新初中数学几何图形初步技巧及练习题
初中数学几何图形初步技巧及练习题
初中数学⼏何图形初步技巧及练习题初中数学⼏何图形初步技巧及练习题⼀、选择题1.如图是由若⼲个⼤⼩相同的⼩正⽅体堆砌⽽成的⼏何体,那么其三种视图中⾯积最⼩的是()A.主视图B.俯视图C.左视图D.⼀样⼤【答案】C【解析】如图,该⼏何体主视图是由5个⼩正⽅形组成,左视图是由3个⼩正⽅形组成,俯视图是由5个⼩正⽅形组成,故三种视图⾯积最⼩的是左视图,故选C.2.如图,在直⾓坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的⼀个动点,且A、B、C三点不在同⼀条直线上,当△ABC的周长最⼩时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)【答案】D【解析】【详解】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最⼩,∵点A 、B 的坐标分别为(1,4)和(3,0),∴B ′点坐标为:(-3,0),则OB′=3过点A 作AE 垂直x 轴,则AE=4,OE=1则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE ,∵C ′O ∥AE ,∴∠B ′C ′O=∠B ′AE ,∴∠B ′C ′O=∠EB ′A∴B ′O=C ′O=3,∴点C ′的坐标是(0,3),此时△ABC 的周长最⼩.故选D .3.如图,在正⽅形ABCD 中,E 是AB 上⼀点,2,3BE AE BE ==,P 是AC 上⼀动点,则PB PE +的最⼩值是()A .8B .9C .10D .11【答案】C【解析】【分析】连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最⼩,进⽽利⽤勾股定理求出即可.【详解】解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最⼩∵四边形ABCD 是正⽅形B D ∴、关于AC 对称PB PE PD PE DE ∴+=+=2,3BE AE BE ==Q6,8AE AB ∴== 226810DE ∴=+=;故PB PE +的最⼩值是10,故选:C .【点睛】本题考查了轴对称——最短路线问题,正⽅形的性质,解此题通常是利⽤两点之间,线段最短的性质得出.4.如图所⽰是⼀个正⽅体展开图,图中六个正⽅形内分别标有“新”、“时”、“代”、“去”、“奋”、“⽃”、六个字,将其围成⼀个正⽅体后,则与“奋”相对的字是( )A .⽃B .新C .时D .代【答案】C【解析】分析:正⽅体的表⾯展开图,相对的⾯之间⼀定相隔⼀个正⽅形,根据这⼀特点作答.详解:正⽅体的表⾯展开图,相对的⾯之间⼀定相隔⼀个正⽅形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“⽃”.故选C .点睛:本题主要考查了正⽅体的平⾯展开图,解题的关键是掌握⽴⽅体的11种展开图的特征.5.如右图,在ABC ?中,90ACB ∠=?,CD AD ⊥,垂⾜为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ?边AB 上的⾼;④线段CD 是BCD ?边BD 上的⾼.上述说法中,正确的个数为()A .1个B .2个C .3个D .4个【答案】D【分析】根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三⾓形的⾼的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A与点B的距离是线段AB的长,∴①正确;②、点A到直线CD的距离是线段AD的长,∴②正确;③、根据三⾓形的⾼的定义,△ABC边AB上的⾼是线段CD,∴③正确;④、根据三⾓形的⾼的定义,△DBC边BD上的⾼是线段CD,∴④正确.综上所述,正确的是①②③④共4个.故选:D.【点睛】本题主要考查对两点间的距离,点到直线的距离,三⾓形的⾼等知识点的理解和掌握,能熟练地运⽤概念进⾏判断是解此题的关键.6.如图,B是线段AD的中点,C是线段BD上⼀点,则下列结论中错误..的是()A.BC=AB-CD B.BC=12(AD-CD) C.BC=12AD-CD D.BC=AC-BD【答案】B【解析】试题解析:∵B是线段AD的中点,∴AB=BD=12 AD,A、BC=BD-CD=AB-CD,故本选项正确;B、BC=BD-CD=12AD-CD,故本选项错误;C、BC=BD-CD=12AD-CD,故本选项正确;D、BC=AC-AB=AC-BD,故本选项正确.7.如图,是⼀个正⽅体的表⾯展开图,将其折成正⽅体后,则“扫”的对⾯是()A.⿊B.除C.恶D.☆【答案】B【解析】【分析】正⽅体的空间图形,从相对⾯⼊⼿,分析及解答问题.【详解】解:将其折成正⽅体后,则“扫”的对⾯是除.故选B.【点睛】本题考查了正⽅体的相对⾯的问题.能够根据正⽅体及其表⾯展开图的特点,找到相对的⾯是解题的关键.8.如图,三⾓形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式⼦中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠1【答案】C【解析】【分析】根据⾓平分线得,∠1=∠AFE,由外⾓的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从⽽推得∠G=12(∠3﹣∠2).【详解】解:∵AD平分∠BAC,EG⊥AD,∴∠1=∠AFE,∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE,∴∠3=∠G+∠2+∠G,∠G=12(∠3﹣∠2).故选:C.【点睛】本题考查了三⾓形中⾓度的问题,掌握⾓平分线的性质、三⾓形外⾓的性质是解题的关键.9.下列⽴体图形中,侧⾯展开图是扇形的是()A.B.C.D.【答案】B【解析】根据圆锥的特征可知,侧⾯展开图是扇形的是圆锥.故选B.10.下列图形不是正⽅体展开图的是()A.B.C.D.【答案】D【解析】【分析】根据正⽅体展开的11种形式对各选项分析判断即可【详解】A、B、C是正⽅体展开图,错误;D折叠后,有2个正⽅形重合,不是展开图形,正确故选:D【点睛】本题是空间想象⼒的考查,解题关键是在脑海中折叠图形,看是否满⾜条件11.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了⾓的有关计算的应⽤,主要考查学⽣根据图形进⾏计算的能⼒,分类讨论思想和数形结合思想的运⽤. 12.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【分析】延长BF与CD相交于M,根据两直线平⾏,同位⾓相等可得∠M=∠CDE,再根据两直线平⾏,内错⾓相等可得∠M=∠ABF,从⽽求出∠CDE=∠ABF,再根据⾓平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平⾏线的性质和⾓平分线的定义,作辅助线,是利⽤平⾏线的性质的关键,也是本题的难点.13.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂⾜为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等⾓和三⾓形内⾓和定理可得∠EBC=52°,再根据⾓平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,2∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三⾓形的⾓度问题,掌握等边对等⾓、三⾓形内⾓和定理、⾓平分线的性质、垂直的性质是解题的关键.14.如图,ABC ?为等边三⾓形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系⼤致是()A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是⼀条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的⼆次函数,并且有最⼩值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是⼀条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的⼆次函数,并且有最⼩值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利⽤三⾓形⾯积公式得到y 与x 的函数关系,然后根据⼆次函数和⼀次函数图象与性质解决问题.15.下列图形中,是圆锥的侧⾯展开图的为()A .B .C .D .【答案】B【解析】【分析】根据圆锥的侧⾯展开图的特点作答.【详解】圆锥的侧⾯展开图是光滑的曲⾯,没有棱,只是扇形.故选B.【点睛】考查了⼏何体的展开图,圆锥的侧⾯展开图是扇形.16.下列图形中,不是正⽅体平⾯展开图的是()A.B.C.D.【答案】D【解析】【分析】由平⾯图形的折叠及正⽅体的展开图解题.