三角函数与数列复习

合集下载

高三数学数列与三角函数知识点要点梳理

高三数学数列与三角函数知识点要点梳理

高三数学数列与三角函数知识点要点梳理数列和三角函数是高中数学的两个重要组成部分,对于高三学生来说,掌握这两个模块的知识点和解题技巧至关重要。

本文将对高三数学数列与三角函数的知识点进行详细梳理,帮助大家系统地理解和掌握这部分内容。

一、数列1.1 数列的定义与性质1.1.1 数列的定义数列是由一系列按一定顺序排列的数构成的序列。

通常表示为 a_n,其中 n 表示项数。

1.1.2 数列的性质(1)有限数列:项数有限;(2)无限数列:项数无限;(3)收敛数列:项数趋于有限值;(4)发散数列:项数趋于无穷大。

1.2 数列的通项公式1.2.1 等差数列等差数列的通项公式为 a_n = a_1 + (n - 1)d,其中 a_1 是首项,d 是公差。

1.2.2 等比数列等比数列的通项公式为 a_n = a_1 * q^(n-1),其中 a_1 是首项,q 是公比。

1.3 数列的求和1.3.1 等差数列求和等差数列的前 n 项和为 S_n = n/2 * (a_1 + a_n) = n/2 * (2a_1 + (n - 1)d)。

1.3.2 等比数列求和等比数列的前 n 项和为 S_n = a_1 * (1 - q^n) / (1 - q),其中 |q| < 1。

1.4 数列的极限1.4.1 数列极限的定义数列极限是指当 n 趋于无穷大时,数列的某一项或某一项的某种形式趋于的一个确定的数。

1.4.2 数列极限的性质(1)收敛数列有极限;(2)发散数列无极限;(3)数列极限具有保号性、保序性。

二、三角函数2.1 三角函数的定义与性质2.1.1 三角函数的定义三角函数是周期函数,主要包括正弦函数、余弦函数、正切函数等。

2.1.2 三角函数的性质(1)周期性:f(x + T) = f(x),其中 T 是函数的周期;(2)奇偶性:f(-x) = f(x)(偶函数)或 f(-x) = -f(x)(奇函数);(3)单调性:在一定区间内,三角函数的单调性可分为增函数和减函数。

三角函数数列大题

三角函数数列大题

高中数学学校:___________姓名:___________班级:___________考号:___________一、解答题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2cos 2cos 0c B b C ab +-=. (1)求b ;(2)若AD AB ⊥交BC 于点D ,6ACB π∠=,ABCS,求CD 边长.2.如图,某景区拟开辟一个平面示意图为五边形ABCDE 的观光步行道,BE 为电瓶车专用道,120BCD BAE CDE ∠=∠=∠=︒,11km DE =,5km BC CD ==.(1)求BE 的长;(2)若sin ABE ∠=ABCDE 的周长. 3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,ccos b B =+. (1)求A ; (2)若31,cos 5a C ==,求ABC 的面积.4.在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin a C . (1)求角A 的大小;(2)若2b =,a =△ABC 的面积.5.已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程; (2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.6.已知函数()sin 22f x x x =,R x ∈. (1)求函数()f x 的最小正周期;(2)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调区间.7.已知函数()2sin 22sin 6x f x x π⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (3)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若322A f ⎛⎫= ⎪⎝⎭,7b c +=,ABC ∆的面积为a 的长.8.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即P 0时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点P 0运动到点P 时所经过的时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m )(在水面下则h 为负数).(1)求点P 距离水面的高度为h 关于时间为t 的函数解析式; (2)求点P 第一次到达最高点需要的时间(单位:s ).9.记n S 是正项数列{}n a 的前n 项和,1n a +是4和n S 的等比中项. (1)求数列{}n a 的通项公式; (2)记11(1)(1)n n n b a a +=++,求数列{}n b 的前n 项和n T .10.已知等差数列{an }的前n 项和为Sn =n 2+r ,其中r 为常数. (1)求r 的值; (2)设()112n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和Tn .11.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利?12.已知数列{an }的前n 项和为Sn ,且Sn =n -5an -85,n △N *. (1)证明:{an -1}是等比数列; (2)求数列{an }的通项公式.13.已知数列{}n a 满足12a =,132n n a a +=+.(1)证明{}1n a +是等比数列,并求{}n a 的通项公式;(2)若数列{}n b 满足()3log 1n nb a =+,n T 为数列1n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和,求n T . 14.已知等比数列{}n a 的前n 项和为n S ,且51430a a S -==. (1)求数列{}n a 的通项公式n a ; (2)若______,求数列{}n b 的前n 项和n T .在△21log n n n b a a +=+,△()()2211log 1log 1n n n b a a +=+⋅+,△n n b n a =⋅这三个条件中任选一个补充在第(2)问中,并求解.注:如果选择多个条件分别解答,按第一个解答计分.15.某企业2021年第一季度的营业额为1.1亿,以后每个季度的营业额比上个季度增加0.05亿;该企业第一季度的利润为0.16亿,以后每季度比前一季度增长4%. (1)求2021年起前20季度营业额的总和;(2)请问哪一季度的利润首次超过该季度营业额的18%.16.在△q d =△4q d ⋅=△4q d +=这三个条件中选择一个补充在下面的问题中,并求解.设等差数列{}n a 的公差为d (*d N ∈),前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,___________,10100S =.(1)请写出你的选择,并求数列{}n a 和{}n b 的通项公式; (2)若数列{}n c 满足nn na cb =,求数列{}n c 的前n 项和n T . 17.如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且13C E EC =.(1)证明:1A C ⊥平面BED ;(2)求异面直线BE 与1A C 所成角的大小; (3)求二面角1A DE B --的余弦值.18.已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于P ,GC 垂直于ABCD 所在平面.(1)求证:EF ⊥平面GPC .(2)若4AB =,2GC =,求点B 到平面EFG 的距离.19.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,且侧棱P A △底面ABCD ,P A =2AD .E ,F ,H 分别是P A ,PD ,AB 的中点,G 为DF 的中点.(1)证明://GH 平面BEF ;(2)求PC 与平面BEF 所成角的正弦值.20.如图在三棱锥O ABC -中,OA OC ==2AB OB BC ===且OA OC ⊥.(1)求证:平面OAC ⊥平面ABC(2)若E 为OC 中点,求平面ABC 与平面EAB 所成锐二面角的余弦值.21.直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,边长为2,侧棱13A A =,M N 、分别为1111A B A D 、的中点,E F 、分别是1111B C C D 、的中点.(1)求证:平面AMN //平面EFDB ; (2)求平面AMN 与平面EFDB 的距离.22.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,AB =1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(1)求异面直线BD 1与CC 1的距离;(2)求直线BD 1与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.23.以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.曲线1C 的极坐标方程为:1ρ=.在平面直角坐标系中,曲线2C 的参数方程为3cos 33sin x y θθ=⎧⎨=+⎩(θ为参数,02θπ≤<).(1)求曲线1C 和曲线2C 的直角坐标方程; (2)在极坐标系中,射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,求AB .24.已知直线 l的参数方程为1,x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2223sin 4ρρθ+=.(1)求直线 l 的普通方程和曲线C 的直角坐标方程;(2)已知直线 l 与曲线C 相交于P ,Q 两点,点M 的直角坐标为(1,0)-,求||||MP MQ +.25.在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪⎪⎩(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(1)写出C 的直角坐标方程;(2)设点Q 的坐标为()3,0,直线l 与C 交于A ,B ,求QA QB ⋅的值.26.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为()2213sin 4ρθ+=.在直角坐标系xOy 中,直线l 的方程为240x y +-=.(1)若点M 为曲线1C 上的动点,求点M 到直线l 的距离的最小值; (2)倾斜角为3π的曲线2C 过点()1,0P -,交曲线1C 于A ,B 两点,求11PA PB +. 27.在直角坐标系xOy 中,直线l 的参数方程为4,5315x t y t⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 0ρθ-=. (1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)设曲线C 与直线l 交于A ,B 两点,求AB .28.在平面直角坐标系xOy 中,直线l 的参数方程为241x t y t =+⎧⎨=-⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为222124sin 3cos ρθθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值.29.在平面直角坐标系xOy 中,直线l的参数方程为1,x t y =+⎧⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()2213sin 4ρθ+=.(1)求直线l 的一般式方程和曲线C 的标准方程;(2)若直线l 与曲线C 交于A ,B 两点,点()1,0P ,求PA PB ⋅的值. 30.直线l 过点()2,0A ,倾斜角为4π. (1)以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系.过O 作l 的垂线,垂足为B ,求点B 的极坐标()0,02ρθπ≥≤<;(2)直线l 与曲线22:2x t C y t⎧=⎨=⎩(t 为参数)交于M 、N 两点,求MN .31.在平面直角坐标系xOy 中,倾斜角为α(α为常数)的直线l 过点()2,4M --,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=.(1)写出直线l 的一个参数方程和曲线C 的直角坐标方程; (2)当3πα=时,直线l 与曲线C 能否交于两点?若能,记两交点为A ,B ,求出11MA MB+的值;若不能,说明理由. 32.若a ,b ,c △R +,且满足a +b +c =2. (1)求abc 的最大值; (2)证明:11192a b c ++≥.33.已知函数()21f x x x =+--. (1)求max ()f x 及当()(0)f x f ≥时的解集;(2)若关于x 的不等式()12f x m ≥-有解,求正数m 的取值范围.34.已知函数()()223f x x a x a =-+-+.(1)当2a =时,求不等式()6f x ≥的解集 (2)若()6f x ≥恒成立,求实数a 的取值范围.35.已知0m >,函数()2f x x x m =++-的最小值为3,()25g x x m =+. (1)求m 的值;(2)求不等式()()f x g x ≤的解集. 36.已知函数()112f x x x =-+-的值域为M . (1)求M ;(2)证明:当,a b M ∈时,214a b ab -≤-. 37.已知,,a b c 均为正数,且满足 1.abc =证明: (1)3ab bc ca ++;(2)333a b c ab bc ac ++++.38.设a ,b ,c 均为正数,且a b +=1. (1)求12a b+的最小值;(2)≤39.已知函数()||2||(0,0)f x x a x b a b =+-->>. (1)当1a b ==时,解不等式()0f x >;(2)若函数()()||g x f x x b =+-的最大值为2,求14a b+的最小值.40.如图,在四棱锥P-ABCD 中,平面PAD ⊥ 平面ABCD ,PA ⊥PD ,PA=PD,AB ⊥,(I )求证:PD ⊥平面PAB;(II )求直线PB 与平面PCD 所成角的正弦值;(II I )在棱PA 上是否存在点M ,使得BMll 平面PCD?若存在,求AMAP的值;若不存在,说明理由。

