摩根斯坦(Morgenstern))发表了题为“博弈论与经济行 为”的著作 • 1950年,纳什完成博士论文“非合作博弈”,
• 九十年代以来博弈理论在金融、管理和经济领域 中得到广泛应用
坦白
抵赖 0,-10 -1,-1
继续讨论“囚犯困境”问题: 坦白
抵赖
-8,-8 -10,0
启示:个人理性和集体理性的矛盾 当一个社会中的每个个体都为自身的 利益打算时,即使大家都遵守社会规则, 个体的行为不一定能实现个体的最佳利益。
结论:政府在社会经济活动中的组织协调 工作是必需的,放任自流不是导致全社会 最大福利的最佳政策。
三、
1. 囚犯困境(Prisoners’ dilemma
两名囚犯I和II因涉嫌抢劫被捕。警方 因证据不足先 将二人分关二室,并宣布: 若二人均不坦白,则只能因藏有枪支而被判刑1年; 若有一人坦白而另一个不坦白,则坦白者无罪释放, 不坦白者 被判刑10年; 若二人都坦白了,则同判8年。 此二人确系抢劫犯,请分析他们的抉择。
• 博弈论和诺贝尔经济奖
1994:非合作博弈:纳什(Nash)、泽尔腾(Selten) 、 海萨尼(Harsanyi) 1996:不对称信息激励理论:莫里斯(Mirrlees)和 维克瑞(Vickrey) 2001:不完全信息市场博弈:阿克罗夫(Akerlof) (商品市场)、斯潘塞(Spence)(教育市场)、斯 蒂格里兹(Stiglitze)(保险市场) 2002:实验经济学:史密斯(Smith),心理经济学: 卡尼曼(Kahneman) 2005:诺贝尔经济学奖授给了罗伯特· 奥曼与托马 斯· 谢林,以表彰他们通过博弈理论的分析增强世人对 合作与冲突的理解。
囚犯困境问题在经济、政治、军事等领域的应用举例
例:寡头垄断企业定价的博弈
卡特尔价格不是纳什均衡, 最终结果:每个企业按照纳什均衡的价格进行定价, 其利润小于卡特尔价格条件下的利润。
例:公共产品的供给博弈
如果大家都出钱兴办公用事业,所有人的福 利都会增加。问题是,如果我出钱你不出钱, 我得不偿失;而如果你出钱我不出钱,我就可 以占便宜。
Ⅱ
坦白
抵赖
坦白 Ⅰ 抵赖
-8,-8 -10,0
0,-10 -1,-1
均衡解: 二人均坦白
相关概念介绍
博弈分析的基本假设 (1)个人理性 假设当事人在决策时能够充分考虑他所面临 的局势,并能做出合乎理性的选择。
(2)最大化自己的收益
假设当事人在决策时通常选择使自己收益最 大化的策略。
坦白
抵赖
-8,-8 0,-10 博弈问题的基本要素 坦白 抵赖 -10,0 -1,-1 (1)局中人(Players) 参与对抗的各方;不一定指自然人 (2)策略集(Strategies) 局中人选择对付其它局中人的行动方案称为策略; 某局中人的所有可能策略全体称为策略集;
博弈双方的策略集一般记为:
S s1 , s2 ,, sm D d1 , d 2 ,, d n
例:囚犯困境中,每个囚犯均有2个策略:
{坦白,抵赖}
坦白
抵赖 0,-18 -10,0
当每个局中人从各自策略集合中选择一策略而组 成的策略组成为一个局势,用 ( si , d j )来表示。 (4)赢得(支付) 局中人采用某局势时的收益值。 例:当局中人甲选择策略si ,局中人乙选策略 (si , d j ) 表示。 dj 时,局中人甲的赢得值可用 R甲
但是,尽管政府当时无力制止这种事情,公众也不 必担心彩电价格会上涨。这是因为,“彩电厂商自 律联盟”只不过是一种“囚徒困境”,彩电价格不 会上涨。在高峰会议之后不到二周,国内彩电价格 不是上涨而是一路下跌。这是因为厂商们都有这样 一种心态:无论其他厂商是否降价,我自己降价是 有利于自己的市场份额扩大的。 问题:明确该博弈问题的各要素:局中人、策略集、 赢得矩阵
纳什简介 1994年诺贝尔经济学奖获得者, 纳什在普林斯顿读博士时刚刚20岁出 头,他的一篇关于非合作博弈的博士 论文和其他两篇相关文章确立了他博 弈论大师的地位。到上世纪50年代末, 他已是闻名世界的大牌科学家了。
然而,正当他的事业如日中天的时候,天妒英才,他 得了严重的精神分裂症。多亏前妻艾莉西亚的爱心呵 护和普林斯顿大学诸多朋友和同事无私的帮助才没有 使他流落街头,并最终把他推上诺贝尔经济学奖宝座 (1994年获奖)。
最终结果:每个人都“不出钱”。这种纳什 均衡使得所有的人的福利都没法得到提高。
例:军备竞赛
冷战期间,美苏两国的军备竞赛,使得两国 的社会福利都变得更糟。
案例分析: 生活中的“囚徒困境”例 子
—— 商家价格战 出售同类产品的商家之间本来可以通 过共同将价格维持在高位而获利,但实 际上却是相互杀价,结果都赚不到钱。 当一些商家共谋将价格抬高,消费者 实际上不用着急,因为商家联合维持高 价的垄断行为一般不会持久,可以等待 垄断的自身崩溃,价格就会掉下来。