2014年高中毕业年级第一次质量预测数学(理科) 参考答案.doc
四川凉山州2014届高中毕业班第一次诊断性测试 理科数学答案
故 C1C 2 C 3 C n 取得最大值时, n 的值为 6; ………………………………12 分 21.解: (1)a=2 时 g(x)=
2 x
'
h(x)=lnx+
2 x
(x>0) h (x)=
'
1 2 x2 = 2 …………………………1 分 x x2 x
'
当 0<x<2 时 h ( x) 0 ,当 x>2, h ( x) 0
凉山州 2014 届高中毕业班第一次诊断性检测 数学(理工农医类)参考答案及评分标准
一、选择题
1.B 2.B 3.C 4.B 5.C 6.D 7. B 8. A 9.D 10.A
二、填空题.
11. —10 12.
1 2
13. 1
14.
6 7
15.①
三、解答题
16 解: f ( x) a b 2 cos x 3 sin 2 x 1 cos 2 x 3 sin 2 x
………………………………………9 分
当 a 0 时, g ( x 2 ) [11a, a ] , 2 g ( x 2 ) [ 2 a,2 11a ]
2 a 5 2 11a 0 a a 0
当 a 0 时,显然不合题意; 综上所述, a 的取值范围是 [
2
4
1 16
3 8
9 16
∴随机变量 X 的数学期望 E ( X ) 0
1 3 9 ………………………6 分 2 4 3 ; 16 8 16
(2)事件 AB 为如下两个互斥事件的和事件: 事件 C:甲校总得分为 4 分且乙校总得分为 0 分; 事件 D:甲校总得分为 2 分且乙校总得分为 2 分;
绵阳市高2014届数学第一次诊断考试(理科)含答案
2 6 千米.„„„„12 分 3
19.解: (I)由于 f(3+x)=f(-x)知函数 f (x)关于 x 即
3 对称, 2
b 3 ,解得 b=-3,于是 f(x)=x2-3x+2.„„„„„„„„„„„„3 分 2 2
3
) 2,解得
6
.
∴ y 2 sin( x ) .„„„„„„„„„„„„„„„„„„„„„„6 分 6 3 (II)∵ B 点的横坐标为 3,代入函数解析式得 yB 2sin( 3 ) =1, ∴ BD 12 (4 3)2 2 .„„„„„„„„„„„„„„„„„„„8 分 在△BCD 中,设∠CBD=θ,则∠BDC=180º -120º -θ=60º -θ. 由正弦定理有 ∴ CD
x y 1 0, 13.已知变量 x,y 满足约束条件 x y 1 0, 则 z=2x+y 的最大值为________. y 1,
14.已知 f (x)是 R 上的减函数,A(3,-1),B(0,1)是其图象上两个点,则不等 式| f (1+lnx)|<1 的解集是__________. 15.对于定义域为 [0, 1]的函数 f (x),如果同时满足以下三条:①对任意的 x ∈[0, 1] , 总有 f (x)≥0; ②f (1)=1; ③若 x1≥0, x2≥0, x1+x2≤1, 都有 f (x1+ x2)≥f (x1)+ f (x2)成立,则称函数为“美好函数” .给出下列结论: ① 若函数 f (x)为美好函数,则 f (0)=0; ② 函数 g(x)=2x-1(x∈[0, 1])不是美好函数; ③ 函数 h(x)=xα(α∈(0,1),x∈[0, 1])是美好函数; ④ 若函数 f (x)为美好函数,且 x0∈[0,1] ,使得 f(f (x0))=x0,则 f (x0)=x0. 以上说法中正确的是___________. (写出所有正确结论的序号) 三.解答题:本大题共 6 小题,共 75 分.解答应写出文字说明.证明过程或演 算步骤. 16. (本题满分 12 分) 已知函数 f ( x)
2014年甘肃省高三第一次诊断考试理科数学(解析版)
甘肃省2014年高考数学一模试卷(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的.1.(5分)已知集合{5}{20}A x Z x B x xA B =∈=≥⋂<,﹣,则等于( ) A .25(,) B .[25,) C .{}234,, D .{}345,,解析 A={x ∈Z||x|<5}={x ∈Z|﹣5<x <5}={﹣4,﹣3,﹣2,﹣1,0,1,2,3,4},B={x|x ﹣2≥0},∴A ∩B={2,3,4},故选:C .2.(5分)(2014•甘肃一模)复数21()1i i -+(i 是虚数单位)化简的结果是( ) A .1B .1-C .iD .i - 解析==()2=(﹣i )2=﹣1. 故选:B .3.(5分)某几何体的三视图如图所示,且该几何体的体积是32,则正视图中的x 的值是( )A .2B .92C .32D .3 解析 由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.则体积为=,解得x=.故选:C .4.(5分)从如图所示的正方形OABC 区域内任取一个点M x y (,),则点M 取自阴影部分的概率为( )A .12 B .13 C .14 D .16解析 可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S (Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S (A )==.所以P (A )=.故选:B .5.(5分)已知等差数列{}n a 的前n 项和为n S ,若4518a a ﹣,则8S =()A .72B .68C .54D .90解析 在等差数列{a n }中,∵a 4=18﹣a 5,∴a 4+a 5=18,则S 8=4(a 1+a 8)=4(a 4+a 5)=72故选:A6.(5分)阅读如图程序框图,输出的结果i 的值为( )A .5B .6C .7D .9解析 由程序框图可看出:S=1×23×25×…×22n+1=23+5+…+(2n+1)==, 由判断框的条件可知:当满足≥100时,应跳出循环结构,此时n 2+2n >6,解得n=3,∴i=2n+1=7.故应输出i 的值是7.故选:C .7.(5分)设lg lg 2a e b e c ===,(), )A .a b c >>B .c a b >>C .a c b >>D .c b a >>解析 ∵1<e <3<, ∴0<lge <1,∴lge >lge >(lge )2.∴a >c >b .故选:C .8.(5分)(2014•甘肃一模)已知点P x y (,)满足线性约束条件21x x y ≤⎧⎪⎨⎪-⎩y +x ≥≤1,点31M O (,),为坐标原点,则OM OP ∙的最大值为( )A .12B .11C .3D .1- 解析 设z=•,则z=3x+y ,即y=﹣3x+z ,作出不等式组对应的平面区域如图:平移直线y=﹣3x+z ,由图象可知当直线y=﹣3x+z 经过点A 时,直线y=﹣3x+z 的截距最大,此时z 最大,由,解得,即A (3,2),此时z=3x+y=3×3+2=11,故•的最大值为11,故选:B .9.(5分)若21()nx x -展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A .84-B .84C .36-D .36 解析 展开式中所有二项式系数和为512,即2n =512,则n=9,T r+1=(﹣1)r C 9r x 18﹣3r 令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故选:B .10.(5分)(2014•西藏一模)已知双曲线22221x y a b-= (0,0)a b >>的两条渐近线均和圆C :22650x y x ++=﹣相切,则该双曲线离心率等于( )A BC .32D 解析 双曲线﹣=1(a >0,b >0)的渐近线方程为y=±,即bx ±ay=0 圆C :x 2+y 2﹣6x+5=0化为标准方程(x ﹣3)2+y 2=4∴C (3,0),半径为2∵双曲线﹣=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2﹣6x+5=0相切∴∴9b 2=4b 2+4a 2∴5b 2=4a 2∵b 2=c 2﹣a 2∴5(c 2﹣a 2)=4a 2∴9a 2=5c 2∴=∴双曲线离心率等于故选:A .11.(5分)定义在R 上的偶函数f x ()满足120f x f x f x +=≠()()﹣((),且在区间20132014(,)上单调递增,已知αβ,是锐角三角形的两个内角,则sin cos f f αβ()、()的大小关系是( ) A .sin cos f f αβ()<() B .sin cos f f αβ()>()C .sin cos f f αβ=()()D .以上情况均有可能 解析 ∵定义在R 上的偶函数f (x )满足f (x+1)f (x )=﹣2,∴f (x )===f (x+2),∴f (x )是周期为2的偶函数.∵函数f (x )在区间(2013,2014)上单调递增,故函数在(﹣1,0)上单调递增,在(0,1)上单调递减.∵α,β是锐角三角形的两个内角,∴α+β>,∴>α>﹣β>0,∴1>sin α>sin (﹣β)=cos β>0. 则f (sin α)<f (cos β),故选:A .12.(5分)(2014•甘肃一模)设f x ()是定义在R 上的函数,x R ∀∈,都有22f x f x =+(﹣)(),f x f x =(﹣)(),且当[02]x ∈,时,22x f x =()﹣,若函数log 10,1)g x f x a x a a =+≠()()﹣()(>在区间12014](﹣,内恰有三个不同零点,则实数a 的取值范围是( )A .11(,)(3,7)95B .1(0,)(7,)9+∞C .1(,1)(1,3)9D .11(,)(3,7)73解析 由f (2﹣x )=f (2+x ),得到函数f (x )关于x=2对称,由f (﹣x )=f (x )得函数f (x )是偶函数,且f (2﹣x )=f (2+x )=f (x ﹣2),即f (x+4)=f (x ),即函数的周期是4.当x ∈[﹣2,0]时,﹣x ∈[0,2],此时f (x )=f (﹣x )=2﹣x ﹣2,由g (x )=f (x )﹣log a (x+1)=0得f (x )=log a (x+1),(a >0,a ≠1)作出函数f (x )的图象如图:①若a >1,当函数g (x )=log a (x+1),经过点A (2,2)时,两个图象有两个交点,此时g (2)=log a 3=2,解得a=,当函数g (x )=log a (x+1),经过点B (6,2)时,两个图象有四个交点, 此时g (6)=log a 7=2,解得a=,此时要使两个函数有3个不同的零点,则, ②若0<a <1,当函数g (x )=log a (x+1),经过点C (4,﹣1)时,两个图象有两个交点, 此时g (4)=log a 5=﹣1,解得a=,当函数g (x )=log a (x+1),经过点D (8,﹣1)时,两个图象有四个交点, 此时g (6)=log a 9=﹣1解得a=,此时要使两个函数有3个不同的零点,则, 综上:实数a 的取值范围是(,)∪(,), 故选:A .二、填空題:本大题共4小题,每小题5分.13.(5分)已知函数211()log ()1x f x x x -=++,则11()()20142014f f +-= .解析 ∵函数, ∴>0且x ≠0,解得:﹣1<x <0 或 0<x <1.∴定义域为{x|﹣1<x <0 或 0<x <1},∴==﹣f (x ),∴函数是奇函数,∴==0. 故答案为:0 14.(5分)设随机变量ξ服从正态分布29N (,),若(1)(1)P c P c ξξ+=><﹣,则c = . 解析 ∵N (2,32)⇒, ,∴,解得c=2,故答案为:2.15.(5分)已知数列{}n a 满足110012n n a a a n =+=,﹣,则n a n的最小值 . 解析 a 2﹣a 1=2,a 3﹣a 2=4,…a n+1﹣a n =2n ,这n 个式子相加,就有a n+1=100+n (n+1),即a n =n (n ﹣1)+100=n 2﹣n+100,∴=n+﹣1≥2﹣1=19, 当且仅当n=,即n=10时,取最小值19.故答案为:19.16.(5分)若三棱锥SABC ﹣的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =,12AB AC ==,,60BAC ︒∠=,则球O 的表面积为 .解析 如图,三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,∵SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°, ∴BC==,∴∠ABC=90°.∴△ABC 截球O 所得的圆O ′的半径r=AC=1, ∴球O 的半径R==2, ∴球O 的表面积S=4πR 2=16π.故答案为:16π.三、解答题:本大题共5小题,共70分.解答应写出说明文字,证明过程或演算步骤.17.(12分)在ABC 中,三个内角A B C 、、的对边分别为a b c ,,,若1cos 1cos 3a C c A b +++=()(), (1)求证:a b c ,,成等差数列;(2)若604B b ∠=︒=,,求ABC 的面积.解析 (1)∵a (1+cosC )+c (1+cosA )=3b ,由正弦定理得,sinA (1+cosC )+sinC (1+cosA )=3sinB ,即sinA+sinC+sin (A+C )=3sinB ,∴sinA+sinC=2sinB ,由正弦定理得,a+c=2b ,则a ,b ,c 成等差数列;(2)∵∠B=60°,b=4,∴由余弦定理b 2=a 2+c 2﹣2accosB 得4=a 2+c 2﹣2accos60°,即(a+c )2﹣3ac=16, 又a+c=2b=8,解得,ac=16(或者解得a=c=4),则S △ABC =acsinB=4.18.(12分)如图,在四棱锥PABCD ﹣中,底面ABCD 为直角梯形,且90AD BC ABC PAD ∠=∠=︒,,侧面PAD ABCD ⊥底面.若12PA AB BC AD ===. (Ⅰ)求证:CD PC ⊥; (Ⅱ)求二面角APD C ﹣﹣的余弦值.解析(Ⅰ)证明:∵∠PAD=90°,∴PA⊥AD,又∵侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,∴PA⊥底面ABCD,又∵∠BAD=90°,∴AB、AD、AP两两垂直,分别以AB、AD、AP为x轴,y轴,z轴,建立如图所示的空间直角坐标系,设AD=2,则由题意得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∴,,∴=0,∴CD⊥PC.(Ⅱ)解:∵AB、AD、AP两两垂直,∴AB⊥平面PAD,∴是平面PAD的一个法向量,设平面PCD的法向量,∵,∴,取x=1,得到=(1,1,2),设二面角A﹣PD﹣C的大小为θ,由图形知θ为锐角,∴cosθ=|cos<>|=||=,∴二面角A ﹣PD ﹣C 的余弦值为.19.(12分)某高中社团进行社会实践,对[2555],岁的人群随机抽取n 人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如下统计表和如图所示各年龄段人数频率分布直方图请完成以下问题:(1)补全频率直方图,并求n a p ,,的值(2)从[4045,)岁和[4550,)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[4045,)岁得人数为X ,求X 的分布列和数学期望E X ()解析 (1)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为=0.06.频率直方图如下:第一组的人数为=200,频率为0.04×5=0.2,所以n==1000,所以第二组的人数为1000×0.3=300,p==0.65,第四组的频率为0.03×5=0.15,第四组的人数为1000×0.15=150,所以a=150×0.4=60.(2)因为[40,45)岁与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.随机变量X服从超几何分布.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==所以随机变量X的分布列为∴数学期望E(X)=0×+1×+2×+3×=2﹣共线.20.(12分)如图,焦距为2的椭圆E的两个顶点分别为A和B,且AB与n=1)(Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线y kx m =+与椭圆E 有两个不同的交点P 和Q ,O 为坐标原点,总使0OP OQ ∙<,求实数m 的取值范围.解析 (Ⅰ)解:设椭圆C :=1(a >b >0),则∵A (a ,0)、B (0,b ), ∴=(﹣a ,b ), ∵与=(,﹣1)共线,∴a=b ,∵焦距为2, ∴c=1, ∴a 2﹣b 2=1, ∴a 2=2,b 2=1, ∴椭圆E 的标准方程;(Ⅱ)设P (x 1,y 1),Q (x 2,y 2),把直线方程y=kx+m 代入椭圆方程,消去y 可得(2k 2+1)x 2+4kmx+2m 2﹣2=0, ∴x 1+x 2=﹣,x 1x 2=,△=16k 2m 2﹣4×(2k 2+1)(2m 2﹣2)=16k 2﹣8m 2+8>0(*) ∵•<0,∴x 1x 2+y 1y 2<0,∵y 1y 2=(kx 1+m )(kx 2+m )=,∴+<0,∴m 2<,∴m 2<且满足(*) 故实数m 的取值范围是(﹣,).21.(12分)已知函数2ln f x x a x x =+()()﹣﹣在0x =处取得极值. (Ⅰ)求实数a 的值;(Ⅱ)若关于x 的方程52f x x b =+()﹣在区间[]02,上恰有两个不同的实数根,求实数b 的取值范围;(Ⅲ)证明:对任意的正整数n ,不等式23412ln(1)49n n n++++⋯++>都成立. 