数学高考必备三角函数与数列知识点梳理

数学高考必备三角函数与数列知识点梳理

数学高考必备三角函数与数列知识点梳理【数学高考必备】三角函数与数列知识点梳理数学一直是许多学生心中的痛点和难题,其中三角函数与数列是高考数学中重要的知识点。

掌握好这两个知识点,对于高考取得好成绩至关重要。

本文将对数学高考必备的三角函数与数列知识点进行梳理和总结,帮助学生更好地备考。

一、三角函数知识点梳理1. 基本概念三角函数是以角的弧度或角度为自变量,以正弦、余弦和正切等函数为代表的一类函数。

在高考中,我们常用的三角函数有正弦函数、余弦函数和正切函数。

2. 基本性质在求解问题时,我们需要掌握三角函数的基本性质。

比如,正弦函数和余弦函数的周期性、对称性,正切函数的定义域和值域等。

3. 三角函数的图像与变换学习三角函数的图像与变换是非常重要的。

要了解正弦函数和余弦函数的波形特点,理解振幅、周期、相位以及图像的平移、伸缩等基本变换。

4. 基本恒等式与解题技巧高考中,有许多与三角函数相关的方程、等式和恒等式需要我们灵活运用。

掌握基本的恒等式和解题技巧,能够帮助我们快速解决相关问题。

二、数列知识点梳理1. 基本概念与性质数列是一系列按照一定法则排列的数的集合。

在高考中,我们经常遇到的数列有等差数列、等比数列和等差数列的前n项和等。

2. 数列的通项与特殊情况数列的通项公式是数列中的一项与项下标之间的关系式。

对于不同种类的数列,我们需要掌握求解通项公式的方法,以及特殊情况的处理。

3. 数列的性质与运算数列的性质是数列研究中的重要内容。

我们需要掌握等差数列和等比数列的性质,包括递推公式、前n项和的公式以及求和公式等。

4. 数列应用题高考中,数列应用题是非常常见的题型。

掌握数列的相关知识,能够帮助我们解决各种与实际问题相关的数学题目。

总结:三角函数和数列是高考数学中的重要知识点,也是必备的数学基础。

在备考过程中,我们应该注重理解基本概念和性质,学会应用基本公式和技巧解题。

此外,多做一些相关的习题和应用题,提高自己的解题能力。

高考数学考点总结与备考技巧

高考数学考点总结与备考技巧

高考数学考点总结与备考技巧数学是高考三大科目之一,也是很多考生担心的科目。

数学考试主要考察数学知识和思维能力。

本文将对高考数学的考点进行总结,并提供备考技巧。

一、数学考点1.函数函数是高考数学考试中的重要考点。

函数的概念、性质、图像、反函数等都需要掌握。

特别是函数的图像,需要能准确地画出各种函数的图像,例如一次函数、二次函数、指数函数、对数函数等。

2.三角函数三角函数也是高考数学的重要考点。

需要掌握正弦、余弦、正切等三角函数的基本概念、性质、图像、变化规律等。

同时,需要掌握三角函数的复合函数和反函数。

3.数列与数学归纳法数列是高考数学中的基础考点,需要掌握等差数列、等比数列及其前n项和公式。

同时,还需要掌握数学归纳法,能够独立完成数列题目。

4.导数与微积分导数和微积分也是高考数学考试的重点考点。

需要掌握导数的概念、求导法则及其应用,了解微积分的基本概念,包括定积分和不定积分的概念、性质、计算方法和应用。

5.平面向量平面向量也是数学考试中的重要考点之一。

需要掌握向量的基本概念、向量的坐标表示法、向量之间的运算、平面向量的模、方向角、共面、垂直等性质,了解向量的应用。

二、备考技巧1.掌握数学基础知识数学考试需要掌握扎实的数学基础知识,能够准确地理解和应用数学概念和定理,同时能够熟练地使用各种数学公式和计算方法。

2.积累做题经验高考数学考试不仅考查数学知识,还考验考生的解题能力和考场应变能力。

因此,平时需要多做数学题,积累做题经验,提高解题速度和正确率。

3.养成良好的复习习惯高考数学考试不能临时抱佛脚,需要平时持续地进行复习和巩固。

要养成良好的复习习惯,每天安排一定的复习时间,按照计划有序地进行复习。

4.注意考试策略高考数学考试一般建议从易到难顺序答题,先做易题,留出时间做难题。

同时,需要掌握一些答题技巧,如画图、分类讨论、化简等,提高解题效率。

总之,数学是高考的重要科目之一,需要考生在平时的备考中认真总结归纳考点,熟练掌握各种数学知识和解题技巧,做好充分的准备,才能在高考中取得好成绩。

三角函数与数列(高考题)

三角函数与数列(高考题)

三角函数与数列(高考题)1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B.2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长.3.在△ABC中,a2+c2=b2+ac.(1)求∠B的大小; (2)求cos A+cos C的最大值.4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值.5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.6.设f(x)=sin x cos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·.(1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值.9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,,.(1)若//,求证:ΔABC为等腰三角形;(2)若⊥,边长c= 2,角C=,求ΔABC的面积.10.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=.求数列{c n}的前n项和T n.11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.12.已知数列的前项和为,且对一切正整数都成立。

高考数学集合、函数、数列、三角函数公式考点(承勇整理)[1]

高考数学集合、函数、数列、三角函数公式考点(承勇整理)[1]

高中数学第一章-集合一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、考试注意事项:三、含绝对值不等式、一元二次不等式的解法与延伸1.整式不等式的解法根轴法(零点分段法)(从右上角开始划线,大于取上边,小于取下边)①将不等式化为a0(1)(2)…()>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.>∆0=∆0<∆2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布 一元二次方程20(a ≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(四)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题:二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

数列和三角函数

数列和三角函数

数列和三角函数1丶数列和三角函数的重要知识点① 数列1.等差数列、等比数列公式、性质的综合及实际应用2.掌握常见的求数列通项的一般方法3.能综合应用等差、等比数列的公式和性质 并能解决简单的实际问题.4.用数列知识分析解决带有实际意义的或生活、工作中遇到的数学问题. ②三角函数1. 三角函数在各象限的符号:(一全二正弦,三切四余弦)2. 三角函数线3. 三角函数的定义域4. 同角三角函数的基本关系式5.诱导公式:“奇变偶不变,符号看象限” ① 基本关系② 角与角之间的互换6.正弦、余弦、正切、余切函数的图象的性质等2丶数列和三角函数的一些公式和性质① 数列㈠等差数列通项公式等差数列前n 项和公式 ⑴1(1)n a a n d =+-, ()n m a a n m d =+-1()2n n n a a S +=, 1(1)2n n n S na d -=+,21()22n d dS n a n=+- ⑵等差数列中的重要性质: 22p q m n s p q m n s a a a a a +=+=⇒+=+=等差数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m- S 3m 、……仍为等差数列。

㈡等比数列及其通项公式.等比数列前n 项和公式. (1)11n n a a q -=n m m a q -=;111 (1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩. (2)等比数列中的重要性质: 22p q m n s p q m n s a a a a a +=+=⇒⋅=⋅= 等比数列{a n }的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m - S 3m 、……仍为等比数列。

