2015年高考押题考试_数学(理)共50道题

合集下载

2015年高考数学真题分类汇编:专题(10)立体几何(理科)及答案

2015年高考数学真题分类汇编:专题(10)立体几何(理科)及答案

专题十 立体几何1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015年高考数学(理)押题试卷及答案(word版可打印)

2015年高考数学(理)押题试卷及答案(word版可打印)

2015年高考理科数学押题试卷及答案(word 版可打印)第I 卷(共60分)一、选择题:本大题共12小题。

每小题5分,共60分.在每小题给出的四个选项中。

只有一项是 符合题目要求的.1.已知集合(){}{}2lg 4,3,0=x A x y x B y y x A B ==-==⋂>时, A.{}02x x << B.{}2x x 1<< C.{}12x x ≤≤ D.∅2.若复数12a ii--是纯虚数,则实数a 的值为A.2-B.12-C.2D.25-3.如图给出的是计算11112462014+++⋅⋅⋅的值的程序框图,其中判断框内应填入的是A.2014i ≤B.2014i >C.1007i ≤D.1007i >4.已知随机变量X 服从正态分布()()3,1,150.6826N P X ≤≤=且则()5=P X >A.0.1588B.0.1587C.0.1586D.0.15855.已知命题:ap x≥“a=1是x >0,x+ 2 的充分必要条件”;命题2000:q ∃∈“x R,x +x -2>0”.下列命题正确的是 A.命题“p q ∧”是真命题 B.命题“()p q ⌝∧”是真命题 C.命题“()p q ∧⌝”是真命题 D.命题“()()p q ⌝∧⌝”是真命题6.已知{}n a 是首项为1的等比数列,{}361n n n S a n S a ⎧⎫=⎨⎬⎩⎭是的前项和,且9S ,则数列的前5项和为 A.1558或 B.31516或 C.3116D.1587.或实数x y ,满足不等式组330,230,210,x y x y z x y x y +-≥⎧⎪--≤=+⎨⎪-+≥⎩则的最大值为A.307B.14C.9D. 138.设函数()cos xf x x x=+的图象为9.某运动会某项目参赛领导小组要从甲、乙、丙、丁、戊五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲、乙只能从事前三项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A.18种 B.36种 C.48种 D.72种10.已知,A ,B ,C ,D ,E 是函数()sin 2y x πωϕωϕ⎛⎫=+ ⎪⎝⎭>0,0<<一个周期内图象上的五个点,如图所示,,06A π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为,,12πωϕ则的值为A.2,6πωϕ== B.2,3πωϕ== C. 1,23πωϕ== D. 1,212πωϕ==11.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为12.定义域内R 的偶函数()()()(),21f x x R f x f x f ∀∈+=-满足对有,且当[]()22,321218x f x x x ∈=-+-时,,若函数()()()log 10,a y f x x =-++∞在上至少有三个零点,则a 的取值范围是A.⎛ ⎝⎭B. ⎛ ⎝⎭C. ⎛ ⎝⎭D. ⎛ ⎝⎭第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。

浙江省2015届高考压轴数学(理)试题word 版 含答案

浙江省2015届高考压轴数学(理)试题word 版  含答案

2015浙江省高考压轴卷理科数学一、选择题:本大题共10小题,每小题5分,共50分,在给出的四个选项中,只有一项是符合题目要求的。

1.合集{0,1,2,3},{2}U U C M ==,则集合M=( )A .{0,1,3}B .{1,3}C .{0,3}D .{2}2.已知复数z 满足(2)(1)i i i z +-=⋅(i 为虚数单位),则z=( )A .-1+3iB .-1-3iC .1+3iD .1-3i3.已知向量=(3cos α,2)与向量=(3,4sin α)平行,则锐角α等于( ) A .B .C .D .4.三条不重合的直线a ,b ,c 及三个不重合的平面α,β,γ,下列命题正确的是( )A . 若a ∥α,a ∥β,则α∥βB . 若α∩β=a ,α⊥γ,β⊥γ,则a ⊥γC . 若a ⊂α,b ⊂α,c ⊂β,c ⊥α,c ⊥b ,则α⊥βD . 若α∩β=a ,c ⊂γ,c ∥α,c ∥β,则a ∥γ5.执行如右图所示的程序框图,则输出S 的值是 ( ) A .10 B .17 C .26 D .286.已知函数()⎪⎭⎫ ⎝⎛-=32tan πx x f ,则下列说法错误的是 ( )A . 函数f(x)的周期为2πB . 函数f(x)的值域为RC . 点(6π,0)是函数f(x)的图象一个对称中心D .23()()55f f ππ< 7.已知5250125(),a x a a x a x a x -=++++若2012580,a a a a a =++++则= ( )A .32B .1C .-243D .1或-2438.已知a 、b 都是非零实数,则等式||||||a b a b +=+的成立的充要条件是 ( )A .a b ≥B .a b ≤C .1ab≥ D .1a b≤ 开始 S =1,i =1结束i =i +2i >7输出S 是否S =S +i9.已知函数()log (1)a f x x a =>的图象经过区域6020360x y x y x y +-≤⎧⎪--≤⎨⎪--≥⎩,则a 的取值范围是( )A .(31,3⎤⎦B .(33,2⎤⎦C .)33,⎡+∞⎣D .[)2,+∞10.作一个平面M ,使得四面体四个顶点到该平面的距离之比为1:1:1:2,则这样的平面M 共能作出( ▲ )个.A .4 B. 8 C. 16 D.32二、填空题:本大题共7小题,每小题4分,共28分11.已知双曲线:221916x y -=,则它的焦距为__ _;渐近线方程为__ _ 焦点到渐近线的距离为__ _.12.在ABC ∆中,若1,3,AB AC AB AC BC ==+=,则其形状为__ _,BA BC BC=__(①锐角三角形 ②钝角三角形 ③直角三角形,在横线上填上序号); 13.已知,x y 满足方程210x y --=,当3x >时,则353712x y x y m x y +-+-=+--的最小值为 __ _.14. 一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.15.若,,A B C 都是正数,且3A B C ++=,则411A B C +++的最小值为 16.已知0a >且1a ≠,则使方程222log ()log ()a a x ak x a -=-有解时的k 的取值范围为 .17.已知等差数列{}n a 首项为a ,公差为b ,等比数列{}n b 首项为b ,公比为a ,其中,a b 都是大于1的正整数,且1123,a b b a <<,对于任意的*n N ∈,总存在*m N ∈,使得3m n a b +=成立,则n a = ..22221122 1221正视图侧视图俯视图二、填空题:本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤). 18.已知函数f (x )=1﹣2sin (x+)[sin (x+)﹣cos (x+)](Ⅰ)求函数f (x )的最小正周期; (Ⅱ)当x ∈[﹣,],求函数f (x+)的值域.19.(本小题满分14分)已知{}n a 是公差不为零的等差数列,{}n b 等比数列,满足222112233,,.b a b a b a ===(I )求数列{}n b 公比q 的值;(II )若2121a a a =-<且,求数列{}n a 公差的值;20.一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号。

2015年高考理科数学押题密卷(全国新课标II卷)

2015年高考理科数学押题密卷(全国新课标II卷)

2015年高考理科数学押题密卷(全国新课标II卷)D(A ){x |2≤x ≤3} (B ){x |2≤x<3}(C ){x |2<x ≤3} (D ){x |-1<x <3}(2)1-i (1+i)2+1+i(1-i)2= (A )-1 (B )1 (C )-i (D )i (3)若向量a 、b 满足|a |=|b |=2,a 与b 的夹角为60 ,a ·(a +b )等于(A )4 (B )6 (C )2+ 3 (D )4+2 3(4)等比数列}{na 的前321,2,4,a a a S n n且项和为成等差数列,若a 1=1,则S 4为 (A )7 (B )8 (C )16(D )15(5)空间几何体的三视图如图所示,则该几何体的表面积为正视图侧视图俯视图122(A )8+2 5 (B )6+2 5 (C )8+2 3 (D )6+2 3(6)(x 2- 1 x)6的展开式中的常数项为(A )15 (B )-15 (C )20(D )-20(7)执行右边的程序框图,则输出的S 是(A )5040 (B )4850 (C )2450 (D )2550 (8)已知函数f (x )=⎩⎨⎧x 2+4x +3,x ≤0,3-x ,x >0,则方程f (x )+1=0的实根个数为(A )3 (B )2 (C )1 (D )0(9)若双曲线x 2a 2-y2b2=1(a >0,b >0)一个焦点到一条渐近线的距离等于焦距的 14,则开始 否结束i ≥100? 输出S 是 i =0,S =0 S =S +ii =i +2双曲线的离心率为(A )52 (B )233 (C ) 5(D )32(10)偶函数f (x )的定义域为R ,若f (x +2)为奇函数,且f (1)=1,则f (89)+f (90) 为(A )-2 (B )-1 (C )0(D )1(11)某方便面厂为了促销,制作了3种不同的精美卡片,每袋方便面随机装入一张卡片, 集齐3种卡片可获奖,现购买该方便面5袋,能获奖的概率为(A )3181 (B )3381 (C )4881 (D )5081(12)给出下列命题: ○110.230.51log 32()3<<; ○2函数4()log 2sin f x x x=-有5个零点;○3函数4()612-+-=ln x x f x x 的图像以5(5,)12为对称中心; ○4已知a 、b 、m 、n 、x 、y 均为正数,且a ≠b ,若a 、m 、b 、x 成等差数列,a 、n 、b 、y 成等比数列,则有m > n ,x <y .其中正确命题的个数是(A )1个 (B )2个 (C )3个(D )4个第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)由直线x =1,y =1-x 及曲线y =e x围成的封闭图形的面积为_________. (14)数列{a n }的通项公式a n =n sinn π2+1,前n 项和为S n ,则S 2 015=__________.(15)已知x 、y 满足⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z=ax+y取最大值的点(x,y)有无数个,则a的值等于___________.(16)已知圆O: x2+y2=8,点A(2,0) ,动点M在圆上,则∠OMA的最大值为__________.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分))+2cos2x.已知f(x)=sin(2x-56(Ⅰ)写出f(x)的对称中心的坐标和单增区间;(Ⅱ)△ABC三个内角A、B、C所对的边为a、b、c,若f(A)=0,b+c=2.求a的最小值.(18)(本小题满分12分)某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级800名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有100人. (Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关系? (Ⅱ)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中数学、物理两科成绩至少有一科优秀的次数为X ,求X的分布列和期望E (X ).附:K 2=错误! P (K 2≥k 0) 0.010 0.005 0.001 k 06.6357.879 10.828(19)(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥EACBC 1B 1A 1侧面BB 1C 1C ,BC =2 ,AB =BB 1=2,∠BCC 1= π4,点E 在棱BB 1上. (Ⅰ)求证:C 1B ⊥平面ABC ;(Ⅱ)若BE =λBB 1,试确定λ的值,使得二面角A -C 1E -C 的余弦值为55.(20)(本小题满分12分)设抛物线y 2=4m x (m >0)的准线与x 轴交于F 1,焦点为F 2;以F 1 、F 2为焦点,离心率e = 12的椭圆与抛物线的一个交点为226(3E ;自F 1引直线交抛物线于P 、Q 两个不同的点,点P 关于x轴的对称点记为M ,设11F P F Q λ=.(Ⅰ)求抛物线的方程和椭圆的方程;(Ⅱ)若1[,1)2λ∈,求|PQ |的取值范围. (21)(本小题满分12分)已知f (x )=e x(x -a -1)- x22+ax .(Ⅰ)讨论f (x )的单调性;(Ⅱ)若x ≥0时,f (x )+4a ≥0,求正整数a 的值.参考值:e 2≈7.389,e 3≈20.086 请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲 如图,在△ABC 中,∠C =90º,BC =8,AB =10,O 为BC 上一点,以O 为圆心,OB 为半径作半圆与BC 边、AB 边分别交于点D 、E ,连结DE .(Ⅰ)若BD =6,求线段DE 的长;(Ⅱ)过点E 作半圆O 的切线,切线与AC 相交于点F ,证明:AF =EF .(23)(本小题满分10分)选修4-4:坐标系与参数方程C A B EDOF已知椭圆C :x24+y23=1,直线l :⎩⎨⎧x =-3+3t y =23+t(t 为参数). (Ⅰ)写出椭圆C 的参数方程及直线l 的普通方程;(Ⅱ)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -1|.(Ⅰ)解不等式f (x )+f (x +4)≥8;(Ⅱ)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ( ba).理科数学参考答案2015年高考绝密押题,仅限VIP 会员学校使用,版权所有,严禁转载或商业传播,违者必究;一、选择题:CABDA A CBBD DC 二、填空题:(13) e - 32; (14)1007;(15)-1; (16)4π.三、解答题:(17)解:(Ⅰ)化简得:f (x )=cos (2x +π3)+1 ……………………3分 对称中心为:ππ∈+()(,1)212k z k单增区间为:ππππ∈--()2[,]36k z k k ………………………6分(Ⅱ)由(Ⅰ)知:ππ=++=+=-()cos(2)10cos(2)133f A A A 70,2.333A A ππππ<<∴<+<23A ππ∴+=于是:3A π=………………………9分 根据余弦定理:2222cos 3a b c bc π=+-=24343()12b cbc +-≥-= 当且仅当1b c ==时,a 取最小值1. ………………………12分 (18)(Ⅰ)由题意可得列联表:物理优秀 物理不优秀 总计 数学优秀 60 140 160 数学不优秀 100 500 640总计 200 600 800 因为k =800(60×500-140×100)2160×640×200×600=16.667>10.828. ……………………6分 所以能在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关.(Ⅱ)每次抽取1名学生成绩,其中数学物理两科成绩至少一科是优秀的频率0.375.将频率视为概率,即每次抽取1名学生成绩,其中数学物理两科成绩至少一科是优秀的概率为 38.由题意可知X~B(3, 38),从而X的分布列为X 0 1 2 3p 12551222551213551227512E(X)== 98.………………………12分(19)解:(Ⅰ)因为BC=2,CC1=BB1=2,∠BCC1=π4,在△BCC1中,由余弦定理,可求得C1B=2,……………………2分所以C1B2+BC2=CC21,C1B⊥BC.又AB ⊥侧面BCC 1B 1,故AB ⊥BC 1, 又CB ∩AB =B ,所以C 1B ⊥平面ABC . …………………5分(Ⅱ)由(Ⅰ)知,BC BA ,BC 1两两垂直,以B 为空间坐标系的原点,建立如图所示的坐标系, 则B (0,0,0),A (0,20),C (2 ,0,0), C 1A →=(0,2,-2 ),C 1E →=C 1B →+λBB 1→=C 1B →+λCC 1→=(-2 λ,0,2 λ-2 ), 设平面AC 1E 的一个法向量为m =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧m ·C 1A →=0,m ·C 1E →=0,即⎩⎨⎧2y -2 z =0,2 λx +(2 -2 λ)z =0,令z =2 ,取m =(2 (λ-1)λ,1,2 ),………9分又平面C 1EC 的一个法向量为n =(0,1,0),EACBC 11xyz所以cos 〈m ,n 〉=m ·n |m ||n |=1___________√__________2(λ-1)2λ2+3=5 5,解得λ= 12. 所以当λ= 12时,二面角A -C 1E -C 的余弦值为55. ………………………12分(20)解:(Ⅰ)由题设,得:22424199ab+=①a 2-b 2a = 12②由①、②解得a 2=4,b 2=3, 椭圆的方程为22143x y +=易得抛物线的方程是:y 2=4x . …………………………4分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2) 、M (x 1,-y 1) ,由11F P F Q λ=得:y 1=λy 2 ○3 设直线PQ 的方程为y =k (x +1),与抛物线的方程联立,得:2440ky y k -+= ○* y 1 y 2= 4 ○4 y 1+y 2=4k○5 …………………………7分 由○3○4○5消去y 1,y 2得:224(1)k λλ=+ …………………………8分2121||1||PQ y y k=+-由方程○*得:2211616||(1)||k PQ k k-=+化简为:4241616||k PQ k -=,代入λ:4222222(1)(21)||16161(2)16PQ λλλλλλλ+++=-=-=++-∵1[,1)2λ∈,∴15(2,]2λλ+∈ …………………………11分于是:2170||4PQ <≤那么:17||(0,2PQ∈…………………………12分(21)解:(Ⅰ)f'(x)=e x(x-a)-x+a=(x-a)(e x -1),由a>0,得:x∈(-∞,0)时,f'(x)>0,f(x)单增;x∈(0,a)时,f'(x)<0,f(x)单减;x∈(a,+∞)时,f'(x)>0,f(x)单增.所以,f(x)的增区间为(-∞,0),(a,+∞);减区间为(0,a).…………5分(Ⅱ)由(Ⅰ)可知,x≥0时,f min(x)=f(a)=-e a+a2 2,所以f(x)+4a≥0,得e a-a22-4a≤0.…………7分令g(a)=e a-a22-4a,则g'(a)=e a-a-4;令h(a)=e a-a-4,则h'(a)=e a-1>0,所以h(a)在(0,+∞)上是增函数,又h(1)=e-5<0,h(2)=e2-6>0,所以∃a0∈(1,2)使得h(a0)=0,即a∈(0,a0)时,h(a)<0,g'(a)<0;a∈(a0,+∞)时,h(a)>0,g'(a)>0,所以g(a)在(0,a0)上递减,在(a0,+∞)递增.又因为g(1)=e- 12-4<0,g(2)=e2-10<0,g(3)=e3- 92-12>0,所以:a=1或2.…………12分(22)解:(Ⅰ)∵BD是直径,∴∠DEB=90º,∴BEBD=BCAB=45,∵BD=6,∴BE=245,在Rt△BDE 中,DE =BD 2-BE 2= 18 5. …………5分(Ⅱ)连结OE ,∵EF 为切线,∴∠OEF =90º,∴∠AEF +∠OEB =90º,又∵∠C =90º,∴∠A +∠B =90º,又∵OE =OB ,∴∠OEB =∠B ,∴∠AEF =∠A ,∴AE =EF . …………10分(23)解:(Ⅰ)C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),l :x -3y +9=0. ……………4分(Ⅱ)设P (2cos θ,3sin θ), C ABED O F则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92. 由|AP |=d 得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ= 3 5,cos θ=- 4 5. 故P (- 8 5, 33 5). ……………10分(24)解:(Ⅰ)f (x )+f (x +4)=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x ≤-3,4,-3≤x ≤1,2x +2,x ≥1.当x <-3时,由-2x -2≥8,解得x ≤-5;当-3≤x ≤1时,f (x )≤8不成立; 当x >1时,由2x +2≥8,解得x ≥3.…………4分所以不等式f(x)≤4的解集为{x|x≤-5,或x≥3}.…………5分(Ⅱ)f(ab)>|a|f(ba)即|ab-1|>|a-b|.…………6分因为|a|<1,|b|<1,所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,所以|ab-1|>|a-b|.故所证不等式成立.…………10分。