【详解】解:由四棱柱四个侧⾯和上下两个底⾯的特征可知,A,B,C选项可以拼成⼀个正⽅体;⽽D选项,上底⾯不可能有两个,故不是正⽅体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正⽅体展开图的各种情形,难度适中.17.⼀个⾓的补⾓⽐这个⾓的余⾓3倍还多10°,则这个⾓的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余⾓的两个⾓的和等于90°,互为补⾓的两个⾓的和等于180°,列出⽅程,然后解⽅程即可.【详解】设这个⾓为α,则它的余⾓为90°-α,补⾓为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C .【点睛】本题考查了互为余⾓与补⾓的性质,表⽰出这个⾓的余⾓与补⾓然后列出⽅程是解题的关键.18.如图,直线//a b ,将⼀块含45?⾓的直⾓三⾓尺(90?∠=C )按所⽰摆放.若180?∠=,则2∠的⼤⼩是()A .80?B .75?C .55?D .35?【答案】C【解析】【分析】先根据//a b 得到31∠=∠,再通过对顶⾓的性质得到34,25∠=∠∠=∠,最后利⽤三⾓形的内⾓和即可求出答案.【详解】解:给图中各⾓标上序号,如图所⽰:∵//a b∴3180?∠=∠=(两直线平⾏,同位⾓相等),⼜∵34,25∠=∠∠=∠(对顶⾓相等),∴251804180804555A ∠=∠=?-∠-∠=?-?-?=?.故C 为答案.【点睛】本题主要考查了直线平⾏的性质(两直线平⾏,同位⾓相等)、对顶⾓的性质(对顶⾓相等),熟练掌握直线平⾏的性质是解题的关键.19.如图,把⼀块含有45°⾓的直⾓三⾓板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,20.如果圆柱的母线长为5cm,底⾯半径为2cm,那么这个圆柱的侧⾯积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧⾯积=底⾯周长×⾼.【详解】根据圆柱的侧⾯积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧⾯积公式.。
新初中数学几何图形初步经典测试题及答案
新初中数学几何图形初步经典测试题及答案一、选择题1.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )A .4B .3C .3.5D .2【答案】B【解析】【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴AEB EBC ∠=∠∵BE 是ABC ∠的平分线∴ABE EBC ∠=∠∴AEB ABE ∠=∠∴4AB AE ==∴743DE AD AE =-=-=故答案为:B .【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.5.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是.故选C .【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.6.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小∵四边形ABCD 是正方形B D ∴、关于AC 对称PB PD =∴PB PE PD PE DE ∴+=+=2,3BE AE BE ==Q6,8AE AB ∴==226810DE ∴=+=;故PB PE +的最小值是10,故选:C .【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.7.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )A.斗B.新C.时D.代【答案】C【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“斗”.故选C.点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是()A.BC=AB-CD B.BC=12(AD-CD) C.BC=12AD-CD D.BC=AC-BD【答案】B【解析】试题解析:∵B是线段AD的中点,∴AB=BD=12 AD,A、BC=BD-CD=AB-CD,故本选项正确;B、BC=BD-CD=12AD-CD,故本选项错误;C、BC=BD-CD=12AD-CD,故本选项正确;D、BC=AC-AB=AC-BD,故本选项正确.故选B.9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()A.38°B.104°C.142°D.144°【解析】∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°−∠AOM=180°−38°=142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.10.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A.2B31C3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离3,3【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=3,故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.13.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.14.下列图形中,不是三棱柱的表面展开图的是( )A .B .C .D .【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A 、B 、C 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D 不能围成三棱柱.故选D .15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C、∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.下列图形中,不是正方体平面展开图的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.17.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.18.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切【答案】A【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.20.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.。
初中数学几何图形初步技巧及练习题附答案
初中数学几何图形初步技巧及练习题附答案一.选择题1. 一把直尺和一块三角板ABC(含30。
,60。
角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点4且ZCED= 50% 那么ZBAF=()【答案】A【解析】【分析】先根据ZCED = 50。
,DE//AF,即可得到ZCAF= 50°,最后根据ZBAC=60°,即可得出Z 弘F的大小.【详解】•:DE//AF, ZCED=50\:.ZCAF=ZCED=5Q°,VZe/AC=60°,:.ZBAF= 60° - 50° = 10%故选:4【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.2・如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()面【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特 点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D 选项平面图一个长方形和两个圆折叠后,能 围成的几何体是圆柱.A 选项平面图折叠后是一个圆锥:B 选项平面图折叠后是一个正方 体;C 选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特 征,是解决此类问题的关键.E 是 AB±一点,BE = 2,AE = 3EE, 是 4C 上一动点,则PB+PE 的最小值是() A. 8B. 9 C ・ 10 D ・ 11【答案】C【解析】【分析】 连接DE,交AC 于P,连接BP,则此时PB+PE 的值最小,进而利用勾股定理求岀即可.•••四边形ABCD 是正方形3.如图,在正方形ABCD 中,交4C 于P,连接BP,则此时PB+PE 的值最小【详解】:.B、D关于AC对称:・PB = PD.