②三角函数⑴1.任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一(异于原点),它与原点的距离是0r =>,那么sin y r α=, cos ,xrα= ()t a n ,0yx xα=≠.2:三角函数在各象限的符号3.同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 4.正弦、余弦的诱导公式5.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan()1tan tan αβαβ±=sin cos a b αα+)αϕ+(辅助角公式)特别地: ⎪⎭⎫ ⎝⎛±=±4sin 2cos sin πααα ⎪⎭⎫ ⎝⎛±=±3sin 2cos 3sin πααα6.二倍角公式sin 2sin cos αα=2222cos 2cos sin 2cos 112sin ααααα=-=-=- (变形222sin 1cos2,cos 1cos2αααα=-=+)22tan tan 21tan ααα=- ⑵⒈研究函数sin()y A x ωϕ=+性质的方法:类比于研究sin y x =的性质,1:函数()ϕω+x Asin =y 是奇函数πϕk =⇔()Z ∈k . 函数()ϕω+x Asin =y 是偶函数()Z ∈+=⇔k k 2ππϕ. 函数()ϕω+x Acos =y 是奇函数()Z ∈+=⇔k k 2ππϕ.函数()ϕω+x Acos =y 是偶函数()Z ∈=⇔k k πϕ2求sin()y A x ωϕ=+的对称轴的方法:先令)(2Z k k x ∈+=+ππϕω后求出x 即可。

关于数列,、三角函数、平面向量的学习认识

关于数列,、三角函数、平面向量的学习认识

关于数列,、三角函数、平面向量的学习认识一、数列1.由S n 求a n ,a n ={),2()1(*11N n n S S n S n n ∈≥-=- 注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出。

一般已知条件中含a n 与S n 的关系的数列题均可考虑用上述公式;2.等差数列111(2(2)n n n n n n a a a d d a a a n ++-⇔-=⇔=+≥为常数{})Bn An s b an a n n +=⇔+=⇔2;3.等比数列2111((2)n n n n n na a q q a a a n a ++-⇔=⇔=≥为常数{})11n n a a q -⇔=; 4.首项为正(或为负)的递减(或递增)的等差数列前n 项和的最大(或最小)问题,转化为解不等式⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或解决; 5.熟记等差、等比数列的定义,通项公式,前n 项和公式,在用等比数列前n 项和公式时,勿忘分类讨论思想;6. 在等差数列中,()n m a a n m d =+-,n m a a d n m-=-;在等比数列中,,n m n n m a a q q -==7. 当m n p q +=+时,对等差数列有q p n m a a a a +=+;对等比数列有q p n m a a a a ⋅=⋅;8.若{a n }、{b n }是等差数列,则{ka n +pb n }(k 、p 是非零常数)是等差数列;若{a n }、{b n }是等比数列,则{ka n }、{a n b n }等也是等比数列;9. 若数列{}n a 为等差(比)数列,则232,,,n n n n n S S S S S --也是等差(比)数列;10. 在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中(即n a ); 11.若一阶线性递归数列a n =ka n -1+b (k ≠0,k ≠1),则总可以将其改写变形成如下形式:)1(11-+=-+-k b a k k b a n n (n ≥2),于是可依据等比数列的定义求出其通项公式; 二、三角函数1.三角函数符号规律记忆口诀:一全正,二正弦,三是切,四余弦;2.对于诱导公式,可用“奇变偶不变,符号看象限”概括;3.记住同角三角函数的基本关系,熟练掌握三角函数的定义、图像、性质;4.熟知正弦、余弦、正切的和、差、倍公式,正余弦定理,处理三角形内的三角函数问题勿忘三内角和等于1800,一般用正余弦定理实施边角互化;5.正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点;正(余)切型函数的对称中心是图象和渐近线分别与x 轴的交点,但没有对称轴。

数学三角函数和数列的中考重点知识点归纳与总结

数学三角函数和数列的中考重点知识点归纳与总结

数学三角函数和数列的中考重点知识点归纳与总结在中考数学考试中,三角函数和数列是两个非常重要的知识点。

掌握好这两个知识点,不仅能够解决一些常见的问题,还能够建立起对数学的整体认知。

本篇文章将对数学中关于三角函数和数列的重点知识点进行归纳和总结。

一、三角函数1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的三角函数,在中考中经常出现。

它们可以表示直角三角形中的角度与边长的关系。

其中,正弦函数表示某个角的对边与斜边的比值,而余弦函数则表示某个角的邻边与斜边的比值。

掌握三角函数的定义和性质,是解决与角度有关问题的基础。

2. 正切函数和余切函数正切函数和余切函数是另外两个常用的三角函数。

它们可以表示某个角的对边与邻边之间的比值。

正切函数用于求解两直线间的夹角,而余切函数则用于求解两直线的斜率之差。

在解决与直线有关问题时,正切函数和余切函数是非常有用的工具。

3. 三角函数的图像与性质掌握三角函数的图像与性质,有助于解决与函数图像有关的问题。

正弦函数和余弦函数的图像是周期性的波形,它们的最大值为1,最小值为-1。

而正切函数和余切函数的图像则呈现出周期性的上升下降趋势。

4. 三角函数的计算掌握三角函数的计算能力,是解决与角度有关问题的关键。

在计算中,可以利用特殊角的数值关系、和差化积等方法,简化计算过程。

此外,了解三角函数的反函数和逆函数,可以帮助我们求解一些特殊的问题。

二、数列1. 等差数列等差数列是一种常见的数列,它的每一项与前一项之差都相等。

在中考中,经常会涉及到等差数列的求和、求项数等问题。

掌握等差数列的求解方法和性质,对于解决与等差数列有关的问题非常重要。

2. 等比数列等比数列是一种常见的数列,它的每一项与前一项之比都相等。

在中考中,也会涉及到等比数列的求和、求项数等问题。

掌握等比数列的求解方法和性质,可以帮助我们解决与等比数列相关的各种问题。

3. 斐波那契数列斐波那契数列是一种特殊的数列,其中每一项都是前两项的和。

三角函数与数列学考试卷

三角函数与数列学考试卷

三角函数与数列学考试卷一选择题 1.=-)320cos(π( ) A .21 B .23 C .-21D .-232.已知△ABC 中,a =2,b =3,B =60°,那么角A 等于 ( )A.135°B.90°C.45°D.30°3已知△ABC 中,125tan -=A ,则cos A = ( ) A .1213 B.513 C. 513- D. 1213-4角α的终边过点(1,2)-,则cos α的值为 ( )C. ]D.5. 等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( ) A.3 B.32 C.916 D.46.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6707等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( ) A.45 B.75 C.180 D.300 8.在等比数列中,首项89,末项31,公比32,求项数 ( ) A.3 B.4 C.5 D.69.等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( ) A.15 B.17 C.19 D.2110.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为 ( ). A .81 B .120 C .168 D .19211.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2= ( ). A .-4B .-6C .-8D . -1012.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S = ( ). A .1B .-1C .2D .2113.在等差数列{n a }中,72=a ,154=a ,则10S = ( ).A .100B .210C .380D .40014.若,lg x ),23lg(-x )23lg(+x 成等差数列,则2log x= ( )A .2B .21C .4D .不存在15.在数列{n a }中,21=a ,1231+-=+n a a n n ,*N n ∈,则4a = ( )A .25B .29C .31D .3316. 在等差数列{n a }中,12642=++a a a ,那么=++++7321a a a a ( )A .28B .29C .31D .32二填空题17.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___ __.18.在ABC ∆中。