2015年高考数学押题试卷文理(全国卷)

2015年高考数学押题试卷文理(全国卷)

2015年高考泄露天机数学一、选择题1.(文)已知集合{1,2}A =-,A B =( )(A ){0} (B ){2} (C ){0,1,2} (D )∅ 1.B{}2A B = .(理)若集合{0}A x x =≥,且AB B = ,则集合B 可能是( )(A ){}1,2 (B ){1}x x ≤ (C ){1,0,1}- (D ) R1.A 由A B B = 知B A ⊆,故选A .2.已知复数121,1z i z i =-=+,则12z z i 等于( )(A )2i (B )2i - (C )2i + (D )2i -+2.B 212(1)(1)122z z i i i ii i i i ⋅-+-====-.3.已知命题:p R x ∃∈,2lg x x ->,命题:q R x ∀∈,1xe >,则( )(A )命题p q ∨是假命题 (B )命题p q ∧是真命题 (C )命题()p q ∧⌝是真命题 (D )命题()p q ∨⌝是假命题3.D 因为命题:p R x ∃∈,2lg x x ->是真命题,而命题:q R x ∀∈,1xe >,由复合命题的真值表可知命题()p q ∧⌝是真命题.4.已知122,,,8a a --成等差数列,1232,,,,8b b b --成等比数列,则212a a b -等于( )(A )14 (B )12 (C )12- (D )12或12-4.B 因为122,,,8a a --成等差数列,所以218(2)23a a ----==-.又1232,,,,8b b b --成等比数列,所以2228(2)16,4b b =-⨯-==(舍去),24b =-,所以21221.42a a b --==-5.已知1122log log a b<,则下列不等式一定成立的是( )(A )11()()43a b < (B )11a b > (C )ln()0a b -> (D )31a b -< 5.A 由1122log log a b<得,0a b >>,所以111()()()443a b b<<. 6.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的为 ( ) (A )若,,αγβγ⊥⊥则αβ∥ (B )若,,m n αα⊥⊥则m n ∥ (C )若,m n αα∥∥,则m n ∥ (D )若,,m m αβ∥∥则αβ∥6.B A 中,αβ可以是任意关系;B 正确;C 中,m n 平行于同一平面,其位置关系可以为任意.D 中平行于同一直线的平面可以相交或者平行. 7.(文)“0x <”是“ln(1)0x +<”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.B ∵010)1ln(<<-⇔<+x x ,∴“0<x ”是“0)1ln(<+x ”的必要不充分条件.(理)已知m R ∈,“函数21xy m =+-有零点”是“函数log m y x =在0+∞(,)上为减函数”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件7.B 函数21xy m =+-有零点时,10,1m m -<<,不满足01m <<,所以“函数log m y x =在0+∞(,)上为减函数”不成立;反之,如果“函数log m y x =在0+∞(,)上为减函数”,则有01m <<,10,m -<所以,“函数21xy m =+-有零点”成立,故选B .8.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到sin y x ω=的图象,只需把()y f x =的图象上所有点( )(A )向左平移6π个单位长度 (B )向右平移12π个单位长度 (C )向右平移6π个单位长度 (D )向左平移12π个单位长度8.C 由图可知74123T T πππ=-⇒= 则22πωπ== ,又sin(2)03πϕ⨯+=,结合2||πϕ<可知3πϕ=,即()sin 3(2)f x x π=+,为了得到sin 2y x =的图象,只需把()sin(2)si 3n 26y f x x x ππ⎡⎤⎛⎫==+=+ ⎪⎢⎥⎝⎭⎣⎦的图象上所有点向右平移6π个单位长度. 9.某工厂对一批新产品的长度(单位:m m )进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )(A )20 (B )25 (C )22.5 (D )22.759.C 产品的中位数出现在概率是0.5的地方.自左至右各小矩形面积依次为0.1,0.2,0.4,设中位数是x ,则由0.10.20.08(20)0.5x ++⋅-=得,22.5x =.10. 如图,1F 、2F 分别是双曲线22221(0,0)x y a b a b -=>>的两个焦点,以坐标原点O 为圆心,1FO 为半径的圆与该双曲线左支交于A 、B 两点,若2F AB ∆是等边三角形,则双曲线的离心率为 ( )(A(B )2 (C1 (D110.D依题21AF ,12122c F F AF ==,所以)21121a AF AF AF =-=,1ce a===.11.如图,在66⨯的方格纸中,若起点和终点均在格点的向量,,a b c 满足,(,)c xa ybx y R =+∈,则x y +=( )(A)0 (B )1 (C (D 11.D 设方格边长为单位长1.在直角坐标系内,(1,2),(2,1),(3,4)a b c ==-= ,由,(,)c xa yb x y R =+∈得,(3,4)(1,2)(2,1),(3,4)(2,2),x y x y x y =+-=+-所以2324x y x y +=⎧⎨-=⎩,解得11525x y ⎧=⎪⎪⎨⎪=⎪⎩,选D . 12.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )(A )(B ) (C ) (D )312.B 由三视图可知,该几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥的高为1,四边形BCDE是边长为1的正方形,则11111,12222AED ABC ABES S S=⨯⨯===⨯112ACDS=⨯=.13.(文) 在区间[π,π]-内随机取两个数分别记为,a b,则使得函数222()2f x x ax bπ=+-+有零点的概率为()(A)78(B)34(C)12(D)1413.B若使函数有零点,必须222(2)4()0a bπ∆=--+≥,即222a bπ+≥.在坐标轴上将,a b的取值范围标出,如图所示当,a b满足函数有零点时,坐标位于正方形内圆外的部分,因此概率为223144ππ-=.(理)2321(2)xx+-展开式中的常数项为()(A)-8 (B)-12 (C)-20 (D)2013.C ∵236211(2)()x xx x+-=-,∴6621661()(1)r r r r r rrT C x C xx--+=-=-,令620r-=,即3r=,∴常数项为336(1)20C-=-.14. 若程序框图如图示,则该程序运行后输出k的值是()(A)5(B)6(C)7(D)815.已知{}na是首项为32的等比数列,nS是其前n项和,且646536=SS,则数列|}log{|2na前10项和为()(A)58(B)56(C)50(D)4515.A 根据题意3633164S SqS-==,所以14q=,从而有72113224nn na--=?,所以2log72na n=-,所以有2log27nan=-,所以数列的前10项和等于2(51)2(113)5311357911135822+++++++++++=+=.16.若G是ABC∆的重心,a,b,c分别是角CBA,,的对边,若3aG bGA+B+=,则角=A()(A)90 (B)60 (C)45 (D)3016.D 由于G 是ABC ∆的重心,=++∴,()+-=∴,代入得)0aGA bGB GA GB ++=,整理得0a GA b GB ⎛⎛-+= ⎝⎭⎝⎭ ,cb a 33==∴bc a c b A 2cos 222-+=∴2223c ⎫⎫+-⎪⎪=23=,因此030=A .17.(文)函数()2sin 1xf x x =+的图象大致为( )17.A 函数()f x 定义域为R ,又()()()()22sin sin 11x xf x f x x x --==-=-+-+ ,∴函数()f x 为奇函数.其图像关于原点对称.故排除C 、D ,又当0πx <<时,sin 0x >,所以()0f x >可排除B ,故A 正确.(理)如图所示, 医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x 分钟, 瓶内液面与进气管的距离为h 厘米,已知当0x =时,13h =.如果瓶内的药液恰好156分钟滴完. 则函数()h f x =的图像为( )17.C 由题意得,每分钟滴下药液的体积为3cm π当134≤≤h 时,),13(42h x -⋅⋅=ππ即,1613xh -=此时1440≤≤x ;当41<≤h 时,),4(29422h x -⋅⋅+⋅⋅=πππ即,440xh -=此时156144≤<x 所以,函数在[]156,0上单调递减,且156144≤<x 时,递减的速度变快,所以应选(C )18 已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若QF PF 3=,则QF=( )(A ) 25 (B )38(C ) 3 (D ) 618.B 如下图所示,抛物线C :x y 82=的焦点为()2,0F ,准线为:2l x =-,准线与x 轴的交点为()2,0N - ,||4FN =过点Q 作准线的垂线,垂足为M ,由抛物线的定义知||||QM QF = 又因为QF PF 3=,所以,||2||2||PQ QF QM ==所以,28433QMPQQM FNPF =⇒=⨯=所以,83QF QM ==19.已知不等式组0,x y x y ⎧+-≥⎪⎪≤⎨⎪≤⎪⎩表示平面区域Ω,过区域Ω中的任意一个点P ,作圆221x y +=的两条切线且切点分别为,A B ,当APB ∠最大时, PA PB ⋅的值为( ) (A )2 (B )32 (C )52 (D )319.B 如图所示,画出平面区域Ω,当APB ∠最大时,APO ∠最大,故1sin AO APO OP OP ∠==最大,故OP 最小即可,其最小值为点O到直线0x y +-=的距离2d =,故1sin 2APO ∠=,此时0260APB APO ∠=∠=,且PA PB ===3cos 2PA PB PA PB APB ⋅=⋅∠=.120.设函数)(x f 在R 上存在导数)(x f ',R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上x x f <')(,若m m f m f 48)()4(-≥--,则实数m 的取值范围为( )(A ) ]2,2[- (B ) ),2[+∞ (C ) ),0[+∞ (D )(,2][2,)-∞-+∞20.B 设()()212g x f x x =-因为对任意()()2,x R f x f x x ∈-+= ,所以,()()()()()221122g x g x f x x f x x -+=---+-=()()20f x f x x -+-=所以,函数()()212g x f x x=-为奇函数;又因为,在),0(+∞上x x f <')(,所以,当时0x > ,()()0g x f x x ''=-<即函数()()212g x f x x=-在),0(+∞上为减函数, 因为函数()()212g x f x x=-为奇函数且在R 上存在导数, 所以函数()()212g x f x x=-在R 上为减函数,所以,()()()()()221144422g m g m f m m f m m --=----+()()()484f m f m m =----0≥所以,()()442g m g m m m m -≥⇒-≤⇒≥所以,实数m 的取值范围为),2[+∞. 二、填空题21.(文)已知直线3430x y +-=,6140x my ++=平行,则m = . 21.8 由题意得6,834m m ==.(理)已知直线3430x y +-=,6140x my ++=平行,则它们之间的距离是 .21. 2 由题意得6,834m m==,即681403470x y x y++=⇒++=,所以它们之间的距离2=22. 执行如图所示的程序框图,如果输入2-,那么输出的结果是.22.10 若输入2-,则0x>不成立,所以()22313110y--=+=+=,所以输出的值为10.23.(文)采用系统抽样方法从600人中抽取50人做问卷调查,为此将他们随机编号为001,002,,600,分组后在第一组采用简单随机抽样的方法抽得的号码为003,抽到的50人中,编号落入区间[001,300]的人做问卷A,编号落入区间[301,495]的人做问卷B,编号落入区间[496,600]的人做问卷C,则抽到的人中,做问卷C的人数为.23.8 由于1250600=,抽到的号码构成以3为首项,以12为公差的等差数列,因此得等差数列的通项公式为()91211-=-+=ndnaan,落在区间[]600,496的人做问卷C满足600912496≤-≤n,得1295012142≤≤n,由于n是正整数,因此5043≤≤n,人数为8人.(理)2014年11月,北京成功举办了亚太经合组织第二十二次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有种(用排列组合表示).23. 218218A A 先安排美俄两国领导人:中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,所以美俄两国领导人的安排有22A 种不同方法;再安排其余人员,有1818A 种不同方法;所以,共有181822A A 种不同方法.24.函数)12lg()(x a x f ++=为奇函数,则实数=a .24.-1 因为函数)12lg()(x a x f ++=为奇函数,所以()()x f x f -=-,即2221lg()lg()21111a a a x x x a x +=-+⇒+=-+-++2222211(2)11(1)2x a x a a x a x a x +⇒+=⇒-=+-⇒=--++25.已知正实数,,x y z 满足112x x yz y z ⎛⎫++= ⎪⎝⎭,则11x x y z ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为 .由题知112x x yz y z ⎛⎫++= ⎪⎝⎭即22x x yzx y z ++=于是可将给定代数式化简得211112x x yz x x x y z y z yz yz ⎛⎫⎛⎫++=+++=+≥= ⎪⎪⎝⎭⎝⎭当且仅当yz =.26. 如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从M 点测得A点的俯角30NMA ︒∠=,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒已知山高200BC m =,则山高MN = m .26.300 在ABC ∆中, 45,90,200BAC ABC BC ∠=︒∠=︒=200sin 45AC ∴==︒AMC ∆中,75,60,MAC MCA ∠=︒∠=︒45,AMC ∴∠=︒由正弦定理可得,sin sin AM AC ACM AMC =∠∠即sin 60sin 45AM =︒︒解得AM =在Rt AMN ∆中sin MN AM MAN =⋅∠sin 60=︒300()m =.27.(文)如下图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{}n a (n *∈N )的前12项,如下表所示:按如此规律下去,则201320142015a a a ++= .27. 100711a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =, ,这个数列的规律是奇数项为1,1,2,2,3,3,--- 偶数项为1,2,3, ,故201320150a a +=,20141007a =,故2013201420151007a a a ++=.(理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10, ,第n 个三角形数为2(1)11222n n n n +=+.记第n 个k 边形数为(),N n k (3k ≥),以下列出了部分k 边形数中第n 个数的表达式:三角形数()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =.1000()211,312322N n n n n =++++=+ ,()()2,413521N n n n =++++-= ,()()231,51473222N n n n n =++++-=- ()()2,6159432N n n n n =++++-=- ,从中不难发现其中的规律:(),N n k 就是表示以1为首相,()2k -为公差的等差数列前n 项的和,即有()()(),112122N n k k k =++-++⨯-+⎡⎤⎡⎤⎣⎦⎣⎦ ()()112n k ++-⋅-⎡⎤⎣⎦()()11122n n k ++-⋅-⎡⎤⎣⎦=,所以()()()101110124210,2410002N ++-⋅-⎡⎤⎣⎦==.28.已知矩形ABCD 的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为 .28.13π 设正六棱柱的的底面边长为x ,高为y ,则69x y +=,所以302x <<,正六棱柱的体积223()66)V x x y x x ==-,2'())V x x x =-,令2'())0V x x x =->,解得01x <<,令2'())0V x x x =-<得312x <<,即函数()V x 在(0,1)是增函数,在3(1,)2是减函数,所以()V x 在1x =时取得最大值,此时3y =.易知正六棱柱的外接球的球心是其上下中心连线的中点,如图所示,外接球的半径为OE ==所以外接球的表面积为2413.S R ππ==29.我们把离心率215+=e 的双曲线()0,012222>>=-b a b y a x 称为黄金双曲线.如图是双曲线()222222,0,01b a c b a b y a x +=>>=-的图象,给出以下几个说法:①双曲线115222=+-y x 是黄金双曲线; ②若ac b =2,则该双曲线是黄金双曲线;③若21,F F 为左右焦点,21,A A 为左右顶点,1B (0,b ),2B (0,﹣b )且021190=∠A B F ,则该双曲线是黄金双曲线;④若MN 经过右焦点2F 且21F F MN ⊥,090=∠MON ,则该双曲线是黄金双曲线.其中正确命题的序号为 _________ .29.①②③④对于①,215,122+==b a ,则235222+=+=b a c ,2222215235⎪⎪⎭⎫ ⎝⎛+=+==a c e ,215+=∴e ,所以双曲线是黄金双曲线;对于②,ac a c b =-=222,整理得012=--e e解得251+=e ,所以双曲线是黄金双曲线;对于③()2221222212211,,2c a A F a b A B b c B F +=+=+=,由勾股定理得()22222c a a b b c +=+++,整理得ac b =2由②可知251+=e 所以双曲线是黄金双曲线;对于④由于()0,2c F ,把c x =代入双曲线方程得12222=-b y a c ,解得a b y 2±=,a b NF 22=,由对称关系知2ONF ∆为等腰直角三角形,a b c 2=∴,即ac b =2,由①可知251+=e 所以双曲线是黄金双曲线.30.设函数()y f x =的定义域为D ,如果存在非零常数T ,对于任意x D ∈,都有()()f x T T f x +=⋅,则称函数()y f x =是“似周期函数”,非零常数T 为函数()y f x =的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”()y f x =的“似周期”为-1,那么它是周期为2的周期函数; ②函数()f x x =是“似周期函数”;③函数-()2xf x =是“似周期函数”;④如果函数()cos f x x ω=是“似周期函数”,那么“,k k ωπ=∈Z ”. 其中是真命题的序号是 .(写出所有满足条件的命题序号) 30.①③④①如果“似周期函数”()y f x =的“似周期”为-1,则)()1(x f x f -=-,则)()1()2(x f x f x f =--=-,所以它是周期为2的周期函数;②假设函数()f x x =是“似周期函数”,则存在非零常数T ,使)()(x Tf T x f =+对于R x ∈恒成立,即Tx T x =+,即0)1(=--T x T 恒成立,则1=T 且0=T ,显然不成立;③设x T x T -+-⋅=22)(,即T T =-2,易知存在非零常数T ,使T T =-2成立,所以函数-()2x f x =是“似周期函数”;④如果函数()cos f x x ω=是“似周期函数”,则x T T x T x ωωωωcos )cos()(cos =+=+,由诱导公式,得,当1=T 时,Z k k ∈=,2πω,当1-=k 时,Z k k ∈+=,)12(πω,所以“,k k ωπ=∈Z ”;故选①③④. 三、解答题31.设函数π()4cos sin()3f x x x=-+x∈R.(Ⅰ)当π[0,]2x∈时,求函数()f x的值域;(Ⅱ)已知函数()y f x=的图象与直线1y=有交点,求相邻两个交点间的最短距离.解析:(Ⅰ)解:因为1()4cos(sin)2f x x x x=-+ 3cos32cossin22+-=xxxxx2cos32sin-==π2sin(2)3x-,因为π2x≤≤,所以ππ2π2333x--≤≤,所以sin(π2)13x-≤,即()2f x≤,其中当5π12x=时,()f x取到最大值2;当0x=时,()f x取到最小值所以函数()f x的值域为[.(Ⅱ)依题意,得π2sin(2)13x-=,π1sin(2)32x-=,所以ππ22π36x k-=+或π5π22π36x k-=+,所以ππ4x k=+或7ππ12x k=+()k∈Z,所以函数()y f x=的图象与直线1y=的两个相邻交点间的最短距离为π3.32. (文)某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为10.8709201012n m 甲组乙组(1)分别求出m ,n 的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差2s 甲和2s 乙,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差2222121=[()()()]n s x x x x x x n -+-+-+ ,其中x 为数据12,,,n x x x 的平均数).解析:(1)根据题意可得:10)10121087(51=+++++=m x 甲,∴3=m ,10)1211109(51=++++=n x 乙,∴8=n ;(2)根据题意可得:2222221[(710)(810)(1010)(1210)(1310)] 5.25s =-+-+-+-+-=甲, 2222221[(810)(910)(1010)(1110)(1210)]25s =-+-+-+-+-=乙,∵乙甲x x =,22乙甲s s <,∴甲乙两组的整体水平相当,乙组更稳定一些; (3)质监部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为),(b a ,则所有的),(b a 有)8,7(,)9,7(,)10,7(,)11,7(,)12,7(,)8,8(,)9,8(,)10,8(,)11,8(,)12,8(,)8,10(,)9,10(,(10,10),(10,11),(10,12),(12,8),(12,9),(12,10),(12,11),(12,12),(138),,(13,9),(13,10),(13,11),(13,12),共计25个,而17a b +≤的基本事件有)8,7(,)9,7(,)10,7(,)8,8(,)9,8(,共计5个基本事件,故满足17a b +>的基本事件共有25520-=,即该车间“质量合格”的基本事件有20个,故该车间“质量合格”的概率为204255=.(理)在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:(Ⅰ)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;(Ⅱ)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为ξ,求ξ的分布列和数学期望.解析:(Ⅰ)学生甲的平均成绩687679868895826x +++++==甲,学生乙的平均成绩717582848694826x +++++==乙,又22222221[(6882)(7682)(7982)(8682)(8882)(9582)]776s =-+-+-+-+-+-=甲,22222221167[(7182)(7582)(8282)(8482)(8682)(9482)]63s =-+-+-+-+-+-=乙,则x x =甲乙,22s s >甲乙,说明甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.