解析 (Ⅰ)函数f (x )=ln (x+a )﹣x 2﹣x f ′(x )=﹣2x ﹣1当x=0时,f (x )取得极值,∴f ′(0)=0 故,解得a=1,经检验a=1符合题意, 则实数a 的值为1;(Ⅱ)由a=1知f (x )=ln (x+1)﹣x 2﹣x 由f (x )=﹣x+b ,得ln (x+1)﹣x 2+x ﹣b=0 令φ(x )=ln (x+1)﹣x 2+x ﹣b ,则f (x )=﹣x+b 在区间[0,2]上恰有两个不同的实数根等价于φ(x )=0在区间[0,2]上恰有两个不同的实数根. φ′(x )=﹣2x+=,当x ∈[0,1]时,φ′(x )>0,于是φ(x )在[0,1)上单调递增;当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,依题意有φ(0)=﹣b≤0,φ(1)=ln(1+1)﹣1+﹣b>0,φ(2)=ln(1+2)﹣4+3﹣b≤0解得,ln3﹣1≤b<ln2+,故实数b的取值范围为:[ln3﹣1,ln2+);(Ⅲ)f(x)=ln(x+1)﹣x2﹣x的定义域为{x|x>﹣1},由(1)知f(x)=,令f′(x)=0得,x=0或x=﹣(舍去),∴当﹣1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减.∴f(0)为f(x)在(﹣1,+∞)上的最大值.∴f(x)≤f(0),故ln(x+1)﹣x2﹣x≤0(当且仅当x=0时,等号成立)对任意正整数n,取x=>0得,ln(+1)<+∴ln()<,故2+++…+>ln2+ln+ln+…+ln=ln(n+1).四、请从22、23、24三个小题中任选一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.(选修4-1:几何证明选讲)22.(10分)如图,O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:2•=;PM PA PC(Ⅱ)若O的半径为OA=,求MN的长.解析 (Ⅰ)证明:连接ON ,因为PN 切⊙O 于N , ∴∠ONP=90°, ∴∠ONB+∠BNP=90° ∵OB=ON , ∴∠OBN=∠ONB 因为OB ⊥AC 于O , ∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN ,PM=PN ∴PM 2=PN 2=PA •PC (Ⅱ)∵OM=2,BO=2,BM=4 ∵BM •MN=CM •MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2选修4-4:坐标系与参数方程23.已知直线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极值为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:x m ty t=+⎧⎨=⎩,(t 是参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程;(Ⅱ)若直线l 与曲线C 相交于,A B 两点,且|||AB ,试求实数m 的值. 解析 (Ⅰ)∵ρ=4cos θ,∴ρ2=4ρcos θ,化为直角坐标方程x 2+y 2=4x . 由直线l 的参数方程:,(t 是参数),消去t 可得x ﹣y ﹣m=0.(Ⅱ)由圆C 的方程(x ﹣2)2+y 2=4可得圆心C (2,0),半径r=2. ∴圆心C 到直线l 的距离d==.∵,|AB|=∴,化为|m ﹣2|=1,解得m=1或3.选修4-5:不等式选讲24.已知函数()lg(12)f x x x a =+++﹣.(Ⅰ)当5a =﹣时,求函数()f x 的定义域; (Ⅱ)若函数()f x 的定义域为R ,求实数a 的取值范围.解析 (Ⅰ)当a=﹣5时,要使函数有意义,则|x+1|+|x ﹣2|﹣5>0,即|x+1|+|x ﹣2|>5, 在同一坐标系中作出函数y=|x+1|+|x ﹣2|与y=5的图象如图:则由图象可知不等式的解为x <﹣2或x >3,即函数f(x)的定义域为{x|x<﹣2或x>3}.(Ⅱ)∵函数f(x)的定义域为R,|x+1|+|x﹣2|+a>0恒成立,即|x+1|+|x﹣2|>﹣a恒成立,由图象可知|x+1|+|x﹣2|≥3,即﹣a<3,解得a>﹣3.。
新课标I(第03期)-2014届高三名校数学(理)试题分省分项汇编 专题03 导数解析版Word版含解析
一.基础题组1. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】已知曲线23ln 4x y x =-的一条切线的斜率为12-,则切点的横坐标为( ) A .3 B .2 C .1 D .122. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】定积分=-⎰-dx x x 2222( ) A.5B.6C.7D.83. 【山西省太原市太远五中2014届高三12月月考】已知函数xe xx f cos )(=,则函数)(x f 在点))0(,0(f 处切线方程为 . 【答案】10x y +-= 【解析】试题分析:∵'2sin cos ()()x xx xe xe f x e --=,∴1k =-,(0)1f =,∴1y x -=-,即10x y +-=. 考点:利用导数求曲线的切线.4. 【唐山市2013-2014学年度高三年级第一学期期末考试】已知0a >,函数32f(x)x ax bx c =+++在区间[2,2]-单调递减,则4a b +的最大值为 .5. 【河北省衡水中学2014届高三上学期四调考试】设()ln af x x x x=+, 32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线的方程;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.6. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)某地区注重生态环境建设,每年用于改造生态环境总费用为x 亿元,其中用于风景区改造为y 亿元。
该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少a 亿元,至多b 亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若1=a ,4=b ,请你分析能否采用函数模型y =31(416)100x x ++作为生态环境改造投资方案.二.能力题组1. 【河北省唐山市一中2014届高三12月月考】已知函数()f x 对于一切实数x,y 均有()()()21f x y f y x x y +-=++成立,且()()110,0,21g 2a f x f x o x ⎛⎫=∈+ ⎪⎝⎭则当,不等式< 恒成立时,实数a 的取值范围是 .2. 【山西省太原市太远五中2014届高三12月月考】由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图中的阴影部分)的面积是 .【答案】2 【解析】3. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】(本小题满分12分) 已知函数ln(1)()2x x f x x -=-.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2()23g x x x =++,证明:对任意1(1,2)(2,)x ∈+∞ ,总存在2x R ∈,使得12()()f x g x >.试题解析:(1)''2212ln(1)1[ln(1)]ln(1)1()(2)(2)x x x x x x x f x x x --+------==-- .................1分设1()2ln(1)11h x x x x =--+---, 22'22(1)2(1)1(2)()0(1)(1)x x x h x x x ---+-==≥--∴()h x 在(1,)+∞是增函数,又(2)0h = ………………3分 ∴当(1,2)x ∈时, ()0h x < ,则'()0f x <,()f x 是单调递减函数; 当(2,)x ∈+∞时, ()0h x > ,则'()0f x >,()f x 是单调递增函数. 综上知:()f x 在(1,2)单调递减函数,()f x 在(2,)+∞单调递增函数 ……………………6分三.拔高题组1. 【山西省忻州一中、康杰中学、临汾一中、长治二中四校2014届高三第二次联考】0.50.521log log 1(1)(7)x mx x x +>---对任意x ∈[2,4]恒成立,则m 的取值范围为 .∴当4x =时,max 45y =,∴45m >.考点:1.对数函数的单调性;2.恒成立问题;3.利用导数求函数最值.2. 【唐山市2013-2014学年度高三年级第一学期期末考试】(本题满分12分)已知函数(x)1x x e f xe =+.(1)证明:0(x)1f <≤; (2)当0x >时,21(x)1f ax >+,求a 的取值范围.试题解析:(Ⅰ)设(x)xe 1x g =+,则'(x)(x 1)e xg =+.当(,1)x ∈-∞-时,'(x)0g <,(x)g 单调递减; 当(1,)x ∈-+∞时,'(x)0g >,(x)g 单调递增. 所以1(x)g(1)1e0g -≥-=->.又0xe >,故(x)0f >.…2分'2(1e )(x)(xe 1)x x x e f -=+ 当(,0)x ∈-∞时,'(x)0f >,(x)f 单调递增; 当(0,)x ∈+∞时,'(x)0f <,(x)f 单调递减. 所以(x)f(0)1f ≤=. 综上,有0(x)1f <≤.…5分3. 【河北省唐山市一中2014届高三12月月考】(本小题满分12分)已知)0()(>-=a e x x f ax.(1)曲线y=f (x )在x=0处的切线恰与直线012=+-y x 垂直,求a 的值;(2)若x ∈[a ,2a]求f (x )的最大值; (3)若f (x 1)=f (x 2)=0(x 1<x 2),求证:.【答案】(1)13a =;(2)当ln a a a >,即a e <时,max ()()f x f a a e ==-,当ln 2a a a a ≤≤,即2e a e ≤≤时,max ()(ln )ln f x f a a a a a ==-,当2ln a a a <,即2a e >时,2max ()(2)2f x f a a e ==-;(3)证明过程详见解析. 【解析】试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、最值、切线方程以及不等式的证明等基础知识,考查分类讨论思想,综合分析和解决问题的能力.第一问,对()f x 求导,将0x =代入得到切线的斜率,由已知切线与直线210x y -+=垂直得出方程,解出a 的值;第二问,先对()f x 求导,利用导数的正负判断出函数的单调区间,再讨论已知[,2]x a a ∈和单调区间的关系来决定最值的位置;第三问,利用第二问的结论,得出max ()ln f x a a a =-,因为12()()0f x f x ==,所以数形结合,得max ()0f x >,解得a e >,数形结合得出两组点的横坐标的关系21ln x x a a a ->-,又利用12()()0f x f x ==,得出11x a x e =,22x ax e =,进行转换得到所求证的不等式.(3)由(2)知,max ()(ln )ln f x f a a a a a ==-,∵12()()0f x f x ==,∴max ()(ln )ln 0f x f a a a a a ==->, ∴ln 1a >,得a e >,∴()0f a a e =->,且(ln )0f a a >. 得21ln x x a a a ->-,又11x a x e =,22x ax e =,∴1211()(ln )12x x a a a a a x e e e x a--=<=. 考点:1.利用导数求切线的斜率;2.两条直线垂直的充要条件;3.利用导数判断函数的单调性;4.利用导数求函数的最值.4. 【河南省郑州市2014届高中毕业年级第一次质量预测试题】(本小题满分12分)已知函数()ln f x x x =,()(1)g x k x =-.(1)若()()f x g x ≥恒成立,求实数k 的值;(2)若方程()()f x g x =有一根为11(1)x x >,方程''()()f x g x =的根为0x ,是否存在实数k ,使1x k x =?若存在,求出所有满足条件的k 值;若不存在,说明理由. 试题解析:⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x -'=-=, ------------2分当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分5. 【山西省曲沃中学2014届高三上学期期中考试】已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (1)当0a =时,求函数()S t 的单调区间;(2)当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2tS t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分6. 【山西省太原市太远五中2014届高三12月月考】已知函数ln 1af x x a x =+∈+R ()(). (1)当92a =时,如果函数g x f x k =-()()仅有一个零点,求实数k 的取值范围; (2)当2a =时,试比较f x ()与1的大小; (3)求证:1111ln 135721n n +>+++++ ()n ∈*N ()一个交点,所以关键是()y f x =的图像,对()f x 求导,令'()0f x >和'()0f x <判断函数的单调性,确定函数的极值和最值所在位置,求出具体的数值,便可以描绘出函数图像,来决定k 的位置;第二问,先将2=a 代入,得到()f x 解析式,作差法比较大小,得到新函数()h x ,判断()h x 的正负即可,通过对()h x 求导,可以看出()h x 在(0,)+∞上是增函数且(1)0h =,所以分情况会出现3种大小关系;第三问,法一:利用第二问的结论,得到表达式1211ln+>+k k k ,再利用不等式的性质得到所证表达式的右边,左边是利用对数的运算性质化简,得证;法二,用数学归纳法证明,先证明当1n =时不等式成立,再假设当n k =时不等式成立,然后利用假设的结论证明当1n k =+时不等式成立即可.①当1>x 时,0)1()(=>h x h ,即1)(>x f ; ②当10<<x 时,0)1()(=<h x h ,即1)(<x f ;③当1=x 时,0)1()(==h x h ,即1)(=x f . ……………………………8分(3)(法一)根据(2)的结论,当1>x 时,112ln >++x x ,即11ln +->x x x . 令k k x 1+=,则有1211ln +>+k k k , ∑∑==+>+∴n k nk k k k 111211ln . ∑=+=+nk k k n 11ln )1ln( , 1215131)1ln(++++>+∴n n . …………………………………12分。
2014年广州市普通高中毕业班综合测试(一)理科数学答案
本电子文档由akhzjr 制作,非akhzjr 所发表全为剽窃2014年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1. 参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给予相应的分数。
2. 对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4. 只给整数分数,选择题和填空题不给中间分。
一、选择题:本大题考查基本知识和基本运算,共8小题,每小题5分,满分40分。
二、填空题:本大题考查基本知识和基本运算,体现选择性,共7小题,每小题5分,满分30分,其中14~15题是选做题,考生只能选做一题。
三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤。
16.(本小题满分12分)(本小题主要考查三角函数图象的周期性与单调性、同角三角函数的基本关系式、三角函数的化简等知识,考查化归与转化的数学思想方法,以及运算求解能力。
) 解:(1)因为函数()sin cos f x x a x =+的图象经过点(,0)3π-,所以()03f π-=。
.............(1分)即sin()cos()033a ππ-+-= .............................................................................(2分)即022a-+=,解得a = .............................................................................(4分)(2)解法一:由(1)得()sin f x x x =+所以2222()[()]2(sin )2sin 2cos 3cos 2g x f x x x x x x x =-=+-=++-2cos 2x x =+ ...................................................................(5分)12cos 2)2(sin 2cos cos 2sin )266x x x x ππ=+=+ 2sin(2)6x π=+...................................................................(7分)所以函数()g x 的最小正周期为22ππ=。