八种题型导数三角函数向量数列立体与解析几何计数原理与统概率高考数学考前迅速提分复习方案

八种题型导数三角函数向量数列立体与解析几何计数原理与统概率高考数学考前迅速提分复习方案

高考数学考前30天迅速提分复习方案(新高考地区专用)专题2.5转化与化归思想中的八种题型(导数、三角函数、向量、数列、立体与解析几何、计数原理与统概率)题型一:导数及其应用一、单选题1.(2020·甘肃白银·模拟预测(文))函数()tan xf x x x e =-在,22ππ⎛⎫- ⎪⎝⎭上的零点个数为( ) A .1B .2C .3D .42.(2020·辽宁·模拟预测(文))已知直线y a =分别与函数2x y e +=和1y x =-A ,B 两点,则A ,B 之间的最短距离是( )A .7ln 22- B .5ln 22- C .7ln 22+ D .5ln 22+ 3.(2020·四川绵阳·模拟预测(文))方程32291210x x x -++=的实根个数是( ) A .0B .1C .2D .34.(2020·全国·模拟预测(文))给定下列4个独立编号的命题: ①设x ,y ∈R ,且210x y +=,则二元函数22x y ω=+的最小值为20②已知0a >,函数()3f x x ax =-在[)1,+∞上是增函数,则a 的最大值为3③在ABC 中,D 为BC 中点,1AD =,P 在线段AD 上,则()PA PB PC ⋅+的最小值为1- ④若02πα<<,02πβ-<<,则1cos 43πα⎛⎫+= ⎪⎝⎭,3cos 42πβ⎛⎫-= ⎪⎝⎭cos 26βα⎛⎫= ⎪⎝⎭+请你根据逻辑推理相关知识,那么上述所有命题中不成立的编号是( ) A .①②B .②③C .③④D .①④5.(2020·贵州·遵义市南白中学模拟预测(文))已知函数()1ln b af x x x=--(0a >,0b e ≤≤)在区间[]1e ,内有唯一零点,则21b a ++的最大为( ) A .21e + B .221e e e +++C .1e +D .22e +6.(2020·辽宁·模拟预测(理))若不等式2ln mx x mxe ≥恒成立,则实数m 的取值范围为( )A .21,e ⎡⎫+∞⎪⎢⎣⎭B .1,2e ⎡⎫+∞⎪⎢⎣⎭C .1,e ⎛⎫+∞ ⎪⎝⎭D .e ⎫+∞⎪⎢⎣⎭二、多选题7.(2022·全国·模拟预测)若函数()f x 的图象上存在两个不同的点A 、B ,使得曲线()y f x =在这两点处的切线重合,称函数()f x 具有T 性质.下列函数中具有T 性质的有( ) A .x y e x =-B .42y x x =-C .3y x =D .sin y x x =+三、填空题8.(2020·安徽合肥·三模(理))若函数f (x )=ex ﹣lnx ﹣mx 在区间(1,+∞)上单调递增,则实数m 的取值范围为_____.9.(2020·江苏南京·三模)若对任意a ∈[e ,+∞)(e 为自然对数的底数),不等式e ax b x +≤对任意x ∈R 恒成立,则实数b 的取值范围为_______.四、解答题10.(2020·江苏·模拟预测)已知函数21()ln (1)2f x a x x =+-,a R ∈.(1)当2a =-时,求函数()f x 的极值;(2)若[1,)x ∀∈+∞,都有()0f x ,求实数a 的取值范围;(3)设211()l n 22a g x x x x =+++,若0[1,]x e ∃∈,使得()()00f x g x >成立,求实数a 的取值范围.11.(2020·浙江·模拟预测)设a ,b ∈R ,函数()2ln f x a x x bx b =+++.(1)若2a b +=-,求()y f x =的单调区间;(2)若()y f x =的极大值恒小于0,求a b +的最大值.12.(2020·四川眉山·模拟预测(理))已知函数1ln ()xf x x+=(1)若函数()f x 区间1,(0)3a a a ⎛⎫+> ⎪⎝⎭上存在极值点,求实数a 的取值范围;(2)当1≥x 时,不等式()1kf x x ≥+,恒成立,求实数k 的取值范围; (3)求证:2221[(1)!](1)n n n n e-+++>+(*n N ∈,e 为自然对数的底数, 2.71828e =……).13.(2020·江西·模拟预测(理))已知函数()ln x mf x e x x -=-,()f x 的导函数为()'f x .(1)当1m =时,证明:函数()f x 在()0,∞+上单调递增; (2)若()()'1g x f x m =-+,讨论函数()g x 零点的个数.题型二:三角函数与解三角形一、单选题1.(2022·河南新乡·二模(文))已知α,β是锐角,()1ln tan tan tan tan αβαβ>-,则( ) A .sin sin αβ> B .cos cos αβ> C .cos sin αβ>D .sin cos βα>2.(2021·全国·模拟预测)若1sin 84x π⎛⎫-= ⎪⎝⎭,则sin 24x π⎛⎫+= ⎪⎝⎭( )A .14-B 15C .78D .24-3.(2021·云南大理·模拟预测(理))已知,,0,,sin sin sin ,cos cos cos 2παβγαγββγα⎛⎫∈+=+= ⎪⎝⎭,则下列说法正确的是( )A .1cos()3βα-=- B .1cos()3βα-=C .3πβα-=-D .3πβα-=4.(2020·江西·模拟预测(理))函数()()π2sin 04f x x ωω⎛⎫=-> ⎪⎝⎭的导函数为()f x ',集合()()()000,0,M x f x f x ='⎧=⎨⎩0ππ,42x ⎫⎛⎫∈⎬ ⎪⎝⎭⎭,中有且仅有1个元素,则ω的取值范围是( ) A .31115,7,222ω⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭B .371315,3,7,2222ω⎛⎫⎛⎫⎛⎫∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .371115,3,7,2222ω⎛⎫⎛⎤⎡⎤∈ ⎪ ⎥⎢⎥⎝⎭⎝⎦⎣⎦D .371315,3,7,2222ω⎛⎫⎛⎤⎡⎤∈ ⎪ ⎥⎢⎥⎝⎭⎝⎦⎣⎦5.(2020·全国·模拟预测(理))函数()sin 2sin 3f x x m x x =++在[,]63ππ上单调递减的充要条件是( ) A .3m ≤-B .4m ≤-C .83m ≤D .4m ≤二、填空题6.(2022·重庆市求精中学校一模)在ABC 中,D 为边BC 上一点,2CD =,π6BAD ∠=,若2355=+AD AB AC ,且π6B =,则AC =________.7.(2022·四川·成都七中模拟预测(理))在Rt △ABC 中,已知∠C =90°,CD ⊥AB ,垂足为D .若AC ∶BC =3∶2,则BD ∶AD 的值为______.8.(2022·全国·高三专题练习(文))已知函数()212,032()3,3x x x f x f x x ⎧-+≤<⎪=⎨⎪-≥⎩,若方程()f x a =在[]3,4上有两个不相等的实数根1x ,2x ,则12x x +的取值范围是___________.9.(2019·湖北·黄冈中学一模(理))已知锐角ABC ∆中,,,A B C ∠∠∠所对的边分别为a ,b ,c ,且满足226a bc +=,则ABC ∆面积的最大值为______.三、解答题10.(2021·全国·模拟预测)如图,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,3AC =,点D ,E 在边AB 上,且AD DE EB ==.(1)求CD 的长; (2)求sin DCE ∠的值.11.(2019·江苏·一模)如图,某市一学校H 位于该市火车站O 北偏东45︒方向,且42OH km =,已知, OM ON 是经过火车站O 的两条互相垂直的笔直公路,CE ,DF 及圆弧CD都是学校道路,其中//CE OM ,//DF ON ,以学校H 为圆心,半径为2km 的四分之一圆弧分别与, CE DF 相切于点, C D .当地政府欲投资开发AOB 区域发展经济,其中,A B 分别在公路, OM ON 上,且AB 与圆弧CD 相切,设OAB θ∠=,AOB 的面积为2Skm .(1)求S 关于θ的函数解析式;(2)当θ为何值时,AOB 面积S 为最小,政府投资最低?四、双空题12.(2021·全国·模拟预测)已知函数()sin 34f x A x πϕ⎛⎫=++ ⎪⎝⎭(0A >,2πϕ<)满足()3f x f x π⎛⎫=- ⎪⎝⎭,对任意的R x ∈,23f x π⎛⎫-≤ ⎪⎝⎭恒成立,且存在0x ,使得023f x π⎛⎫-=- ⎪⎝⎭,则()f x =______;若,6x t π⎛⎤∈ ⎥⎝⎦,12f x π⎛⎫- ⎪⎝⎭的值域是2A ⎡-⎣,则实数t 的取值范围是______.13.(2020·浙江省富阳中学三模)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2c =,6cos b aC a b+=,则22a b +=____________,ABC 的面积的取值范围是___________.题型三:平面向量一、单选题1.(2020·浙江·二模)空间向量1OB ,2OB ,3OB 两两垂直,123||||||1AB AB AB ===,123OP OB OB OB =++,1||2AP ≤,则||OA ∈( ) A .22[6 B .17[6C .22[36] D .21[352.(2019·福建漳州·模拟预测(文))已知ABC 中,2,,3AB A BC π==边上的中线3AD =AC =( )A .2B .4C .6D .83.(2020·陕西榆林·三模(理))已知向量AB 与AC 的夹角为120°,且3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥,则实数λ的值为( )A .712B .512C .16D .344.(2020·江西宜春·模拟预测(理))如图,在四边形ABCD 中,//AB CD ,AB AD ⊥,22AB AD CD ==,E 是BC 边上一点且3BC EC =,F 是AE 的中点,则下列关系式不正确的是( )A .12BC AB AD =-+ B .1133AF AB AD =+ C .1233BF AB AD =-+D .1263CF AB AD =--5.(2021·山西大附中模拟预测(理))在ABC ∆中,已知9AB AC ⋅=,sin cos sin B A C =⋅,6ABC S ∆=,P 为线段AB 上的一点,且CA CBCP x y CACB=⋅+⋅,则11x y +的最小值为( ) A 723+B 732+C 726+D 743+6.(2020·浙江·湖州中学模拟预测)已知C ,D 是半径为1的圆O 上的动点,线段AB 是圆O 的直径,则AC BD ⋅的取值范围是( )A .12,2⎡⎤-⎢⎥⎣⎦B .[]2,0-C .14,2⎡⎤-⎢⎥⎣⎦D .[]4,0-二、双空题7.(2021·广东茂名·二模)已知区域D 表示不在直线()212223m x my m -+=+(m ∈R )上的点构成的集合,则区域D 的面积为___________,若在区域D 内任取一点(),P x y ,则22x y +的取值范围为___________.三、填空题8.(2020·江苏南通·三模)已知ABC 中,2CA CB AB ⋅==,且3BAC π∠=,则AB AC ⋅的值为_______.9.(2019·浙江金华·一模)已知平面向量a ,b ,c 满足74a b ⋅=,||3a b -=,()()2a c b c --=-,则c 的取值范围是___________.10.(2020·浙江嘉兴·三模)已知平面向量a 、b 、c 满足21b a ==、2c =,()()440c a c b -⋅-=,则2a b -的取值范围是______.11.(2019·浙江绍兴·二模)如图,已知等腰直角三角形ABC 中,90︒∠=C ,2AC =,两顶点,A C 分别在,x y 正半轴(含原点O )上运动,,P Q 分别是,AC AB 的中点,则||OP OQOQ ⋅的取值范围是______.题型四:数列一、单选题1.