•.PB+PE = PD+PE = DE•••BE = 2,AE = 3BE/. AE = 6, AB = 8.•.DE =佃+F =10:故PB+PE的最小值是10,故选:C.【点睛】本题考查了轴对称一一最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.4.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.【详解】解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确:AB、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;BC、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;CD、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.【点睛】本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.【答案】C【解析】【分析】根据直角三角板可得第一个图形Zp=45°,进而可得Za=45°:根据余角和补角的性质可得第二个图形、第四个图形中Za=Zp,第三个图形Za和ZB互补.【详解】根据角的和差关系可得第一个图形Za=Zp=45%根据等角的补角相等可得第二个图形Za=Zp,第三个图形Za+Zp=180%不相等,根据同角的余角相等可得第四个图形Za=Zp,因此Za=Zp的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.6. 如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A. 10cm2B. lOncm2C. 20cm2D. 20ncm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长X高.【详解】根据圆柱的侧面积计算公式可得nx2x2x5=20ncm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.7. 把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是()【答案】C【解析】【分析】通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.【详解】结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有c, D,再根据三角形的位置,即可排除D选项.故选C.【点睛】考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.& 在直角三角形ABC中,ZC=90°, AD平分ZBAC交BC于点D, BE平分ZABC交AC于点E, AD、BE相交于点F,过点D作DG〃AB,过点B作BG丄DG交DG于点G.下列结论:①ZAFB = 135°;②ZBDG = 2ZCBE;③BC 平分ZABG;④ZBEC=ZFBG.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确:根据等角的余角相等,即可判定④正确.【详解】VAD平分ZBAC交BC于点D, BE平分ZABC交AC于点E,1 1AZBAF=-ZBAC, ZABF= - ZABC,2 2又VZC=90\••• ZABC+ZBAC=90%AZBAF+ZABF = 45°,A ZAFB=135°,故①正确;•••DG〃AB,AZBDG=ZABC=2ZCBE.故②正确;•・• ZABC的度数不确定,•••BC平分ZABG不一定成立,故③错误;TBE 平分ZABC,:.ZABF=ZCBE,又VZC=ZABG=90°,AZBEC+ZCBE=90°, ZABF+ZFBG=90°,AZBEC=ZFBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.9.已知点C在线段上,则下列条件中,不能确定点C是线段中点的是()A. AC=BC B・AB=2AC C・AC^BC=AB D・BC = -AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然&、B、D都可以确定点C是线段朋中点【详解】解:久AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB±任意一点;D、BC=-AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10・如图是由若干个人小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小A.主视图B.俯视图C.左视图D. 一样人【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C・主视图左视图倆视图□・如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则(x+y)的值为()【答案】c【解析】【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出X、y的值,从而得到x+y的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1"与面“X”相对,面"-3"与面"y”相 对.因为相对面上的两个数互为相反数,[l+x = O所以彳c c[-3 + y = 0fx = -1解得:V = 3则 x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题・12.如图,直线AC//BD. A0. 30分别是ABAC. ZABD 的平分线,那么下列结论错误的C. ZBA0 与 ZAB 0 互余【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得ZBAC+ZABD=180°,选项B 正确;因AO 、B0分别是ZBAC. ZABD 的平分线,根据角平分线的定义可得ZBA0=ZCA0, ZAB0=ZDB0,选项 A 正确,选项 D 不正确;由 ZBAC+ZABD=180% ZBA0=ZCA0, ZAB0=ZDB0即可得ZBAO+ZABO=90°,选项A 正确,故选D ・ 13.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm 的点C 处有 一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的&处,则蚂蚁到达蜂 蜜的最短距离( )cm ・蚂蚁月A. 14B. 15C. 16D. 17【答案】B【解析】【分析】 在侧面展开图中,过C 作CQ 丄EF 于Q,作A 关于EH 的对称点连接"C 交EH 于P, 连接AP,则AP+PC就是B. ZBAC 与Z&3D 互补D. ZAB0 与 ZDB0 不等蚂蚁到达蜂蜜的最短距离,求出AQ, CQ,根据勾股定理求出A,C 即可.【详解】解:沿过人的圆柱的高剪开,得出矩形EFGH,过C作CQ丄FF于Q,作4关于的对称点4,连接AC交EH于P,连接AP,贝ljAP+PC就是蚂蚁到达蜂蜜的最短距离,•:AE=A'E, A,P=AP,:.AP+PC=A,P+PC=A,C,VCQ= — xl8cm = 9cm, A'Q = 12cm - 4cm+4cm = 12cm,2在Rt3VQC中,由勾股定理得:AC= =15cm,【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.14.如果厶Z和Z0互余,下列表Z0的补角的式子中:①180。
初中数学专题《几何图形初步》章末重难点题型原卷
专题12 几何图形初步章末重难点题型(13个题型)一、经典基础题题型1 直线、射线、线段、角的基本概念题型2 角的表示、换算及比较大小题型3 直线、射线、线段的实际生活中的应用题型4 线段、角度中的计数问题题型5 作图问题题型6 与线段有关的计算题型7 实际背景下线段的计算问题题型8 钟面上的角度问题题型9 方位角问题题型10 一副直角三角形板中的角度问题题型11 与角平分线(角的和差)有关的计算题型12 余角、补角、对顶角的相关计算题型13 七巧板相关问题二、优选提升题题型1 直线、射线、线段、角的基本概念解题技巧:熟练掌握直线、射线、线段基本性质和概念。