(Ⅱ)ξ的所有可能取值为0,1,2,则24262(0)5C P C ξ===,1142268(1)15C C P C ξ===,22261(2)15C P C ξ===,ξ的分布列为所以数学期望()012515153E ξ=⨯+⨯+⨯=. 33.(文) 如图,已知三棱柱111ABC A B C -的侧棱与底面垂直,且90ACB ∠= ,30BAC ∠= ,1BC =,1AA ,点P 、M 、N 分别为1BC 、1CC 、1AB 的中点.(1)求证://PN 平面ABC ; (2)求证:1A M ⊥面11AB C ;(1)证明:连接1CB ,P 是1BC 的中点 ,1CB ∴过点P ,N 为1AB 的中点,//PN AC ∴,又AC ⊂ 面ABC ,PN ⊄面ABC ,//PN ∴平面ABC ; (2)证明:连结1AC ,连接1AC ,在直角ABC ∆中,1BC = ,30BAC ∠= ,11AC AC ∴=,111111CC ACAC MC ==,111~Rt AC M Rt C CA ∴∆∆, 11AMC CAC ∴∠=∠,1111190AC C CAC AC C AMC ∴∠+∠=∠+∠=,即11AC A M ⊥,1111B C C A ⊥ ,111CC B C ⊥,且1111C A CC C = ,11B C ∴⊥平面11AAC C ,111B C A M ∴⊥,又1111AC B C C = ,故1A M ⊥平面11AB C ;(理) 如图,已知四棱锥P ABCD -的底面为菱形,120BCD ∠=,2AB PC ==,AP BP ==(Ⅰ)求证:AB PC ⊥;(Ⅱ)求二面角B PC D --的余弦值.解析:(Ⅰ)证明:取AB 的中点O ,连接,PO CO AC ,. ∵AP BP =,∴PO AB ⊥又四边形ABCD 是菱形,且120BCD ∠=︒, ∴ACB V 是等边三角形,∴CO AB ⊥ 又CO PO O =I ,∴AB PCO ⊥平面, 又PC PCO ⊂平面,∴AB PC ⊥(Ⅱ)由2AB PC ==,AP BP ==,易求得1PO =,OC =∴222OP OC PC +=,OP OC ⊥以O 为坐标原点,以OC ,OB ,OP 分别为x 轴,y 轴,z 轴建立空间直坐标系O xyz -,则(0,1,0)B,C ,(0,0,1)P,2,0)D -,∴1,0)BC =-,1)PC =- ,(0,2,0)DC =ADCBP设平面DCP 的一个法向量为1(1,,)n y z = ,则1n PC ⊥ ,1n DC ⊥ ,∴11020n PC z n DC y ⎧⋅==⎪⎨⋅==⎪⎩,∴z =0y =,∴1(1n = 设平面BCP 的一个法向量为2(1,,)n b c = ,则2n PC ⊥ ,2n BC ⊥ ,∴2200n PC c n BC b ⎧⋅==⎪⎨⋅==⎪⎩,∴c =b =2(1n =∴121212cos ,7||||n n n n n n ⋅<>===⋅,∵二面角B PC D --为钝角,∴二面角B PC D --的余弦值为7-. 34.在ABC ∆中,角,,A B C 所对的边分别为c b a ,,,满足1=c , 且()()0cos sin sin cos =+-+B A B a C B . (1)求角C 的大小;(2)求22b a +的最大值,并求取得最大值时角,A B 的值.解析:(1)由()()0cos sin sin cos =+-+B A B a C B , 可得()0cos sin sin cos =--C B a C B ,即C a A cos sin =,又1=c ,所以C a A c cos sin =, 由正弦定理得C A A C cos sin sin sin =,因为π<<A 0,所以>A sin 0,从而C C cos sin =,即4π=C .(2)由余弦定理222cos 2c C ab b a =-+,得1222=-+ab b a ,又222b a ab +≤,所以()122122≤+⎪⎪⎭⎫ ⎝⎛-b a ,于是2222+≤+b a , 当π83==B A 时,22b a +取到最大值22+.35.如图,1F 、2F 为椭圆2222:1x y C a b +=的左、右焦点,D 、 E 是椭圆的两个顶点,椭圆的离心率e =,21DEF S ∆=.若00(,)M x y 在椭圆C 上,则点00(,)x y N a b 称为点M 的一个“好点”.直线l 与椭圆交于A 、B 两点, A 、B 两点的“好点”分别为P 、Q ,已知以PQ 为直径的圆经过坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)AOB ∆的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.解析:(Ⅰ)由题意得2c e a ==,故2c a =,12b a=.22111()()(112224DEF a S a c b a a ∆=-⨯=⨯==,故24a =,即2a =,所以112b a ==,c =故椭圆的标准方程为:2214x y +=.(Ⅱ)设11(,)A x y 、22(,)B x y ,则11(,)2x P y 、21(,)2xQ y .①当直线AB 的斜率不存在时,即12x x =,12y y =-,由以PQ 为直径的圆经过坐标原点可得OP OQ ⊥,即221211210224x x x y y y ⨯+=-=,解得22114x y =, 又点11(,)A x y 在椭圆上,所以2211414y y +=,解得11|||y x ==所以1121||||12AOB S x y y ∆=⨯-=.②当直线AB 的斜率存在时,设其方程为y kx m =+.由2214y kx m x y =+⎧⎪⎨+=⎪⎩,消y 得,222(41)8440k x kmx m +++-= 由根与系数的关系可得122841kmx x k -+=+,21224441m x x k -=+ 由以PQ 为直径的圆经过坐标原点可得OP OQ ⊥,即1212022x x y y ⋅+⋅=, 即121204x x y y +=.故221212121214()()()44x x k kx m kx m x x km x x m ++++=+++ 222221444844141k m kmmk m k k +--=⨯+⨯+++ 2222821041k m m k =--=+整理得2222(21)(41)80m k k m -+-=,即222410m k --=. 所以22412k m +=.而222212121222844||()4()44141km m x x x x x x k k ---=+-=-⨯++ 222216(41)(41)k m k =+-+故12|||AB x x =-=而点O 到直线AB的距离d =,所以11||22AOBS AB d ∆=⨯=1===.综合①②可知AOB ∆的面积为定值1.36.(文)在四棱锥E ABCD -中,底面ABCD 是正方形,AC 与BD 交于点,O EC ⊥底面ABCD ,F 为BE 的中点.(1)求证://DE 平面ACF ;(2)若AB ,在线段EO 上是否存在点G ,使CG ⊥平面BDE ?若存在,求出EGEO 的值;若不存在,请说明理由.解析:(1)证明:连接OF由四边形ABCD 是正方形可知,点O 为BD 的中点 又F 为BE 的中点,所以//OF DE 又OF ⊂平面ACF ,DE ⊄平面ACF所以//DE 平面ACF (2)解法一:若CG ⊥平面BDE ,则必有CG OE ⊥ 于是作CG OE ⊥于点G由EC ⊥底面ABCD ,所以BD EC ⊥,又底面ABCD 是正方形 所以BD AC ⊥,又EC AC C ⋂=,所以BD ⊥平面ACE 而CG ⊂平面ACE ,所以CG BD ⊥又OE BD O ⊥=,所以CG ⊥平面BDE又AB =,所以CO AB CE ==所以G 为EO 的中点,所以12EG EO =解法二:取EO 的中点G ,连接CG ,在四棱锥E ABCD -中AB =,CO AB CE ==,所以CG EO ⊥又由EC ⊥底面ABCD ,BD ⊂底面ABCD ,所以EC BD ⊥ 由四边形ABCD 是正方形可知,AC BD ⊥ 又AC EC C ⋂=所以BD ⊥平面ACE 而BD ⊂平面BDE所以,平面ACE ⊥平面BDE ,且平面ACE ⋂平面BDE EO =因为CG EO ⊥,CG ⊂平面ACE ,所以CG ⊥平面BDE 故在线段EO 上存在点G ,使CG ⊥平面BDE由G 为EO 的中点,得12EG EO =(理) 已知正四棱柱1111ABCD A BC D -中,12,4==AB AA .(1)求证:1BD AC ⊥;(2)求二面角11--A AC D 的余弦值;(3)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.证明:(1)因为1111ABCD A BC D -为正四棱柱,所以1AA ⊥平面ABCD ,且ABCD 为正方形.因为BD ⊂平面ABCD , 所以1,BD AA BD AC ⊥⊥.因为1AA AC A = ,所以BD ⊥平面1A AC .因为1AC ⊂平面1A AC , 所以1BD AC ⊥.(2)如图,以D 为原点建立空间直角坐标系-D xyz .则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B 11(0,2,4),(0,0,4)C D所以111(2,0,0),(0,2,4)D A D C ==-uuuu r uuu r. 设平面11A D C 的法向量111(,,)x y z =n .所以 1110,0D A D C ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu r n n .即1110,240x y z =⎧⎨-=⎩令11z =,则12y =.所以(0,2,1)=n .由(1)可知平面1AAC 的法向量为(2,2,0)DB =u u u r.所以cos ,DB <>==uu u rn . 因为二面角11--A AC D 为钝二面角,所以二面角11--A AC D的余弦值为. (3)设222(,,)P x y z 为线段1CC 上一点,且1(01)CP PC λλ=≤≤uu r uuu r.因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---uu r uuu r. 所以222222(,2,)(,2,4)x y z x y z λ-=---.即22240,2,1x y z λλ===+.所以4(0,2,)1P λλ+.设平面PBD 的法向量333(,,)x y z =m .因为4(0,2,),(2,2,0)1DP DB λλ==+uu u r uu u r ,所以 0,0DP DB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu ur m m .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. 令31y =,则3311,2x z λλ+=-=-.所以1(1,1,)2λλ+=--m .若平面11ACD ⊥平面PBD ,则0⋅=m n .即1202λλ+-=,解得13λ=. 所以当113CP PC =时,平面11ACD ⊥平面PBD .37. 设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x =,(0,)x ∈+∞. (Ⅰ)当1n =时,写出函数()1y f x =-零点个数,并说明理由;(Ⅱ)若曲线()y f x =与曲线()y g x =分别位于直线1l y =:的两侧,求n 的所有可能取值.解析:(Ⅰ)证明:结论:函数()1y f x =-不存在零点.当1n =时,ln ()x f x x =,求导得21ln ()xf x x -'=,令()0f x '=,解得x e =. 当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减,则当x e =时,函数()f x 有最大值1()f e e =.所以函数()1y f x =-的最大值为1(e)110e f -=-<,所以函数()1y f x =-不存在零点.(Ⅱ)解:由函数ln ()n x f x x =求导,得 11ln ()n n xf x x +-'=,令()0f x '=,解得1e nx=. 当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在1(0,)n e 上单调递增,在1(,)ne +∞上单调递减,则当1nx e =时,函数()f x 有最大值11()nf e ne =;由函数()x n e g x x =,(0,)x ∈+∞求导,得 1e ()()x n x n g x x +-'=, 令 ()0g x '=,解得x n =.当x 变化时,()g x '与()g x 的变化如下表所示:所以函数()g x 在(0,)n 上单调递减,在(,)n +∞上单调递增,则当x n =时,函数()g x 有最小值()()neg n n =. 因为*n ∀∈N ,函数()f x 有最大值11(e )1e nf n =<,所以曲线ln n x y x =在直线1l y =:的下方,而曲线xne y x =在直线1l y =:的上方, 所以e()1n n >,解得e n <.所以n 的取值集合为{1,2}.38.已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++= ,*n ∈N .(Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线112x y n n -=+上,若不等式1212911122n n nb b b m a a a a +++≥-++++ 对于*n ∈N 恒成立,求实数m 的最大值.解析:(Ⅰ)由1231n n a a a a n a ++++++= , 得12311(2)n n a a a a n a n -+++++-=≥ , 两式相减得121n n a a +=+,所以112(1)n n a a ++=+ (2n ≥),因为10a =,所以111a +=,2111a a =+=,2112(1)a a +=+ 所以{1}n a +是以1为首项,公比为2的等比数列(Ⅱ)由(Ⅰ)得121n n a -=-,因为点1(,)n n T T +在直线112x y n n -=+上,所以1112n n T T n n +-=+,故{}n T n 是以111T =为首项,12为公差的等差数列, 则11(1)2n T n n =+-,所以(1)2n n n T +=, 当2n ≥时,1(1)(1)22n n n n n n n b T T n -+-=-=-=,因为11b =满足该式,所以n b n =所以不等式1212911122n n n b b b m a a a a +++≥-++++ ,即为2123912222n n n m -+++≥- ,令21231222n n n R -=+++ ,则23112322222n n nR =+++ ,两式相减得231111112(1)122222222n n n nn n R -+-=++++-=- ,所以1242n n n R -+=-由92n n R m ≥-恒成立,即2542n n m--≥恒成立,又11232527(4)(4)222n n n n n n ++------=,故当3n ≤时,25{4}2n n --单调递减;当3n =时,323531428⨯--=;当4n ≥时,25{4}2n n --单调递增;当4n =时,4245614216⨯--=; 则2542n n --的最小值为6116,所以实数m 的最大值是611639.已知抛物线21:2C y px =上一点()03M y ,到其焦点F 的距离为4;椭圆()2222210y x C a b a b +=>>:的离心率2e =,且过抛物线的焦点F . (I )求抛物线1C 和椭圆2C 的标准方程;(II )过点F 的直线1l 交抛物线1C 于A 、B 两不同点,交y 轴于点N ,已知NA AF NB BF λμ== ,,求证:λμ+为定值.(III )直线2l 交椭圆2C 于P ,Q 两不同点,P ,Q 在x 轴的射影分别为P ',Q ',10OP OQ OP OQ ''⋅+⋅+= ,若点S 满足:OS OP OQ =+,证明:点S 在椭圆2C 上.解析:(Ⅰ)抛物线21:2C y px =上一点0(3,)M y 到其焦点F 的距离为4;抛物线的准线为2p x =-抛物线上点0(3,)M y 到其焦点F 的距离||MF 等于到准线的距离d所以342p d =+=,所以2p =抛物线1C 的方程为24y x = 椭圆22222:1(0)y x C a b a b +=>>的离心率2e =,且过抛物线的焦点(1,0)F所以1b =,22222112c a e a a -===,解得22a = 所以椭圆的标准方程为22121y x +=(Ⅱ)直线1l的斜率必存在,设为k ,设直线l 与椭圆2C 交于1122(,),(,)A x y B x y则直线l 的方程为(1)y k x =-, (0,)N k -联立方程组:24(1)y xy k x ⎧=⎨=-⎩所以2222(24)0k x k x k -++=216160k ∆=+>,所以212212241k x x k x x ⎧++=⎪⎨⎪=⎩ (*)由,NA AF NB BF λμ==得:1122(1),(1)x x x x λλ-=-=得:1212,11x xx x λμ==--所以121221121212121212(1)(1)211(1)(1)1()x x x x x x x x x x x x x x x x x x λμ-+-+-+=+==-----++将(*)代入上式,得12121212211()x x x x x x x x λμ+-+==--++(Ⅲ)设(,),(,)p p Q Q P x y Q x y所以(,)p Q p Q S x x y y ++,则''(,0),(,0)P Q P x Q x由''10OP OQ OP OQ ⋅+⋅+= 得21P Q P Q x x y y +=-(1) 2212P P y x +=,(2) 2212Q Q y x +=(3)(1)+(2)+(3)得:22()()12P Q P Q y y x x +++=即(,)p Q p Q S x x y y ++满足椭圆222:121y x C +=的方程命题得证40.(文)已知函数21()ln (1)(0)2f x a x x a x x =+-+>,其中a 为实数.(1)求函数()f x 的单调区间;(2)若函数()0f x ≥对定义域内的任意x 恒成立,求实数a 的取值范围. (3)证明,对于任意的正整数,m n ,不等式111ln(1)ln(2)ln()()nm m m n m m n ++>++++ 恒成立.解:(1)()(1)()(0)x a x f x x x --'=>当0a ≤时,()f x 在(0,1)上递减,在(1,)+∞上递增当01a <<时,()f x 在(0,)a ,(1,)+∞上递增,在(,1)a 上递减 当1a =时,()f x 在(0,)+∞上递增当1a >时,()f x 在(0,1),(,)a +∞上递增,(1,)a 上递减(2)由(1)知当0a ≤时11()(1)0,22f x f a a ≥=--≥∴≤-当0a >时,1(1)0,()02f a f x =--<∴≥不恒成立综上:12a ≤-(3)由(2)知12a =-时,()0f x ≥恒成立2111ln 0222x x x -+-≥ln (1)x x x ∴≤-当且仅当1x =时以“=”1x ∴>时,11ln (1),ln (1)x x x x x x <->-1111ln(1)(1)1m m m m m ∴>=-+++1111ln(2)(1)(2)12m m m m m >=-+++++……1111ln()()(1)1m n m n m n m n m n >=-+++-+-+ 11111ln(1)ln(2)ln(1)()nm m m m m n m m n ∴+++>-=+++++(理) 设函数2()ln(1)f x x m x =++. (1)若函数()f x 是定义域上的单调函数,求实数m 的取值范围;(2)若1m =-,试比较当(0,)x ∈+∞时,()f x 与3x 的大小;(3)证明:对任意的正整数n ,不等式201429(1)(3)2n n n n e e e e -⨯-⨯-+++++<成立.解析:(1)∵222()211m x x mf x x x x ++'=+=++又函数()f x 在定义域上是单调函数. ∴ ()0f x '≥或()0f x '≤在(1,)-+∞上恒成立若()0f x '≥在(1,)-+∞上恒成立,即函数()f x 是定义域上的单调地增函数,则2211222()22m x x x ≥--=-++在(1,)-+∞上恒成立,由此可得12m ≥; 若()0f x '≤在(1,)-+∞上恒成立,则()201mf x x x '=+≤+在(1,)-+∞上恒成立.即2211222()22m x x x ≤--=-++在(1,)-+∞上恒成立. ∵2112()22x -++在(1,)-+∞上没有最小值 ∴不存在实数m 使()0f x '<在(1,)-+∞上恒成立.综上所述,实数m 的取值范围是1[,)2+∞.(2)当1m =-时,函数2()ln(1)f x x x =-+. 令332()()ln(1)g x f x x x x x =-=-+-+ 则32213(1)()3211x x g x x x x x +-'=-+-=-++显然,当(0,)x ∈+∞时,()0g x '<,所以函数()g x 在(0,)+∞上单调递减又(0)0g =,所以,当(0,)x ∈+∞时,恒有()(0)0g x g <=,即3()0f x x -<恒成立. 故当(0,)x ∈+∞时,有3()f x x <(3)数学归纳法证明:1、当1=n 时,左边=10=e ,右边=2241=⨯,原不等式成立.2、设当k n =时,原不等式成立,即2)3(2)1(92410+<++++⨯-⨯-⨯-k k e e e e k k则当1+=k n 时,左边=222)1()1()11()1(924102)3(=⨯-+⨯--⨯-⨯-⨯-++<+++++k k k k k k e k k e e e e e只需证明2)4()1(2)3(2)1(+⨯+<+++⨯-k k e k k k k即证22)1(+<+⨯-k ek k 即证)2ln()1(2+<+⨯-k k k由(2)知),0(),1ln(32+∞∈+<-x x x x 即),1ln()1(2+<-x x x令1+=k x ,即有)2ln()1(2+<+⨯-k k k 所以当1+=k n 时成立由1、2知,原不等式成立 补充试题1. 平面四边形ABCD 中,1AB AD CD ===,BD =BD CD ⊥,将其沿对角线BD折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的体积为 ( )(A(B )3π (C(D )2π1.A 根据题意,如图,可知Rt A BD '∆中,1,AB AD BD ===Rt BCD ∆中,1,BD CD BC ===又因为平面A BD '⊥平面BCD ,所以球心就是BC 的中点,半径为r =,所以球的体积为:343V r π==.2.在直角梯形ABCD 中,//AB CD ,090ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )(A) (B) (C) (D)2.B 由已知条件可得图象如下,在ACD ∆中,2222cos CD AD AC AD AC DAC =+-⨯⨯∠,∴222))2cos a DAC =+-⨯∠,∴cos DAC ∠=.3. 如图是一个空间几何体的三视图,该几何体的外接球的体积记为1V ,俯视图绕底边所在直线旋转一周形成的几何体的体积记为2V ,则12:V V =( )(A)(B)(C)( D)3.D 三视图复原的几何体如图, 它是底面为等腰直角三角形,一条侧棱垂直底面的一个顶点,它的外接球,就是扩展为长方体的外接球,外接球的直径是,该几何体的外接球的体积1V=343π=,2V =21221133ππ⎛⎫⨯⨯⨯⨯= ⎪⎝⎭ ,∴ 12:V V2:3π=D.4. 设函数()f x 的定义域为D ,如果x D y D ,∀∈∃∈,使得()()f x fy =-成立,则称函数()f x 为“Ω函数” 给出下列四个函数:①y x =sin ;②2xy =;③11y x =-;④()ln f x x =, 则其中“Ω函数”共有( )(A )1个 (B )2个 (C )3个 (D )4个4.C x D y D ,∀∈∃∈,使得()()fx fy =-,等价于x D y D ,∀∈∃∈,使得()()0f x f y +=成立①因为sin y x =是奇函数,所以()()f x f x =--,即当y x =-时,()()fx fy =-成立,故sin y x =是“Ω函数”;②因为20x y =>,故()()0f x f y +=不成立,所以2x y =不是“Ω函数”;③11y x =-时,若()()0f x f y +=成立,则11011x y +=--,整理可得()2,1y x x =-≠即当()2,1y x x =-≠时,()()0f x f y +=成立,故11y x =-是“Ω函数”;④()ln f x x=时,若()()0f x f y +=成立,则ln ln 0x y +=,解得1y x =即1y x=时,()()0f x f y +=成立,故()ln f x x=是“Ω函数”5. 设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a b y a x 的两条渐近线分别交于点B A ,,若点)0,(m P 满足PBPA =,则该双曲线的离心率是________.。