(2022·江西·上饶市第一中学二模(文))等比数列{}n a 中,若59a =,则3436log log a a +=( )A .2B .3C .4D .92.(2022·陕西·宝鸡市渭滨区教研室三模(理))已知数列{}n a 的前n 项和为n S ,若n S n ⎧⎫⎨⎬⎩⎭是等差数列,且100S =,36218S S =+,则1a =( ) A .1 B .9- C .10 D .10-3.(2021·全国·模拟预测)我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个1c 键的8个白键与5个黑键(如图)的音频恰成一个公比为1221c 的频率正好是中音c 的2倍.已知#d 的频率为1f ,1a 的频率为2f ,则21:f f =( )A .7122B .7122-C 2D 2二、双空题4.(2022·福建泉州·模拟预测)已知数列{}n a 的通项公式是21n a n =-,记m b 为{}n a 在区间)()*,2mm m ⎡∈⎣N 内项的个数,则6b=___________,不等式12022m m b b +->成立的m 的最小值为___________.三、解答题5.(2022·山东泰安·一模)已知各项均为正数的等差数列{}n a ,25a =,12a ,3a ,52a +成等比数列.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()311n bn a -=,n T 为数列{}n b 的前n 项和,n *∈N ,求证:131log n n a T a +<.6.(2021·全国·模拟预测)已知数列{}2nn a -是公差为2的等差数列,数列{}21n a n -+是公比为2的等比数列. (1)求数列{}n a 的通项公式; (2)记()()111232n n n b n a ++=+-,且n T 为数列{}n b 的前n 项和,求证:16n T <.7.(2020·北京·模拟预测)在数列的每相邻两项之间插入此两项之和的相反数,形成新的数列,这样的操作称为该数列的一次“Ω扩展”.已知数列0A :1,2,3,该数列经过n 次“Ω扩展”后得到数列n A :1,1x ,2x ,…,m x ,3,数列n A 的所有项之和为n S . (1)写出数列1A ,2A ; (2)求1S ,2S 的值;(3)求数列n S 的前n 项和公式.8.(2021·天津和平·三模)已知{}n a 是各项都为整数的等比数列,{}n b 是等差数列,111a b ==,23522a a =+,22a b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设1n k k a =∏表示数列{}n a 的前n 项乘积,即1231nk n k a a a a a ==⋅⋅⋅∏,*n ∈N .(ⅰ)求1nk k a =∏;(ⅱ)若数列{}n c 的前n 项和为n S ,且1nn k k c b n ==∏,求证:111n n cS n +-=+.9.(2022·浙江·模拟预测)已知数列{}n a 的首项为正数,其前n 项和n S 满足82343n n n nS a S a =--.(1)求实数λ的值,使得{}2n S λ+是等比数列;(2)设13n n n n b S S +=,求数列{}2n b 的前n 项和..10.(2021·北京·高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,-2,-2,-1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.11.(2020·浙江金华·模拟预测)已知数列{}n a ,{}n b 的前n 项和分别为n A ,n B ,11a =,且12,n n n A a a +=1n n b B +=.(1)求数列{}n a ,{}n b 的通项公式; (2)令1122n n n T a b a b a b =+++,若对任意的*n N ∈.不等式()223n n n n nT b A n b λλ+<+恒成立,试求实数λ的取值范围.12.(2022·江苏苏州·模拟预测)知数列{}n a 满足:13a =,21224n n n a a a +=-+.(1)求证:1n n a a +>;(2)求证:()*12321111113nnn N a a a a ⎛⎫-≤++++<∈ ⎪⎝⎭13.(2021·北京八十中模拟预测)对于无穷数列{}n a 、{}n b ,*n N ∈,若{}{}1212max ,,,min ,,,k k k b a a a a a a =-,*k N ∈,则称数列{}n b 是数列{}n a 的“收缩数列”,其中{}12max ,,,k a a a 、{}12min ,,,k a a a 分别表示12,,,k a a a 中的最大项和最小项.已知数列{}n a 的前n 项和为n S ,数列{}n b 是数列{}n a 的“收缩数列”. (Ⅰ)写出数列31n a n =-的“收缩数列”; (Ⅱ)证明:数列{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若()()()121111,2,3,22n n n n n n S S S a b n +-+++=+=,求所有满足该条件的数列{}n a .题型五:空间向量与立体几何一、单选题1.(2022·四川省泸县第二中学模拟预测(理))在三棱锥A BCD -中,2AB AD BC ===,13CD =22AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π2.(2021·四川·成都七中一模(文))在棱长为2的正方体1111ABCD A B C D -中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12PP 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值为( )A .2B 3C .13D .433.(2020·浙江金华·模拟预测)已知四面体ABCD 中,棱AD ,BC 所在直线所成角为60︒,且1AD =, 2BC =,60ACD ∠=︒,面BAD 和面ACD 所成的锐二面角为α,面BAC 和面ACD 所成的锐二面角为β,当四面体ABCD 的体积取得最大值时( ). A .αβ=B .αβ<C .αβ>D .不能确定4.(2020·浙江浙江·一模)如图,四棱锥P ABCD -中,底面ABCD 为正方形,AP ⊥平面PCD ,PA PD =,点E 为线段PD 的动点.记BE 与AP 所成角的最小值为α,当E 为线段PD中点时,二面角P BC E --的大小为β,二面角E BC D --的大小为γ,则α,β,γ的大小关系是( )A .αβγ>>B .αγβ>>C .αβγ>=D .γαβ>>二、填空题5.(2022·重庆·二模)无穷符号∞在数学中是一个重要的符号,该符号的引入为微积分和集合论的研究带来了便利,某校在一次数学活动中以无穷符号为创意来源,设计了如图所示的活动标志,该标志由两个半径分别为15和20的实心小球相交而成,球心距1225O O =,则该标志的体积为___________.附:一个半径为R 的球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高(记为H ),球缺的体积公式为2π3H V H R ⎛⎫=- ⎪⎝⎭.6.(2021·四川攀枝花·二模(文))三棱柱111ABC A B C -中,侧面与底面垂直,底面是边长为2的正三角形,AC 的中点为D ,若直线1AB 与1C D 所成的角为30,则棱柱的高为__________.7.(2020·湖南·雅礼中学模拟预测(文))在已知长方体1111ABCD A B C D -中,11CC BC ==,6AB =E 为棱11D C 上一点且11EC =,点P 为线段1B C 上的动点,则1A P PE +的最小值为________.8.(2020·湖北武汉·模拟预测(理))已知正四棱锥P ABCD -的底面边长为326PA =,E 为侧棱PB 上一点且12PE EB =,在PAC △内(包括边界)任意取一点F ,则BF EF +的取值范围为__________.三、解答题9.(2022·四川泸州·二模(文))已知空间几何体ABCDE 中,ABC ,ECD 是全等的正三角形,平面ABC ⊥平面BCD ,平面ECD ⊥平面BCD .(1)若222BD BC ==BC ED ⊥;(2)探索A ,B ,D ,E 四点是否共面?若共面,请给出证明;若不共面,请说明理由.题型六:解析几何一、单选题1.(2022·河南洛阳·一模(文))已知双曲线221x y -=的左、右焦点分别为1F ,2F ,点A 在双曲线上且120AF AF ⋅=,若12AF F △的内切圆的半径为( )A 32B 32C 31D 312.(2021·四川成都·一模(文))已知双曲线()222210,0x y a b a b-=>>的一条渐近线方程为2y x =,则该双曲线的离心率为( )A 5B 3C .2D .33.(2020·陕西西安·二模(理))已知双曲线22221x y a b -=(0a >,0b >)的右焦点为(4,0)F ,P 为双曲线左支上的动点,设点(0,3)Q -且PQF △的周长最小值为16,则双曲线的渐近线方程为( ) A .7y = B .7y x = C .7y x = D .7y = 4.(2021·宁夏大学附属中学一模(文))已知抛物线C :()220x py p =>的焦点为F ,P为抛物线C 上的一点,过PF 的中点M 作x 轴的垂线,垂足为N ,且30FPN ∠=︒,2FN =,则p 的值是( )A .1B .2C .3D .45.(2022·河南·一模(文))已知点P 是双曲线22:1169x y E -=的右支上一点,12,F F 为双曲线E 的左、右焦点,12F PF △的面积为20,则下列说法正确的是( ) ①点P 的横坐标为203②12F PF △的周长为803③12F PF △的内切圆半径为1 ④12F PF △的内切圆圆心横坐标为4 A .②③④B .①②④C .①②③D .①②二、多选题6.(2022·重庆实验外国语学校一模)已知抛物线1C :28y x =的焦点F 与双曲线2C :2212x y t-=的右焦点重合,且1C 与2C 交于A ,B 两点,则下列说法正确的是( ) A .双曲线的离心率2e =B 2 C .632AF =+D .在抛物线上存在点P 使得PAB △为直角三角形三、双空题7.(2021·贵州·模拟预测(理))Cassini 卵形线是由法国天文家Jean-DominiqueCassini(1625-1712)引入的.卵形线的定义是:线上的任何点到两个固定点1S ,2S 的距离的乘积等于常数2b .b 是正常数,设1S ,2S 的距离为2a ,如果a b <,就得到一个没有自交点的卵形线;如果a b =,就得到一个双纽线;如果a b >,就得到两个卵形线.若()11,0S -,()21,0S .动点P 满足121PS PS ⋅=.则动点P 的轨迹C 的方程为___________;若'A 和A 是轨迹C 与x 轴交点中距离最远的两点,则'APA △面积的最大值为___________.四、填空题8.(2021·黑龙江·大庆教师发展学院二模(文))已知抛物线22(0)y px p =>,圆22()12px y -+=与y 轴相切,斜率为k 的直线过抛物线的焦点与抛物线交于A ,D 两点,与圆交于B ,C 两点(A ,B 两点在x 轴的同一侧),若4AB CD =,则k 的值为___________.9.(2021·江西·三模(理))已知圆C 的方程为()2211x y -+=,P 是椭圆22143x y +=上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,则PA PB ⋅的最小值是___________10.(2021·河南开封·三模(理))在平面直角坐标系xOy 中,P 是曲线21y x x=+(0)x >上的一个动点,则点P 到直线y x =的距离的最小值是____________.11.(2020·安徽·合肥市第六中学模拟预测(理))已知1F ,2F 分别为双曲线22:1927x y C -=的左右焦点,点A 为双曲线C 上一点,12F AF ∠的平分线AM 交x 轴于点()2,0M ,则AM =___________. 