9 河南省郑州市2014届高中毕业班第一次质量预测数学(理)试题
2014年高中毕业年级第一次质量预测理科数学试题卷本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}2|{},2|{m x x B x x A <>=,且B C A R ⊆,那么m 的值可以是( ) A .1 B .2 C .3 D .4 答案 A解析 依题意,}2|{R m x x B C ≥=,又B C A R ⊆,故m 的值可以是1. 2.复数1iz i+=(i 是虚数单位)在复平面内对应的点在( ) A. 第一象限 B .第二象限 C .第三象限 D .第四象限 答案 D 解析 1i z i+=i i i i z -=+=1)1(2,则复数z 在复平面上对应的点的坐标为)1,1(-,在第四象限.3. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,右图是据某地某日早7点至晚8点甲、乙两个 2.5PM 监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定 答案 A解析 根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分布比较稳定,而乙地的数据分布比较分散,不如甲地数据集中,故甲地的方差小.4.如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的表面积为( )A .15+B .C .30+.答案 C解析 由已知,元几何体为四棱柱,其底面边长为3)3(2222=-+,侧视图的高为3, ∴底面积为36332=⨯=S ,又因为棱柱的高为3,∴侧面积为303)3332(=⨯+++, 故原几何体的表面积为3630+.5.已知曲线23ln 4x y x =-的一条切线的斜率为12-,则切点的横坐标为( )A.3B. 2 C .1 D .12答案 B解析 设切点为)0)(,(000>x y x P , 曲线23ln 4x y x =-的一条切线的斜率为12-,∴213200-=-='x x y ,解得20=x 或30-=x (舍去),故所求切点的横坐标为2. 6.已知各项不为0的等差数列{}n a 满足2478230a a a -+=,数列{}n b 是等比数列,且77b a =,则2811b b b 等于( )A .1B .2C .4D .8答案 D解析 等差数列}{n a 的各项不为0,且满足0328274=+-a a a ,∴2788422a a a a =++, 即27724a a =,解得27=a 或07=a (舍去),又77b a =,27=∴b ,又数列}{n b 是等比数列,83337477571182===⋅⋅⋅⋅=∴b q b q b qb b b b . 7.二项式6(ax的展开式的第二项的系数为-,则22a x dx -⎰的值为( )A.3 B .73 C .3或73 D .3或103-答案 B解析 二项式6)63(+ax 的展开式的的第二项系数为363516-=⋅⋅a C ,解得1-=a , 37|)31(12321222===∴------⎰⎰x dx x dx x a. 8.已知抛物线22(0)y px p =>,过其焦点且斜率为1-的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为 ( )A .1=xB .2x =C .1x =-D .2x =- 答案 C解析 设),(),,(2211y x B y x A ,由于直线过焦点且斜率为1-,则其方程为)2(px y --=, 联立方程组⎪⎩⎪⎨⎧=--=pxy p x y 2)2(2,消去y 得04322=+-p px x ,632321=⨯==+∴p x x ,∴2=p .故抛物线的准线方程为1-=x .9.设函数())cos(2)()2f x x x πϕϕϕ=+++<,且其图象关于直线0x =对称,则( )A .()y f x =的最小正周期为π,且在(0,)2π上为增函数B .()y f x =的最小正周期为π,且在(0,)2π上为减函数 C .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数答案 B解析 )62cos(2)]2sin(21)2cos(23[2)(πϕϕϕ-+=+++=x x x x f , 2=∴ω,ππ==∴22T ,又函数图象关于直线0=x 对称,Z ,6∈=-∴k k ππϕ, 即Z ,6∈+=k k ππϕ,又2||πϕ<,6πϕ=∴,x x f 2cos 2)(=∴, 令Z ,222∈+≤≤k k x k πππ,解得Z ,2∈+≤≤k k x k πππ,∴函数)(x f 的递减区间为Z ],2,[∈+k k k πππ,又Z ],2,[)2,0(∈+⊂k k k ππππ,∴函数)(x f 在)2,0(π上为减函数,故函数)(x f 的最小正周期为π,在)2,0(π上为减函数,选C .10.已知,是两个互相垂直的单位向量,且1=∙=∙,则对任意的正实数t ,|1|tt ++的最小值是( )A.2 B . C .4 D . 答案 B解析 ,是互相垂直的单位向量,设)0,1(=,)1,0(=,),(y x =, 由1=∙=∙,1==∴y x ,即)1,1(=,)11,1()1,0()0,()1,1(1tt t t b t a t c ++=++=++∴,∴22221)1(22)11()1(1|tt t t t t b t a t c ++++=+++=++∴, 0>t ,21≥+∴t t ,2122≥+tt ,当且仅当1=t 时取等号,22242|1|=++≥++∴tt ,故|1|t t ++∴的最小值为22.11.已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为( )A. B. C. (0,1) D. 1(0,)2答案 A解析 椭圆1C :1222=-+n y m x 与双曲线1:222=+n y m x C 有相同的焦点,0,0<>∴n m , n m n m -=--+∴)(2,解得1-=n ,∴椭圆1C 的离心率222112112)1(1=->+-=+---=m m e ,又10<<e , 故椭圆1C 的离心率的取值范围是)1,22(. 12.已知数列{}n a 的通项公式为)n a n N *=∈,其前n 项和为n S ,则在数列1S 、2S 、…2014S 中,有理数项的项数为( ) A .42 B .43 C .44 D .45 答案 B 解析 111)1()1(11)1(1+-=+++=+++=n n n n n n n n n n a n , 1111113121211+-=+-+⋅⋅⋅+-+-=∴n n n S n , 令)N ,2(1*∈≥+=t t n t ,则12-=t n ,由2014≤n ,得201412≤-t ,解得*N ,442∈≤≤t t ,t ∴的个数为43个,即201421,,,S S S ⋅⋅⋅中,有理项的项数为43.第Ⅱ卷本卷包括必考题和选考题两部分.第13—21题为必考题,每个试题考生都必须作答,第22—24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.设,x y 满足约束条件1,3,0,x y x y y -≥-⎧⎪+<⎨⎪>⎩, 则z x y =-的取值范围为________.答案 [1,3)-解析 不等式组表示的平面区域如图中的阴影部分(不含AC 、BC 的边),解方程组可求得)0,1(-A ,)2,1(B ,)0,3(C ,斜率为1的直线y x z -=与直线AB 重合时,目标函数y x z -=取得最小值,101-=--=z ;斜率为1的直线y x z -=经过点C 时,z 取得最大值,则303=-<z , 故z x y =-的取值范围为)3,1[-.14.执行右面的程序框图,若输出的3132S =,则输入的整数p 的值为__________.答案 5解析 依题意,该程序是计算满足32312121212132=+⋅⋅⋅+++=p S 的整数p 的值, p p 2112121212132-=+⋅⋅⋅+++,则3231211=-p ,解得5=p . 15.已知三棱柱111ABC A B C -的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体2,1AB AC ==.60ABC ∠=,则此球的表面积等于_________. 答案 π8解析 三棱柱的侧棱垂直于底面,棱柱的体积为3, 60,1,2=∠==BAC AC AB ,360sin 12211=⨯⨯⨯⨯∴AA ,解得21=AA , 根据余弦定理得321460sin 2222=-+=⋅⋅-+=AC AB AC AB BC ,3=∴BC , 设ABC ∆外接圆的半径为R ,则R BC260sin =,1=∴R , ∴外接球的半径为211=+,球的表面积为ππ8)2(42=⋅.16.定义在R 上的函数32()(0)f x ax bx cx a =++≠的单调增区间为)1,1(-,若方程23(())2()0a f x bf x c ++=恰有6个不同的实根,则实数a 的取值范围是__________.答案 21-<a 解析 c bx ax x f ++='23)(2,又函数)(x f 的递增区间为)1,1(-,⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-∴1131132ac a b ,即⎩⎨⎧-==a c b 30,ax ax x f 3)(3-=∴,又23(())2()0a f x bf x c ++=恰有6个不同的实根,等价于03))((32=-a x f a 恰有6个不同的实根,即1)(±=x f ,要使23(())2()0a f x bf x c ++=恰有6个不同的实根, 也就是方程1)(±=x f 各有3个不同的实根,)1(333)(22-=-='x a a ax x f ,0<a ,∴当0)(>'x f 得11<<-x ,此时函数)(x f 单调递增,当0)(<'x f 得1-<x 或1>x ,此时函数)(x f 单调递减,∴当1=x 时,函数)(x f 取得极大值a f 2)1(-=,当1-=x 时,函数)(x f 取得极小值a f 2)1(=-,∴此时必有极大值极小值)(1)(x f x f <<,即a a 212-<<,⎪⎪⎩⎪⎪⎨⎧-<<∴2121a a ,故21-<a . 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图A B C ∆中,已知点D 在BC 边上,满足0=∙,sin BAC AB BD ∠===(Ⅰ)求AD 的长;(Ⅱ)求C cos .解析 (Ⅰ) 因为AD AC ⊥,所以sin sin()cos 2BAC BAD BAD π∠=+∠=∠,即cos BAD ∠=在ABD ∆中,由余弦定理可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠, 即28150AD AD -+=,解之得5AD =或 3.AD = 由于AB AD >,所以 3.AD = (7分) (Ⅱ) 在ABD ∆中,由正弦定理可知sin sin BD ABBAD ADB=∠∠,又由cos BAD ∠=可知1sin 3BAD ∠=,所以sin sin AB BAD ADB BD ∠∠==, 因为2ADB DAC C C π∠=∠+∠=+∠,所以cos C =(12分) 18.(本小题满分12分)为迎接2014年“马”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题A 有三个选项,问题B 有四个选项,但都只有一个选项是正确的,正确回答问题A 可获奖金a 元,正确回答问题B 可获奖金b 元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止.假设一个参与者在回答问题前,对这两个问题都很陌生.(Ⅰ)如果参与者先回答问题A ,求其恰好获得奖金a 元的概率; (Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大. 解析 随机猜对问题A 的概率113P =,随机猜对问题B 的概率214P =. (Ⅰ)设参与者先回答问题A ,且恰好获得奖金a 元为事件M , 则12131()(1)344P M P P =-=⨯=, 即参与者先回答问题A ,其恰好获得奖金a 元的概率为14. (4分) (Ⅱ)参与者回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B .参与者获奖金额ξ可取0,,a a b +, 则()12013P P ξ==-=,()()12114P a P P ξ==-=,()121.12P a b PP ξ=+==②先回答问题B ,再回答问题A ,参与者获奖金额η,可取0,,b a b +,则()23014P P η==-=,()()21116P b P P η==-=,()211.12P a b P P η=+==()3110.4612124a bE b a b η=⨯+⨯++⨯=+32.12a bE E ξη--= 于是,当23a b >,时E E ξη>,即先回答问题A ,再回答问题B ,获奖的期望值较大;当23a b =,时E E ξη=,两种顺序获奖的期望值相等;当23a b <,时E E ξη<,先回答问题B ,再回答问题A ,获奖的期望值较大. (12分) 19.(本小题满分12分)在三棱柱111ABC A B C -中,侧面11ABB A为矩形,11,AB AA =D 为1AA 的中 点,BD 与1AB 交于点O ,CO ⊥侧面11ABB A . (Ⅰ)证明:1BC AB ⊥;(Ⅱ)若OC OA =,求直线1C D 与平面ABC 所成角的 正弦值.解析(Ⅰ)证明:由题意11tan tan AD AB ABD AB B AB BB ∠==∠==注意到10,2ABD AB B π<∠∠<,所以1ABD AB B ∠=∠,所以1112ABD BAB AB B BAB π∠+∠=∠+∠=,所以BD AB ⊥1,又⊥CO 侧面11A ABB ,1.AB CO ∴⊥又BD 与CO 交于点O ,所以CBD AB 面⊥1,又因为CBD BC 面⊂,所以1AB BC ⊥. (6分) (Ⅱ)如图,分别以1,,OD OB OC 所在的直线为,,x y z 轴,以O 为原点,建立空间直角坐标系xyz O - 则(0,A ,(B , C ,1B ,D , 又因为12CC AD =,所以1C (8分) A所以(AB =-,(0,AC =,16(DC = 设平面ABC 的法向量为(,,)n x y z =,则根据0,0AB n AC n ⋅=⋅=可得(1,2,n =是平面ABC 的一个法向量, 设直线1C D 与平面ABC 所成角为α,则11||sin ||||DC n DC n α⋅== (12分) 20.(本小题满分12分)已知ABC ∆的两顶点坐标(1,0),(1,0)A B -,圆E 是ABC ∆的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,1CP =(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M .(Ⅰ)求曲线M 的方程;(Ⅱ)设直线BC 与曲线M 的另一交点为D ,当点A 在以线段CD 为直径的圆上时,求直线BC 的方程.解析(Ⅰ)由题知||||||||||||2||||4||,CA CB CP CQ AP BQ CP AB AB +=+++=+=>所以曲线M 是以,A B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :22221(0,0)x y a b y a b+=>>≠,则2222||4,()32AB a b a ==-=, 所以曲线M :221(0)43x y y +=≠为所求. (4分) (Ⅱ)注意到直线BC 的斜率不为0,且过定点(1,0)B ,设1122:1,(,),(,)BC l x my C x y D x y =+, 由221,3412,x my x y =+⎧⎨+=⎩消x 得22(34)690m y my ++-=,所以1,2y =,所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩(8分)因为1122(2,),(2,)AC my y AD my y =+=+,所以[来源:学科网]212121212222222(2)(2)(1)2()49(1)12794.343434AC AD my my y y m y y m y y m m m m m m ⋅=+++=+++++-=--+=+++注意到点A 在以CD 为直径的圆上,所以0AC AD ⋅=,即m =, 所以直线BC的方程330x +-=或330x --=为所求. (12分)21.(本小题满分12分)已知函数()ln ,()(1)f x x x g x k x ==-. (Ⅰ)若()()f x g x ≥恒成立,求实数k 的值;(Ⅱ)若方程()()f x g x =有一根为11(1)x x >,方程'()'()f x g x =的根为0x ,是否存在实数k ,使1?x k x =若存在,求出所有满足条件的k 值;若不存在,说明理由, 解析 (Ⅰ)注意到函数()f x 的定义域为(0,)+∞,所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x -=->,则221()k x kh x x x x-'=-=,当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.当0k >时,若0x k <<,()0h x '<;若x k >,()0h x '>. 