【高考冲刺】2020年高考数学(理数) 坐标系与参数方程 大题(含答案解析)

合集下载

2020年高考数学(理)二轮专题学与练 20 坐标系与参数方程(考点解读)(解析版)

2020年高考数学(理)二轮专题学与练 20 坐标系与参数方程(考点解读)(解析版)

专题20 坐标系与参数方程1.考查参数方程与普通方程、极坐标方程与直角坐标方程的互化.2.考查利用曲线的参数方程、极坐标方程计算某些量或讨论某些量之间的关系.知识点一、直角坐标与极坐标的互化如图,把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0.【特别提醒】在曲线方程进行互化时,一定要注意变量的范围,要注意转化的等价性. 知识点二、直线、圆的极坐标方程 (1)直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置直线的极坐标方程 ①直线过极点:θ=α;②直线过点M (a ,0)且垂直于极轴:ρcos θ=a ; ③直线过点M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . (2)几个特殊位置圆的极坐标方程 ①圆心位于极点,半径为r :ρ=r ;②圆心位于M (r ,0),半径为r :ρ=2r cos θ;③圆心位于M ⎝⎛⎭⎫r ,π2,半径为r :ρ=2r sin θ. 【特别提醒】当圆心不在直角坐标系的坐标轴上时,要建立圆的极坐标方程,通常把极点放置在圆心处,极轴与x 轴同向,然后运用极坐标与直角坐标的变换公式.知识点三、参数方程 (1)直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆、椭圆的参数方程①圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).②椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).【特别提醒】在参数方程和普通方程的互化中,必须使x ,y 的取值范围保持一致.高频考点一 坐标系与极坐标例1.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫ ⎪⎝⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos 3θ=,解得π6θ=; 若π3π44θ≤≤,则2sin 3θ=,解得π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos 3θ-=,解得5π6θ=. 综上,P 的极坐标为π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫⎪⎝⎭.【变式探究】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 【变式探究】在极坐标系中,直线cos 3sin 10ρθρθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【解析】直线310x y -=过圆22(1)1x y -+=的圆心,因此 2.AB =【变式探究】在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( ) A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R )和ρcos θ=1【解析】由ρ=2cos θ得x 2+y 2-2x =0. ∴(x -1)2+y 2=1,圆的两条垂直于x 轴的切线方程为x =0和x =2. 故极坐标方程为θ=π2(ρ∈R )和ρcos θ=2,故选B.【答案】B高频考点二 参数方程例2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=. (2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ+=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.【变式探究】在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t t y =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】5【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C上,设()22,P s ,从而点P 到直线l 的的距离224s d +==,当s =min d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l 的距离取到最小值5. 【考点】参数方程化普通方程【变式探究】在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II)直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【答案】(I)圆,222sin 10a ρρθ-+-=(II)1【解析】解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅰ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .【变式探究】已知直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.【解析】直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π).【答案】(2,π)【变式探究】若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4C .ρ=cos θ+sin θ,0≤θ≤π2D .ρ=cos θ+sin θ,0≤θ≤π4【解析】∵cos ,sin ,x y ρθρθ=⎧⎨=⎩∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤π2.故选A.【答案】A1.【2019年高考北京卷理数】已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是( )A .15B .25C .45D .65【答案】D【解析】由题意,可将直线l 化为普通方程:1234x y --=,即()()41320x y ---=,即4320x y -+=,所以点(1,0)到直线l的距离65d ==,故选D . 2.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.3.