五、解答题12.(2020·黑龙江·哈尔滨市第一中学校一模(理))已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,左、右顶点分别为M 、N ,点G 是椭圆上异于左、右顶点的动点,直线GM 、GN 的斜率分别为GM k 和GN k ,且1·2GM GN k k =-. (1)求椭圆C 的方程;(2)直线1:(2)y k x =与椭圆相交于A ,B 两点,点(,0)P m ,若x 轴是APB ∠的角平分线,求P 点坐标.13.(2020·山西·三模(理))已知抛物线2:2(0)C x py p =>,直线1:22l y x =-,过点()1,2P 作直线与C 交于A ,B 两点,当//AB l 时,P 为AB 中点.(1)求C 的方程;(2)作AA l '⊥,BB l '⊥,垂足分别为A ',B '两点,若BA '与AB '交于Q ,求证:////PQ AA BB ''.14.(2020·福建·模拟预测(理))已知定点()0,1F ,P 为x 轴上方的动点,线段PF 的中点为M ,点,P M 在x 轴上的射影分别为,A B ,PB 是APF ∠的平分线,动点P 的轨迹为E . (1)求E 的方程;(2)设E 上点Q 满足PQ PB ⊥,Q 在x 轴上的射影为C ,求AC 的最小值.15.(2020·新疆·三模(理))已知椭圆C :()222210x y a b a b+=>>右焦点为()2,0F ,P 为椭圆上异于左右顶点A ,B 的一点,且PAB △面积的最大值为35. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线AP 与直线x a =交于点Q ,线段BQ 的中点为M ,证明直线FM 平分PFB ∠.16.(2020·陕西·模拟预测(文))已知椭圆2222:1(0)x y C a b a b+=>>过点E 2,1),其左、右顶点分别为A 、B ,且离心率2e = 求椭圆C 的标准方程;(Ⅱ)设M (x 0,y 0)为椭圆C 上异于A ,B 两点的任意一点,直线l :x 0x +2y 0y ﹣4=0.证明:直线l 与椭圆C 有且只有一个公共点.17.(2022·甘肃·二模(文))已知椭圆()2222:10x y E a b a b+=>>的左焦点与短轴两端点的连线及短轴构成等边三角形,且椭国经过点31,M ⎛ ⎝⎭. (1)求椭圆E 的方程; (2)不经过点M 的直线()30y m m +≠与椭圆E 相交于A ,B 两点,A 关于原点的对称点R ,直线MR ,MB 与y 轴分别交于P ,Q 两点,求证:MP MO =.18.(2021·河南·正阳县高级中学模拟预测(理))已知抛物线E :()220x py p =>的焦点为F ,点P 在E 上,直线l :20x y --=与E 相离.若P 到直线l 的距离为d ,且PF d +的最小值为322.过E 上两点,A B 分别作E 的两条切线,若这两条切线的交点M 恰好在直线l 上.(1)求E 的方程;(2)设线段AB 中点的纵坐标为n ,求证:当n 取得最小值时,MA MB ⊥.19.(2021·广东·普宁市普师高级中学模拟预测)已知双曲线22221x y a b -=(其中0a >,0b >),点(),0A a ,()0,B b -23AB 3(1)求双曲线的方程;(2)已知直线()50y kx k =+≠交双曲线于C 、D 两点,且C 、D 都在以B 为圆心的圆上,求k 的值.20.(2022·江苏南京·模拟预测)已知椭圆1C :()222210x y a b a b +=>>3圆1C 的上顶点与抛物线2C :()220x py p =>的焦点F 重合,且抛物线2C 经过点()2,1P ,O 为坐标原点.(1)求椭圆1C 和抛物线2C 的标准方程;(2)已知直线l :y kx m =+与抛物线2C 交于A ,B 两点,与椭圆1C 交于C ,D 两点,若直线PF 平分APB ∠,四边形OCPD 能否为平行四边形?若能,求实数m 的值;若不能,请说明理由.21.(2020·浙江·模拟预测)如图,点()1,2A .B 是抛物线24y x =上一点,且在A 点的右上方.在x 轴上取一点C ,使得245ACO BAC ∠=∠+︒.射线AC 交抛物线于D 点,抛物线在两点B ,D 处切线交于点P .(1)若AB AC ⊥,求B 点的坐标;(2)记PAD △面积为1S ,PAB △面积为2S ,求12S S -的最大值.22.(2020·浙江·衢州二中模拟预测)已知抛物线2:4y x Γ=,焦点为F ,过Γ外一点Q (不在x 轴上),作Γ的两条切线,切点分别为A ,B ,直线QA ,QB 分别交y 轴于C ,D 两点,记QAB 的外心为M ,FCD 的外心为T .(1)若5AF =,求线段CF 的长度;(2)当点Q 在曲线()221042y x x +=<上运动时,求TF TM ⋅的最大值.题型七:计数原理一、单选题1.(2020·黑龙江·哈尔滨市第六中学校三模(理))在12202011x x ⎛⎫++ ⎪⎝⎭的展开式中, 2x 项的系数为 A .10B .25C .35D .662.(2018·浙江·杭州高级中学模拟预测)若52345012345(21)(1)(1)(1)(1)(1)x a a x a x a x a x a x +=++++++++++,则4a =( ).A .32-B .32C .80-D .80二、双空题3.(2020·浙江·镇海中学模拟预测)281(1)()x x x x-++的展开式的各项系数和为__________;常数项为__________.4.(2020·浙江·衢州二中模拟预测)已知()72801281241tx x a a x a x a x x x ⎛⎫+-=+++++ ⎪⎝⎭,则t =__________;812028222a a a a ++++=__________. 三、填空题5.(2019·云南曲靖·二模(理))若二项式(1)n ax +的展开式中,3x 的二项式系数为10,该项系数为-80,则4x 的系数为______.6.(2019·安徽·合肥一六八中学模拟预测(理))在6211x x ⎛⎫+- ⎪⎝⎭的展开式中常数项是___________________四、解答题7.(2020·江苏江苏·模拟预测)对一个量用两种方法分别算一次,由结果相同而构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式. (1)根据恒等式()()()()*111,m nmnx x x m n ++=++∈N 两边p x 的系数相同直接写出一个恒等式,其中,,p p m p n ∈≤≤N ;(2)设*,,,,m n p p m p n ∈∈≤≤N N ,利用上述恒等式证明:()1112C CC C 1C C pp i p i p pnm n n m m n m i i --+-+=--=-∑.题型八:统计与概率一、填空题1.(2019·海南·三模(理))公元前6世纪的毕达哥拉斯是最早研究“完全数”的人.完全数是一种特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.若从集合{}1,6,24,28,36中随机抽取两个数,则这两个数中有完全数的概率是______.二、解答题2.(2022·陕西·宝鸡市渭滨区教研室三模(理))有一种速度叫中国速度,有一种骄傲叫中国高铁.中国高铁经过十几年的发展,取得了举世瞩目的成就,使我国完成了从较落后向先进铁路国的跨越式转变.中国的高铁技术不但越来越成熟,而且还走向国外,帮助不少国家修建了高铁.高铁可以说是中国一张行走的名片.截至到2020年,中国高铁运营里程已经达到3.9万公里.下表是2013年至2020年中国高铁每年的运营里程统计表,它反映了中国高铁近几年的飞速发展: 年份 2013 2014 2015 2016 2017 2018 2019 2020 年份代码x12 3 4 5 6 7 8 运营里程(y 万公里) 1.3 1.61.92.22.52.93.53.9根据以上数据,回答下面问题.(1)甲同学用曲线y =bx +a 来拟合,并算得相关系数r 1=0.97,乙同学用曲线y =cedx 来拟合,并算得转化为线性回归方程所对应的相关系数r 2=0.99,试问哪一个更适合作为y 关于x 的回归方程类型,并说明理由;(2)根据(1)的判断结果及表中数据,求y 关于x 的回归方程(系数精确到0.01).参考公式:用最小二乘法求线性回归方程的系数公式:121()()ˆˆ,()niii nii x x y y ba y bxx x ==--==--∑∑;参考数据:882112.48,()()15.50,()42.00,i i i i i y x x y y x x ===--=-=∑∑令()()()8820.1411ln ,0.84, 6.50, 1.01, 1.15.i i i i i w y w x x w w w w e ====--=-==∑∑3.(2020·河北正中实验中学模拟预测(理))某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示: 表1:x 1 23 4 5 67y 6 11 21 34 66 101 196根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内,y a bx =+与x y c d =⋅(,c d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由).(2)根据(1)的判断结果及表1中的数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次.(3)推广期结束后,为更好的服务乘客,车队随机调查了100人次的乘车支付方式,得到如下结果: 表2支付方式 现金 乘车卡 扫码 人次 10 60 30已知该线路公交车票价2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据调查结果发现:使用扫码支付的乘客中有5名乘客享受7折优惠,有10名乘客享受8折优惠,有15名乘客享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入. 参考数据:yv71i ii x y=∑71i ii x v=∑0.541062.14 1.54 2535 50.12 3.47其中11lg ,7ni i i i v y v v ===∑.参考公式:对于一组数据()()()122,,,,,,i n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆˆˆ,n niii ii i nni ii i u u v v u v nu vv u u u unu βαβ====---⋅===---∑∑∑∑.4.(2019·内蒙古包头·二模(理))一只红玲虫的产卵数y 和温度t 有关.现收集了7组观测数据如下表: 温度/t C ︒21 23 25 27 29 3235产卵数y /个 7 11 21 24 66 115 325 为了预报一只红玲虫在40︒时的产卵数,根据表中的数据建立了y 与t 的两个回归模型.模型①:先建立y 与t 的指数回归方程(1)0.272 3.849t y e -=,然后通过对数变换ln u y =,把指数关系变为u 与t 的线性回归方程:(1)0.272 3.849u t =-;模型②:先建立y 与t 的二次回归方程(2)20.367202.543y t =-,然后通过变换2x t =,把二次关系变为y 与x 的线性回归方程:(2)0.367202.543yx =-.(1)分别利用这两个模型,求一只红玲虫在40︒时产卵数的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和11550.538Q =,模型①的相关指数210.98R =;模型②的残差平方和215448.431Q =,模型②的相关指数220.8R =;7.0311131e =,71096e =,82981e =;ln7 1.946=,ln11 2.398=,ln 21 3.045=,ln 24 3.178=,ln66 4.190=,ln115 4.745=,ln325 5.784=)。