所以()h x 是(0,)k 上的减函数,是(,)k +∞上的增函数, 故只需min ()()ln 10h x h k k k ==-+≥. (4分) 令()ln 1(0)u x x x x =-+>,11()1xu x x x-'=-=, 当01x <<时,()0u x '>; 当1x >时,()0u x '<. 所以()u x 是(0,1)上的增函数,是(1,)+∞上的减函数. 故()(1)0u x u ≤=当且仅当1x =时等号成立.所以当且仅当1k =时,()0h x ≥成立,即1k =为所求. (6分)(Ⅱ)由(Ⅰ)知当0k ≤或1k =时,()()f x g x =,即()0h x =仅有唯一解1x =,不合题意;当01k <<时, ()h x 是(,)k +∞上的增函数,对1x >,有()(1)0h x h >=, 所以()()f x g x =没有大于1的根,不合题意.当1k >时,由()()f x g x ''=解得10k x e -=,若存在110k x kx ke -==, 则111ln()(1)k k k keke k ke ---=-,即1ln 10k k e --+=,令1()ln 1(1)xv x x e x -=-+>,11()x x xe exv x e x xe --'=-=,令(),()xxs x e ex s x e e '=-=-,当1x >时,总有()0s x '>, 所以()s x 是(1,)+∞上的增函数,即()(1)0xs x e ex s =->=, 故()0v x '>,()v x 在(1,)+∞上是增函数,所以()(1)0v x v >=,即1ln 10k k e --+=在(1,)+∞无解. 综上可知,不存在满足条件的实数k . (12分)请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若1,13EC ED CB DA ==,求DCAB的值; (Ⅱ)若2BCEF FA FB =⋅,证明:EF ∥CD .解析 (Ⅰ) D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又AEB ∠为公共角, ∴ECD ∆∽,EAB ∆ ∴.DC EC EDAB EA EB== ∴2111...428DC EC ED EC ED AB EA EB EB EA ⎛⎫==== ⎪⎝⎭.∴DC AB =(6分)(Ⅱ) FB FA EF ⋅=2, ∴FEFBFA EF =, 又 BFE EFA ∠=∠, ∴FAE ∆∽FEB ∆, ∴EBF FEA ∠=∠,又 D C B A ,,,四点共圆,∴EBF EDC ∠=∠,∴EDC FEA ∠=∠, ∴//.EF CD . (10分)23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线12cos :1sin x t C y t =-+⎧⎨=+⎩ (t 为参数),24cos :3sin x C y θθ=⎧⎨=⎩(q 为参数).(Ⅰ)化1C ,2C 的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)过曲线2C 的左顶点且倾斜角为4π的直线l 交曲绒1C 于A ,B 两点,求AB .解析 (Ⅰ)222212:(2)(1)1,:1.169x y C x y C ++-=+= 曲线1C 为圆心是(2,1)-,半径是1的圆.曲线2C 为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(4分)(Ⅱ)曲线2C 的左顶点为(4,0)-,则直线l的参数方程为4,,x s y ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数)将其代入曲线1C整理可得:240s -+=,设,A B 对应参数分别为12,s s ,则1212 4.s s s s +==所以12||||AB s s =-==. (10分)24.(本小题满分10分)选修4-5:不等式选讲 设函数()4(4)f x x x a a =-+-<. (Ⅰ)若()f x 的最小值为3,求a 值; (Ⅱ)求不等式()3f x x ≥-的解集,解析 (Ⅰ)因为,4)()4(4-=---≥-+-a a x x a x x 因为4a <,所以当且仅当4a x ≤≤时等号成立,故43,1a a -=∴=为所求. (4分)(Ⅱ)不等式x x f -≥3)(即不等式x a x x -≥-+-34 )4(<a , ①当a x <时,原不等式可化为43,x a x x -+-≥- 即 1.x a ≤+ 所以,当a x <时,原不等式成立.②当4≤≤x a 时,原不等式可化为43.x x a x -+-≥- 即 1.x a ≥-所以,当4≤≤x a 时,原不等式成立. ③当4>x 时,原不等式可化为43.x x a x -+-≥- 即7,3a x +≥由于4<a 时74.3a +> 所以,当4>x 时,原不等式成立.综合①②③可知: 不等式x x f -≥3)(的解集为R. (10分)。
答案2014学年第一学期高三数学(理)
2014学年第一学期高三数学教学质量检测试卷参考答案(理)一、填空题1、2π2、]2,0[3、i 24、⎩⎨⎧∈≥==*-N n n n a n n ,2,21,32 5、28 6、103 7、4 8、060 9、63 10、)14,12( 11、61 12、53 13、2 14、]41,0(19、[解](1)因为⊥PA 底面ABC ,PB 与底面ABC 所成的角为3π 所以 3π=∠PBA ………2分 因为2=AB ,所以32=PB …………4分 2324433131=⋅⋅⋅=⋅=∆-PA S V ABC ABC P ………………6分 (2)连接PM ,取AB 的中点,记为N ,连接MN ,则AC MN // 所以PMN ∠为异面直线PM 与AC 所成的角 ………………7分 计算可得:13=PN ,1=MN ,15=PM ………………9分 101515213151cos =-+=∠PMN ………………11分 异面直线PM 与AC 所成的角为1015arccos………………12分 20、【解】(1)由条件得到03tan 8tan 32=-+αα,………………2分解得31tan =α或者3tan -=α ………………4分 παπ<<2Θ,.3tan -=∴α ………………6分(2)54tan 1tan 12cos )22sin(22=+--=-=-αααπα ………………2分+2分+2分=6分 21、(理)【解】:(1)设0)(=x f ,02)2(2=--+n x n x 得 n x x =-=21,2。
所以n a n =…………………………………………………………………………4分(2)n n n n b 2)1(31⋅⋅-+=-λ,若存在0≠λ,满足n n b b >+1恒成立 即:n n n n n n 2)1(32)1(3111⋅⋅-+>⋅⋅-+-++λλ,………………………………6分λ⋅->--11)1()23(n n 恒成立 ……………………………………………………8分 当n 为奇数时,λ>-1)23(n ⇒ 1<λ ………………………………………10分 当n 为偶数时,λ->-1)23(n ⇒ 23->λ …………………………………12分 所以 123<<-λ ………………13分, 故:1-=λ………………………14分22、【解】(1)由0)1(=f ,得21=+c a ,………………1分 因为0)(≥x f 在R x ∈时恒成立,所以0>a 且△0441≤-=ac ,161≥ac , ………………2分 即16121≥⎪⎭⎫ ⎝⎛-a a ,0161212≤+-a a ,0412≤⎪⎭⎫ ⎝⎛-a ,所以41==c a .……………4分 (2)由(1)得412141)(2+-=x x x f ,由0)()(<+x h x f ,得 02212<+⎪⎭⎫ ⎝⎛+-b x b x ,即021)(<⎪⎭⎫ ⎝⎛--x b x ,………………7分 所以,当21<b 时,原不等式解集为)21,(b ; 当21>b 时,原不等式解集为),21(b ; 当21=b 时,原不等式解集为空集 . ………………10分 (3)412141)(2+⎪⎭⎫ ⎝⎛+-=x m x x g , ………………11分 )(x g 的图像是开口向上的抛物线,对称轴为直线12+=m x .假设存在实数m ,使函数)(x g 在区间]2,[+m m 上有最小值5-.① 当m m <+12,即1-<m 时,函数)(x g 在区间]2,[+m m 上是增函数,所以5)(-=m g ,即54121412-=+⎪⎭⎫ ⎝⎛+-m m m ,解得3-=m 或37=m , 因为1-<m ,所以3-=m ; ………………13分②当212+≤+≤m m m ,即11≤≤-m 时,函数)(x g 的最小值为5)12(-=+m g ,即 541)12(21)12(412-=++⎪⎭⎫ ⎝⎛+-+m m m ,解得22121--=m 或22121+-=m ,均舍去; ………………15分③当212+>+m m ,即1>m 时,)(x g 在区间]2,[+m m 上是减函数,所以5)2(-=+m g ,即541)2(21)2(412-=++⎪⎭⎫ ⎝⎛+-+m m m ,解得221--=m 或221+-=m ,因1>m ,所以221+-=m . ………………17分综上,存在实数m ,3-=m 或221+-=m 时,函数)(x g 在区间]2,[+m m 上有最小值5-. ………………18分23、【解】(1)113,2n n n n a a b b n ++-=∴-=+Q , ………………2分1231,4,8b b b =∴==Q ………………4分(2)由3112727n n n n n a a n b b n ++-=-⇒-=-, ………………5分 由104n n b b n +->⇒≥,即456b b b <<<L ; ………………7分由104n n b b n +-<⇒<,即1234b b b b >>> ………………9分4k ∴=. ………………10分(3)由1111(1)(1)(2)n n n n n n n a a b b n ++++-=-⇒-=-+, ………………11分故1*1(1)(21)(2,)n n n n b b n n n N ---=-+-≥∈,12121213212121,(1)(22),,(1)(22),(1)(21)n n n n n n n n b b b b b b n b b n ------∴-=+-=-+-=-+--=-+-L ………………13分当*2()n k k N =∈时,以上各式相加得 1221122(2)(2222)[12(2)(1)]1(2)2n n n n n b b n n ------=-+-++-+--+-=+--L L 2232n n +=+ 2225132323n n n n n b +∴=++==++ ………………15分 当*21()n k k N =-∈时,111221213(1)(2)1(2)32326n n n nn n n n n b b n n +++++=--+=++-+=--+ ………………17分213,32625,323n n n n b n ⎧--+⎪⎪∴=⎨⎪++⎪⎩(21)(2)n k n k =-=,*()k N ∈ ………………18分。
2014年高三一模数学(理)北京市西城区试题Word版带答案.doc
北京市西城区2014年高三一模试卷数 学(理科) 2014.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()UA B =( )(A )(,2]-∞(B )(,1]-∞(C )(2,)+∞(D )[2,)+∞2. 已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( ) (A )2(B )12(C )114(D )114-3.在极坐标系中,过点π(2,)2且与极轴平行的直线方程是( ) (A )2ρ=(B )2θπ=(C )cos 2ρθ= (D )sin =2ρθ4.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为( ) (A )4 (B )16 (C )256 (D )3log 165.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( ) (A )()sin =f x x (C )()cos =f x x (B )()sin cos =f x x x (D )22()cos sin =-f x x x6. “8m <”是“方程221108x y m m -=--表示双曲线”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )3 (B )4(C )5(D )68. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )(A ) 4个 (B )6个(C )10个(D )14个BADC. P第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______. 10. 若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____.11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是_______.13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,(0)BC a a =>,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:○1 当2a =时,函数()f x 的值域为[1,4]; ○2 (0,)a ∀∈+∞,都有(1)1f =成立;○3 (0,)a ∀∈+∞,函数()f x 的最大值都等于4. 其中所有正确结论的序号是_________.A BD CP三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos =B ,2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b 的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(Ⅰ)求证:1⊥BC D E ; (Ⅱ)求证:1B C // 平面1BED ;(Ⅲ)若平面11BCC B 与平面1BED 所成的锐二面角的大小为π3,求线段1D E 的长度.18.(本小题满分13分)已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-⎪⎩≤ 其中0a ≥.(Ⅰ)当0a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.19.(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.120.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等差数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<; (Ⅲ)如果{}n c 为数列{}n a 的一个(3)m m ≥项子列,且{}n c 为等比数列,证明:1231122m m c c c c -++++-≤.北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(理科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.8 4x =-11. 12.(3,5) 13.4814.○2,○3注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 3分又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos =B ,(0,π)∈B ,所以 sin B ==. ………………7分 由正弦定理sin sin =a bA B , ………………9分 得 sin 3sin ==b Aa B. ………………10分因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1=c . ………………11分故△ABC 的面积1sin 22S bc A ==. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分(Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. ……………… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验, 所以033127(0)C (1)464P X ==⨯-=, 1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=,33311(3)C ()464P X ==⨯=. ……………… 11分 所以随机变量X 的分布列为:………………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. (13)分(注:写出1(3,)4X B ,3311()C ()(1)44k kk P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥, 又因为 1=CDCC C ,所以 BC ⊥平面11DCC D , ………………2分因为 1D E ⊂平面11DCC D , 所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以1//EF B C . ………………6分又因为 1⊄B C 平面1BED ,⊂EF 平面1BED ,所以 1//BC 平面1BED . (8)(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥, 又因为 1D E CD ⊥,BCCD C =,1所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴 如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G . 