例1.(2022·广东汕头七年级期末)下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有( )A.一个B.两个C.三个D.四个变式1.(2022·山东潍坊·七年级期末)如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C .到点B 的距离为3的点有两个D .经过A ,B 两点的直线有且只有一条变式2.(2022·河北七年级期末)下列说法正确的是()A .连接两点的线段,叫做两点间的距离 B .射线OA 与射线AO 表示的是同一条射线C .经过两点有一条直线,并且只有一条直线D .从一点引出的两条直线所形成的图形叫做角题型2 角的表示、换算及比较大小例1.(2022·山东菏泽·七年级期末)角度换算:2648'︒=___°.变式1.(2022·江西吉安·七年级期末)如下图,下列说法正确的是( )A .1∠与AOB ∠表示同一个角 B .1β∠=∠C .图中共有两个角:1∠,β∠D .β∠表示AOC ∠变式2.(2022·湖南永州·七年级期末)若3218A '∠=︒,321530B '''∠=︒,32.25C ∠=︒,则( ).A .A B C >>∠∠∠ B .B A C ∠>∠>∠ C .A C B ∠>∠>∠ D .C A B∠>∠>∠题型3 直线、射线、线段的实际生活中的应用解题技巧:主要考查“两点确定一条直线”和“两点之间,线段最短”,弄明白两者的区别即可例1.(2022·陕西·西安铁一中分校七年级期末)下列现象能用“两点确定一条直线”来解释的是( )①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.A .①③B .①②C .②④D .③④变式1.(2022·河南漯河·七年级期末)下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;(3)植树时,只要确定两颗树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有( )A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(4)题型4 线段、角度中的计数问题例1.(2022·山西·右玉县七年级期末)阅读并填空:问题:在一条直线上有A ,B ,C ,D 四个点,那么这条直线上总共有多少条线段?要解决这个问题,我们可以这样考虑,以A 为端点的线段有AB ,AC ,AD 3条,同样以B 为端点,以C 为端点,以D 为端点的线段也各有3条,这样共有4个3,即4×3=12(条),但AB 和BA 是同一条线段,即每一条线段重复一次,所以一共有______条线段.那么,若在一条直线上有5个点,则这条直线上共有______条线段;若在一条直线上有n 个点,则这条直线上共有______条线段.知识迁移:若在一个锐角AOB ∠内部画2条射线OC ,OD ,则这个图形中总共有______个角;若在AOB ∠内部画n 条射线,则总共有______个角.学以致用:一段铁路上共有5个火车站,若一列火车往返过程中,必须停靠每个车站,则铁路局需为这段线路准备______种不同的车票.变式1.(2022·山东青岛·七年级期末)平面内两两相交的7条直线,其交点个数最少是m 个,最多是n 个,则m +n 的值为( )A .18B .20C .22D .24变式2.(2022·广西贺州·七年级期末)如图,从AOB ∠的顶点引出两条射线OC ,OD ,图中的角共有( )A .3个B .4个C .6个D .7个题型5作图问题解题技巧:(1)尺规作图:做已知线段的和差倍数问题;(2)常规作图:与线段射线直线有关的基本作图。
初中数学 第4章 几何图形初步 教案及试题
第四章几何图形初步基础知识通关4.1几何图形1.几何图形:长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.2.立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在内,它们是立体图形.3.平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在内,它们是平面图形.4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成 .这样的平面图形称为相应立体图形的展开图.5.点、线、面、体:(1)体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥几何体.几何体也简称体;(2)面:包围着体的是面;(3)线:面和面相交的地方形成线;(4)点:线和线相交的地方是点.4.2直线、射线、线段6.两点确定一条直线:经过两点有一条直线,并且只有一条直线.简单说成:................7.交点:当两条不同的直线有一个公共点时,我们就称这两条直线,这个叫做它们的交点.8.尺规作图:在数学中,我们常限定用和作图,这就是尺规作图.9.中点:点 M 把线段 AB 分成的两条线段AM 与MB,点 M 叫做线段 AB 的中点.10.两点的所有连线中,最短.简单说成:两点之间,线段最短.11.距离:连接两点间的,叫做这两点的距离.4.3角12.角:角也是一种基本的几何图形.13.度、分、秒:(1)把一个周角 360 等分,每一份就是 1 度的角,记作;(2)把一度的角 60 等分,每一份叫做 1 分的角,记作;(3)把1 分的角60 等分,每一份叫做1 秒的角,记作 ..14.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个的角的射线,叫做这个角的平分线.15.余角:一般地,如果两个角的和等于(直角),就说这两个角互为余角.16.补角:类似地,如果两个角的和等于(平角),就说这两个角互为补角.17.余角的性质:同角(等角)的余角 ....18.补角的性质:同角(等角)的补角 ....19.角的运算:如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差.4.4课题学习-设计制作长方体形状的包装纸盒单元检测一.选择题(共 10 小题)1.某正方体的每个面上都有一个汉字,如图所示的是它的展开图,那么在原正方体中,与“神“字所在面相对的面上的汉字是()A.认B.眼C.确D.过2.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.3.下列说法错误的个数为()①57.18°=57°10′48″②三条直线两两相交,有三个交点③x=0 是一元一次方程④若线段 PA=PB,则点 P 是线段 AB 的中点⑤连接两点间的线段,叫做两点间的距离.A.1 个B.2 个C.3 个D.4 个4.在平面内有A、B、C、D 四点,过其中任意两点画直线,则最多可以画()A.4 条B.6 条C.8 条D.无数条5.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′6.已知互为补角的两个角的差为 35°,则较大的角是()A.107.5°B.108.5°C.97.5°D.72.5°7.如图,在A、B 两处观测到 C 处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东 35°,北偏西 50°8.如图,∠AOB=130°,射线 OC 是∠AOB 内部任意一条射线,OD、OE 分别是∠AOC、∠BOC 的角平分线,下列叙述正确的是()A.∠DOE 的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD9.将长方形纸片按如图所示的方式折叠,BC、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为()A.55°B.50°C.45°D.60°10.在图所示的4×4 的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共 10 小题)11.下面的几何体中,属于柱体的有个.12.已知角A 的余角比它的补角的还少10°,则∠A=.13.已知:∠A 的余角是 52°38',则∠A 的补角是.14.计算:48°59′+67°31′﹣21°12′=.15.如图所示,在一条笔直公路 l 的两侧,分别有 A、B 两个小区,为了方便居民出行,现要在公路 l 上建一个公共自行车存放点,使存放点到A、B 小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.16.已知,在直线 AB 上有一点 C,BC=3cm,AB=8cm,M 为线段 AB 的中点,N 为线段 BC 的中点,则 MN=.17.如图,∠AOB=140°,如果点 A 在点O 的北偏东 20°,那么点 B 在点O 的南偏西°.第 17 题图第 18 题图18.如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=.19.正方体切去一个块,可得到如图几何体,这个几何体有条棱.20.已知 A、B、C 三点都在直线 l 上,AC 与BC 的长度之比为 2:3,D 是AB 的中点.若 AC=4cm,则 CD 的长为cm.三.解答题(共 5 小题)21.如图,B、C 两点把线段 MN 分成三部分,其比为 MB:BC:CN=2:3:4,点 P 是MN 的中点,PC =2cm,求 MN 的长.22.如图,已知OD 平分∠AOB,OE 在∠BOC 内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC 的度数;(2)若知∠DOE=70°,求∠EOC 的度数.23.