三角函数+数列

三角函数+数列
4 5


4
2、已知 cos , ( , ) ,则 cos( ) (
2


5 ,求 sin( + ) 13 3 15 4、已知 sin =- , ( , ),求 sin( + ) 2 17 3
3、已知 , 都是锐角,sin = ,cos =
10.在△ABC 中,AB=1,BC=2,B=60°,则 AC= 二 数列
等差数列的性质考察 1.等差数列 an 的前 m 项的和是 30,前 2m 项的和是 100,则它的前 3m 项 的和是( A.130 ) B.170 C.210 D.260
2.等差数列 {an } 共有 2n 1 项,其中奇数项之和为 319 ,偶数项之和为 290 , 则其中间项为( A. 28 ). B. 29 C. 30 D.31
4 4
3 4
C. -
4 3
D.
4 3
2 sin x (sin x cos x ) 7、函数 y 的最大值为(
A. 1 2 B. 2 1 C. 2
) D.2
学海无涯多歧路
“学辅”相伴行万里!
5
学辅教育
成功就是每天进步一点点!
(四)正弦定理与余弦定理的运用 正弦定理 1.已知两角及一边 例题:在△ABC 中,已知 a=2 2,A=30°,B=45°,解三角形.
)。
A

1 2
B
1 2
C

3 2
D
3 2
3、已知 sin cos 2 , (0,π),则 sin 2 =
A. 1
B.
2 2
C.
2 2

初中数学中的数列与三角函数知识点的归纳与解析

初中数学中的数列与三角函数知识点的归纳与解析

初中数学中的数列与三角函数知识点的归纳与解析数学是一门以逻辑推理和数量关系为基础的学科,在初中阶段,数列和三角函数是数学学习中的重要内容。

本文将对初中数学中的数列和三角函数的知识点进行归纳和解析,帮助读者更好地理解和应用这些概念。

一、数列的概念和基本性质数列是由一系列数字按照一定规律排列而成的序列。

在初中数学中,数列通常以数列的通项公式和前n项和公式来表示。

对于等差数列,其通项公式为an=a1+(n-1)d,其中a1表示首项,d表示公差;前n项和公式为Sn=n/2(a1+an)。

对于等比数列,其通项公式为an=a1*r^(n-1),其中a1表示首项,r表示公比;前n项和公式为Sn=a1(1-r^n)/(1-r)。

二、数列的应用数列在生活中有许多实际应用。

例如,等差数列可以用来描述数量随时间的变化,比如每天增加固定数额的存款;等比数列可以用来描述许多自然现象,比如病毒的传播速度。

通过数列的性质和计算方法,我们可以更好地理解和解决实际问题。

三、三角函数的概念和基本性质三角函数是以角度为自变量的函数,包括正弦函数、余弦函数和正切函数。

在初中数学中,我们通常通过单位圆和直角三角形来定义和理解三角函数。

正弦函数的定义是sinθ=opposite/hypotenuse,余弦函数的定义是cosθ=adjacent/hypotenuse,正切函数的定义是tanθ=opposite/adjacent。

三角函数具有周期性和对称性的特点,可以通过图像来进行直观的理解。

四、三角函数的应用三角函数在几何学、物理学和工程学等领域有广泛的应用。

例如,在几何学中,我们可以通过正弦函数和余弦函数来计算三角形的边长和角度;在物理学中,三角函数可以用来描述物体运动的周期性和振动现象;在工程学中,三角函数可以用来计算结构的受力和振动频率。

通过熟练掌握三角函数的性质和计算方法,我们可以更好地解决实际问题。

五、数列与三角函数的关系数列与三角函数之间有着密切的联系。

数列、向量、三角函数复习题

数列、向量、三角函数复习题

(I)设,求数列的通项公式(II)求数列的前项和∙分析:(I)由已知有利用累差迭加即可求出数列的通项公式: () (II)由(I)知,=而,又是一个典型的错位相减法模型,易得=∙2.已知数列中,是其前项和,并且,⑴设数列,求证:数列是等比数列;⑵设数列,求证:数列是等差数列;⑶求数列的通项公式及前项和。

∙2解:(1)由S=4a,S=4a+2,两式相减,得S-S=4(a-a),即a=4a-4a.(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练)a-2a=2(a-2a),又b=a-2a,所以b=2b①已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 ②由①和②得,数列{b}是首项为3,公比为2的等比数列,故b=3・2.当n≥2时,S=4a+2=2(3n-4)+2;当n=1时,S=a=1也适合上式.综上可知,所求的求和公式为S=2(3n-4)+2.∙3.19.已知数列,首项a 1 =3且2a n+1=S n・S n-1(n≥2).(1)求证:{}是等差数列,并求公差;∙3.分析:证为等差数列,即证(d是常数)。