设平面1BED 法向量为(,,)x y z =n , 因为1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x=,得(1,1,0)=-n . ………………11分 设平面11BCC B 法向量为111(,,)x y z =m , 因为1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m . ………………12分 由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=, 又因为(1)0f =,所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. ……………… 4分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……………… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.……………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+,令()ln 10h x x '=+=,解得1e=x . ……………… 9分随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e上单调递减,在1(,)e+∞上单调递增,且min 11()()e e==-h x h . ……………… 11分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e[1]. ……………… 13分19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==……………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412km x x k -+=+, 21222212m x x k -=+. ……………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k m k-+==+-, (10)分解得2k =±. ……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =.所以12|x x -= ……………… 12分即12||3||mx x k-==,解得 m = ……………… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y x =或y x =±. ……………… 14分20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 3分 若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤, 所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠. 所以 112b ≤, ……………… 6分因为 514b b d =+,50b >, 所以 51511422d b b b =-->-≥,即18d >-, 综上,得108d -<<. ……………… 7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++211111()()222≤-++++m , 112()2-=-m ,所以 112312()2m m c c c c -++++-≤. ……………… 10分当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a K M M N ,所以 211231(1)m m c c c c c q q q -++++=++++1232111111()----=++++m m m m M K K L K LL. 因为 2L ≥,*K M ∈N ,,所以 21112311111()()2()2222m m m c c c c --++++++++=-≤. 综上, 1231122m m c c c c -++++-≤. ……………… 13分。
河南省郑州市高中高三年级第一次质量预测理科数学试题 扫描版含答案.pdf
2014年高中毕业年级第一次质量预测 数学(理科) 参考答案 选择题 ADACB DBCBB AB 填空题 13.; 14.; 15. ; 16.. 三、解答题 17.解:(1) 因为,所以, 即,…………………………….2分 在中,由余弦定理可知, 即, 解之得或 ……………………………………………….6分 由于,所以…………………………………………………..7分 (2) 在中,由正弦定理可知, 又由可知, 所以, 因为, 所以.……………………………………………………..12分 18.解:随机猜对问题的概率,随机猜对问题的概率.………… 2分 ⑴设参与者先回答问题,且恰好获得奖金元为事件, 则, 即参与者先回答问题,其恰好获得奖金元的概率为. ………………4分 ⑵参与者回答问题的顺序有两种,分别讨论如下: ①先回答问题,再回答问题.参与者获奖金额可取, 则,, ②先回答问题,再回答问题,参与者获奖金额,可取, 则,, ………… 10分 于是,当,时,即先回答问题A,再回答问题B,获奖的期望值较大; 当,时,两种顺序获奖的期望值相等;当,时,先回答问题B,再回答问题A,获奖的期望值较大.…………………………12分 19.解:(1)证明:由题意, 注意到,所以, 所以, 所以, ……………………3分 又侧面, 又与交于点,所以, 又因为,所以.……………………………6分 (2)如图,以所在的直线为轴,以为原点,建立空间直角坐标系则, ,,, 又因为,所以 …………8分 所以,, 设平面的法向量为, 则根据可得是平面的一个法向量, 设直线与平面所成角为,则………………12分 20.⑴解:由题知 所以曲线是以为焦点,长轴长为的椭圆(挖去与轴的交点), 设曲线:, 则, 所以曲线:为所求.---------------4分 ⑵解:注意到直线的斜率不为,且过定点, 设, 由 消得,所以, 所以 -------------------------------------8分 因为,所以 注意到点在以为直径的圆上,所以,即,-----11分 所以直线的方程或为所求.------12分 21.⑴解:注意到函数的定义域为, 所以恒成立恒成立, 设, 则, ------------2分 当时,对恒成立,所以是上的增函数, 注意到,所以时,不合题意.-------4分 当时,若,;若,. 所以是上的减函数,是上的增函数, 故只需. --------6分 令, , 当时,; 当时,. 所以是上的增函数,是上的减函数. 故当且仅当时等号成立. 所以当且仅当时,成立,即为所求. --------8分 ⑵解:由⑴知当或时,,即仅有唯一解,不合题意; 当时, 是上的增函数,对,有, 所以没有大于的根,不合题意. ---------8分 当时,由解得,若存在, 则,即, 令,, 令,当时,总有, 所以是上的增函数,即, 故,在上是增函数, 所以,即在无解. 综上可知,不存在满足条件的实数. ----------------------12分 22.解:四点共圆, ,又为公共角, ∴∽ ∴ ∴. ∴. ……………………………………………………………… 6分 , , 又, ∽, , 又四点共圆,,, .…………………………………………………… 10分 曲线为圆心是,半径是1的圆. 曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆. ……4分 ⑵曲线的左顶点为,则直线的参数方程为(为参数) 将其代入曲线整理可得:,设对应参数分别为, 则 所以. ……………………………10分 24.解:⑴因为 因为,所以当且仅当时等号成立,故 为所求.……………………4分 ⑵不等式即不等式 , ①当时,原不等式可化为 即 所以,当时,原不等式成立. ②当时,原不等式可化为 即所以,当时,原不等式成立. ③当时,原不等式可化为 即 由于时 所以,当时,原不等式成立. 综合①②③可知: 不等式的解集为……………………10分 y z x。
2014年测试卷答案-数学理
测试卷A答案数学(理科)说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分。
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。
四、只给整数分数。
选择题和填空题不给中间分。
五、未在规定区域内答题,每错一个区域扣卷面总分1分。
一、选择题:本题考查基本知识和基本运算。
每小题5分,满分50分。
1.B 2.D 3.A 4.B5.D6.B 7.A 8.D 9.C 10.C二、填空题:本题考查基本知识和基本运算。
每小题4分,满分28分。
11.313212.32 13.(4,-4) 14.(-2,-13)15.24716.120 17.[-2,2]三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.本题主要考查三角变换、三角函数值域等基础知识,同时考查运算求解能力。
满分14分。
(Ⅰ) 因为4sin A sin C-2 cos (A-C)=4sin A sin C-2cos A cos C+2 sin A sin C=-2(cos A cos C-sin A sin C),所以-2 cos (A+C)=1,故Z数学(理科)试题答案第1页(共8页)Z 数学(理科)试题答案第 2 页 (共 8 页)cos B =12. 又0<B <π,所以B =π3. ………… 6分(Ⅱ) 由(Ⅰ)知C =2π3-A ,故sin A +2 sin C =2 sin Acos Asin (A +θ), 其中0<θ<π2,且sin θcos θ由0<A <2π3知,θ<A +θ<2π3+θ,故sin (A +θ)≤1. 所以sin A +2 sin C ∈]. ………… 14分 19.本题主要考查等比数列的概念与求和公式、不等式等基础知识,同时考查运算求解能力。
2014届河北省石家庄高中毕业班第一次质量检测理科数学试题(含答案解析)WORD精校版
石家庄2014届高三第一次教学质量检测(期末)理科数学(时间120分钟 满分150分)注意事项:1.本试卷分第Ⅰ卷(选择题))和第Ⅱ卷(非选择题)两部分.答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,则复数z =(1+i)·i 3的共轭复数是 A .-1-i B .1-i C .-1+i D .1+i2.设a ,b 表示直线,α,β,γ表示不同的平面,则下列命题中正确的是 A .若a ⊥α且a ⊥b ,则b ∥α B .若γ⊥α且γ⊥β,则α∥β C .若a ∥α且a ∥β,则α∥β D .若γ∥α且γ∥β,则α∥β3.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为 A .y 2=4x B .y 2=6x C .y 2=8x D .y 2=10x3.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为 A .y 2=4x B .y 2=6x C .y 2=8x D .y 2=10x 4.某程序框图如图所示,该程序运行后输出的k 的值是 A .4 B .5 C .6 D .75.把边长为2的正方形ABCD 沿对角线BD 折起,连结AC ,得到三棱锥C -ABD ,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其俯视图的面积为 A .32B .12C .1D .226.设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧y ≥x ,x +2y ≤2,x ≥-2,则z =x -3y 的最小值为A .-2B .-4C .-6D .-87.袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是 A .310B . 35C . 12D . 14正视图俯视图8.函数f (x )=sin x ·ln |x |的部分图象为9.已知球O ,过其球面上A ,B ,C 三点作截面,若O 点到该截面的距离等于球半径的一半,且AB =BC =2,∠B =120︒,则球O 的表面积为 A .64π3B .8π3C .4πD .16π910.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)11.已知点G 是△ABC 的重心,若∠A =120︒,AB →·AC →=-2,则|AG →|的最小值是A .33B .22C . 23D . 3412.已知函数f (x )=⎩⎪⎨⎪⎧110x +1,(x ≤1),ln x -1,(x >1),则方程f (x )=ax 恰有两个不同的实根时,实数a的取值范围是(注:e 为自然对数的底数) A .(-1,0)B .(-1,110)C .(-1,0)∪(110,1e 2)D .(-1,1e2)第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.某学校共有师生3200人,先用分层抽样的方法,从所有师生中抽取一个容量为160的样本.已知从学生中抽取的人数为150,那么该学校的教师人数是__________. 14.在△ABC 中,若BC =1,A =π3,sin B =2sin C ,则AB 的长度为__________. 15.设F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线右支上存在一点P ,使(OP →+OF 2→)·F 2P →=0(O 为坐标原点),且|PF 1→|=3|PF 2→|,则双曲线的离心率为__________.16.如右图,一个类似杨辉三角的数阵,则第n (n ≥2)的第3个数为__________.13 356 57 11 11 7 9 18 22 18 9 ……三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sin(4x+π4)+cos(4x-π4).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若直线x=m是曲线y=f(x)的对称轴,求实数m的值.18.(本小题满分12分)已知公差不为0的等差数列{a n}的前n项和为S n,S3=a4+6,且a1,a4,a13成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2a n+1,求数列{b n}的前n项和.19.(本小题满分12分)2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查(Ⅰ)完成被调查人员的频率分布直方图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.20.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD是直角梯形,CD⊥平面P AD,BC∥AD,P A=PD,O,E分别为AD,PC的中点,PO=AD=2BC=2CD.(Ⅰ)求证:AB⊥DE;(Ⅱ)求二面角A-PC-O的余弦值.A21.(本小题满分12分)已知F1(-1,0),F2(1,0)为椭圆C的左、右焦点,且点P(1,233)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过点F1的直线l交椭圆C于A,B两点,问△F2AB的内切圆的面积是否存在最大值?若存在求其最大值及此时的直线方程;若不存在,请说明理由.22.(本小题满分12分)已知a为实常数,函数f(x)=ln x-ax+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)有两个不同的零点x1,x2(x1<x2).(ⅰ)求实数a的取值范围;(ⅱ)求证:1e<x1<1,且x1+x2>2.(注:e为自然对数的底数)2014年石家庄市高中毕业班教学质量检测(一)高三数学(理科答案)一、选择题:本大题共12小题,每小题5分. 1-5.DDCBB 6-10.DCAAD 11-12.CC 二、填空题:本大题共4小题,每小题5分,共20分..13.20014.33 15116.223n n -+三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.所以()f x 的最大值是2……5分(Ⅱ)令442x k πππ+=+∈k (Z ),……7分则416k x ππ=+()k z ∈, ……9分而直线x m =是函()y f x =的对称轴,所以416k m ππ=+∈k (Z ) ……10分18.解:(Ⅰ)设等差数列{}n a 的公差为0≠d . 因为346S a =+,所以63223311++=⨯+d a da .① 因为1413,,a a a 成等比数列,所以2111(12)(3)a a d a d +=+.②……2分由①,②可得:13,2a d ==.……………………………………4分 所以21n a n =+.……6分(Ⅱ)由题意1212+=+n n b ,设数列}{n b 的前n 项和为n T ,122+=n n c ,)(422*121)1(21N n c c n n n n ∈==++++, 所以数列}{n c 为以8为首项,以4为公比的等比数列.