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线 AB;(2)画射线 AC;(3)连接 BC 并延长 BC 到E,使得 CE=AB+BC;(4)在线段 BD 上取点 P,使 PA+PC 的值最小.24.已知线段AB=m(m 为常数),点C 为直线AB 上一点,点P、Q 分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C 恰好在线段AB 中点时,则PQ=(用含m 的代数式表示);(2)若点 C 为直线 AB 上任一点,则 PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ﹣2PQ 与1 的大小关系,并说明理由.25.如图 1,将一副直角三角尺的顶点叠一起放在点 A 处,∠BAC=60°,∠DAE=45°,保持三角尺ABC 不动,三角尺 AED 绕点A 顺时针旋转,旋转角度小于 180°.(1)如图 2,AD 是∠EAC 的角平分线,直接写出∠DAB 的度数;(2)在旋转的过程中,当∠EAB 和∠DAC 互余时,求∠BAD 的值.四、附加题26.如果两个锐角的和等于 90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于 90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1 和∠2 互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,O 为直线 AB 上一点,OC 丄 AB 于点 O,OE⊥OD 于点 O,请写出图中所有互为垂角的角有;(2)如果有一个角的垂角等于这个角的补角的,求这个角的度数.27.P 是线段 AB 上一点,AB=12cm,C,D 两点分别从 P,B 同时向 A 点运动,且 C 点的运动速度为2cm/s,D 点的运动速度为 3cm/s,运动的时间为 ts.(1)如图若 AP=8cm,①运动 1s 后,求 CD 的长;②当 D 在线段 PB 上运动时,试说明线段 AC 和线段 CD 的数量关系;(2)如果t=2 时,CD=1.5cm,试探索 AP 的值.2.同一平面3.同一平面4.平面图形6.两点确定一条直线7.相交,公共点8.无刻度的直尺,圆规9.相等10.线段11.线段的长度13.1°,1′,1″14.相等15.90°16.180°17.相等18.相等一.选择题(共 10 小题)基础知识通关答案单元检测答案1.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“确”是相对面.故选:C.【知识点】2,42.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图是矩形,故 A 错误;B、三棱柱的侧面展开图是矩形,故 B 错误;C、圆锥的侧面展开图是扇形,故 C 正确;D、三棱锥的侧面展开图是三角形,故 D 错误.故选:C.【知识点】2,43.【分析】依据度分秒的换算,相交线,一元一次方程的定义,线段的中点的定义、两点间的距离的概念进行判断即可.【解答】解:①57.18°=57°10′48″,正确;②三条直线两两相交,有一个或三个交点,错误;③x=0 是一元一次方程,正确;④若线段 PA=PB,则点 P 不一定是线段 AB 的中点,错误;⑤连接两点间的线段的长度,叫做两点间的距离,错误.故选:C.【知识点】7,9,11,134.【分析】没有明确平面上四点是否在同一直线上,需要运用分类讨论思想.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:1、四点在同一直线上时,只可画 1 条;2、当三点在同一直线上,另一点不在这条直线上,可画 4 条;3、当没有三点共线时,可画 6 条.所以最多可以画 6 条.故选:B.【知识点】6,75.【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【知识点】136.【分析】设较大的角为 x,根据互为补角的两个角的和等于 180°表示出较小的角,然后列出方程求解即可.【解答】解:设较大的角为 x,则较小的角为 180°﹣x根据题意得,x﹣(180°﹣x)=35°解得 x=107.5°故选:A.【知识点】167.【分析】根据方向角的定义即可判断.【解答】解:A 处观测到的 C 处的方向角是:北偏东 65°B 处观测到的C 处的方向角是:北偏西 50°.故选:B.【知识点】12,138.【分析】依据 OD、OE 分别是∠AOC、∠BOC 的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE 分别是∠AOC、∠BOC 的平分线∴∠AOD=∠COD,∠EOC=∠BOE又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°故选:C.【知识点】149.【分析】将一张长方形纸片按如图所示的方式折叠,BC,BD 为折痕,则∠CBD 的度数为 90°,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸片沿 BC、BD 折叠∴∠ABC=∠A′BC,∠EBD=∠E′BD而∠ABC+∠A′BC+∠EBD+∠E′BD=180°∴∠A′BC+∠E′BD=180°×=90°即∠ABC+∠DBE=90°∵∠ABC=35°∴∠DBE=55°【知识点】1610.【分析】根据题意和图得出:∠DGC=∠DCG=45°,∠HGF=∠GHF=45°,再根据∠DGC+∠HGF+γ=180°,从而得出γ=90°,然后结合图观察出α>90°,β<90°,最后比较大小即可.【解答】解:由题意知:∠DGC=∠DCG=45°同理∠HGF=∠GHF∠=45°又∵∠DGC+∠HGF+γ=180°∴γ=90°由图可知α>90°,β<90°∴β<γ<α故选:B.【知识点】16二.填空题(共 10 小题)1.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有第一个图形正方体、第三个图形圆柱、第五个图形六棱柱,第六个图形三棱柱共 4 个.故答案为:4.【知识点】212.【分析】根据题意和余角、补角的概念列出方程,解方程即可.【解答】解:设∠A=a由题意得90°﹣a=(180°﹣a)﹣10°,解得a=60°.故答案为:60°.【知识点】15,1613.【分析】根据一个角的补角比它的余角多 90°求解即可.【解答】解:∠A 的余角为:90°﹣∠A,∠α的补角为:180°﹣∠A∴∠A 的补角比∠A 的余角大 90°∴∠A 的补角为:52°38′+90°=142°38′故答案为:142°38′【知识点】15,1614.【分析】根据度分秒加减法计算法则进行解答.【解答】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【知识点】1315.【分析】根据两点之间线段最短可得公共自行车存放点的位置是 E 处.【解答】解:公共自行车存放点应该建在 B 处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.【知识点】1016.【分析】根据中点的定义,可分别求出 AM、BN 的长度,点C 存在两种情况,一种在线段 AB 上,一种在线段 AB 外,分类讨论,即可得出结论.【解答】解:依题意可知,C 点存在两种情况,一种在线段 AB 上,一种在线段 AB 外.①C 点在线段 AB 上,如图 1:∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点,∴AM==4cm,BN==1.5cm, MN=AB﹣AM﹣BN=4﹣1.5=2.5cm;②C 点在线段 AB 外,如图 2::∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点∴AM==4cm,BN==1.5cmMN=AB﹣AM+BN=8﹣4+1.5=5.5cm综上得 MN 得长为 2.5cm 或 5.5cm故答案为:2.5cm 或5.5cm【知识点】917.【分析】结合图形,然后求出 OB 与西方的夹角的度数,即可得解.【解答】解:如图,根据题意得,∠AOC=20°,∠COD=90°∴∠BOD=∠AOB﹣∠AOC﹣∠COD=30°∴点 B 在点O 的南偏西 60°故答案为:60【知识点】15,1918.【分析】根据图中角与角之间的关系即可求出答案.【解答】解:∵∠AOD=135°,∠DOB=105°∴∠AOB=∠AOD﹣∠DOB=135°﹣105°=30°∵∠AOC=75°∴∠BOC=∠AOC﹣∠AOB=75°﹣30°=45°故答案为:45°.【知识点】1919.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有 12 条棱.故答案为:12.【知识点】2,520.