2015年高考理科数学押题试卷及答案(word版可打印)

2015年高考理科数学押题试卷及答案(word版可打印)

2015年高考理科数学押题试卷及答案(word 版可打印)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.已知复数()11,i z i +=为虚数单位,则z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如果{}{}{}0101,3,5,7,2,4,6,8U x x x A B ===是不小于的整数且<,U U C A C B ⋂=A.{}9B.{}0C.{}0,9D.∅ 3.下列判断不正确的是A.1m =-是直线()2110mx m y +-+=和直线330x my ++=垂直的充要条件B.“22am bm <”是“a b <”的充分不必要条件C.“矩形的两条对角线相等”的否定为假D.命题“∅是集合{}1,2的真子集或{}31,2∈为真” 4.画在同一坐标系内的曲线sin cos y x y x ==与的交点坐标是A.2,1,2n n Z ππ⎛⎫+∈ ⎪⎝⎭B.(),1,2n n n Z ππ⎛⎫+-∈ ⎪⎝⎭C.1,4nn n Z ππ⎛⎫-+∈ ⎝ D.(),1,n n Z π∈5.在ABC ∆中,M 是BC 的中点,AM=4,点P 在AM 上且满足()3AP PM PA PB PC =⋅+,则等于A.6B.6-C.649D.649-6.一个多面体的直观图和三视图如图所示,M 是AB 的中点.一只小蜜蜂在几何体ADF —BCE 内自由飞翔,则它飞入几何体F —AMCD 内的概率为A.34B.23C.12D.137.数列1111112123123412n ⋅⋅⋅++++++++⋅⋅⋅+,,,,,的前2013项的和为A.20121007B.20122013C.20131007D.402420138.已知()[)[]211,010,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误..的是9.一支足球队每场比赛获胜(得3分)的概率为a ,与对手踢平(得1分)的概率为b 负于对手(得0分)的概率为(),,,0,1c a b c ∈.已知该足球队进行一场比赛得分的期望是1,则113ab+的最小值为 A.163B.143C.173D.10310.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C上且AK =,则AFK ∆ A.4 B.8 C.16 D.3211.函数()()220,2cos 02x x f x x x π+-≤⎧⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩<的图象与x 轴所围成的封闭图形的面积为A.32B.1C.4D.1212.定义在R 上的函数()y f x =具有下列性质:①()()0f x f x --=;②()()11f x f x +=;③()[]01y f x =在,上为增函数.对于下述命题,正确命题的个数为①()y f x =为周期函数且最小正周期为4②()y f x =的图象关于y 轴对称且对称轴只有一条③()3,4上为减函数=在[]y f xA.0B.1C.2D. 3第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分 13.若()()()()4324123452341111,a x a x a x a x a x a a a -+-+-+-+=-+=则_______.14.将一颗股子连续抛掷三次,它落地时向上的点数依次构成等比数列的概率与构成等差数列的概率之比为_______.15.已知F 是双曲线()22221x y C a a b-=:>0,b >0的左焦点,12B B 是双曲线的虚轴,M 是1OB 的中点,过F 、M 的直线交双曲线C 于A ,且2FM MA =,则双曲线C 的离心率是______. 16.给出下列命题:①在锐角sin cos ABC A B ∆中,有>;②函数sin 23y x π⎛⎫=+ ⎪⎝⎭图象关于点,06π⎛⎫⎪⎝⎭对称; ③在cos cos cos a b c ABC A B C∆==中,若,则ABC ∆必为等边三角形; ④在同一坐标系中,函数sin y x =的图象和函数2xy =的图象有三个公共点.其中正确命题的序号是______(写出所有正确命题的序号). 三、解答题:本大题共6小题,共74分.17.(本小题满分12分)已知向量()()sin ,cos ,cos ,cos a x x b x x ==-,定义()()2f x a b a x R =⋅+∈.(I )求()f x 的最大值及对应的x 值;(II )若在0,2π⎡⎤⎢⎥⎣⎦上,关于x 的方程()f x m =有两个不同的实数解,求实数m 的取值范围.18.(本小题满分12分)已知等差数列{}()n a n N +∈中,12947,232,37n n a a a a aa +=+=>. (I )求数列{}n a 的通项公式;(II )若将数列{}n a 的项重新组合,得到新数列{}n b ,具体方法如下:11223345674891015,,,b a b a a b a a a a b a a a a ==+=+++=+++⋅⋅⋅+,…依此类推,第n 项n b 由相应的{}12n n a -中项的和组成,求数列124n n b ⎧⎫-⨯⎨⎬⎩⎭的前n 项和T n .19.(本小题满分12分)如图,在梯形ABCD 中,//,1,A B C D A D D C C BA B C ===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF=1.(I )求证:BC ⊥平面ACFE ;(II )点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为()90cos θθθ≤,试求的取值范围.20.(本小题满分12分)在某次篮球训练中,规定:在甲投篮点投进一球得2分,在乙投篮点投进一球得1分;得分超过2分即停止投篮,且每人最多投3次。

2015年高考理科数学押题密卷(全国新课标Ⅰ卷)附答案

2015年高考理科数学押题密卷(全国新课标Ⅰ卷)附答案

2015年高考理科数学押题密卷(全国新课标Ⅰ卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将答案擦干净后,再涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)已知集合A={ (x,y)|x,y为实数,且x2+y2=4},集合B={(x,y) |x,y为实数,且y=x -2},则A ∩ B的元素个数为()(A)0 (B)1(C)2 (D)3(2)复数z=1-3i1+2i,则(A)|z|=2 (B)z的实部为1(C)z的虚部为-i (D)z的共轭复数为-1+i(3)已知随机变量X服从正态分布N(1,σ2),若P(X≤2)=0.72,则P(X≤0)=(A)0.22 (B)0.28(C)0.36 (D)0.64(4)执行右面的程序框图,若输出的k=2,则输入x的取值范围是(A)(21,41) (B)[21,41](C)(21,41] (D)[21,41)(5)已知等比数列{a n}的前n项和为S n,a1+a3=52,且a2+a4=54,则S na n=(A)4n-1(B)4n-1 (C)2n-1(D)2n-1(6)过双曲线x2a2-y2b2=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为(A) 2 (B)2 (C) 5 (D) 3(7)已知函数f(x)=cos(2x+π3),g(x)=sin(2x+2π3),将f(x)的图象经过下列哪种变换可以与g(x)的图象重合(A )向左平移 π 12 (B )向右平移 π12(C )向左平移 π 6 (D )向右平移 π6(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136 (B ) 3(C )533 (D )433(9)已知向量a=(1, 2),b=(2,3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )(73 , 79 ) (D )(- 79 ,- 73)(10)4名研究生到三家单位应聘,每名研究生至多被一家单位录用,则每家单位至少录用一名研究生的情况有 (A )24种 (B )36种 (C )48种 (D )60种(11)函数1)1(cos 2)(f 2---=x x x x ,其图像的对称中心是(A )(-1,1) (B )(1,-1) (C )(0,1)(D )(0,-1)(12)关于曲线C :x 12 +y 12 =1,给出下列四个命题:①曲线C 有且仅有一条对称轴; ②曲线C 的长度l 满足l >2;③曲线C 上的点到原点距离的最小值为24 ;④曲线C 与两坐标轴所围成图形的面积是 16上述命题中,真命题的个数是 (A )4 (B )3 (C )2 (D )1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)在(1+x 2)(1-2 x)5的展开式中,常数项为__________. (14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________. (15)点P 在△ABC 内部(包含边界),|AC|=3, |AB|=4,|BC|=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________.俯视图(16)△ABC 的顶点A 在y 2=4x 上,B ,C 两点在直线x -2y+5=0上,若|AB -AC |=2 5 ,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc的最大值.(18)(本小题满分12分)(Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过...15分次数X 的分布列和均值.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧面AB 1B 1A 为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60 ,AB ⊥B 1C .(Ⅰ)求证:平面AB 1B 1A ⊥BB 1C 1C ; (Ⅱ)求二面角B -AC -A 1的余弦值.BCB 1BAC 1A 1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线PQ 的斜率为定值,并求这个定值; (Ⅲ)∠PMQ 能否为直角?证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线.(Ⅰ)求a ; (Ⅱ)已知;(Ⅲ)已知:请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点.(Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC ·BC =2AD ·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -3|+|x -4|. (Ⅰ)解不等式f (x )≤2;(Ⅱ)若存在实数x 满足f (x )≤ax -1,试求实数a 的取值范围.2015年高考理科数学押题密卷(全国新课标Ⅰ卷)参考答案一、选择题:CDBCD ABCDD BA 二、填空题:(13)41;(14)100π;(15)[ 12 5,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c =sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6). (10)分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲=18(7+9+11+13+13+16+23+28)=15,x-乙=18(7+8+10+15+17+19+21+23)=15,s2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p1=38,p2=12,两人得分均超过15分的概率分别为p1p2=316,依题意,X~B(2,316),P(X=k)=C k2(316)k(1316)2-k,k=0,1,2,…7分X的分布列为…10分X的均值E(X)=2×316=38.……………………………12分(19)解:(Ⅰ)由侧面AB1B1A为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB⊂平面AB1B1A,所以平面AB1B1A⊥BB1C1C.…………………………4分(Ⅱ)建立如图所示的坐标系O -xyz .其中O 是BB 1的中点,Ox ∥AB ,OB 1为y 轴,OC 为z 轴.设AB =2,则A (2,-1,0),B (0,-1,0),C (0,0,3),A 1(2,1,0).AB →=(-2,0,0),AC →=(-2,1,3),AA 1→=(0,2,0).…6分设n 1=(x 1,y 1,z 1)为面ABC 的法向量,则n 1·AB →=0,n 1·AC →=0,即⎩⎨⎧-2x 1=0,-2x 1+y 1+3z 1=0.取z 1=-1,得n 1=(0,3,-1). …8分设n 2=(x 2,y 2,z 2)为面ACA 1的法向量,则n 2·AA 1→=0,n 2·AC →=0,即⎩⎨⎧2y 2=0,-2x 2+y 2+3z 2=0.取x 2=3,得n 2=(3,0,2). …………………10分 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-77.因此二面角B -AC -A 1的余弦值为-77. ……………………………12分(20)解:(Ⅰ)由题设,得4a 2+1b2=1, ①且a 2-b 2a =22, ②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1. …………………………………………………3分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k (x +2),同理得x 2=-4k 2-4k +21+2k 2.………………………………………………………6分因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k 28k 1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………………9分 (Ⅲ)设直线MP 的斜率为k ,则直线MQ 的斜率为-k , 假设∠PMQ 为直角,则k ·(-k )=-1,k =±1. 若k =1,则直线MQ 方程y +1=-(x +2),与椭圆C 方程联立,得x 2+4x +4=0,该方程有两个相等的实数根-2,不合题意; 同理,若k =-1也不合题意.故∠PMQ 不可能为直角.…………………………………………………………12分(21)解:(Ⅰ)f '(x ) = 当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +1=0,可知a =1. ……………………………4分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: .取,由(Ⅰ)知:当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增. ∴ g (t )> g (1)=0,也就是.∴ . ……………………………8分 (Ⅲ)由(Ⅱ)知:x 是正整数时,不等式也成立,可以令: x =1,2,3,…,n-1,将所得各不等式两边相加,得:即. ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线.因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB . ………………………… …5分(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB . 又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD . ⇒AC CD =ADCE ⇒AD ·CD =AC ·CE ⇒ 2AD ·CD =AC ·2CE ⇒ 2AD ·CD =AC ·BC . ……………………………10分 (23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ……………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ……………………………7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ……………………………10分(24)解:A(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.……………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[5 2, 92]. ……………………………5分(Ⅱ)函数y =ax -1当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). ………………………10分= 1 2。