……9分所以238(14)28.143n n n T n n +--=+=+- ……12分 19.解:(Ⅰ)各组的频率分别是0.1,0.2,0.3,0.2,0.1,0.1.……2分 所以图中各组的纵坐标分别是0.01,0.02,0.03,0.02,0.01,0.01.……4分……5分(Ⅱ)ξ的所有可能取值为:0,1,2,3……………6分()22642251061545150=,104522575C C p C C ξ==⋅=⋅=()21112646442222510510415624102341=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()111224644422225105104246666222=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()124422510461243=,104522575C C p C C ξ==⋅=⋅=……10分所以ξ的分布列是:……11分所以ξ的数学期望65E ξ=.……12分20.解法一:(Ⅰ)设BD OC F ⋂=,连接EF ,E F 、分别是PC 、OC 的中点,则//EF PO ,……1分 已知CD ⊥平面PAD ,CD ⊂平面ABCD ,所以平面ABCD ⊥平面PAD , 又PA PD =,O 为AD 的中点,则PO AD ⊥,而平面ABCD PAFD AD ⋂=平面,所以PO ⊥平面ABCD , 所以EF ⊥平面ABCD ,又AB ⊂平面ABCD ,所以AB EF ⊥;……3分在ABD ∆中,222ABBD AD +=,AB BD ⊥;又EF BD F ⋂=,所以AB ⊥平面BED , 又DE ⊂平面BED ,所以⊥AB DE .……6分AP A BOE DCFH (Ⅱ)在平面ABCD 内过点A 作AH CO ⊥交CO 的延长线于H ,连接HE ,AE , 因为PO ⊥平面ABCD , 所以POC ⊥平面ABCD ,平面POC ⋂平面ABCD AH =, 所以AH ⊥平面POC ,PC ⊂平面POC ,所以AH ⊥PC ;在APC ∆中,AP AC =,E 是PC 中点,故AE PC ⊥;所以PC ⊥平面AHE ,则PC ⊥HE .所以AEH ∠是二面角O PC A --的平面角.……10分 设222PO AD BC CD ====, 而222AEAC EC =-,AE =所以二面角O PC A --. ……12分解法二:因为CD ⊥平面PAD ,CD ⊂平面ABCD ,所以平面ABCD ⊥平面PAD ,又PA PD =,O 是AD 的中点,则PO AD ⊥,且平面ABCD PAFD AD ⋂=平面, 所以PO ⊥平面ABCD .……2分如图,以O 为原点,以,,OB OD OP分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系. (0,1,0)A -(1,0,0)B (1,1,0)C (0,1,0)D 11(,,1)22E (0,0,2)P……4分(1,1,0)AB =11(,,1)22DE =- ,0AB DE ⋅=,所以AC DE ⊥.……6分(Ⅱ)(1,2,0)AC = ,(1,1,2)PC =-,设平面PAC 的法向量为(,,)x y z =m ,则020200AC x y x y z PC ⎧⋅=+=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩m m令2x =,得 ……8分又0BD PO ⋅= ,0BD OC ⋅=,所以平面POC 的法向量(1,1,0)BD =-, ……10分7,所以二面角O PC A --. ……12分21.解:(Ⅰ)由已知,可设椭圆C 的方程为)0(12222>>=+b a by a x ,因为a PF PF 232)332()11()332()11(||||222221==+-+++=+,所以23a =,22b =,所以,椭圆C 的方程为22132x y +=.………4分(也可用待定系数法1)1(912122=-+a a ,或用332122=-=a a a b ) (2)当直线l 斜率存在时,设直线l :(1)y k x =+,由22132(1)x y y k x ⎧+=⎪⎨⎪=+⎩得2222(23)6360k x k x k +++-=, 设1122(,),(,)A x y B x y ,21223623k x x k -=+,2122623k x x k-+=+.……6分所以12||x x -==, 设内切圆半径为r ,因为2ABF ∆的周长为4a =,2142ABF S a r =⨯⨯=, 所以当2ABF ∆的面积最大时,内切圆面积最大,又21212121||||||2ABF S F F y y y y =-=-#12||||k x x =-=, ……8分令2232t k =+≥,则223t k -=,所以2ABF S ===< ……10分又当k 不存在时,12||y y -=23r ==,4=9S π圆 故当k 不存在时圆面积最大,4=9S π圆,此时直线方程为1x =-.……12分(也可以设直线1-=my x l :,避免对k 的讨论,参照以上解法,按相应步骤给分) 22.解:(Ⅰ)()f x 的定义域为(0,)+∞.其导数1'()f x a x=-. ……1分 ①当0a ≤时,'()0f x >,函数在(0,)+∞上是增函数;……2分②当0a >时,在区间1(0,)a 上,'()0f x >;在区间1(,)a+∞上,'()0f x <.所以()f x 在1(0,)a 是增函数,在1(,)a+∞是减函数.……4分(Ⅱ)(ⅰ)由(Ⅰ)知,当0a ≤时,函数()f x 在(0,)+∞上是增函数,不可能有两个零点当0a >时,()f x 在1(0,)a 是增函数,在1(,)a +∞是减函数,此时1()f a为函数()f x 的最大值,当0)1(≤a f 时,)(x f 最多有一个零点,所以11()ln0f a a=>,解得01a <<,6分 此时,2211ae a e <<,且011)1(<-=+--=e a e a ef ,)10(ln 231ln 22)(2222<<--=+--=a a e a a e a ae f令a e a a F 2ln 23)(--=,则022)(2222>-=+-='aae a e a x F ,所以)(a F 在0(,)1上单调递增,所以03)1()(2<-=<e F a F ,即0)(22<ae f所以a 的取值范围是0(,)1. ……8分(ⅱ)证法一:12121ln 1ln x x a x x ++==.设1ln ()(0)x g x x x +=>.2ln '()x g x x =-. 当01x <<时,'()0g x >;当1x >时,'()0g x <;所以()g x 在(0,1)上是增函数,在(1,)+∞上是减函数.()g x 最大值为(1)1g =.由于12()()g x g x =,且01a <<,所以12121ln 1ln 01x x x x ++<=<,所以111x e <<.下面证明:当01x <<时,221ln 1x x x -<+.设221(x)ln (0)1x h x x x -=->+, 则2222(1)'()0(1)x h x x x -=>+.()h x 在(0,1]上是增函数,所以当01x <<时, ()(1)0h x h <=.即当01x <<时,221ln 1x x x -<+..由101x <<得1()0h x <.所以211211ln 1x x x -<+.所以112111ln 21x x x x +<+,即12121xa x <+,112()1x x a ->,112ln ln()0x x a +->.又111ln ax x =+,所以1121ln()0ax x a-+->,112ln()1ax x a+->. 所以111112222()ln()()1ln()10f x x a x x ax a a a a-=---+=-+->. 即122()()f x f x a->.由1210x x a <<<,得121x a a ->.所以122x x a -<,1222x x a+>>. ……12分(ⅱ)证法二:由(Ⅱ)①可知函数()f x 在1(0,)a 是增函数,在1(,)a+∞是减函数..1ln )(+-=ax x x f第 11 页 共 11 页 所以01)1(,011)1(>-=<-=+--=a f ea e a ef .故111x e << 第二部分:分析:因为a x 101<<,所以a x a 121>-.只要证明:0)2(1>-x a f 就可以得出结论 下面给出证明:构造函数:)10).((ln )2()2ln()()2()(ax ax x x a a x a x f x a f x g ≤<-----=--= 则0)2()1(22121)(2<--=+--='ax x a x a a x a x x g 所以函数)(x g 在区间]1,0(a 上为减函数.a x 101<<,则0)1()(1=>a g x g ,又0)(1=x f 于是0)()(1)2()2ln()2(11111>=-+---=-x g x f x aa x a x a f .又0)(2=x f 由(1)可知 122x a x ->.即2221>>+ax x . ……12分。
郑州市2014年高中毕业年级第一次质量预测数学(理科)试题(含答案)(word典藏版)
正视图侧视图俯视图郑州市2014年高中毕业年级第一次质量预测数学试题(理科)第I卷一、选择题:本大题共12小题,每小题5分,共60分.每小题只有一个正确答案.1.已知集合{|2}A x x=>,{|2}B x x m=<且RA C B⊆,那么m的值可以是A.1 B.2 C.3 D.42.复数1izi+=在复平面内对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.2.5PM是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.右图是据某地某日早7点至晚8点甲、乙两个2.5PM监测点统计的数据(单位:毫克∕立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是A.甲B.乙C.甲乙相等D.无法确定4.如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的表面积为A.15+B.C.30+D.5.已知曲线23ln4xy x=-的一条切线的斜率为12-,则切点的横坐标为A.3 B.2 C.1 D.126.已知各项不为0的等差数列{}n a满足2478220a a a-+=,数列}{nb是等比数列,且77b a=,则2811b b b等于A.1 B.2 C.4 D.8甲乙2 0.04 1 23 69 3 0.05 96 2 1 0.06 2 93 3 1 0.07 96 4 0.08 77 0.09 2 4 67.二项式6(6ax +的展开式的第二项的系数为22a x dx -⎰的值为A .3B .73C .3或73D .3或103-8.已知抛物线22(0)y px p =>,过其焦点且斜率为1-的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为A .1x =B .2x =C .1x =-D .2x =-9.设函数())cos(2)f x x x ϕϕ=+++(||2πϕ<),且其图象关于直线0x =对称,则A .()y f x =的最小正周期为π,且在(0,)2π上为增函数 B .()y f x =的最小正周期为π,且在(0,)2π上为减函数C .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数10.已知,a b是两个互相垂直的单位向量,且1c a c b ⋅=⋅= ,则对任意的正实数t ,1||c ta b t++的最小值是A .2B .C .4D .11.已知椭圆1C :2212x y m n -=+与双曲线2C :221x y m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为A .B .C .(0,1)D .1(0,)212.已知数列{}n a 的通项公式为()n a n N *=∈,其前n 项和为n S ,则在数列122014,,,S S S 中,有理数项的项数为A .42B .43C .44D .45第II 卷二、填空题:本大题共4小题每小题5分,共20分.。
2014高三数学一模试卷含有答案
2014高三数学质量调研卷一.填空题1. 若集合}02|{2>-=x x x A ,}2|1||{<+=x x B ,则=B A .2. 设1e 、2e 是平面内两个不平行的向量,若21e e +=与21e e m -=平行,则实数=m .3. 在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .4. 在nx )3(-的展开式中,若第3项的系数为27,则=n .5. 若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d l im . 6. 函数)1(log )(2-=x x f )21(≤<x 的反函数=-)(1x f.7. 已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 .8. 数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a . 9. 若函数x x x f 1)(+=,则不等式25)(2<≤x f 的解集为 .10.如图,正四棱柱1111D C B A ABCD -的底面边长2=AB ,若异面直线A A 1与C B 1 所成的角的大小为21arctan,则正四棱柱1111D C B A ABCD -的侧面积为 . 11. 在数列}{n a 中,21=a ,341+=-n n a a (2≥n ),则数列}{n a 的前n 项和=n S . 12. 已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若43214321b b b b a a a a +++<+++,则集合A 的取法共有 种. 13. 若函数2cos 1)(xx x f ⋅+=π,则=+++)100()2()1(f f f .第10题14.已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 . 二.选择题15.若)(x f 和)(x g 都是定义在R 上的函数,则“)(x f 与)(x g 同是奇函数或偶函数”是“)()(x g x f ⋅是偶函数”的…………………………( ))(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件16. 若a 和b 均为非零实数,则下列不等式中恒成立的是……………………………( ))(A ||2||ab b a ≥+. )(B 2≥+baa b . )(C 4)11)((≥++b a b a . )(D 222)2(2b a b a +≥+. 17.将函数)(x f y =的图像向右平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为x y 2sin 2=,则函数)(x f 的表达式可以是………………………………………( ))(A x sin 2. )(B x cos 2. )(C x 2sin . )(D x 2cos .18. 若i A (n i ,,3,2,1 =)是AOB ∆所在的平面内的点,且OB OA OB OA i ⋅=⋅. 给出下列说法:①||||||||21OA OA n ==== ; ②||i 的最小值一定是||OB ; ③点A 、i A 在一条直线上;④向量及i OA 在向量的方向上的投影必相等.其中正确的个数是…………………………………………………………………………( ))(A 1个. )(B 2个. )(C 3个. )(D 4个.第18题第13题三.解答题19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分. 已知点)0,2(P ,点Q 在曲线C :x y 22=上.(1)若点Q 在第一象限内,且2||=PQ ,求点Q 的坐标; (2)求||PQ 的最小值.20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分. 已知函数x x x x f cos sin 322cos )(+=(1)求函数)(x f 的值域,并写出函数)(x f 的单调递增区间;求函数)(x f 的最大值,并指出取到最大值时对应的x 的值; (2)若60πθ<<,且34)(=θf ,计算θ2cos 的值.21.(本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径310=r 毫米,滴管内液体忽略不计.(1)如果瓶内的药液恰好156分钟滴完,问每分钟应滴下多少滴?(2)在条件(1)下,设输液开始后x (单位:分钟),瓶内液面与进气管的距离为h (单位:厘米),已知当0=x 时,13=h .试将h 表示为x 的函数.(注:3310001mm cm =)22. (本题满分16分) 已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2nn a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;高三数学质量调研卷 评分标准一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. )0,3(-; 2.1-; 3. 4;4.3; 5.1; 6. =-)(1x f )0(21≤+x x (不标明定义域不给分); 7. 8; 8.32; 9.)2,21( 10.32; 11. 14--n n (*N n ∈); 13.150;14.2<a ;二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分.【解】设),(y x Q (0,0>>y x ),x y 22=(1)由已知条件得2)2(||22=+-=y x PQ …………………………2分将x y 22=代入上式,并变形得,022=-x x ,解得0=x (舍去)或2=x ……………4分当2=x 时,2±=y只有2,2==y x 满足条件,所以点Q 的坐标为)2,2(………………6分 (2)||PQ 22)2(y x +-=其中x y 22=…………………………7分422)2(||222+-=+-=x x x x PQ 3)1(2+-=x (0≥x )…………10分当1=x 时,3||min =PQ ……………………………………12分(不指出0≥x ,扣1分)20. 【解】(1))62sin(22sin 32cos )(π+=+=x x x x f ………………2分由于2)62sin(22≤+≤-πx ,所以函数)(x f 的值域为]2,2[-………4分由πππππk x k 22)6222+≤+≤+-得ππππk x k +≤≤+-63所以函数)(x f 的单调的增区间为]6,3[ππππ+-k k ,Z k ∈………6分(文科不写Z k ∈,不扣分;不写区间,扣1分)由20π≤≤x 得,67626πππ≤+≤x ………4分 所以当262ππ=+x 时,2)(max =x f ,此时6π=x ………6分(2)由(1)得,34)62sin(2)(=+=πθθf ,即32)62sin(=+πθ……………8分其中2626ππθπ<+<得0)62cos(>+πθ………………10分所以35)62cos(=+πθ……………11分 ]6)62cos[(2cos ππθθ-+=………………13分621521322335+=⨯+⨯=………………14分 21. 解】(1)设每分钟滴下k (*N k ∈)滴,………………1分则瓶内液体的体积πππ1563294221=⋅⋅+⋅⋅=V 3cm ………………3分k 滴球状液体的体积75340103432ππk mm k k V ==⋅⋅⋅=3cm ………………5分所以15675156⨯=ππk ,解得75=k ,故每分钟应滴下75滴。