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.4.【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.5.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. 【答案】(1)5;(2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=, 则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. 1. (2018年全国I 卷理数)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程. 【答案】 (1). (2)的方程为.【解析】 (1)由,得的直角坐标方程为 .(2)由(1)知是圆心为,半径为的圆. 由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.2. (2018年全国Ⅰ卷理数)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.3. (2018年全国Ⅰ卷理数)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是 为参数, .4. (2018年江苏卷)在极坐标系中,直线l 的方程为,曲线C 的方程为,求直线l 被曲线C 截得的弦长.【答案】直线l 被曲线C 截得的弦长为 【解析】因为曲线C 的极坐标方程为,所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为,则直线l 过A (4,0),倾斜角为, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =.连结OB ,因为OA 为直径,从而∠OBA =, 所以.因此,直线l 被曲线C 截得的弦长为. 1.【2017天津,理11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 2. 【2017北京,理11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.【答案】1【解析】将圆的极坐标方程化为普通方程为222440x y x y +--+= ,整理为()()22121x y -+-= ,圆心()1,2C ,点P 是圆外一点,所以AP 的最小值就是211AC r -=-=.3. 【2017课标1,理22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la. 【答案】(1)C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭;(2)8a =或16a =-. 【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430{ 19x y x y +-=+=解得3{ 0x y ==或2125{ 2425x y =-=. 从而C 与l 的交点坐标为()3,0, 2124,2525⎛⎫-⎪⎝⎭. (2)直线l 的普通方程为440x y a +--=,故C 上的点()3cos ,sin θθ到l 的距离为d =当4a ≥-时, d=8a =; 当4a <-时, d=16a =-.综上, 8a =或16a =-.【2017·江苏】[选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22,x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】5【解析】直线l 的普通方程为280x y -+=. 因为点P 在曲线C上,设()22,P s ,从而点P 到直线l 的的距离224s d +==,当s =min d =. 因此当点P 的坐标为()4,4时,曲线C上点P 到直线l 的距离取到最小值5. 1.【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2【解析】直线10x -=过圆22(1)1x y -+=的圆心,因此 2.AB = 2.【2016高考新课标1卷】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II)直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【答案】(I)圆,222sin 10a ρρθ-+-=(II)1【解析】解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅰ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .3.【2016高考新课标2理数】选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅰ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||AB =,求l 的斜率.【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅰ)3±. 【解析】(I)由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II)在(I)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=22121212||||()4144cos 44,AB ρρρρρρα=-=+-=-由||10AB =得2315cos,tan 8αα==±, 所以l 的斜率为153或153-. 4. 【2016高考新课标3理数】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为3()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=(I)写出1C 的普通方程和2C 的直角坐标方程;(II)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅰ)31(,)22. 【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=. (Ⅰ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,|3cos sin 4|()2sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α取得最小值,2,此时P 的直角坐标为31(,)22.。