【分析】抓住 A、B、C 三点都在直线 l 上,没有给顺序也没有给图,基本确定题目多解;确定两条线段:AC=4,BC=6,画出图,根据题中的中点条件和和差关系即可解决问题【解答】解:∵AC 与BC 的长度之比为 2:3,AC=4 ∴BC=6如图,C 在AB 之间时,AB=AC+BC=10D 是AB 的中点,AD=DB=5CD=AD﹣AC=5﹣4=1如图,C 在AB 外面时,AB=BC﹣AC=2D 是AB 的中点,AD=DB=1CD=AD+AC=1+4=5故答案:1 或 5【知识点】9三.解答题(共 5 小题)21.【分析】根据比例设 MB=2x,BC=3x,CN=4x,然后表示出 MN,再根据线段中点的定义表示出PN,再根据 PC=PN﹣CN 列方程求出 x,从而得解.【解答】解:∵MB:BC:CN=2:3:4∴设 MB=2xcm,BC=3xcm,CN=4xcm∴MN=MB+BC+CN=2x+3x+4x=9xcm∵点 P 是MN 的中点∴PN=MN=xcm∴PC=PN﹣CN即x﹣4x=2解得 x=4所以,MN=9×4=36cm.【知识点】9,112.【分析】(1)可以设∠BOE 为x,根据条件列方程解决,求出∠BOE;(2)设∠BOE=a,则∠ECO=3a,根据条件列方程解决,求出∠BOE.【解答】解:∵∠AOC=170°,∠AOB=70°∴∠BOC=100°设∠BOE=x,则∠ECO=3x∴∠BOC=∠BOE+∠EOC=x+3x=100°∴x=25°∴∠EOC=25°(2)设∠BOE=a,则∠ECO=3a∵∠DOE=70°,OD 平分∠AOB∴∠AOD=∠BOD=∠DOE-∠BOE=70°﹣a∴∠AOC=2∠AOD+∠BOE+∠EOC=2(70°﹣a)+a+3a=170°∴a=15°∴∠EOC=3a=45°【知识点】14,1923.【分析】根据直线、射线、线段的概念、两点之间,线段最短画图即可.【解答】解:如图所画:【知识点】8,1024.【分析】(1)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得 2AP+CQ﹣2PQ=0,即可得出 2AP+CQ﹣2PQ 与1 的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵点 C 恰好在线段 AB 中点∴AC=BC=AB∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×AB+ × AB= AB= m;故答案为:m;(2)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×(AC+BC)=AB= m;故PQ 是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0∴2AP+CQ﹣2PQ<1.【知识点】9,1125.【分析】(1)依据 AD 是∠EAC 的角平分线,即可得出∠DAE=∠CAD=45°,再根据∠BAC=60°,即可得到∠DAB 的度数;(2)分两种情况讨论,设∠BAD=α,依据∠EAB 和∠DAC 互余,列方程求解即可.【解答】解:(1)如图2,∵AD 是∠EAC 的角平分线∴∠DAE=∠CAD=45°∵∠BAC=60°∴∠DAB=60°﹣45°=15°;(2)分两种情况讨论:①如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=45°﹣α,∠CAD=60°﹣α∴45°﹣α+60°﹣α=90°解得α=7.5°;②如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=α﹣45°,∠CAD=α﹣60°∴α﹣45°+α﹣60°=90°解得α=97.5°;综上所述,当∠EAB 和∠DAC 互余时,∠BAD 的值为 7.5°或 97.5°.【知识点】14,15,19四、附加题26.【分析】(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的”作为相等关系列方程求解.【解答】解:(1)互为垂角的角有 4 对:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE;(2)设这个角的度数为x 度,则①当 0<x<90 时,它的垂角是(90+x)度,依题意有90+x=(180﹣x),解得x=30;②当 90<x<180 时,它的垂角是(x﹣90)度,依题意有x﹣90=(180﹣x),解得x=130.故这个角为 30 度或130 度.故答案为:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE.【知识点】15,18,1927.【分析】(1)①先求出 PB、CP 与DB 的长度,然后利用 CD=CP+PB﹣DB 即可求出答案.②用t表示出 AC、DP、CD 的长度即可证明 AC=2CD;(2)当 t=2 时,求出 CP、DB 的长度,由于没有说明 D 点在 C 点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm)∵AP=8 cm,AB=12 cm∴PB=AB﹣AP=4 cm∴CD=CP+PB﹣DB=2+4﹣3=3(cm)②∴AP=8 cm,AB=12 cm∴BP=4 cm,AC=(8﹣2t)cm∴DP=(4﹣3t)cm∴CD=CP+DP=2t+4﹣3t=(4﹣t)cm.∴线段 AC 是线段 CD 的二倍.(2)当t=2 时,CP=2×2=4(cm),DB=3×2=6(cm)当点 D 在点C 的右边时,如图所示:∵CD=1.5 cm∴CB=CD+DB=7.5 cm∴AC=AB﹣CB=4.5 cm∴AP=AC+CP=8.5 cm.当点 D 在点 C 的左边时,如图所示:∴AD=AB﹣DB=6 cm∴AP=AD+CD+CP=11.5 cm综上所述:AP=8.5cm 或 AP=11.5cm【知识点】11。
新初中数学几何图形初步技巧及练习题附答案解析(2)
新初中数学几何图形初步技巧及练习题附答案解析(2)一、选择题1.下列图形中,不是三棱柱的表面展开图的是( )A .B .C .D .【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A 、B 、C 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D 不能围成三棱柱.故选D .2.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .【答案】B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B 不能围成.考点:棱柱的侧面展开图.3.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .(2108123cm -C .(254243cm -D .(254123cm -【答案】A【解析】设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解. 【详解】 解:设正六棱柱的底面边长为acm ,高为hcm , 如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )−(h +2a +3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23,∴该六棱柱的侧面积是6ah =6×2×(9−23)=210824(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【分析】根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】 连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.【详解】解:如图,连接DE ,交AC 于P ,连接BP ,则此时PB PE +的值最小∵四边形ABCD 是正方形B D ∴、关于AC 对称PB PD =∴PB PE PD PE DE ∴+=+=2,3BE AE BE ==Q6,8AE AB ∴==226810DE ∴=+=;故PB PE +的最小值是10,故选:C .【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.6.下列图形中,是正方体表面展开图的是( )A .B .C .D .【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C .【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.7.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.8.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是( ).A .B .C .D .【答案】B【解析】 试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C 、D ,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B 符合题意. 故选B .点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.9.