陕西省2014届高三下学期第一次联考数学(理)试题 含答案
陕西省2014届高三下学期第一次联考数学(理)试题考生注意:1.本试卷共150分,考试时间120分钟. 2.请将各题答案填在试卷后面的答题卷上. 3.本试卷主要考试内容:高考全部内容,第一部分(共5 0分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分). 1.设2:log f xx 是集合A 到集合B 的映射,若A={l ,2,4},则对应的集合B 等于A .{0,1}B .{0,2}C .{0,1,2}D .{1,2} 2.下列函数中,在区间(1,+∞)上是增函数的是A .1y x =-+B .11y x=- C .2(1)y x =--D .13xy -=3.根据下列算法语句,当输入a=-4时,输出的b 的值为 A .-8 B .5 C .5 D .84.复数(2)(,z a i i ai =-R 为虚数单位)在复平面内对应的点为M ,则“a=-1”是“点M 在第四象限”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知空间上的两点A (—1,2,1)、B (—2,0,3),以AB 为体对角线构造一个正方体,则该正方体的体积为 A .3B .3C .9D .36.函数()f x 满足()(2)13,(1)2,(99)f x f x f f ⋅+==若则等于A .213B .132C .2D .137.由0,1,2,3,4这5个数字组成没有重复数字且个位上的数字不能为1的3位数共有 A .28个 B .36个 C .39个 D .42个8.实数x ,y 满足121,y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩如果目标函数z=x —y 的最小值为-2,则实数m 的值为A .5B .6C .7D .89.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且角A=60°,若1534ABC S ∆=,且5sinB=3sinC ,则ABC 的周长等于 A .8+19B .14C .10+35D .1810.设互不相等的平面向量组(1,2,3,)i a i =L ,满足①1i a =;②10i i a a +⋅=.若12(2)m m T a a a m =+++≥L ,则m T 的取值集合为A .{0,2}B .{1,3}C .{1,2,3}D .{0,1,2}第二部分(共1 0 0分)二、填空题:把答案填在答题卷中的横线上(本大题共5小题,每小题5分,共25分).11.双曲线221424x y m-=的焦距为,则m= 。
郑州市2014年高中毕业年级第一次质量预测理科数学答案
2014年高中毕业年级第一次质量预测数学(理科) 参考答案一、选择题ADACB DBCBB AB 二、填空题13.[1,3)-; 14.5; 15. 8π; 16.12a <-. 三、解答题17.解:(1) 因为AD AC ⊥,所以sin sin()cos 2BAC BAD BAD π∠=+∠=∠,即cos 3BAD ∠=,…………………………….2分 在ABD ∆中,由余弦定理可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠, 即28150AD AD -+=,解之得5AD =或 3.AD = ……………………………………………….6分由于AB AD >,所以 3.AD =…………………………………………………..7分 (2) 在ABD ∆中,由正弦定理可知sin sin BD ABBAD ADB=∠∠,又由cos 3BAD ∠=可知1sin 3BAD ∠=,所以sin sin AB BAD ADB BD ∠∠==,因为2ADB DAC C C π∠=∠+∠=+∠,所以cos C =.……………………………………………………..12分 18.解:随机猜对问题A 的概率113P =,随机猜对问题B 的概率214P =.………… 2分⑴设参与者先回答问题A ,且恰好获得奖金a 元为事件M ,则12131()(1)344P M P P =-=⨯=, 即参与者先回答问题A ,其恰好获得奖金a 元的概率为14. ………………4分⑵参与者回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B .参与者获奖金额ξ可取0,,a a b +, 则()12013P P ξ==-=,()()12114P a P P ξ==-=,()121.12P a b PP ξ=+==②先回答问题B ,再回答问题A ,参与者获奖金额η,可取0,,b a b +,则()23014P P η==-=,()()21116P b P P η==-=,()211.12P a b P P η=+==()3110.4612124a bE b a b η=⨯+⨯++⨯=+………… 10分32.12a bE E ξη--= 于是,当23a b >,时E E ξη>,即先回答问题A ,再回答问题B ,获奖的期望值较大;当23a b =,时E E ξη=,两种顺序获奖的期望值相等;当23a b <,时E E ξη<,先回答问题B ,再回答问题A ,获奖的期望值较大.…………………………12分 19.解:(1)证明:由题意11tan tan 22AD AB ABD AB B AB BB ∠==∠==, 注意到10,2ABD AB B π<∠∠<,所以1ABD AB B ∠=∠,所以1112ABD BAB AB B BAB π∠+∠=∠+∠=,所以BD AB ⊥1, ……………………3分又⊥CO 侧面11A ABB ,1.AB CO ∴⊥ 又BD 与CO 交于点O ,所以CBD AB 面⊥1,又因为CBD BC 面⊂,所以1AB BC ⊥.……………………………6分(2)如图,分别以1,,OD OB OC 所在的直线为,,x y z 轴, 以O 为原点,建立空间直角坐标系xyz O -则(0,3A -,(3B -,C,1B,D , 又因为12CC AD =,所以1C …………8分A所以(33AB =-,33AC =,1().633DC = 设平面ABC 的法向量为(,,)n x y z =,则根据0,0AB n AC n ⋅=⋅=可得n =是平面ABC 的一个法向量,设直线1C D 与平面ABC 所成角为α,则11||sin ||||DC n DC n α⋅==………………12分20.⑴解:由题知||||||||||||2||||4||,CA CB CP CQ AP BQ CP AB AB +=+++=+=> 所以曲线M 是以,A B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :22221(0,0)x y a b y a b+=>>≠,则2222||4,()32AB a b a ==-=, 所以曲线M :221(0)43x y y +=≠为所求.---------------4分⑵解:注意到直线BC 的斜率不为0,且过定点(1,0)B , 设1122:1,(,),(,)BC l x my C x y D x y =+,由221,3412,x my x y =+⎧⎨+=⎩消x 得22(34)690m y my ++-=,所以1,22334m y m -±=+,所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩ -------------------------------------8分因为1122(2,),(2,)AC my y AD my y =+=+,所以212121212222222(2)(2)(1)2()49(1)12794.343434AC AD my my y y m y y m y y m m m m m m ⋅=+++=+++++-=--+=+++注意到点A 在以CD 为直径的圆上,所以0AC AD ⋅= ,即3m =±,-----11分所以直线BC 的方程330x -=或330x -=为所求.------12分21.⑴解:注意到函数()f x 的定义域为(0,)+∞, 所以()()f x g x ≥恒成立()()f xg x x x⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x kh x x x x-'=-=, ------------2分 当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数, 注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分 当0k >时,若0x k <<,()0h x '<;若x k >,()0h x '>. 所以()h x 是(0,)k 上的减函数,是(,)k +∞上的增函数,故只需min ()()ln 10h x h k k k ==-+≥. --------6分 令()ln 1(0)u x x x x =-+>, 11()1xu x x x-'=-=, 当01x <<时,()0u x '>; 当1x >时,()0u x '<. 所以()u x 是(0,1)上的增函数,是(1,)+∞上的减函数. 故()(1)0u x u ≤=当且仅当1x =时等号成立.所以当且仅当1k =时,()0h x ≥成立,即1k =为所求. --------8分 ⑵解:由⑴知当0k ≤或1k =时,()()f x g x =,即()0h x =仅有唯一解1x =,不合题意; 当01k <<时, ()h x 是(,)k +∞上的增函数,对1x >,有()(1)0h x h >=,所以()()f x g x =没有大于1的根,不合题意. ---------8分当1k >时,由()()f x g x ''=解得10k x e -=,若存在110k x kx ke -==,则111ln()(1)k k k keke k ke ---=-,即1ln 10k k e --+=,令1()ln 1(1)xv x x e x -=-+>,11()x x xe exv x e x xe --'=-=,令(),()x xs x e ex s x e e '=-=-,当1x >时,总有()0s x '>, 所以()s x 是(1,)+∞上的增函数,即()(1)0xs x e ex s =->=, 故()0v x '>,()v x 在(1,)+∞上是增函数, 所以()(1)0v x v >=,即1ln 10kk e--+=在(1,)+∞无解.综上可知,不存在满足条件的实数k . ----------------------12分 22.解:⑴ D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又AEB ∠为公共角,∴ECD ∆∽,EAB ∆ ∴.DC EC EDAB EA EB== ∴2111...428DC EC ED EC ED AB EA EB EB EA ⎛⎫==== ⎪⎝⎭.∴4DC AB =. ……………………………………………………………… 6分⑵ FB FA EF ⋅=2, ∴FEFBFA EF =, 又 BFE EFA ∠=∠, ∴FAE ∆∽FEB ∆, ∴EBF FEA ∠=∠,又 D C B A ,,,四点共圆,∴EBF EDC ∠=∠,∴EDC FEA ∠=∠, ∴//.EF CD .…………………………………………………… 10分23.解:⑴222212:(2)(1)1,:1.169x y C x y C ++-=+= 曲线1C 为圆心是(2,1)-,半径是1的圆.曲线2C 为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.……4分⑵曲线2C 的左顶点为(4,0)-,则直线l的参数方程为4,2,2x s y s ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数)将其代入曲线1C整理可得:240s -+=,设,A B 对应参数分别为12,s s ,则1212 4.s s s s +==所以12||||AB s s =-==……………………………10分24.解:⑴因为,4)()4(4-=---≥-+-a a x x a x x因为4a <,所以当且仅当4a x ≤≤时等号成立,故43,1a a -=∴=为所求.……………………4分⑵不等式x x f -≥3)(即不等式x a x x -≥-+-34 )4(<a ,①当a x <时,原不等式可化为43,x a x x -+-≥- 即 1.x a ≤+所以,当a x <时,原不等式成立.②当4≤≤x a 时,原不等式可化为43.x x a x -+-≥- 即 1.x a ≥-所以,当4≤≤x a 时,原不等式成立. ③当4>x 时,原不等式可化为43.x x a x -+-≥-即7,3a x +≥由于4<a 时74.3a +> 所以,当4>x 时,原不等式成立.综合①②③可知: 不等式x x f -≥3)(的解集为R.……………………10分。
甘肃省2014届高三下学期一诊考试数学理试题Word版含答案(K12教育文档)
甘肃省2014届高三下学期一诊考试数学理试题Word版含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(甘肃省2014届高三下学期一诊考试数学理试题Word版含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为甘肃省2014届高三下学期一诊考试数学理试题Word版含答案(word版可编辑修改)的全部内容。
甘肃省2014届高三下学期一诊考试数学(理)试题一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项符合题目要求的。
1. 已知集合A={|<5}x Z x ∈ ,B=|20}{x x -≥ ,A ∩B 等于A. (2, 5) B 。
[2, 5) C. {2, 3, 4} D 。
{3, 4, 5}2。
复数21()1i i -+(i 是虚数单位)化简的结果是A. 1B. -1C 。
i D. –i3. 某几何体的三视图如图所示,且该几何体的体积是错误! ,则正视图中的x 值是A. 2 B 。
92C. 错误! D 。
34。
从如图所示的正方形OABC 区域内任取一个点M (,)x y ,则点M 取自阴影部分的概率为A. 错误! B 。
错误!C 。
错误! D. 错误!5. 已知等差数列{}n a 的前n 项和为S n , 若4518a a =-,则S 8=A.72B. 68C 。
54 D. 906。
阅读右侧程序框图,输出结果i 的值为A. 5B. 6C.7D. 9 7。
设2lg ,(lg ),lg a e b e c e === ,则A. a b c >>B. c a b >>C. a c b >> D 。
2014年北京高考预测—理科数学试题及答案
为偶函数”
A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件
n≤ 3
否
是
4. 执行如图所示的程序框图,若输出 x 的值为 23,则输入 的 x 值为( ) A. 0 B.1 C. 2 D.11
2
输出x 结束
y
1 2
5 .如果存在正整数 和实数 使得函数 f ( x) cos (x ) ( , 为常数)的图象如图所示(图象经过点(1,0) ) ,那么 的 值为 ( ) A. 1 6. 已知椭圆 B. 2
k1 , k 2 ,试证明
1 1 为定值,并求出这个定值; kk1 kk2
(III)在第(Ⅱ)问的条件下,作 F2 Q F2 P ,设 F2 Q 交 l 于点 Q , 证明:当点 P 在椭圆上移动时,点 Q 在某定直线上.