2020年高考试题分类汇编(坐标系与参数方程)

2020年高考试题分类汇编(坐标系与参数方程)

2020年高考试题分类汇编(坐标系与参数方程)
1.(2020·全国卷Ⅰ)在直角坐标系xoy 中,曲线1C 的参数方程为cos sin k k x t y t
⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为
4cos 16sin 30ρθθ-+=.
(Ⅰ)当1k =时,1C 是什么曲线?
(Ⅱ)当4k =时,求1C 与2C 的公共点的直角坐标.
2.(2020·全国卷Ⅱ)已知曲线1C ,2C 的参数方程分别为1C :224cos 4sin x y θθ
⎧=⎨=⎩(θ为参数),2C :
11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩
(t 为参数). (Ⅰ)将1C ,2C 的参数方程化为普通方程;
(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且过极点和P 的圆的极坐标方程.
3.(2020·全国卷Ⅲ)在直角坐标系xoy 中,曲线C 的参数方程为2
2223x t t y t t ⎧=--⎨=-+⎩(t 为参数且1t ≠).C 与坐标轴交于A ,B 两点. (Ⅰ)求AB ;
(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.。

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》真题汇编附解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》真题汇编附解析
4.极坐标 和参数方程 (t为参数)所表示的图形分别是
A.直线、直线B.直线、圆C.圆、圆D.圆、直线
【答案】D
【解析】
由ρ=cosθ得ρ2=ρcosθ,∴x2+y2=x,即 2+y2= .
它表示以 为圆心,以 为半径的圆.
由x=-1-t得t=-1-x,代入y=2+t中,得y=1-x表示直线.
5.以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线 的参数方程是 (t为参数),圆C的极坐标方程是 ,则直线 被圆C截得的弦长为()
【详解】
解:由极坐标方程 ,
可得: ,即 ,
曲线 经过伸缩变换 ,可得 ,代入曲线 可得: ,
∴伸缩变换得到的曲线是圆.
故选:C.
【点睛】
考查曲线的极坐标方程化普通方程以及曲线方程的变换.其中将 转化为 为解题关键.
19.若圆的参数方程为 ( 为参数),直线的参数方程为 (t为参数),则直线与圆的位置关系是()
A. B. C. D.
【答案】B
【解析】
【分析】
把圆的极坐标方程化为直角坐标方程,求得圆心坐标 ,再根据极坐标与直角坐标的互化公式,即可求解.
【详解】
由题意知,圆的极坐标方程为 ,即 ,
即 ,所以 ,
所以圆心坐标为 ,
又由 ,可得圆心的极坐标为 ,故选B.
【点睛】
本题主要考查了极坐标与直角坐标的互化,及圆的方程应用,其中解答中熟记极坐标与直角坐标的互化公式,把极坐标化为直角坐标方程是解答的关键,着重考查了运算与求解能力,属于基础题.
直线的方程为 ( 为参数),则直线的普通方程为 ,即 ,圆心不在直线上.
∴圆心 到直线 的距离为 ,即直线与圆相交.

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》真题汇编及答案解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》真题汇编及答案解析

新高考数学《坐标系与参数方程》练习题一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (3sin x y θθθ=⎧⎪⎨=⎪⎩为参数), 有22cos 23sin x y θθ+=+134sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】 【分析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。

【详解】 依题意得:、,,所以,故选:A 。

【点睛】本题考查利用极坐标求三角形的面积,理解极坐标中极径、极角的含义,体会数与形之间的关系,并充分利用正弦、余弦定理以及三角形面积公式求解弦长、角度问题以及面积问题,能起到简化计算的作用。

3.在符合互化条件的直角坐标系和极坐标系中,直线l :20y kx ++=与曲线C :2cos ρθ=相交,则k 的取值范围是( )A .34k <-B .34k ≥-C .k R ∈D .k R ∈但0k ≠【答案】A 【解析】分析:一般先将原极坐标方程2cos ρθ=两边同乘以ρ后,把极坐标系中的方程化成直角坐标方程,再利用直角坐标方程进行求解即可.详解:将原极坐标方程2cos ρθ=,化为:22cos ρρθ=,化成直角坐标方程为:2220x y x +-=, 即22(1)1x y -+=. 则圆心到直线的距离221k d k +=+由题意得:1d <,即2211k d k +=<+,解之得:34k <-. 故选A .点睛:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得.4.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() A 3B .3C 3D .3±【答案】D 【解析】 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。