解:⑴由已知当⑵⑶∙4.17.设等差数列的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)的通项公式a n及前n项的和S n;4.解:设等差数列首项为a1,公差为d,依题意得⑴;⑵∴.∙5.己知为等差数列,,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:解:设新数列为即3=2+4d,∴,∴,∴说明:一般地,在公差为d的等差数列每相邻两项之间插入m个数,构成一个新的等差数列,则新数列的公差为原数列的第n项是新数列的第n+(n-1)m=(m+1)n-m项.向量∙ 1.已知=1,=.(Ⅰ)若与的夹角为,求;(Ⅱ)若与垂直,求与的夹角.∙1解:(I)∵=1, =,的夹角为∴・=cos=1××cos=∴==(Ⅱ)设与的夹角为.∵(-)⊥∴・(-)=0 即・=0∴-1××cos=0 ∴cos=∵∈〔〕∴=即与的夹角为∙ 2. 已知向量,且A、B、C分别为△ABC的三边a、b、c所对的角。

数学中的数列和三角函数知识

数学中的数列和三角函数知识

数学中的数列和三角函数知识一、数列知识1.数列的定义:数列是由一些按照一定顺序排列的数构成的序列。

2.数列的表示方法:–列举法:直接将数列中的各项写出来;–通项公式法:用公式表示数列中任意一项的值。

3.数列的分类:–整数数列:数列中的每一项都是整数;–有理数数列:数列中的每一项都是有理数;–实数数列:数列中的每一项都是实数。

4.数列的性质:–单调性:数列可以分为单调递增、单调递减或常数数列;–周期性:数列中存在周期性的重复项;–收敛性:数列的各项逐渐趋近于某一确定的值。

5.等差数列:数列中任意两项之差都相等的数列。

–定义:数列{a_n}中,如果对于任意的n,都有a_n - a_(n-1) = d,那么数列{a_n}就是等差数列,其中d为常数,称为公差。

–通项公式:a_n = a_1 + (n - 1)d–前n项和公式:S_n = n/2 * (a_1 + a_n)6.等比数列:数列中任意两项的比值都相等的数列。

–定义:数列{a_n}中,如果对于任意的n,都有a_n / a_(n-1) = q,那么数列{a_n}就是等比数列,其中q为常数,称为公比。

–通项公式:a_n = a_1 * q^(n-1)–前n项和公式:S_n = a_1 * (1 - q^n) / (1 - q)(q ≠ 1)二、三角函数知识1.三角函数的定义:三角函数是用来描述直角三角形中角度与边长之间关系的函数。

2.基本三角函数:–正弦函数(sin):sinθ = 对边 / 斜边–余弦函数(cos):cosθ = 邻边 / 斜边–正切函数(tan):tanθ = 对边 / 邻边3.特殊角的三角函数值:–sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3–sin45° = √2/2,cos45° = √2/2,tan45° = 1–sin60° = √3/2,cos60° = 1/2,tan60° = √3–sin90° = 1,cos90° = 0,tan90° = 无穷大4.三角函数的性质:–周期性:三角函数具有周期性,如sinθ和cosθ的周期都是2π;–奇偶性:sinθ和tanθ是奇函数,cosθ是偶函数;–单调性:三角函数在各自的定义域内具有单调性。

高考三角函数及数列大题

高考三角函数及数列大题

三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin =++C B A . I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.5 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根. (Ⅰ)求)tan(B A +的值;(Ⅱ)若AB 5=,求BC 的长.6 .在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量()2s i n ,3m B =- ,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。 (I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。11.已知⎪⎪⎭⎫ ⎝⎛-=23,23a ,)4cos ,4(sin x x b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。25.在锐角△ABC 中,角A . B .C 的对边分别为a 、b 、c,已知.3tan )(222bc A a c b =-+(I)求角A;(II)若a=2,求△ABC 面积S 的最大值。高考数学数列大题1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比(Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ;(Ⅱ)求数列}{n a 的通项公式;(Ⅲ)求数列}{n a 的前n 项和n S3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥(1)求数列n a 的通项公式;(2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。

高考有关三角函数及数列

高考有关三角函数及数列

全国2(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=( )(A )13 (B )13- (C )19 (D )19-C(15)设θ为第二象限角,若1tan 42πθ⎛⎫+= ⎪⎝⎭ ,则sin cos θθ+=____-根号10/5_____. (16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为___-49_____.全国1.7、设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m = ( C )A 、3B 、4C 、5D 、612、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则(B )A 、{S n }为递减数列B 、{S n }为递增数列C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列 13、已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =___2__.14、若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =____(-2)n-1次方__.安徽(12)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c 。

若2b c a +=,则3s i n 5s i n ,A B=则角C =_____120____. (14)如图,互不相同的点12,,,n A A X 和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与数列测试题(二) 一、选择题:
1.数列1,-3,5,-7,9,…,的一个通项公式为
A.a n =2n -1
B.a n =(-1)n (2n -1)
C.a n =(-1)n (1-2n)
D.a n =(-1)n (2n+1) 2.等比.
数列2,4,8,16,…,的前n 项和为 A.2n+1-1 B.2n -2 C.2n D.2n+1-2 3.等比.
数列{a n }的a 2·a 6=4,则a 4= A.2 B.-4 C.4,-4 D.2,-2 4.已知等差.
数列{a n }中,a 5+a 9=2,则S 13= A.11 B.12 C.13 D.不确定 5.已知数列{a n }满足a 1=1,a n+1=2a n +1(n ∈N*),则a 5=
A.29
B.30
C.31
D.32
6.在△ABC 中,已知222a b c +=,则C=
A.300
B.1500
C.450
D.1350 7.在△ABC 中,A =60°,b =1,其面积为3,则a +b +c
sinA +sinB +sinC
=
A. C.338
8. 递减等差数列{a n }的前n 项和S n 满足:S 5=S 10,则欲S n 最大,则n= A.10 B.7 C.9 D.7,8 9.已知正项等比数列}{n a 满足:5672a a a +=,若存在两项n m a a 、,使得
则n m +的值为 A.10 B.6 C.4 D.不存在
10.在数列{a n }中,a 1=2,n+1n 1
a =a ln(1)n
++,则a n =
A.2+lnn
B.2+(n -1)lnn
C. 2+nlnn
D.1+n+lnn 11.已知{a n }为公比q >1的等比数列,若a 2005和a 2006是方程4x 2-8x+3=0 的两根,则a 2007+a 2008的值是
A.18
B.19
C.20
D.21
12.已知数列{a n }中,a 1=1,前n 项和为S n ,且点P(a n ,a n+1)(n ∈N*)在直线x -y+1=0上, 则123n 1111...S S S S ++++= A.n(n +1)2 B.2n(n +1) C.2n n +1 D.n 2(n +1)
二、填空题:
13.在等比数列{}n a 中,已知2,1654321-=++=++a a a a a a ,则该数列的前15项的和=15S 。

14.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东060,行驶h 4后,船到达C 处,看到这个灯塔在北偏东015,这时船与灯塔距离为__________km. 15. 已知数列{}n
a 满足=n a 16. 已知()1,11f =,()()**,,f m n N m n N ∈∈,且对任意*,m n N ∈都有: ①()(),1,2f m n f m n +=+ ②()()1,12,1f m f m += 给出以下三个结论:
(1)()1,59f =; (2)()5,116f =; (3)()5,626f = 其中正确结论为
三、解答题:
17. 数列{})(*N n b n ∈是递增的等比数列,且,4,53131==+b b b b (1)求数列{}n b 的通项公式;
(2)若3log 2+=n n b a ,求证:数列{}n a 是等差数列.
18.在ABC ∆中,,,b AC a BC ==且b a ,是方程02322=+-x x 的两根,
.1)cos(2=+B A
(1)求角C 的度数; (2)求AB 的长; (3)求ABC ∆的面积
19. 设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.
(1)求{a n },{b n }的通项公式; (2)求数列n
n
a {}
b 的前n 项和S n .
20.已知数列{}n a 满足125a =,且对任意n *∈N ,都有11422
n n n n a a a a +++=+. (1)求{}n a 的通项公式;
(2)令,1+⋅=n n n a a b n n b b b b T +
+++= 321,
数学试题(理科)参考答案
一、选择题:CDDCC CBDBA AC
二、填空题: 13.11 14.302
①②③
三、解答题:17(1)1-2n n
b = (2)2+=n a n ,
所以1-1=+n n a a
所以数列{}n a 是等差数列。

18
19.(1)设等差数列的公差为d 等比数列的公比为q , 由题意得 1+2d+q 4=21, ① 1+4d+q 2=13, ②
①×2-②得,2q 4-q 2-28=0,解得q 2=4 又由题意,知{b n }各项为正, 所以q=2,代入②得d=2, 所以a n =2n -1 ,b n =2n-1. (2)由(1)可知,
n n 1n a 2n 1
=b 2
--, 又n n 13572n 1
S =1+...2482--++++, (1) n n 1n 11352n 32n 1
S =+ (224822)
---++++, (2) (2)-(1)得 n 0123n 1n 1111112n 1
S =1+++...2222222--+++-
n
n n 11()2n 12n 32=1+312212
--+-=--,∴n n 12n 3S 62-+=-
20.
(2))5
1
1(4221+-=⋅=⋅=+n a a b n n n
………………12分。

相关文档
最新文档