第 8 页 共 16 页
20. (本小题满分 13 分) 已知数列 {cn } 满足(i) cn cn 2 ≤ cn 1 ,(ii)存在常数 M ( M 与 n 无关),使得 cn M 恒成立,则称 数列 {cn } 是和谐数列. (1) 已知各项均为正数的等比数列 {an } , S n 为其前 n 项和;且 a3 4 , S3 28 ,求证:数列
1 AD=1,CD= 3 . 2
P
M D Q
C B
A
第 6 页 共 16 页
18. (本小题满分 13 分) 已知 P x, y 为函数 y 1 ln x 图象上一点, O 为坐标原点,记直线 OP 的斜率 k f x . (Ⅰ)若函数 f x 在区间 a, a
2
A. 0,
B. ( , )
2014年高中毕业年级第一次质量预测数学(理科) 参考答案.doc
2014年高中毕业年级第一次质量预测数学(理科) 参考答案一、选择题ADACB DBCBB AB二、填空题13.[1,3)-; 14.5; 15. 8π; 16.12a <-. 三、解答题17.解:(1) 因为AD AC ⊥,所以sin sin()cos 2BAC BAD BAD π∠=+∠=∠,即cos 3BAD ∠=,…………………………….2分 在ABD ∆中,由余弦定理可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠,即28150AD AD -+=,解之得5AD =或 3.AD = ……………………………………………….6分由于AB AD >,所以 3.AD =…………………………………………………..7分(2) 在ABD ∆中,由正弦定理可知sin sin BD AB BAD ADB=∠∠,又由cos 3BAD ∠=可知1sin 3BAD ∠=,所以sin sin AB BAD ADB BD ∠∠==, 因为2ADB DAC C C π∠=∠+∠=+∠,所以cos C =.……………………………………………………..12分 18.解:随机猜对问题A 的概率113P =,随机猜对问题B 的概率214P =.………… 2分 ⑴设参与者先回答问题A ,且恰好获得奖金a 元为事件M ,则12131()(1)344P M P P =-=⨯=, 即参与者先回答问题A ,其恰好获得奖金a 元的概率为14. ………………4分 ⑵参与者回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B .参与者获奖金额ξ可取0,,a a b +,则()12013P P ξ==-=,()()12114P a P P ξ==-=,()121.12P a b PP ξ=+== ②先回答问题B ,再回答问题A ,参与者获奖金额η,可取0,,b a b +,则()23014P P η==-=,()()21116P b P P η==-=,()211.12P a b P P η=+==()3110.4612124a b E b a b η=⨯+⨯++⨯=+………… 10分 32.12a b E E ξη--= 于是,当23a b >,时E E ξη>,即先回答问题A ,再回答问题B ,获奖的期望值较大; 当23a b =,时E E ξη=,两种顺序获奖的期望值相等;当23a b <,时E E ξη<,先回答问题B ,再回答问题A ,获奖的期望值较大.…………………………12分19.解:(1)证明:由题意11tan tan AD AB ABD AB B AB BB ∠==∠== 注意到10,2ABD AB B π<∠∠<,所以1ABD AB B ∠=∠,所以1112ABD BAB AB B BAB π∠+∠=∠+∠=,所以BD AB ⊥1, ……………………3分又⊥CO 侧面11A ABB ,1.AB CO ∴⊥又BD 与CO 交于点O ,所以CBD AB 面⊥1,又因为CBD BC 面⊂,所以1AB BC ⊥.……………………………6分(2)如图,分别以1,,OD OB OC 所在的直线为,,x y z 轴,以O 为原点,建立空间直角坐标系xyz O -则(0,,0)3A -,(3B -,(0,0,3C,1(0,3B,6D , 又因为12CC AD =,所以1C …………8分A所以(AB =-,(0,AC =,16(DC = 设平面ABC 的法向量为(,,)n x y z =,则根据0,0AB n AC n ⋅=⋅=可得(1,2,n =是平面ABC 的一个法向量,设直线1C D 与平面ABC 所成角为α,则11||sin ||||DC n DC n α⋅==………………12分 20.⑴解:由题知||||||||||||2||||4||,CA CB CP CQ AP BQ CP AB AB +=+++=+=> 所以曲线M 是以,A B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :22221(0,0)x y a b y a b+=>>≠, 则2222||4,()32AB a b a ==-=, 所以曲线M :221(0)43x y y +=≠为所求.---------------4分 ⑵解:注意到直线BC 的斜率不为0,且过定点(1,0)B ,设1122:1,(,),(,)BC l x my C x y D x y =+,由221,3412,x my x y =+⎧⎨+=⎩消x 得22(34)690m y my ++-=,所以1,22334m y m -±=+, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩-------------------------------------8分因为1122(2,),(2,)AC my y AD my y =+=+,所以212121212222222(2)(2)(1)2()49(1)12794.343434AC AD my my y y m y y m y y m m m m m m ⋅=+++=+++++-=--+=+++注意到点A 在以CD 为直径的圆上,所以0AC AD ⋅=,即m =,-----11分所以直线BC 的方程330x -=或330x -=为所求.------12分21.⑴解:注意到函数()f x 的定义域为(0,)+∞,所以()()f x g x ≥恒成立()()f x g x x x ⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x k h x x x x-'=-=, ------------2分 当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数,注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分 当0k >时,若0x k <<,()0h x '<;若x k >,()0h x '>.所以()h x 是(0,)k 上的减函数,是(,)k +∞上的增函数,故只需min ()()ln 10h x h k k k ==-+≥. --------6分 令()ln 1(0)u x x x x =-+>, 11()1x u x x x-'=-=, 当01x <<时,()0u x '>; 当1x >时,()0u x '<.所以()u x 是(0,1)上的增函数,是(1,)+∞上的减函数.故()(1)0u x u ≤=当且仅当1x =时等号成立.所以当且仅当1k =时,()0h x ≥成立,即1k =为所求. --------8分 ⑵解:由⑴知当0k ≤或1k =时,()()f x g x =,即()0h x =仅有唯一解1x =,不合题意; 当01k <<时, ()h x 是(,)k +∞上的增函数,对1x >,有()(1)0h x h >=,所以()()f x g x =没有大于1的根,不合题意. ---------8分当1k >时,由()()f x g x ''=解得10k x e -=,若存在110k x kx ke -==,则111ln()(1)k k k keke k ke ---=-,即1ln 10k k e --+=,令1()ln 1(1)xv x x e x -=-+>,11()x x x e ex v x e x xe --'=-=, 令(),()x x s x e ex s x e e '=-=-,当1x >时,总有()0s x '>, 所以()s x 是(1,)+∞上的增函数,即()(1)0x s x e ex s =->=,故()0v x '>,()v x 在(1,)+∞上是增函数,所以()(1)0v x v >=,即1ln 10k k e --+=在(1,)+∞无解.综上可知,不存在满足条件的实数k . ----------------------12分22.解:⑴ D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又AEB ∠为公共角,∴ECD ∆∽,EAB ∆ ∴.DC EC ED AB EA EB== ∴2111...428DC EC ED EC ED AB EA EB EB EA ⎛⎫==== ⎪⎝⎭.∴DC AB . ……………………………………………………………… 6分 ⑵ FB FA EF ⋅=2, ∴FEFB FA EF =, 又 BFE EFA ∠=∠, ∴FAE ∆∽FEB ∆,∴EBF FEA ∠=∠,又 D C B A ,,,四点共圆,∴EBF EDC ∠=∠,∴EDC FEA ∠=∠, ∴//.EF CD .…………………………………………………… 10分 23.解:⑴222212:(2)(1)1,: 1.169x y C x y C ++-=+= 曲线1C 为圆心是(2,1)-,半径是1的圆.曲线2C 为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.……4分⑵曲线2C 的左顶点为(4,0)-,则直线l的参数方程为4,2,2x s y s ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数)将其代入曲线1C整理可得:240s -+=,设,A B 对应参数分别为12,s s ,则1212 4.s s s s +==所以12||||AB s s =-==……………………………10分24.解:⑴因为,4)()4(4-=---≥-+-a a x x a x x因为4a <,所以当且仅当4a x ≤≤时等号成立,故43,1a a -=∴=为所求.……………………4分⑵不等式x x f -≥3)(即不等式x a x x -≥-+-34 )4(<a , ①当a x <时,原不等式可化为43,x a x x -+-≥- 即 1.x a ≤+ 所以,当a x <时,原不等式成立. ②当4≤≤x a 时,原不等式可化为43.x x a x -+-≥- 即 1.x a ≥-所以,当4≤≤x a 时,原不等式成立. ③当4>x 时,原不等式可化为43.x x a x -+-≥- 即7,3a x +≥ 由于4<a 时74.3a +> 所以,当4>x 时,原不等式成立. 综合①②③可知: 不等式x x f -≥3)(的解集为R.……………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年高中毕业年级第一次质量预测数学(理科) 参考答案一、选择题ADACB DBCBB AB二、填空题13.[1,3)-; 14.5; 15. 8π; 16.12a <-. 三、解答题17.解:(1) 因为AD AC ⊥,所以sin sin()cos 2BAC BAD BAD π∠=+∠=∠,即cos 3BAD ∠=,…………………………….2分 在ABD ∆中,由余弦定理可知2222cos BD AB AD AB AD BAD =+-⋅⋅∠,即28150AD AD -+=,解之得5AD =或 3.AD = ……………………………………………….6分由于AB AD >,所以 3.AD =…………………………………………………..7分(2) 在ABD ∆中,由正弦定理可知sin sin BD AB BAD ADB=∠∠,又由cos 3BAD ∠=可知1sin 3BAD ∠=,所以sin sin AB BAD ADB BD ∠∠==, 因为2ADB DAC C C π∠=∠+∠=+∠,所以cos C =.……………………………………………………..12分 18.解:随机猜对问题A 的概率113P =,随机猜对问题B 的概率214P =.………… 2分 ⑴设参与者先回答问题A ,且恰好获得奖金a 元为事件M ,则12131()(1)344P M P P =-=⨯=, 即参与者先回答问题A ,其恰好获得奖金a 元的概率为14. ………………4分 ⑵参与者回答问题的顺序有两种,分别讨论如下:①先回答问题A ,再回答问题B .参与者获奖金额ξ可取0,,a a b +,则()12013P P ξ==-=,()()12114P a P P ξ==-=,()121.12P a b PP ξ=+== ②先回答问题B ,再回答问题A ,参与者获奖金额η,可取0,,b a b +,则()23014P P η==-=,()()21116P b P P η==-=,()211.12P a b P P η=+==()3110.4612124a b E b a b η=⨯+⨯++⨯=+………… 10分 32.12a b E E ξη--= 于是,当23a b >,时E E ξη>,即先回答问题A ,再回答问题B ,获奖的期望值较大; 当23a b =,时E E ξη=,两种顺序获奖的期望值相等;当23a b <,时E E ξη<,先回答问题B ,再回答问题A ,获奖的期望值较大.…………………………12分19.解:(1)证明:由题意11tan tan AD AB ABD AB B AB BB ∠==∠== 注意到10,2ABD AB B π<∠∠<,所以1ABD AB B ∠=∠,所以1112ABD BAB AB B BAB π∠+∠=∠+∠=,所以BD AB ⊥1, ……………………3分又⊥CO 侧面11A ABB ,1.AB CO ∴⊥又BD 与CO 交于点O ,所以CBD AB 面⊥1,又因为CBD BC 面⊂,所以1AB BC ⊥.……………………………6分(2)如图,分别以1,,OD OB OC 所在的直线为,,x y z 轴,以O 为原点,建立空间直角坐标系xyz O -则(0,,0)3A -,(3B -,(0,0,3C,1(0,3B,6D , 又因为12CC AD =,所以1C …………8分A所以(AB =-,(0,AC =,16(DC = 设平面ABC 的法向量为(,,)n x y z =,则根据0,0AB n AC n ⋅=⋅=可得(1,2,n =是平面ABC 的一个法向量,设直线1C D 与平面ABC 所成角为α,则11||sin ||||DC n DC n α⋅==………………12分 20.⑴解:由题知||||||||||||2||||4||,CA CB CP CQ AP BQ CP AB AB +=+++=+=> 所以曲线M 是以,A B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点),设曲线M :22221(0,0)x y a b y a b+=>>≠, 则2222||4,()32AB a b a ==-=, 所以曲线M :221(0)43x y y +=≠为所求.---------------4分 ⑵解:注意到直线BC 的斜率不为0,且过定点(1,0)B ,设1122:1,(,),(,)BC l x my C x y D x y =+,由221,3412,x my x y =+⎧⎨+=⎩消x 得22(34)690m y my ++-=,所以1,22334m y m -±=+, 所以1221226,349,34m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩-------------------------------------8分因为1122(2,),(2,)AC my y AD my y =+=+,所以212121212222222(2)(2)(1)2()49(1)12794.343434AC AD my my y y m y y m y y m m m m m m ⋅=+++=+++++-=--+=+++注意到点A 在以CD 为直径的圆上,所以0AC AD ⋅=,即m =,-----11分所以直线BC 的方程330x -=或330x -=为所求.------12分21.⑴解:注意到函数()f x 的定义域为(0,)+∞,所以()()f x g x ≥恒成立()()f x g x x x ⇔≥恒成立, 设(1)()ln (0)k x h x x x x-=->, 则221()k x k h x x x x-'=-=, ------------2分 当0k ≤时,()0h x '>对0x >恒成立,所以()h x 是(0,)+∞上的增函数,注意到(1)0h =,所以01x <<时,()0h x <不合题意.-------4分 当0k >时,若0x k <<,()0h x '<;若x k >,()0h x '>.所以()h x 是(0,)k 上的减函数,是(,)k +∞上的增函数,故只需min ()()ln 10h x h k k k ==-+≥. --------6分 令()ln 1(0)u x x x x =-+>, 11()1x u x x x-'=-=, 当01x <<时,()0u x '>; 当1x >时,()0u x '<.所以()u x 是(0,1)上的增函数,是(1,)+∞上的减函数.故()(1)0u x u ≤=当且仅当1x =时等号成立.所以当且仅当1k =时,()0h x ≥成立,即1k =为所求. --------8分 ⑵解:由⑴知当0k ≤或1k =时,()()f x g x =,即()0h x =仅有唯一解1x =,不合题意; 当01k <<时, ()h x 是(,)k +∞上的增函数,对1x >,有()(1)0h x h >=,所以()()f x g x =没有大于1的根,不合题意. ---------8分当1k >时,由()()f x g x ''=解得10k x e -=,若存在110k x kx ke -==,则111ln()(1)k k k keke k ke ---=-,即1ln 10k k e --+=,令1()ln 1(1)xv x x e x -=-+>,11()x x x e ex v x e x xe --'=-=, 令(),()x x s x e ex s x e e '=-=-,当1x >时,总有()0s x '>, 所以()s x 是(1,)+∞上的增函数,即()(1)0x s x e ex s =->=,故()0v x '>,()v x 在(1,)+∞上是增函数,所以()(1)0v x v >=,即1ln 10k k e --+=在(1,)+∞无解.综上可知,不存在满足条件的实数k . ----------------------12分22.解:⑴ D C B A ,,,四点共圆,∴EBF EDC ∠=∠,又AEB ∠为公共角,∴ECD ∆∽,EAB ∆ ∴.DC EC ED AB EA EB== ∴2111...428DC EC ED EC ED AB EA EB EB EA ⎛⎫==== ⎪⎝⎭.∴DC AB . ……………………………………………………………… 6分 ⑵ FB FA EF ⋅=2, ∴FEFB FA EF =, 又 BFE EFA ∠=∠, ∴FAE ∆∽FEB ∆,∴EBF FEA ∠=∠,又 D C B A ,,,四点共圆,∴EBF EDC ∠=∠,∴EDC FEA ∠=∠, ∴//.EF CD .…………………………………………………… 10分 23.解:⑴222212:(2)(1)1,: 1.169x y C x y C ++-=+= 曲线1C 为圆心是(2,1)-,半径是1的圆.曲线2C 为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.……4分⑵曲线2C 的左顶点为(4,0)-,则直线l的参数方程为4,2,2x s y s ⎧=-+⎪⎪⎨⎪=⎪⎩(s 为参数)将其代入曲线1C整理可得:240s -+=,设,A B 对应参数分别为12,s s ,则1212 4.s s s s +==所以12||||AB s s =-==……………………………10分24.解:⑴因为,4)()4(4-=---≥-+-a a x x a x x因为4a <,所以当且仅当4a x ≤≤时等号成立,故43,1a a -=∴=为所求.……………………4分⑵不等式x x f -≥3)(即不等式x a x x -≥-+-34)4(<a , ①当a x <时,原不等式可化为43,x a x x -+-≥-即 1.x a ≤+所以,当a x <时,原不等式成立.②当4≤≤x a 时,原不等式可化为43.x x a x -+-≥-即 1.x a ≥-所以,当4≤≤x a 时,原不等式成立.③当4>x 时,原不等式可化为43.x x a x -+-≥- 即7,3a x +≥由于4<a 时74.3a +> 所以,当4>x 时,原不等式成立. 综合①②③可知: 不等式x x f -≥3)(的解集为R.……………………10分。