2020高考数学(理)专项复习《坐标系与参数方程》含答案解析

2020高考数学(理)专项复习《坐标系与参数方程》含答案解析

坐标系与参数方程本专题涉及极坐标系的基础知识,参数方程的概念以及直线、圆、椭圆的参数方程.这部分内容既是解析几何的延续,也是高等数学的基础. 【知识要点】1.极坐标系的概念,极坐标系中点的表示. 在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记作ρ ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对(ρ ,θ )叫做点M 的极坐标.一般情况下,约定ρ ≥0.2.极坐标系与直角坐标系的互化.直角坐标化极坐标:x =ρ cos θ ,y =ρ sin θ ;极坐标化直角坐标:222y x +=ρ,).0(tan =/=x xy θ 3.参数方程的概念设在平面上取定一个直角坐标系xOy ,把坐标x ,y 表示为第三个变量t 的函数⎩⎨⎧==)()(t g y t f xb t a ≤≤……①,如果对于t 的每一个值(a ≤t ≤b ),①式所确定的点M (x ,y )都在一条曲线上;而这条曲线上任意一点M (x ,y ),都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.4.参数方程与普通方程的互化把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程F (x ,y )=0化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围. 5.直线、圆、椭圆的参数方程.(1)经过一定点P 0(x 0,y 0),倾斜角为α 的直线l 的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数);(2)直线参数方程的一般形式为⎩⎨⎧+=+=bt y y at x x 00,(t 为参数);(3)圆的参数方程为⎩⎨⎧+=+=θθsin ,cos 00r y y r x x (θ 为参数);(4)椭圆)0(12222>>=+b a b y a x 的参数方程为⎩⎨⎧==θθsin ,cos b y a x (θ 为参数).【复习要求】1.理解坐标系的作用.2.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.3.了解参数方程.4.能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用. 【例题分析】例1 (1)判断点)35π,23(-是否在曲线2cos θρ=上. (2)点P 的直角坐标为)3,1(-,则点P 的极坐标为______.(限定0<θ ≤2π) (3)点P 的极坐标为)4π,3(-,则点P 的直角坐标为______.解:(1)因为2365πcos2cos-==θ,所以点)35π,23(-是在曲线2cos θρ=上. (2)根据ρ 2=x 2+y 2,)0(tan =/=x xy θ, 得ρ =2,3tan -=θ,又点P 在第四象限,2π23π≤<θ,所以35π=θ, 所以点P 的极坐标为).3π5,2( (3)根据x =ρ cos θ ,y =ρ sin θ ,得223,223-==y x , 所以点P 的直角坐标为).223,223(- 例2 (1)圆ρ =2(cos θ +sin θ )的半径为______.(2)直线)(3πR ∈=ρθ与圆ρ =2sin θ 交与A ,B 两点,则|AB |=______. 解:(1)由ρ =2(cos θ +sin θ ),得ρ 2=2ρ (cos θ +sin θ ),所以,x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2, 所以圆ρ =2(cos θ +sin θ )的半径为2.(2)将直线)(3πR ∈=ρθ与圆ρ =2sin θ 化为直角坐标方程,得 由3π=θ得xy=3πtan ,即x y 3=,由ρ =2sin θ ,变形为ρ 2=2ρ sin θ ,得x 2+y 2=2y ,即x 2+(y -1)2=1,因为圆的半径为1,圆心到直线的距离为21311=+=d , 所以.3)21(12||2=-=AB评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题;(2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定θ 的大小,如例1(2),否则,极坐标不唯一;(3)例2也可以用极坐标有关知识直接解决.这需要知道一些直线与圆的极坐标方程的知识.如:①过极点,倾斜角为α 的直线:θ =α (ρ ∈R )或写成θ =α 及θ =α +π. ②过A (a ,α)垂直于极轴的直线:ρ cos θ =a cos α . ③以极点O 为圆心,a 为半径的圆(a >0):ρ =a .④若O (0,0),A (2a ,0),以OA 为直径的圆:ρ =2a cos θ .⑤若O (0,0),A (2a ,2π),以OA 为直径的圆:ρ =2a sin θ . 