2015年新课标高考数学(理)押题卷及答案

2015年新课标高考数学(理)押题卷及答案

2015年新课标高考模拟试卷(理科数学)---命题人:毋晓迪第I 卷一、选择题:本大题共1 2小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R ,集合A={1,2,3,4,5},B={|2x x ³},下图中阴影部分所表示的集合为阴影部分所表示的集合为 A .{0,1,2} B .{1,2} C .{1} C .{0,1} 2.复数321iz i i=-+,在复平面上对应的点位于,在复平面上对应的点位于A .第一象限.第一象限B .第二象限.第二象限C .第二象限.第二象限D .第四象限.第四象限3.若13sin cos ,(0,)2a a a p -+=Î,则tan a = ( ) A .3 B .3- C .33 D .33-4.已知命题:,p x R $Î使得12,x x+<命题2:,10q x R x x "Î++>,下列命题为真的是,下列命题为真的是A .p Ù q B .()p q ØÙC .()p q ÙØ D .()()p q ØÙØ5.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为A .43B .83C .123D .2436.已知△ABC 中,C=45°,则sin 2A=sin 2B 一2sinAsinB=( ) A .14 B .12 C .22D .34 7.如图是计算函数ln(),2,0,23,2,3x x x y x x ì-£-ï=-<£íï>î的值的程序框图,在①、②、③ 处分别应填入的是处分别应填入的是A .y=ln (一x ),y=0,y=2x B .y=0,y=2x ,y=In (一x )C .y=ln (一x ),y=2z,y=0 D .y=0,y=ln (一x ),y=2x 8.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足满足 (a-c )·(b 一c )=0,则|c|的最大值是的最大值是A .1 B .22C .2 D .29.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的表面积为(表面积为( )A .16p B .24p C .323p D .48p10.在二项式(3)n x x+的展开式中,各项系数之和为M ,各项二项式系数之和为N ,且M+N=72,则展开式中常数项的值为( ) A .18 B .12 C .9 D .6 11.已知函数()s i n c o s (0)f x x x w ww =+>,如果存在实数x 1,使得对任意的实数x ,都有11()()(2012)f x f x f x ££+成立,则w 的最小值为(的最小值为( )A .12012B .2012pC .14024D .4024p12.过双曲线22221(0,0)x ya b a b -=>>的右顶点A 作斜率为一1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的离心率为三点的横坐标成等比数列,则双曲线的离心率为A .3B .5C .10D .13第II 卷二、填空题(每道题5分,共20分)分)13.已知函数490,10,33x y x y x y z x y y +-³ìï--£=-íï£î满足则的最大值是的最大值是。

2015年上海市高考理科数学最后押题试卷带答案(全网唯一)

2015年上海市高考理科数学最后押题试卷带答案(全网唯一)

2015年全国普通高等学校招生统一考试 上海 数学模拟试卷7(理工农医类)考生注意:1. 本试卷共4页,23道试题,满分150分.考试时间120分钟.2. 本考试分设试卷和答题纸. 试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、 填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.0y +=的倾斜角的弧度数是__ _.2. 若3212n nA C =,则n 等于__ _. 3. 若角600的终边上有一点()3,a -,则a 的值为__ _.4. 已知幂函数()y f x =的图象过点1(3,)3,则12log (2)f 的值为__ _.5. 某区有200名学生参加数学竞赛,随机抽取10名学生成绩如下:则总体标准差的点估计值是 (精确到0.01).6. 在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__ _.7. 已知向量a r=(1,3),b r=(3,m ).若向量b r在a r方向上的投影为3,则实数m =__ _.8. 设1i +是关于x 的方程0242=+-qx x (R q ∈)的一个虚根,若n S 表示数列1{5}n q -⋅的前n 项和,则lim n n S →∞的值是__ _.9. 定义在区间[2,4]上的函数m x f m x (,3)(-=为常数)的图像过点(2,1),设)(x f 的反函数是)(1x f -,则函数)()]([)(2121x fx fx F ---=的值域为__ _. 10. 的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变, 则鸡蛋中心(球心)与蛋巢底面的距离为__ _.11. 过抛物线22y x =的焦点作一条倾斜角为锐角α,长度不超过4的弦,且弦所在的直线与圆22316x y +=有 公共点,则角α的最大值与最小值之和是__ _.12. 某种产品的加工需要 A , B , C , D , E 五道工艺,其中A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种. (用数字作答) 13. 某校对文明班级的评选设计了,,,,a b c d e 五个方面的多元评价指标,并通过经验公式1a c bdes =++来计算各班的综合得分,s 的值越高则评价效果越好.若某班在自测过程中各项指标显示出0c d e b a <<<<<,则下阶段要把其中一个指标的值增加1个单位,而使得s 的值增加最多,那么该指标应为 .(填入,,,,a b c d e 中的某个字母)14.设点),(y x Q 是曲线1(0,0)a x b y a b +=>>上的动点,且满足a 的取值范围为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答 题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.”“0sin >x 是“角α为第一象限的角”的 [答]( )A . 充分非必要条件B . 必要非充分条件C . 充分必要条件D . 既非充分也非必要条件成 绩 人 数40 1150 60 221370 80 9016. 如图,O A B C ''''为四边形OABC 的斜二测直观图,则原平面图形OABC 是 [答]( ).A 直角梯形 .B 等腰梯形.C 非直角且非等腰的梯形 .D 不可能是梯形17. 若袋中有大小相同的编号为1到8的球各一只,自袋中随机取出两球,设η为取出两球中的较小编号,若k p 表示η取值为k (k =1,2,…,7)的概率,则满足k p <18的k p 的个数是 [答]( ).A 5 .B 4 .C 3 .D 218. 函数()y f x =图像上不同两点1122(,),(,)A x y B x y 处的切线的斜率分别是,A B k k ,规定||(,)||A B k k A B AB ϕ-=叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图像上两点A 与B 的横坐标分别为1,2,则(,)A B ϕ>②存在这样的函数,图像上任意两点之间的“弯曲度”为常数; ③设点A 、B 是抛物线21y x =+上不同的两点,则(,)2A B ϕ≤;④设曲线x y e =上不同两点1122(,),(,)A x y B x y ,且121x x -=,若(,)1t A B ϕ⋅<恒成立,则实数t 的取值范围是(,1)-∞.以上正确命题的序号为 [答]( ).A ①② .B ②③ .C ③④ .D ②③④三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区 域内写出必要的步骤.19. (本题满分12分) 本题共有2个小题,第1小题满分5分,第2小题满分7分.在ABC ∆中, 90o ABC ∠=,3=AB ,1=BC ,P 为ABC ∆内一点,90BPC ∠=︒.(1)若2PC =,求PA ; (2) 若0120=∠APB ,求ABP ∆的面积S .20. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.一个正四棱锥和一个正三棱锥的所有棱长都相等,现将它们全等的两面重合在一起拼成一个多面体ABCDEF (如图所示),(1) 求证:BFAE //;(2) 过A 、D 、F 三点作截面,将此多面体 上下两部分,求上下两部分的体积比.21. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,在平面直角坐标系xOy 中,设21=a ,有一组圆心在x 轴正半轴上的圆n A ( ,2,1=n )与x 轴的交点分别为)0,1(0A 和)0,(11++n n a A .过圆心n A 作垂直于x 轴的直线n l ,在第一象限与圆n A 交于点),(n n n b a B .(1) 试求数列}{n a 的通项公式;(2) 设曲边形11++n n n B B A (阴影所示)的面积为n S ,若对任意*N ∈n ,m S S S n≤+++11121 恒成立,试求实数m 的取值范围.22. (本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.设12,x x 为函数2()(1)1(,0R,f x ax b x a b a =+-+∈>)两个不同零点. (1) 若11x =,且对任意R x ∈,都有(2)(2)f x f x -=+,求()f x ; (2) 若23b a =-,则关于x 的方程()22+f x x a =-是否存在负实根?若存在,(3) 若2a ≥,212x x -=,且当12(,)x x x ∈时,2()()2()g x f x x x =-+-小值.23. (本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设1F ,2F 分别是椭圆D :)0(12222>>=+b a by a x 的左、右焦点,过2F 作倾斜角为3π的直线交椭圆D 于A ,B 两点, 1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4. (1) 求椭圆D 的方程;(2) 已知点),(01-M ,设E 是椭圆D 上的一点,过E 、M 两点的直线l 交y 轴于点C ,若CE EM λ=, 求λ的取值范围;(3) 作直线1l 与椭圆D 交于不同的两点P ,Q ,其中P 点的坐标为(2,0)-,若点),0(t N 是线段PQ 垂直平分线上一点,且满足4=⋅NQ NP ,求实数t 的值.2015年全国普通高等学校招生统一考试上海数学模拟试卷7(理工农医类)参考答案二、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 2 3π2. 83. -4. 15. 17.646.7. 38. 10 9. [2,5] 10.11.712π12. 2413. C14. [)2,+∞二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15-18:BACB三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.20. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.证明:(Ⅰ)由题意知,△ABE、△CBE和△BEF都是正三角形,取BE的中点O,连AO、FO、CO、AC,则BE⊥AO,BE⊥FO,BE⊥CO,∴∠AOC、∠FOC分别是二面角A-BE-C和二面角F-BE-C的平面角,…………3分设AB =2a ,则AO =FO =CO =a 3,AC=a 22,在△AOC 中,31332)22()3()3(cos 222-=⨯⨯-+=∠aa a a a AOC ,在△FOC 中,31332)3()3(cos 222=⨯⨯-+=∠aa a a a FOC∴∠AOC+∠FOC =0180,即二面角A-BE-C 与二面角F-BE-C 互补,…………………5分所以ABFE 四点共面,又AB=BF=FE=EA ,故AE ∥BF.………………………………6分 (Ⅱ)由(Ⅰ)知,四边形ABFE 四边形CDEF 都是菱形,所以过三点ADF 的截面把多面体分成三棱锥A-DEF 和四棱锥F-ABCD , 连BD 、FD 则BCD F ABD F BCD F ABCD F V V V V ----=+=2=DEF A CDF B V V --=22所以截面把多面体分成上、下两部分的体积比为1:2.…………………………………12分21. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.【解析】(Ⅰ)由条件可得, )1(211-=-+n n a a ,又因为111=-a ,可得数列}1{-n a 是等比数列.故,121-=-n n a ,从而121+=-n n a .…6分(Ⅱ)因为121-=-=n n n a b ,所以)2,12(11--+n n n B , 所以)2,12(1n n n B ++,且)0,12(1+-n n A ,)0,12(1++n n A111+++-=n n n n n n n A B A A B B A n S S S 扇形梯形2111)2(41)22(221---⨯-+⨯⨯=n n n n π1446-⨯-=n π 所以1)41(641-⋅-=n n S π,所以 411)41(164))41(411(64111121--⋅-=+++-=+++-nn n S S S ππππ31816))41(1(31816-<--=n . 故可得实数π31816-≥m .…14分22. (本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.解:(Ⅰ)由(2)(2)f x f x -=+得函数()f x 关于2x =对称,则122b a--= 又110a b +-+= 解得11,33a b ==- 214()133f x x x =-+ (Ⅱ)由0a >知只需考虑2a x ≤时的情况 当2ax ≤时()22+f x x a =-可化为22(24)122(22)10+ax a x a x ax a x a +-+=-+---=即221(22)4(1)84400a a a a a a a--∆=-++=-+><且所以关于x 的方程()22+f x x a =-存在唯一负实根0x01(1)x a ⎡=--+⎢⎣令11122t t a =->-则071122=x t ⎡⎤⎢⎥⎡⎢--=-⎢⎢⎣⎢⎣在1,2⎛⎫-+∞ ⎪⎝⎭上单调递增则()01x ∈-(Ⅲ)12222121()()()2()22()()2g x a x x x x x x x x a a x x x x a a =---+-⎛⎫-+ ⎪=--+≤ ⎪⎪⎝⎭ 等号成立条件为21122(,)2x x a x x x +-=∈ 所以 222()2a h a a ⎛⎫+ ⎪= ⎪ ⎪⎝⎭211(1)2a a a a =+=++ 因为min 92()(2)2a h a h ≥==23. (本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解:(Ⅰ)设1F ,2F 的坐标分别为)0,(),0,(c c -,其中0>c 由题意得AB 的方程为:)(3c x y -= 因1F 到直线AB 的距离为3,所以有31333=+--cc ,解得3=c ……………2分所以有3222==-c b a ……① 由题意知:42221=⨯⨯b a ,即2=ab ……② 联立①②解得:1,2==b a所求椭圆D 的方程为1422=+y x ……………4分 (Ⅱ)由(Ⅰ)知椭圆D 的方程为1422=+y x 设11(,)E x y ,),0(m C ,由于CE EM λ=,所以有),1(),(1111y x m y x ---=-λλλλ+=+-=∴1,111my x ……………7分 又E 是椭圆D 上的一点,则1)1(4)1(22=+++-λλλm 所以04)2)(23(2≥++=λλm解得:23λ≥-或2λ≤- ……………10分 (Ⅲ)由)0,2(-P , 设),(11y x Q根据题意可知直线1l 的斜率存在,可设直线斜率为k ,则直线1l 的方程为)2(+=x k y 把它代入椭圆D 的方程,消去y ,整理得: 0)416(16)41(2222=-+++k x k x k由韦达定理得22141162k k x +-=+-,则2214182k k x +-=,=+=)2(11x k y 2414k k+ 所以线段PQ 的中点坐标为,418(22k k +-)4122k k+ (1)当0=k 时, 则有)0,2(Q ,线段PQ 垂直平分线为y 轴 于是),2(),,2(t NQ t NP -=--=由442=+-=⋅t NQ NP ,解得:22±=t ……………12分(2) 当0≠k 时, 则线段PQ 垂直平分线的方程为-y +-=+x k k k (14122)41822kk + 因为点),0(t N 是线段PQ 垂直平分线的一点 令0=x ,得:2416k kt +-=于是),(),,2(11t y x NQ t NP -=--=由4)41()11516(4)(2222411=+-+=---=⋅k k k t y t x ,解得:714±=k 代入2416k kt +-=,解得: 5142±=t 综上, 满足条件的实数t 的值为22±=t 或5142±=t . ……………14分。

最新高考五月押题密卷全套 高考押题卷语文,数学,英语,理综共63页

最新高考五月押题密卷全套 高考押题卷语文,数学,英语,理综共63页

最新★高考五月押题2015年高考临考押题密卷语文试题【命题老师提示】本套试题根据2015年考试大纲,结合最新高考命题动向,洞悉高考命题规律,精准猜题,精心预测创编完成的精品试题。