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是( )A .B .C .D .【答案】D【解析】【分析】 根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体. 故选:D .【点睛】本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.10.如图,在Rt ABC V 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )A .15B .30C .45D .60【答案】B【解析】【分析】作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.【详解】作DE AB ⊥于E由尺规作图可知,AD 是△ABC 的角平分线∵90C ∠=︒,DE AB ⊥∴4DE DC ==∴△ABD 的面积1302AB DE =⨯⨯= 故答案为:B .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.11.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°【答案】A【解析】 【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP ∥BC ,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF ﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A .【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.13.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;=,则点B是线段AC的中点;③若AB BC④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;=,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.15.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,17.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A102B26C.5 D.6【答案】B【解析】过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.18.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.19.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 【答案】D【解析】 分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D .点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.。
新初中数学几何图形初步技巧及练习题附答案解析
新初中数学几何图形初步技巧及练习题附答案解析一、选择题1.如图,在Rt ABC V 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )A .15B .30C .45D .60 【答案】B【解析】【分析】作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.【详解】作DE AB ⊥于E由尺规作图可知,AD 是△ABC 的角平分线∵90C ∠=︒,DE AB ⊥∴4DE DC ==∴△ABD 的面积1302AB DE =⨯⨯= 故答案为:B .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.2.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是.故选C .【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.3.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】连接BP 、BE ,∵AB=AC ,BD=BC ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PB PE BE +≥,∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,∵AD 也是中线,∴点P 是△ABC 的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.4.下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.5.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠1【答案】C【解析】【分析】根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G ,从而推得∠G =12⨯(∠3﹣∠2).【详解】解:∵AD 平分∠BAC ,EG ⊥AD ,∴∠1=∠AFE ,∵∠3=∠G+∠CFG ,∠1=∠2+∠G ,∠CFG =∠AFE ,∴∠3=∠G+∠2+∠G ,∠G =12⨯(∠3﹣∠2).故选:C .【点睛】本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.6.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )A .中B .考C .顺D .利【答案】C【解析】 试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C .考点:正方体展开图.7.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.8.如图,在ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O e 经过点D .若5BD =,3DC =,则AC 的长为( )A .6B .43C .532-D .8【答案】A【解析】【分析】 过点D 作DE AB ⊥于E ,可证ADE ADC △△≌,所以AE AC =,3DE DC ==.又5BD =,利用勾股定理可求得4BE =.设AC AE x ==.因为90C ∠=︒,再利用勾股定理列式求解即可.【详解】解:过点D 作DE AB ⊥于E ,∵90C ∠=︒,AD 是BAC ∠的平分线,∴ADE ADC △△≌,∴AE AC =,3DE DC ==.∵5BD =,∴4BE =,设AC AE x ==.因为90C ∠=︒,∴由勾股定理可得222BC AC AB +=,即2228(4)x x +=+,解得6x =,即6AC =.故选:A .【点睛】本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.9.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.10.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A.主视图B.俯视图C.左视图D.一样大【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.11.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.12.下列图形中,不是三棱柱的表面展开图的是()A .B .C .D .【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A 、B 、C 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D 不能围成三棱柱.故选D .13.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.14.如图,点C 是射线OA 上一点,过C 作CD ⊥OB ,垂足为D ,作CE ⊥OA ,垂足为C ,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.15.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.16.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD4,则CD的长为()A.4 B.3 C.2 D.1【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】 ∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.17.