对于例2(2),可以利用结论①⑤,作出直线与圆,通过解三角形的方法求|AB |,当然也可以用极坐标方程直接解ρ ,根据ρ 的几何意义求|AB |.例3 圆O 1和圆O 2的极坐标方程分别为ρ =4cos θ ,ρ =-4sin θ . (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和圆O 2交点的直线的直角坐标方程.解:(1)由ρ =4cos θ 得ρ 2=4ρ cos θ ,根据x =ρ cos θ ,y =ρ sin θ ,所以x 2+y 2=4x .即x 2+y 2-4x =0为圆O 1的直角坐标方程,同理x 2+y 2+4y =0为圆O 2的直角坐标方程.(2)由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==;0,011y x ⎩⎨⎧-==.2,222y x 即圆O 1和圆O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y =-x .例4 (1)曲线的参数方程是⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=21,11t y t x (t 为参数,t ≠0),它的普通方程是________.(2)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+=t y t x 3,3 (参数t ∈R ),圆C 的参数方程为⎩⎨⎧+==2sin 2,cos 2θθy x (参数θ ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______.解:(1)由t x 11-=得x t -=11,带入y =1-t 2,得,)1()2()11(122--=--=x x x x y 注意到111=/-=t x ,所以已知参数的普通方程为⋅--=2)1()2(x x x y (2)直线l 的普通方程为x +y -6=0,圆C 的普通方程为x 2+(y -2)2=4,所以圆心坐标为(0,2),圆心到直线l 的距离.222|620|=-+=d 评述:(1)应熟练运用将参数方程化为普通方程的方法解决有关参数方程的问题; (2)在将参数方程化为普通方程的过程中应注意消参带来的范围变化问题.如例4(1),若参数方程为⎪⎪⎩⎪⎪⎨⎧-=-=21,11t y t x(t 为参数,t >0),则其普通方程为).1()1()2(2<--=x x x x y 例5 求椭圆12222=+by a x 的内接矩形的最大面积.解:设内接矩形在第一象限内的顶点为P (a cos θ ,b sin θ ),P 点在两轴上的投影分别为A 、B ,则有S 内接矩形=4S 矩形OAPB =4·a cos θ ·b sin θ =2ab sin2θ .因为)2π,0(∈θ,所以2θ ∈(0,π),S 内接矩形的最大值为2ab . 评述:圆锥曲线参数方程主要应用于利用参数方程设圆锥曲线上的点,从而讨论最值等有关问题.椭圆)0,0(12222>>=+b a b y a x 的参数方程为⎩⎨⎧==θθtan sec b y a x (θ 为参数).抛物线y 2=2px (p >0)的参数方程为⎩⎨⎧==pty pt x 222.例6 圆M 的参数方程为x 2+y 2-4Rx cos α -4Ry sin α +3R 2=0(R >0). (1)求该圆的圆心坐标以及圆M 的半径;(2)当R 固定,α 变化时,求圆心M 的轨迹,并证明此时不论α 取什么值,所有的圆M 都外切于一个定圆.解:(1)依题意得圆M 的方程为(x -2R cos α )2+(y -2R sin α )2=R 2, 故圆心的坐标为M (2R cos α ,2R sin α ),半径为R .(2)当α 变化时,圆心M 的轨迹方程为⎩⎨⎧==,sin 2,cos 2ααR y R x (α 为参数),两式平方相加得x2+y 2=4R 2,所以圆心M 的轨迹是圆心在原点,半径为2R 的圆.由于,32)sin 2()cos 2(22R R R R R -==+αα,2)sin 2()cos 2(22R R R R R +==+αα所以所有的圆M 都和定圆x 2+y 2=R 2外切,和定圆x 2+y 2=9R 2内切.例7 过P (5,-3),倾斜角为α ,且53cos -=α的直线交圆x 2+y 2=25于P 1、P 2两点.(1)求|PP 1|·|PP 2|的值;(2)求弦P 1P 2的中点M 的坐标. 解:(1)由已知53cos -=α得,54sin =α所以已知直线的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=-=,543,535t y t x …………………①(t 为参数)代入圆的方程化简,得.095542=+-t t …………………②②的两个解t 1、t 2就是P 1、P 2对应的参数,由参数的几何意义及韦达定理知 |PP 1|·|PP 2|=|t 1|·|t 2|=9.