请同学们一定要举一反三,反复琢磨每道题,轻轻松松提分上名校。

(本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

满分150分。

考试用时150分钟。

第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1—3题。

重拾中华之“礼”的当代价值彭林在中国文化中,礼是理的同义词:―礼者,理也。

‖―礼也者,理之不可易者也。

‖孔子主张:―道之以德,齐之以礼。

‖孟子以礼为尽人皆有的四个善端之一,无礼者谓之非人。

梁启超、钱穆将中国文化的核心归结为礼治,绝非向壁虚造,而是渊源有自。

在中国人看来,人是按照礼也就是理性要求来生活的,其他动物则不能。

人有文化自觉,不可与鸟兽同群,通过礼自别于禽兽,对于中国人而言,是人生第一要义。

礼也是文明与野蛮的区别,这是更高层次的区别。

孔子作《春秋》,欲为万世龟鉴。

春秋乱世,本质上是文明与野蛮的斗争,即―礼‖与―非礼‖的斗争。

而历史的进步,是在文明战胜野蛮之后。

礼是一切社会活动的准则、修身的主要门径。

中国文化要求人们努力修为,勉为道德高尚的君子,甚至成圣成贤,其间的取径,则是礼乐人生、外内双修。

因此,中国人在童蒙教育阶段即被教以礼,不学礼,无以立。

从束发开始,每逢人生的转折点,都会寓教于礼,通过冠礼、婚礼、相见礼、饮酒礼、射礼、丧礼、祭礼等一系列―人生礼仪‖进行指导,在总体上维持了全民族的文明水平。

更为重要的是,礼是民族凝聚的核心。

中国幅员辽阔,南北四方发展不平衡,各地风俗更是歧异,对政府而言,如果没有统一的行为规范,听之任之、放任自流,后果不堪设想。

经过两千多年的经营,礼超越于方言、风俗之上,彼此说话可以听不懂,年节习俗可以互议,但在礼的层面上却能彼此认同,这是中国特有的文化现象,也是中国在历史长河中始终保持统一趋势的深层原因。

2015年高考冲刺压轴卷数学(理卷二)附答案

2015年高考冲刺压轴卷数学(理卷二)附答案

2015年高考冲刺压轴卷数学(理卷二)本试卷共4页,21小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:①体积公式:1=,=3V S h V S h ⋅⋅柱体锥体,其中V S h ,,分别是体积,底面积和高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015·广东省佛山市二模·1)集合{}40 <<∈=x N x A 的子集个数为( )A .3B .4C .7D .82.(2015·广东省肇庆市三模·1)设i 为虚数单位,则复数)1(i i z -=对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2015·广东省广州市二模·2)已知0a b >>,则下列不等关系式中正确的是( )A .sin sin a b >B .22log log a b <C .1122a b <D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭4.(2015·广东省惠州市二模·5)在ABC ∆中,2=AB ,3=AC ,3AB AC ⋅=,则=BC ( )ABCD5.(2015·广东省揭阳市二模·4)已知1sin()3πα+=,则cos 2α=( )B.89C.79-D.796.(2015·广东省深圳市二模·4)如图1,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为( )(瓶壁厚度忽略不计)图11正视图侧视图俯视图A .π8+B .π48+C .π16+D .π416+7.(2015·广东省湛江市二模·5)在右图所示的程序框图中,输出的i 和s 的值分别为( ).A .3,21B .3,22C .4,21D .4,228.(2015·广东省汕头市二模·7)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.(2015·广东省佛山市二模·9)不等式112<-x 的解集为 . 10.(2015·广东省肇庆市三模·10)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有 种(用数字作答).11.(2015·广东省惠州市二模·9)设0,0a b >>,若1a b +=,则11a b +的最小值为__________.12.(2015·广东省茂名市二模·12)已知直线1y kx =+与曲线b ax x y ++=3相切于点(1,3),则b 的值为 .13.(2015·广东省深圳市二模·12)设等差数列}{n a 的前n 项和为n S ,已知153=S ,1539=S ,则=6S .(二)选做题(14、15题,考生只能从中选做一题) 14.(2015·广东省汕头市二模·14)15.(2015·广东省佛山市二模·15)(几何选讲) 如图1,AB 是圆O 的直径,CD ⊥AB 于D ,且AD =2BD ,E 为AD 的中点,连接CE 并延长交圆O 于F ,若2=CD ,则EF = .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(2015·广东省肇庆市三模·16)(本小题满分12分)已知函数x x x x f 2c o s )23s i n ()s i n (3)(-++=ππ.(1)求函数)(x f 的最小正周期; (2)若]0,2[πθ-∈,103)32(=+πθf ,求)42sin(πθ-的值.17.(2015·广东省广州市二模·17)(本小题满分12分)某市为了宣传环保知识,举办了一AB图1次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示.组号年龄分组答对全卷的人数答对全卷的人数占本组的概率1 [20,30) 28 b2 [30,40) 27 0.93 [40,50) 50.5 4[50,60]a0.4(1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(2015·广东省惠州市二模·18)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2PA PD AD ===,1BC =,CD .(1)求证:平面PQB ⊥平面PAD ;(2)若二面角M BQ C --为 30,设PM t MC =⋅,试确定 t 的值.19.(2015·广东省揭阳市二模·18)(本小题满分14分)已知等比数列{}n a 满足:0n a >,15a =,n S 为其前n 项和,且13220S S S ,,7成等差数列.(1)求数列{n a }的通项公式; (2)设525452+2log log log n n b a a a =+++,求数列{1nb }的前n 项和n T .MPCABDQ20.(2015·广东省茂名市二模·20)(本小题满分14分)已知中心在原点,焦点在坐标轴上的椭圆2222:1(0)x y E a b a b +=>>过点2P ,离心率为12,过直线4:=x l 上一点M 引椭圆E 的两条切线,切点分别是A 、B .(1)求椭圆E 的方程;(2)是否存在实数λ,使得BC AC BC AC ⋅=+λ恒成立?(点C 为直线AB 恒过的定点)若存在,求出λ的值;若不存在,请说明理由.21.(2015·广东省深圳市二模·21)(本小题满分14分)已知函数xbax x x f +-=ln )(,对任意的),0(∞+∈x ,满足0)1()(=+xf x f , 其中b a ,为常数.(1)若)(x f 的图像在1=x 处切线过点)5,0(-,求a 的值;(2)已知10<<a ,求证:0)2(2>a f ; (3)当)(x f 存在三个不同的零点时,求a 的取值范围.数学(理卷二)参考答案与解析1.D【命题立意】本题旨在考查集合的子集个数.【解析】集合A 的元素是自然数,所以A ={1,2,3},共3个元素,其子集个数为23=8个. 故选:D 2.A【命题立意】本题考查复数的乘法运算法则、考查复数的几何意义.【解析】z=i (1-i )=1+i 所以z 对应的点为(1,1)所以z 对应的点位于第一象限,故选A . 3.D【命题立意】考查不等式的性质,容易题. 【解析】因为2ππ>,则s i n s i n 2ππ<,所以选项A 错误;因为b a >,则22log log a b >,所以选项B 错误;若0a b >>,则1122a b >,所以选项C 错误;若0a b >>,则1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确. 4.B【命题立意】本题考查向量的数量积运算及余弦定理. 【解析】13cos 2AB AC A ⋅=⇒=,又由余弦定理知7=BC . 5.D【命题立意】考查诱导公式、二倍角公式,容易题. 【解析】由1sin()3πα+=得31sin -=α,∴97)31(21sin 212cos 22=⨯-=-=αα. 6.C【命题立意】本题考查了三视图和体积公式.【解析】几何体为圆柱体和长方体的组合体,∴24216V ππ=+⨯⨯=+.故选C .7.D【命题立意】本题考查程序框图.【解析】按程序框图的流水方向一步一步推到,或者寻找出规律即可,步骤略. 8.A【命题立意】本题考查的知识点是直方图和茎叶图.【解析】由频率分布直方图可知:第一组的频数为20×0.01×5=1个, [0,5)的频数为20×0.01×5=1个, [5,10)的频数为20×0.01×5=1个, [10,15)频数为20×0.04×5=4个, [15,20)频数为20×0.02×5=2个, [20,25)频数为20×0.04×5=4个, [25,30)频数为20×0.03×5=3个, [30,35)频数为20×0.03×5=3个, [35,40]频数为20×0.02×5=2个, 则对应的茎叶图为A , 故选A 9.()0,1【命题立意】本题旨在考查绝对值不等式的解法. 【解析】211,1211,01x x x -<∴-<-<∴<<,所以不等式的解集为()0,1故答案为:()0,1 10.10【命题立意】本题考查分类计数原理问题,关键是如何分类. 【解析】由题意知本题是一个分类计数问题一是3本集邮册一本画册,让一个人拿本画册就行了4种另一种情况是2本画册2本集邮册,只要选两个人拿画册24C =6种 根据分类计数原理知共10种,故答案为:10 11.4【命题立意】本题考查基本不等式,“1”的代换.【解析】1111()()1b a b a b a b a +=++=+124a b ++≥+=,当且仅当a b =时取等号,所以11a b+的最小值为4. 12.3【命题立意】考查导数的几何意义,容易题.【解析】 b ax x y ++=3,∴a x y +='23, 切点为)3,1(,∴13+=k ,即2=k ,∴2132=+⨯a ,∴1-=a ,∴b +⨯-=11133,所以3b =.13.66【命题立意】本题考查等差数列的前n 项和的计算.【解析】在等差数列中,3S ,63S S -,96S S -也成等差数列,即15,615S -,6153S -成等差数列,则62(15)S -=615315S -+,即666S =.故答案为:66.14.【命题立意】本题旨在考查参极坐标方程. 【解析】.故答案为.15.3【命题立意】本题旨在考查相交弦定理和三角形的相似.【解析】在Rt ABC ∆中,CD ⊥AB 于D ,所以CD 2=AD ·BD =2BD 2=2,∴DB =AE =ED =1∴CE BC ===ACE ∽△FBE ,AE CE EF BE ∴=,故3AE BE EF CE ⨯==.故答案为:316.(1)π(2)-50【命题立意】本题考查的是二倍角公式,辅助角公式以及和差公式进行化简求值. 【解析】(1)x x x x f 2cos cos sin 3)(-= (2分)212cos 2sin 23+-=x x (4分) 21)62sin(--=πx (5分) 所以函数)(x f 的最小正周期ππ==22T . (6分) (2)由(1)得21cos 21)2sin(21]6)32(2sin[)32(-=-+=--+=+θπθππθπθf ,(7分)由10321cos =-θ,得54cos =θ. (8分) 因为]0,2[πθ-∈,所以53sin -=θ. (9分)所以2524cos sin 22sin -==θθθ,2571cos 22cos 2=-=θθ, (11分)所以502314sin2cos 4cos2sin )42sin(-=-=-πθπθπθ. (12分)17.(1)10=a ,8.0=b ,03.0=c ,100=n ;(2)32. 【命题立意】考查频率分布直方图,分层抽样,随机变量的分布列、期望,中等题. 【解析】(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=, 解得0.03c =.第3组人数为105.05=÷,所以1001.010=÷=n . 第1组人数为1000.3535⨯=,所以28350.8b =÷=. 第4组人数为2525.0100=⨯,所以250.410a =⨯=. (2)因为第3,4组答对全卷的人的比为5:101:2=, 所以第3,4组应依次抽取2人,4人. 依题意X 的取值为0,1,2.()022426C C 20C 5P X ===,()112426C C 81C 15P X ===,()202426C C 12C 15P X ===,所以X 的分布列为:X0 1 2P25 815 115所以2812012515153EX =⨯+⨯+⨯=. 18.(Ⅰ)见解析(Ⅱ)3【命题立意】本题考查平面与平面垂直的证明,求实数的取值. 【解析】(Ⅰ)证法一:∵AD ∥BC ,BC=12AD ,Q 为AD 的中点, ∴四边形BCDQ 为平行四边形,∴CD ∥BQ . …………………1分 ∵∠ADC=90°,∴∠AQB=90°,即QB ⊥AD . …………………2分 又∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD=AD ,…………………4分 ∴BQ ⊥平面PAD . …………………5分 ∵BQ ⊂平面PQB ,∴平面PQB ⊥平面PAD . …………………6分证法二:AD ∥BC ,BC=12AD ,Q 为AD 的中点,∴四边形BCDQ 为平行四边形, ∴CD ∥BQ . …………………1分 ∵∠ADC=90°∴∠AQB=90°,即QB ⊥AD . …………………2分 ∵PA=PD ,∴PQ ⊥AD . …………………3分 ∵PQ ∩BQ=Q PBQ 平面、⊂BQ PQ , …………………4分 ∴AD ⊥平面PBQ . …………………5分 ∵AD ⊂平面PAD ,∴平面PQB ⊥平面PAD . …………………6分 (Ⅱ)法一:∵PA=PD ,Q 为AD 的中点,∴PQ ⊥AD .∵面PAD ⊥面ABCD ,且面PAD ∩面ABCD=AD ,∴PQ ⊥面ABCD .……………7分 如图,以Q 为原点建立空间直角坐标系.则平面BQC 的法向量为(0,0,1)n =;……8分(0,0,0)Q,P,B,(1C -.设(,,)M x y z ,则(,,PM x y z =,(1,)MC x y z =---……9分 PM t MC =⋅,∴1(1))()1t x t x t x y t y y z t z z t ⎧=-⎪+=--⎧⎪⎪⎪=⇒=⎨⎨⎪⎪-=-⎩⎪=⎪+⎩,………10分 在平面MBQ中,QB =,1t QM t ⎛=- +⎝⎭,∴平面MBQ 法向量为(3,0,)m t =.……12分 ∵二面角M BQ C --为30°,∴cos3023n m n m⋅︒===⋅+3t =……14分 法二:过点M 作MO //PQ 交QC 于点O ,过O 作OE ⊥QB 交于点E ,连接ME , 因为PQ ⊥面ABCD ,所以MO ⊥面ABCD ,由三垂线定理知ME ⊥QB ,则MEO ∠为二面角M BQ C --的平面角。

2015年高考50(30+20)道押题精粹

2015年高考50(30+20)道押题精粹

2015年高考50(30+20)道押题精粹一.选择题(30道)1.化学与材料、生活和环境密切相关。

下列有关说法中错误的是:( ) A .煤炭经气化、液化和干馏等过程,可获得清洁能源和重要的化工原料 B .利用CO 2合成聚碳酸酯类可降解塑料,实现“碳”的循环利用 C .日常生活中人们大量使用铝制品,是因为常温下铝不能与氧气反应D .神舟10号飞船所用太阳能电池板可将光能转换为电能,所用转换材料是单晶硅 2.下列有关化学用语正确的是:( )A .NH 4Cl 的电子式:Cl -B .2-氯甲苯的结构简式:C .S 2-的结构示意图:D .质子数为94、中子数为144的钚(Pu )原子:Pu 144943.乌头酸的结构简式如图所示,下列关于乌头酸的说法错误的是;( ) A .化学式为C 6H 6O 6B .乌头酸能发生水解反应和加成反应C .乌头酸能使酸性高锰酸钾溶液褪色D .含l mol 乌头酸的溶液最多可消耗3 mol NaOH 4.下列关于有机化合物的说法正确的是:( ) A .棉花和蛋白质都是高分子化合物,水解产物相同 B .苯和己烯都能使溴水退色,均与溴水发生加成反应 C .可用碳酸氢钠溶液鉴别乙酸和乙醇 D .用溴水除去甲烷中混有的少量乙烷气体5.1-溴丙烯能发生如下图所示的4个不同反应。

已知产物a 为高分子化合物,则产物中只含有一种官能团的反应是:( )+18 2 8 8CH 3CH CH Br酸性KMnO 4溶液H 2O/H +溴的CCl 4溶液引发剂ab cd①②③④A .①②B .②③C .③④D .①④6.硼烷是一种潜在的高能燃料,工业制取可用反应:B 2O 3+2Al+3H 2=Al 2O 3+B 2H 6,下列有关说法正确的是:( )A .该反应中氢气做还原剂,铝做氧化剂B .在空气中Al 2O 3比 B 2H 6更稳定C .B 2H 6中存在极性键、非极性键、离子键D .每生成1mol B 2H 6要消耗2mol AlCl 37.设N A 代表阿伏加德罗常数的数值,下列说法中正确的是;( ) A .1.8 g 重水(D 2O)中含有的质子数和电子数均为N A B .常温下,16gO 2和O 3的混合气体中含有的氧原子数为N AC .标准状况下,22.4 L NO 和22.4 L O 2 混合后所得气体中分子总数为1.5 N AD .将11.2 L Cl 2 通入足量的石灰乳中制备漂白粉,转移的电子数为0.5 N A 8.下列解释事实的离子方程式正确的是 :( ) A .铁和稀硝酸反应制得浅绿色溶液:Fe + 4H + + NO 3-Fe 3+ + NO↑+ 2H 2OB .向Ca(ClO)2溶液中通入过量CO 2制取次氯酸: 2ClO -+ H 2O + CO 22HClO + CO 32-C .向酸性KMnO 4溶液中通入SO 2:2MnO 4-+5SO 2+4OH -=2Mn 2++5SO 42-+2H 2OD .0.01 mol·L —1 NH 4Al(SO 4)2溶液与0.02 mol·L —1 Ba(OH)2溶液等体积混合:NH 4++Al 3++2SO 42-+2Ba 2++4OH —=2BaSO 4↓+Al(OH)3↓+NH 3·H 2O 9.下列离子组在指定溶液中能大量共存的是:( ) A .碱性溶液:Cu 2+、Al 3+、NO 3-、SO 42-B .加入KSCN 显红色的溶液:K +、NH 4+、Cl -、I -C .加入Al 能放出大量H 2的溶液中:NH 4+、Fe 2+、NO 3-、SO 42-D .常温下,c(H +)/c(OH 一)=1×10-12的溶液:K +、AlO 2-、CO 32-、Na +10.已知某反应中反应物与生成物有:KIO 3、Na 2SO 3、H 2SO 4、I 2、K 2SO 4、H 2O 和未知物X 。