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C、∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.18.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;③若AB BC,则点B是线段AC的中点;④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键. 19.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.20.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().A.B.C.D.【答案】B【解析】试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学几何图形初步技巧及练习题一、选择题1.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()A.35°B.45°C.55°D.65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°故选:A.【点睛】本题考查余角、补角的计算.3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)【答案】D【解析】【详解】 解:作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点C′,此时△ABC 的周长最小,∵点A 、B 的坐标分别为(1,4)和(3,0),∴B ′点坐标为:(-3,0),则OB′=3过点A 作AE 垂直x 轴,则AE=4,OE=1则B′E=4,即B′E=AE ,∴∠EB ′A=∠B ′AE ,∵C ′O ∥AE ,∴∠B ′C ′O=∠B ′AE ,∴∠B ′C ′O=∠EB ′A∴B ′O=C ′O=3,∴点C′的坐标是(0,3),此时△ABC 的周长最小.故选D .5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【答案】C【解析】【分析】连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】+的值最小解:如图,连接DE,交AC于P,连接BP,则此时PB PE∵四边形ABCD是正方形B D∴、关于AC对称∴PB PD=∴+=+=PB PE PD PE DEQ==BE AE BE2,3∴==6,8AE AB22∴=+=;DE6810+的最小值是10,故PB PE故选:C.【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.6.如图所示是一个正方体展开图,图中六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”、六个字,将其围成一个正方体后,则与“奋”相对的字是( )A.斗B.新C.时D.代【答案】C【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“斗”.故选C.点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.7.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确; ②、点A 到直线CD 的距离是线段AD 的长,∴②正确;③、根据三角形的高的定义,△ABC 边AB 上的高是线段CD ,∴③正确;④、根据三角形的高的定义,△DBC 边BD 上的高是线段CD ,∴④正确.综上所述,正确的是①②③④共4个.故选:D .【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.8.如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误..的是( )A .BC=AB-CDB .BC=12(AD-CD)C .BC=12AD-CD D .BC=AC-BD 【答案】B【解析】试题解析:∵B 是线段AD 的中点,∴AB=BD=12AD , A 、BC=BD-CD=AB-CD ,故本选项正确;B、BC=BD-CD=12AD-CD,故本选项错误;C、BC=BD-CD=12AD-CD,故本选项正确;D、BC=AC-AB=AC-BD,故本选项正确.故选B.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D .【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.11.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个数互为相反数,则()x y +的值为( )A .-2B .-3C .2D .1【答案】C【解析】【分析】 利用正方体及其表面展开图的特点,根据相对面上的两个数互为相反数,列出方程求出x 、y 的值,从而得到x+y 的值.【详解】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“-3”与面“y”相对.因为相对面上的两个数互为相反数,所以1+030x y =⎧⎨-+=⎩解得:-13x y =⎧⎨=⎩ 则x+y=2故选:C【点睛】本题考查了正方体的平面展开图,注意从相对面入手,分析及解答问题.12.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )A.15°B.25°C.30°D.45°【答案】A【解析】【分析】根据∠2=∠BOD+EOC-∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,∠EOC=90°-∠1=90°-45°=45°,∵∠2=∠BOD+∠EOC-∠BOE,∴∠2=60°+45°-90°=15°.故选:A.【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE这一关系是解题的关键.13.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF 与CD 相交于M ,∵BF ∥DE ,∴∠M =∠CDE ,∵AB ∥CD ,∴∠M =∠ABF ,∴∠CDE =∠ABF ,∵BF 平分∠ABE ,∴∠ABE =2∠ABF ,∴∠ABE =2∠CDE .故选:A .【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.14.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友【答案】A【解析】【分析】 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB , ∴CD=12DB , ∴CD=13CB , S △ACD =12CD•AC ,S △ACB =12CB•AC , ∴S △ACD :S △ACB =1:3,∴S △DAC :S △ABD ≠1:3,错误,【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.17.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A102B26C.5 D.6【答案】B【解析】过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''+=+故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.18.下列说法中正确的有( )(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)一个锐角的余角比这个锐角的补角小90°(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据余角和补角的定义依次判断即可求解.【详解】(1)由互余的两个角的和为90°可知(1)错误;(2)由同角的补角相等可知(2)错误;(3)设这个角为x ,则其余角为(90°﹣x ),补角为(18 0°﹣x ),则(180°﹣x )﹣(90°﹣x)=90°,由此可知(3)正确;(4)由73°42+16°18′=90°可知(4)正确.综上,正确的结论为(3)(4),共2个.故选B.【点睛】本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.19.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.20.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.。