2015山东高考押题卷数学理

2015山东高考押题卷数学理

2015年普通高等学校招生全国统一考试(山东卷)理 科 数 学(押题卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上. 2、第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B =⋅. 第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数121iz i+=-(i 是虚数单位)的共轭复数z 表示的点在A .第一象限B . 第二象限C . 第三象限D .2.已知集合{}{}240,2M x x x N x x M N =-<=≤⋃=,则A . ()24-,B . [)24-,C . ()02,D . (]02,3.平面上画了一些彼此相距2a 的平行线,把一枚半径r a <不与任何一条平行线相碰的概率是A .a ra - B .2a ra- C .22a ra- D .2a r a +4.已知函数()f x 的图象如图所示,则()f x 的解析式可能是()31.21A f x x x =-- ()31.21B f x x x =+-()31.21C f x x x =-+ ()31.21D f x x x =--- 5.下列说法不正确的是A .若“p 且q ”为假,则p ,q 至少有一个是假命题B .命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”C .“2πϕ=”是“()sin 2y x ϕ=+为偶函数”的充要条件D .当0α<时,幂函数()0,y x α=+∞在上单调递减6.执行如图所示的程序框图,输出的T= A .29B .44C .52D .627.将函数()sin 6f x x π⎛⎫=+⎪⎝⎭的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得图象的一条对称轴方程可以是 A . 12x π=-B . 12x π=C . 3x π=D . 23x π=8.变量,x y 满足线性约束条件320,2,1,x y y x y x +-≤⎧⎪-≤⎨⎪≥--⎩目标函数z kx y =-仅在点()0,2取得最小值,则k 的取值范围是 A . 3k <-B . 1k >C . 31k -<<D . 11k -<<9.函数y =为该等比数列公比的是 A .34B .C .D .10.已知函数()3111,0,36221,,112x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎣⎦⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩,函数()()si n 220,6g x a x a a π⎛⎫=-+>⎪⎝⎭若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则实数a 的取值范围是( )A .2,13⎡⎤-⎢⎥⎣⎦B .14,23⎡⎤⎢⎥⎣⎦C .43,32⎡⎤⎢⎥⎣⎦D .1,23⎡⎤⎢⎥⎣⎦第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.如果双曲线()222210,0x y a b a b-=>>的一条渐近线与直线0y -=平行,则双曲线的离心率为 .12.市内某公共汽车站6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是 .13.已知实数,x y 满足102x y x y >>+=,且,则213x y x y++-的最小值为________. 14.在平面直角坐标系xOy 中,设直线2y x =-+与圆()2220x y rr +=>交于A,B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB r =+=,则uuu r uu r uu u r______.15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A B k k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线x y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上) 三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ABC ∆中,已知()111sin ,cos 2142A B ππ⎛⎫+=-=- ⎪⎝⎭.(I )求sinA 与角B 的值;(II )若角A,B,C 的对边分别为,,5,a b c a b c =,且,求的值.17. (本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球. (I )若左右手各取一球,求两只手中所取的球颜色不同的概率;(II )若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X ,求X 的分布列和数学期望.18. (本小题满分12分)直三棱柱111ABC A B C -中,11AA AB AC ===,E ,F 分别是1,CC BC 的中点,11AE A B D ⊥,为棱11A B 上的点.(I )证明:DF AE ⊥;(II )已知存在一点D ,使得平面DEF 与平面ABC所成锐二面角的余弦值为,请说明点D 的位置.19. (本小题满分12分)已知数列{}n a 的前n 项和为()2,2,n n S S n n n N *=+∈且. (I )求数列{}n a 的通项公式; (II )设集合{}{}22,,2,nA x x n n NB x x a n N **==+∈==∈,等差数列{}nc 的任一项n c A B ∈⋂,其中1c 是A B ⋂中的最小数,10110115c <<,求数列{}n c 的通项公式.20.(本小题满分13分)在平面直角坐标系xOy 中,已知椭圆C:22221(1)x y a b e a b +==>≥的离心率,且椭圆C 上一点N 到点Q (0,3)的距离最大值为4,过点M (3,0)的直线交椭圆C 于点A 、B .(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当AB t 的取值范围.21.(本小题满分14分)已知函数()e x f x ax a =--(其中a ∈R ,e 是自然对数的底数,e =2.71828…). (Ⅰ)当e a =时,求函数()f x 的极值;(Ⅱ)若()0f x ≥恒成立,求实数a 的取值范围;(Ⅲ)求证:对任意正整数n ,都有222221212121en n ⨯⨯⨯>+++.2015年普通高等学校招生全国统一考试(山东卷)理 科 数 学(押题卷1)参考答案一.选择题 CBAAC,ADCDB(1)【答案】C ,解:分母实数化乘以它的共扼复数1+i,()()()()12i 1i 12i 13i 13i 1i 1i 1i 222Z +++-+====-+--+,Z ∴的共扼复数为13i 22Z -=--,它表示的点为13,22⎛⎫-- ⎪⎝⎭在第三象限.(2)【答案】B .解:(0,4),[2,2],[2,4)M N MN ==-∴=-.(3)【答案】A .解:抓圆心的位置,圆心到两平行线距离小于r 即可,故选A .(4)【答案】 A ,解:根据定义域排除C 根据1,,2x x y →+∞→(从左侧)的变化趋势分别排除B 、D 选A .(5)【答案】 C 解:A .若“p 且q ”为假,则p 、q 至少有一个是假命题,正确;B .命题“x R ∃∈,210x x --<”的否定是“x R ∀∈,210x x --≥”,正确;C .“2πϕ=”是“sin(2)y x ϕ=+为偶函数”的充分不必要条件,故C 错误;D .0α<时,幂函数y x α=在(0,)+∞上单调递减,正确.故选:C (6)【答案】 A ,解:执行程序框图,有S=3,n=1,T=2, 不满足条件T >2S ,S=6,n=2,T=8, 不满足条件T >2S ,S=9,n=3,T=17, 不满足条件T >2S ,S=12,n=4,T=29,满足条件T >2S ,退出循环,输出T 的值为29.故选:A .(7)【答案】 D ,解:将函数()πsin 6f x x ⎛⎫=+ ⎪⎝⎭的图象上各点的纵坐标不变,横坐标扩大到原来的2倍得函数()1πs i n 26f x x ⎛⎫=+ ⎪⎝⎭,其对称轴方程为1ππ2ππ,2π()2623x k x k k +=+∴=+∈Z , 故选D .(8)【答案】C ,解:作出不等式对应的平面区域,由z =k x -y 得y =k x -z , 要使目标函数z =k x -y 仅在点A (0,2)处 取得最小值,则阴影部分区域在直线y =k x -z 的下方,∴目标函数的斜率k 满足-3<k <1.(9)【答案】D ,解:函数等价为0,9)5(22≥=+-y y x ,表示为圆心在)0,5(半径为3的上半圆,圆上点到原点的最短距离为2,最大距离为8,若存在三点成等比数列,则最大的公比q 应有228q =,即2,42==q q ,最小的公比应满足282q =,所以21,412==q q ,所以公比的取值范围为221≤≤q ,所以选D . (10)【答案】 B 解析:因为当1,12x ⎛⎤∈ ⎥⎝⎦时,()()32246'01x x f x x +=>+,所以此时函数单调递增,其值域为1,16⎛⎤⎥⎝⎦,当x 10,2⎡⎤∈⎢⎥⎣⎦时,值域为10,6⎡⎤⎢⎥⎣⎦,所以函数f (x )在其定义域上的值域为,又函数g (x )在区间上的值域为,若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则3202221a a ⎧-+≥⎪⎨⎪-+≤⎩解得1423a ≤≤,所以选B .二、填空题(11) 2.e =(12)72.(13)223.(1415)②③. (11)答案 2.e =解:由题意知ba= 2.c e a ==(12)答案72.根据题意,先把3名乘客进行全排列,有336A =种排法,排好后,有4个空位,再将1个空位和余下的2个连续的空位插入4个空位中,有2412A =种排法,则共有61272⨯=种候车方式.(13)答案21212()3()[(3)()]33333x y x yx y x y x y x y x y x y x y x y-++=+++-=++≥++-+-+- (14)答案.解:22225325539244164416OC OA OB OA OA OB OB ⎛⎫=+=+⋅⋅+ ⎪⎝⎭,即:222225159+c o s 16816r r r A O B r =∠+,整理化简得:3cos 5AOB ∠=-,过点O 作AB 的垂线交AB 于D ,则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=,又圆心到直线的1x距离为OD ==222212cos 5OD AOD r r ∠===,所以210r =,r =.(15)答案②③.解:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =; ③对;(,)2A Bϕ==≤;④错;1212(,)x x x xA Bϕ==1211,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤. (16)解:(Ⅰ)πsin()cos 2A A +=Q ,11cos 14A ∴=,又0πA <<Q ,sin A ∴= 1cos(π)cos 2B B -=-=-Q ,且0πB <<,π3B ∴=.………………………………………………………………………………………6分(Ⅱ)由正弦定理得sin sin a bA B =,sin 7sin a B b A ⋅∴==, 另由2222cos b a c ac B =+-得249255c c =+-,解得8c =或3c =-(舍去),7b ∴=,8c =.…………………………………………………12分(17)解:(Ⅰ)设事件A 为“两手所取的球不同色”, 则32993433321)(=⨯⨯+⨯+⨯-=A P . ………5分(Ⅱ)依题意,X 的可能取值为0,1,2.左手所取的两球颜色相同的概率为18529242322=++C C C C , 右手所取的两球颜色相同的概率为4129232323=++C C C C , ………7分 24134318134111851)0(=⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-==X P , 18741)1851()411(185)1(=⨯-+-⨯==X P , 72541185)2(=⨯==X P , ………10分 所以X的分布列为:36197252187124130)(=⨯+⨯+⨯=X E . ………………… ……12分 (18)(Ⅰ)证明:11AE A B ⊥ ,11A B ∥AB , AB AE ∴⊥, 又1AB AA ⊥, 1A E A AA⋂=, AB ∴⊥面11A ACC , 又AC ⊂面11A ACC ,A B A C ∴⊥,以A 为原点建立如图所示的空间直角坐标系 A xyz -, 则()0,0,0A ,10,1,2E ⎛⎫ ⎪⎝⎭,11,,022F ⎛⎫ ⎪⎝⎭,1(0,0,1)A ,1(1,0,1)B ,设(),,D x y z ,111A D A B λ= ,且[0,1]λ∈,即:()(),,11,0,0x y z λ-=,(),0,1D λ∴ ,11,,122DF λ⎛⎫∴=-- ⎪⎝⎭, 10,1,2AE ⎛⎫∴= ⎪⎝⎭,∴11022DF AE =-=, DF AE ∴⊥. 分(Ⅱ)设面DEF 的法向量为 (),,n x y z = ,则 00n FE n DF ⎧⋅=⎨⋅=⎩,111,,222FE ⎛⎫=- ⎪⎝⎭, 11,,122DF λ⎛⎫=-- ⎪⎝⎭,B 1111022211022x y z x y z λ⎧-++=⎪⎪∴⎨⎛⎫⎪-+-= ⎪⎪⎝⎭⎩, 即:()()3211221x z y z λλλ⎧=⎪-⎪⎨+⎪=⎪-⎩, 令()21z λ=-, ()()3,12,21n λλ∴=+- .由题可知面ABC 的法向量()0,0,1m = , ………9分平面DEF 与平面ABC所成锐二面的余弦值为14. ()14cos ,14m nm n m n ⋅∴==14=, 12λ∴=或74λ=. 又[0,1]λ∈,∴74λ=舍去.∴ 点D 为11A B 中点. ………12分(19)解 (Ⅰ)∵2*2,(N )n S n n n =+∈.当2n ≥时,121n n n a S S n -=-=+,当1n =时,113a S ==满足上式,所以数列{}n a 的通项公式为21n a n =+. …… ……5分 (Ⅱ)∵*{|22,N }A x x n n ==+∈,*{|42,N }B x x n n ==+∈,∴A B B =.又∵n c ∈AB ,其中1c 是A B 中的最小数,∴16c =,∵{}n c 的公差是4的倍数,∴*1046(N )c m m =+∈. 又∵10110115c <<,∴*11046115,N ,m m <+<⎧⎨∈⎩, 解得27m =,所以10114c =,设等差数列的公差为d , 则1011146121019c cd --===-,∴6(1)12126n c n n =+-=-,所以{}n c 的通项公式为126n c n =-. ………………… ……12分(20)解:(Ⅰ)∵2222223,4c a b e a a -=== ∴224,a b =…………………………(1分) 则椭圆方程为22221,4x y b b+=即22244.x y b +=设(,),N x y 则 2)3)N Q =……………………(2分) 12=+当1y =-时,NQ 有最大值为4,=…………………………(3分)解得21,b =∴24a =,椭圆方程是2214x y +=……………………(4分)(Ⅱ)设1122(,),(,),(,),A x y B x y P x y AB 方程为(3),y k x =-由22(3),1,4y k x x y =-⎧⎪⎨+=⎪⎩整理得2222(14)243640k x k x k +-+-=.………………………………(5分) 由24222416(91)(14)0k k k ∆=--+>,得215k <.2212122224364,.1414k k x x x x k k-+=⋅=++………………………………………(6分) ∴1212(,)(,),OA OB x x y y t x y +=++=则2122124()(14)k x x x t t k =+=+, []12122116()()6.(14)k y y y k x x k t t t k -=+=+-=+………………………(7分) 由点P 在椭圆上,得222222222(24)1444,(14)(14)k k t k t k +=++ 化简得22236(14)k t k =+①………………………………………………(8分)又由12AB x =-即221212(1)()43,k x x x x ⎡⎤++-⎣⎦<将12x x +,12x x 代入得2422222244(364)(1)3,(14)14k k k k k ⎡⎤-+-⎢⎥++⎣⎦<…………………………………(9分) 化简,得22(81)(1613)0,k k -+> 则221810,8k k ->>,………………………………………………………(11分) ∴21185k <<②由①,得22223699,1414k t k k ==-++联立②,解得234,t <<∴2t -<<或 2.t <………………(13分)(21)解:(Ⅰ) 当e a =时,()e e e x f x x =--,()e e x f x '=-,当1x <时,()0f x '<;当1x >时,()0f x '>.所以函数()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增,所以函数()f x 在1x =处取得极小值(1)e f =-,函数()f x 无极大值. ··············· 4分 (Ⅱ)由()e x f x ax a =--,()e x f x a '=-,若0a <,则()0f x '>,函数()f x 单调递增,当x 趋近于负无穷大时,()f x 趋近于负无穷大;当x 趋近于正无穷大时,()f x 趋近于正无穷大,故函数()f x 存在唯一零点0x ,当0x x <时,()0f x <;当0x x >时,()0f x >.故0a <不满足条件.···································· 6分 若0a =,()e 0x f x =≥恒成立,满足条件.·············································· 7分若0a >,由()0f x '=,得ln x a =,当ln x a <时,()0f x '<;当ln x a >时,()0f x '>,所以函数()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增,所以函数()f x 在ln x a =处取得极小值(ln )f a ln e ln ln a a a a a a =-⋅-=-⋅,由(ln )0f a ≥得ln 0a a -⋅≥,解得01a <≤.综上,满足()0f x ≥恒成立时实数a 的取值范围是[0,1]. ····························· 9分(Ⅲ)由(Ⅱ)知,当1a =时,()0f x ≥恒成立,所以()e 10x f x x =--≥恒成立,即e 1x x ≥+,所以ln(1)x x +≤,令12n x =(*n ∈N ),得11ln(1)22n n +<,············ 10分则有2111ln(1)ln(1)ln(1)222n ++++++211[1()]1111221()11222212n n n -<+++==-<-, ··································································································· 12分所以2111(1)(1)(1)e 222n ++⋅⋅+<,所以211111e(1)(1)(1)222n >++⋅⋅+, 即222221212121e nn ⨯⨯⨯>+++.···························································· 14分。

2015年高考押题精粹-数学理科试题 Word版含答案

2015年高考押题精粹-数学理科试题 Word版含答案

2015年高考押题 精粹数学理科一、选择题(36个小题)1.已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为( ) A .MN B .()U M N ð C .()U MN ð D .()()U U M N 痧 2.集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为( ) A .3 B .4 C .11 D .12 3.设集合{}1,0,1,2,3A =-,{}220B x x x =->,则A B ⋂=( )A .{}3B .{}2,3C .{}1,3-D .{}0,1,2 4.若(1)z i i +=(其中i 为虚数单位),则||z 等于( )A .1B .32 C .22D .125.若复数iia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为( )A .6-B .2-C .4D .66.复数21ii -在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .1-8.已知D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一个点P ,满足PA PB PC =+,则||||PD AD 的值为( )DABCPA .12B .13C .1D .29.ABC ∆中,D AC AB BAC ,1,2,1200===∠是边BC 上的一点(包括端点),则BC AD ⋅的取值范围是( )A .[]6,1-B .[]4,3-C .)5,2(-D . []2,5--10.已知命题p :x R ∃∈,20x ->,命题q :x R ∀∈,x x <,则下列说法中正确的是( ) A .命题p q ∨是假命题 B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题 D .命题()p q ∨⌝是假命题 11.命题“x R ∃∈,2210x x -+<”的否定是( )A .x R ∃∈,2210x x -+≥B .x R ∃∈,2210x x -+>C .x R ∀∈,2210x x -+≥D .x R ∀∈,2210x x -+<12.命题p :关于x 的方程20()-+=∈x x x m m R 有三个实数根;命题q :01≤<m ;则命题p 成立时命题q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件13.若某几何体的三视图如右图所示,则此几何体的体积等于( ) A .30B .12C .24D .414.某几何体的三视图如图所示,图中三个正方形边长均为2,则该几何体的体积为( )A .38 B .82π- C .43π D .283π- 15.某几何体的三视图如图所示,则该几何体的体积为( )A .43 B .52 C .73D .5343 233正视图侧视图俯视图16.已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .217.已知110220x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若ax y +的最小值是2,则a =( )A .1B .2C .3D .418.已知不等式组240,30,0-+≥⎧⎪+-≤⎨⎪≥⎩x y x y y 构成平面区域Ω(其中x ,y 是变量)。

2015天津理科数学高考押题卷

2015天津理科数学高考押题卷

第I 卷选择题(共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3.本卷共8小题,每小题5分,共40分。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数321i i -(i 为虚数单位)的虚部是(A) 15i (B) 15 (C)15i - (D) -1 2. 函数)(x f 的图象在],[b a 上连续,则“0)()(<⋅b f a f ”是“()f x 在[a,b]上有零点”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要3. 运行如图所示程序框图后,输出的结果为A. -2B. 0C. 4D. 104. 下列命题中正确的是( )A. 命题“x ∃∈R ,使得210x -<”的否定是“x∀∈R ,均有210x -<”. B. 命题“若3x =,则2230x x --=”的否命题是:若3x ≠,则2230x x --≠. C. 命题“存在四边相等的四边形不是正方形”,该命题是假命题. D. 命题“若cos cos x y =,则x y =”的逆否命题是真命题. 5.一个几何体的三视图如图所示,则这个几何体的体积为( )(A )(B ) (C )8 (D )6. 已知实数x y ,满足1218y y x x y ⎧⎪-⎨⎪+⎩≥≤≤,则目标函数z x y =-的最小值为( )A. 5B. 6C. 7D. -27. 已知双曲线的一个焦点与抛物线220x y =的焦点重合,且其渐近线的方程为38316332340x y ±=,则该双曲线的标准方程为( )A. 221916x y -=B. 221169x y -=C. 221916y x -=D. 221169y x -=8. 已知函数⎪⎪⎩⎪⎪⎨⎧≥-+-<≤=4,5341441|,log |)(22x x x x x x f ,若方程0)(=+k x f 有三个不同的解m 、n 、p ,且p n m <<,则p mn +的取值范围是A. (0,2)B. (5,11)C. ))12(6,9(4+D. )11,722(+ 第Ⅱ卷本卷共12小题,共110分。

北京2015届高三高考压轴数学(理)试题(附答案)

北京2015届高三高考压轴数学(理)试题(附答案)

2015北京高考压轴卷理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数,则对应的点所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限2.设全集U={0,1,2,3,4},集合A={0,1,2},集合b={2,3},则(∁U A)∪B=()A.∅ B.{1,2,3,4} C.{2,3,4} D.{0,11,2,3,4}3.已知全集集合,则( ) A.B.C.D.4.指数函数与二次函数在同一坐标系中的图象可能的是5.曲线(为自然对数的底数)在点处的切线与轴、轴所围成的三角形的面积为()A .B.C.D.6.设随机变量服从正态分布,若,则的值为( )A .B.C.D.7.已知x,y满足约束条件且目标函数的最大值为-6,则的取值范罔是A. B.C. D.8.如图,为等腰直角三角形,,为斜边的高,点在射线上,则的最小值为A.B.C.D.9.已知是抛物线上的一个动点,则点到直线和的距离之和的最小值是()A .B.C.D.10.已知函数f(x)=,则下列关于函数y=f[f(kx)+1]+1(k≠0)的零点个数的判断正确的是()A.当k>0时,有3个零点;当k<0时,有4个零点B.当k>0时,有4个零点;当k<0时,有3个零点C.无论k为何值,均有3个零点D.无论k为何值,均有4个零点二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.正项等比数列中,,,则数列的前项和等于.12.如图,在中,是边上一点,,则的长为13.已知实数x,y满足x>y>0,且x+y2,则的最小值为▲.14.一个几何体的三视图如图所示,该几何体体积为____________.15.设函数的定义域分别为,且,若对于任意,都有,则称函数为在上的一个延拓函数.设,为在R上的一个延拓函数,且g(x)是奇函数.给出以下命题:①当时,②函数g(x)有5个零点;③的解集为;④函数的极大值为1,极小值为-1;⑤,都有.其中正确的命题是________.(填上所有正确的命题序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设是锐角三角形,三个内角,,所对的边分别记为,,,并且.(Ⅰ)求角的值;(Ⅱ)若,,求,(其中).17.(本小题满分12分)如图,已知四棱锥的底面为菱形,.(1)求证:;(II)求二面角的余弦值.18.(本题满分12分)甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是,乙、丙两人同时能被聘用的概率为,且三人各自能否被聘用相互独立.(1) 求乙、丙两人各自被聘用的概率;(2) 设ξ为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望)19.(本小题满分10分)已知是数列的前n项和,且(1)求数列的通项公式;(2)设,记是数列的前n项和,证明:。

2015新课标II高考压轴卷 理科数学 Word版含答案

2015新课标II高考压轴卷 理科数学 Word版含答案

2015年高考考前押题试卷 (全国新课标II 卷)理 科 数 学第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1.设全集{}1,2,3,4,5U =,集合{1,2,4}A =,{4,5}B =,则图中的阴影部分表示的集合为A .{}5B .{}4C .{}1,2D .{}3,52.已知非零向量a 、b 满足a b =,那么向量a b +与向量a b -的夹角为A .6π B .3π C .2π D .23π 3.61()2x x-的展开式中第三项的系数是 A .154-B .154C .15D .52-4.圆22420x y x +-+=与直线l 相切于点(3,1)A ,则直线l 的方程为A .250x y --=B .210x y --=C .20x y --=D .40x y +-=5.某单位员工按年龄分为A ,B ,C 三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C 组中甲、乙二人均被抽到的概率是1,45则该单位员工总数为A .110B .100C .90D .806.右边程序框图的程序执行后输出的结果是A .24B .25C .34D .357.设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为A .2211216x y += B .2211612x y += C .2214864x y += D .2216448x y += 8.直线cos140sin 400x y ︒+︒=的倾斜角是A .40°B .50°C .130°D .140°9. 若n S 为等差数列{}n a 的前n 项和,369-=S ,10413-=S ,则5a 与7a 的等比中项为A .24B .22±C .24±D .3210.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥β 其中正确命题的序号是 A .①②③ B .②③④ C .①③ D .②④11. 已知函数()f x =(3)5, 1.2,13a x x a x -+≤⎧⎪⎨>⎪⎩是(,)-∞+∞上的减函数。

2015年湖北省高考数学押题卷(文)及答案

2015年湖北省高考数学押题卷(文)及答案

2015年湖北省高考数学押题卷第一部分(选择题共50分)一、选择题(共10小题,每小题5分,共50分。

在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合M={2,m},N={1,2,3},则“m=3”是“M ?N ”的()A .充分而不必条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.已知i 是虚数单位,a ,b ∈R ,a+bi=,则a+b 等于()A .﹣1 B. 1 C. 3 D. 43.下列函数中,其图象既是轴对称图形又在区间(0,+∞)上单调递增的是()A . y=B. y=﹣x 2+1 C ..y=2xD . y=lg|x+1|4.已知命题p :?x 0∈R ,cosx 0≤,则?p 是()A .?x 0∈R ,cosx 0≥B .?x 0∈R ,cosx 0>C .?x ∈R ,cosx ≥D .?x ∈R ,cosx >5.设等差数列{a n }的前n 项和为S n ,若112a ,295a a ,则当S n 取最小值时,n等于()A . 9 B. 8 C. 7 D. 66.若m ,n 为两条不重合的直线,α,β为两个不重合的平面,下列命题正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊥β,且α∥β,则m ∥nC .若α⊥β,m ⊥α,则m ∥βD .若α⊥β,m ⊥n ,且m ⊥α,则n ⊥β7.根据如下样本数据x 3 4 5 6 7 y4.02.5-0.50.5[来源:学+科+网]-2.0得到的回归方程为.若a=7.9,则x 每增加1个单位,y 就()A .增加 1.4个单位B .减少 1.4个单位C .增加 1.2个单位D .减少 1.2个单位8.已知f (x )=kx ﹣1,其中实数k 随机选自区间[﹣2,2],?x ∈[0,1],f (x )≤0的概率是() A .B.C.D.9.设平面点集 A ={( x , y)|( y - x)( y -1x)≥0}, B ={( x , y)|(x -1) 2+( y -1) 2≤1},则 A ∩ B 所表示的平面图形的面积为()A. B. C. D.。

2018届河北省衡水中学2015级高三高考押题卷数学(理)试卷(二)及答案

2018届河北省衡水中学2015级高三高考押题卷数学(理)试卷(二)及答案

2018届衡水中学2015级高三高考押题卷数学(理)试卷(二)★祝考试顺利★第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B I =( )A .{0,1}B .{0,1,2}C .{0,1,2,3}D .{1,0,1,2}-2.设复数z 满足121z i i +=-+,则1||z=( )A .15 C D 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )A.46- B .46718D .3 4.已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )BD 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b -=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( )A .[0,]6πB .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.313(3)2222π+++ B .3133()22242π+++ C.13222π+ D .13224π+ 7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.二项式1()(0,0)n ax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯ C.201710101⨯- D .10092016⨯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考押题精粹数学(理)试题(30道选择题+20道非选择题) 一.选择题(30道)1.若集合{|23},M x x =-<<2{|1,}N y y x x R ==+∈,则集合M N =A. (2,)-+∞B. (2,3)-C. [1,3)D. R 2.已知集合{}1A x x =>,{}B x x m =<,且AB =R ,那么m 的值可以是A .1-B .0C .1D .2 3.复数17ii+的共轭复数是a+bi (a,b ∈R ),i 是虚数单位,则ab 的值是 A 、-7 B 、-6 C 、7 D 、64.已知i 是虚数单位,m .n ∈R ,且i 1i m n +=+,则iim n m n +=- (A )1-(B )1(C )i -(D )i5.已知命题11:242x p ≤≤,命题15:[,2]2q x x +∈--,则下列说法正确的是 A .p 是q 的充要条件B .p 是q 的充分不必要条件C .p 是q 的必要不充分条件D .p 是q 的既不充分也不必要条件6.下面四个条件中,使b a >成立的充分而不必要的条件是A.1+>b aB.1->b aC.22b a > D.33b a >7.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的(A) 必要而不充分条件 (B) 既不充分也不必要条件 (C) 充要条件 (D) 充分而不必要条件8.执行右边的程序框图,若输出的S 是127,则条件①可以为 (A )5n ≤ (B )6n ≤ (C )7n ≤ (D )8n ≤9.阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是(A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞10.要得到函数sin(2)4y x π=+的图象,只要将函数sin 2y x =的图象( )A .向左平移4π单位B .向右平移4π单位C .向右平移8π单位D .向左平移8π单位11.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x ( )A .332- B .332± C .1- D .1±12.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( )A .2 B..2-13.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 与b 的夹角是( ) A .30︒ B .60︒ C .90︒ D .120︒14.如图,O 为△ABC 的外心,BAC ,AC ,AB ∠==24为钝角,M 是边BC 的中点,则AO AM ∙的值( ) A..12 C .6 D .5第14题图15.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )16.如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( )A.π23 B. π3 C. π32 D. π2 17. A a x a x xA ∉⎭⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( ) A ),1[)1,(+∞⋃--∞ B [-1,1] C ),1[]1,(+∞⋃--∞ D (-1,1]18.已知正项等比数列{}n a 满足:1232a a a +=,若存在两项n m a a ,,使得14a a a n m =,则nm 41+的最小值为 ( )A .23 B .35 C .625 D .不存在19.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排 方法的种数为 ( )A .10B .20C .30D .4020.现有2门不同的考试要安排在5天之内进行,每天最多进行一门考试,且不能连续两天有考试,那么不同的考试安排方案种数有 ( ) .6 .8 .12 .16A B C D21.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++= ( ) A .33B .72C .84D .18922.若等比数列}{n a 的前n 项和23-⋅=n n a S ,则=2aA.4B.12C.24D.36 23.已知1F 、2F 分别是双曲线22221(0,0)x y aba b -=>>的左、右焦点,P 为双曲线上的一点,若1290F PF ∠=︒,且12F PF ∆的三边长成等差数列,则双曲线的离心率是( ). A.2 B.3 C.4 D.524.长为)1(<l l 的线段AB 的两个端点在抛物线x y =2上滑动,则线段AB 中点M 到y 轴距离的最小值是A .2lB .22lC .4lD .42l25.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A. 2 B. 3 C. 4 D.626.函数f(x)=tan x +x tan 1,x }2002|{ππ<<<<-∈x x x 或的大致图象为( )27.设()f x 在区间(,)-∞+∞可导,其导数为'()f x ,给出下列四组条件( ) ①()p f x :是奇函数,':()q f x 是偶函数②()p f x :是以T 为周期的函数,':()q f x 是以T 为周期的函数③()p f x :在区间(,)-∞+∞上为增函数,':()0q f x >在(,)-∞+∞恒成立 ④()p f x :在0x 处取得极值,'0:()0q f x =A .①②③ B.①②④ C.①③④ D.②③④28.若a 满足4lg =+x x ,b 满足410=+xx ,函数⎪⎩⎪⎨⎧>≤+++=0,20,2)()(2x x x b a x x f ,则关于x 的方程x x f =)(的解的个数是( )A .1B .2C .3 D. 429.已知函数f (x )是R 上的偶函数,且满足f (x+1)+f (x )=3,当x ∈[0,1]时,f (x )=2-x ,则f (-2007.5)的值为( ) A .0.5 B .1.5 C .-1.5 D .1 30.设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围( ) A. 9(,2]4-- B.[1,0]- C.(,2]-∞- D.9(,)4-+∞ 二.填空题(8道)31.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射 疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射 了疫苗的鸡的数量平均为 万只。

32.设抛物线2:2(0)C y px p =>的焦点为F ,其准线与x 轴的交点为Q ,过点F 作直线交抛物线C 于A 、B 两点,若90QBF ∠=,则|AF |—|BF |=33.一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.34. ()()51x x a ++的展开式中2x 项的系数是15,则展开式的所有项系数的和是_______.35.设ABC ∆的内角A,B,C 所对的边分别为,,a b c ,若3A π=,a =22+b c 的取值范围为_____.36.已知z=2x +y ,x ,y 满足,2,,y x x y x a ≥⎧⎪+≤⎨⎪≥⎩且z 的最大值是最小值的4倍,则a 的值是 。

37. 抛掷一枚质地均匀的骰子,所得点数的样本空间为{}1,2,3,4,5,6S =,令事件{}2,3,5A =,事件{}1,2,4,5,6B =,则()|P A B 的值为 .38.记123k k k k k S n =+++⋅⋅⋅+,当123k =⋅⋅⋅, , , 时,观察下列等式: 211122S n n =+,322111326S n n n =++,4323111424S n n n =++,5434111152330S n n n n =++-,6542515S An n n Bn =+++,⋅⋅⋅ 可以推测,A B -= .三.解答题(12道)39.已知函数.(1)求函数的最小值和最小正周期; (2)设的内角的对边分别为且,,若,求的值.正视图侧视图俯视图40.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)设T n 为数列{anan +11}的前n 项和,若T n ≤λa n +1对∀n ∈N *恒成立,求实数λ的最小值. 41. 形状如图所示的三个游戏盘中(图(1)是正方形,M 、N 分别是所在边中点,图(2) 是半径分别为2和4的两个同心圆,O 为圆心,图(3)是正六边形,点P 为其中心)各有一 个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏. (I )一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?(II )用随机变量表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分 的事件数之差的绝对值,求随机变量的分布列及数学期望.42. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。

我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(I )从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率; (II )从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(III )以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.43.如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,SD AD a ==,点E 是SD 上的点,且()01DE a λλ=<≤.(1)求证:对任意的(]0,1λ∈,都有AC⊥BE; (2)若二面角C-AE-D 的大小为60,求λ的值.44.在平面直角坐标系内已知两点(1,0)A -、(1,0)B ,若将动点(,)P x y后得到点()Q x ,且满足1AQ BQ ⋅=. (Ⅰ)求动点P 所在曲线C 的方程; (Ⅱ)过点B作斜率为l 交曲线C 于M 、N 两点,且0OM ON OH ++=,又点H 关于原点O 的对称点为点G ,试问M 、G 、N 、H 四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.(第45题)45.本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.如图,在平面直角坐标系xOy 中,抛物线的顶点在原点,焦点为F (1,0).过抛物线在x 轴上方的不同两点A 、B 作抛物线的切线AC 、BD ,与x 轴分别交于C 、D 两点,且AC 与BD 交于点M ,直线AD 与直线BC 交于点N . (1)求抛物线的标准方程; (2)求证:MN ⊥x 轴; (3)若直线MN 与x 轴的交点恰为F (1,0),求证:直线46. 已知2()ln ,()3f x x x g x x ax ==-+-. (1) 求函数()f x 在[,2](0)t t t +>上的最小值;(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a (3) 证明:对一切(0,)x ∈+∞,都有12ln xx e ex>-成立. 47.已知函数2()(,)mx x nf x m n R +=∈在1x =处取得极值2.⑴求()f x 的解析式;⑵设A 是曲线()y f x =上除原点O 外的任意一点,过OA 的中点且垂直于x 轴的直线交曲线于点B ,试问:是否存在这样的点A ,使得曲线在点B 处的切线与OA 平行?若存在,求出点A 的坐标;若不存在,说明理由; ⑶设函数2()2g x x ax a =-+,若对于任意1x R ∈,总存在2[1,1]x ∈-,使得21()()g x f x ≤,求 实数a 的取值范围.48.如图,⊙O 1与⊙O 2相交于A 、B 两点,过点A 作⊙O 1的切线交⊙O 2于点C ,过点B 作两圆的割线,分别交⊙O 1、⊙O 2于点D 、E ,DE 与AC 相交于点P .(1)求证:AD//EC ;(2)若AD 是⊙O 2的切线,且PA=6,PC =2,BD =9,求AD 的长。

相关文档
最新文档