(2)设M (x ,y )为P 1P 2的中点,则点M 对应的参数527221=+=t t t ,代入参数方程, 得,2533,2544==y x 所以M PP PP ,9||||21=⋅).2533,2544(评述:根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0; ③设弦M 1M 2的中点为M ,则点M 对应的参数值221t t t M +=,(由此可求得|M 2M |及中点坐标).习题14一、选择题 1.极坐标)34π(2,的直角坐标为 (A)(1,3)(B)(-3,-1) (C)(-1,-3) (D)(-1,3)2.椭圆⎩⎨⎧==θθsin 5,cos 2y x (θ 为参数)的焦距等于( )(A)21 (B)221 (C)29 (D)2923.已知某条曲线的参数方程为⎪⎩⎪⎨⎧-=+=1,2322t y t x (0≤t ≤5),则该曲线是( )(A)线段 (B)圆弧 (C)双曲线的一支 (D)射线4.若)3π,2(--P 是极坐标系中的一点,则、、、)3π5,2()3π8,2()3π2,2(-M R Q )3π5π2,2(-k N)(Z ∈k 四点中与P 重合的点有( )(A)1个(B)2个(C)3个(D)4个5.在极坐标系中,若等边△ABC 的两个顶点是)4π5,2()4π,2(B A 、,那么顶点C 的坐标可能是( ) (A))4π3,4( (B))43π,32( (C))π,32((D)(3,π)二、选择题 6.过极点,倾斜角是6π的直线的极坐标方程为____________. 7.点M 的直角坐标(3,-3)化为极坐标是____________.8.直线⎩⎨⎧+-=+=t y at x 41,3(t 为参数)过定点____________.9.曲线⎩⎨⎧=+-=ty t x ,12(t 为参数)与y 轴的交点坐标是____________.10.参数方程⎩⎨⎧+==θθθcos sin ,2sin y x (θ 为参数)表示的曲线的普通方程是____________.三、解答题11.求过点)4π,3(,并且和极轴垂直的直线的极坐标方程.12.在椭圆14922=+y x 上求一点,使点M 到直线021032=-+y x 的距离最小,并求出最小距离.13.设圆C 是以C (4,0)为圆心,半径等于4的圆.(1)求圆C 的极坐标方程;(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程.14.已知点M (2,1)和双曲线1222=-y x ,求以M 为中点的双曲线右支的弦AB 所在直线l的方程.参考答案习题14一、选择题1.C 2.B 3.A 4.C 5.B 二、填空题 6.)(6πR ∈=ρθ; 7.)47π,23(; 8.(3,-1); 9.(0,1),(0,-1); 三、解答题 11.⋅=223cos θρ12.解:由题设知椭圆参数方程为⎩⎨⎧==θθsin 2,cos 3y x (θ 为参数).设M 的坐标(3cos θ ,2sin θ )由点到直线距离,13|210)4πsin(26|13|210sin 6cos 6|-+=-+=θθθd即d 的最小值为26134,此时4π=θ.所以M 的坐标为).2,223(13.解:(1)设P (ρ ,θ )为圆C 上任意一点,圆C 交极轴于另一点A .由已知|OA |=8,在Rt △ABC 中,|OP |=|OA |cos θ ,即ρ =8cos θ ,这就是圆C 的方程.(2)连结CM ,因为M 是ON 的中点,所以CM ⊥ON ,故M 在以OC 为直径的圆上. 由r =|OC |=4,得动点M 的轨迹方程是ρ =4cos θ . 14.解:设AB 的方程为⎩⎨⎧+=+=ααsin 1,cos 2t y t x (t 为参数),代入双曲线方程,得(2cos 2α -sin 2α )t 2+(8cos α -2sin α )t +5=0,由于M 为AB 的中点,则t 1+t 2=0,则tan α =4,从而AB 的方程为:4x -y -7=0.。

2020年江苏省高考数学三轮冲刺专项突破——专题10 坐标系与参数方程 (解析版)

2020年江苏省高考数学三轮冲刺专项突破——专题10  坐标系与参数方程 (解析版)

2020年江苏省高考数学三轮冲刺专项突破专题10坐标系与参数方程2020年江苏高考核心考点1.坐标系与参数方程是江苏高考必考题,考试大纲要求掌握参数方程与普通方程的转化。

2.江苏高考常对极坐标方程与直角坐标方程的互化。

专项突破一、解答题:本大题共16小题,共计160分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.1.(2019—2020学年度苏、锡、常、镇四市高三教学情况调查(一))在平面直角坐标系xOy 中,曲线l 的参数方程为⎪⎩⎪⎨⎧+=+=2cos 323cos 22θθy x ,以原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4sin θ.(1)求曲线C 的普通方程;(2)求曲线l 和曲线C 的公共点的极坐标.【解析】(1)∵曲线C 的极坐标方程为4sin ρθ=,∴24sin ρρθ=,则224x y y += 即:22(2)4x y +-=(2)22222cos 2cos 121)22x y αααα⎧=+=+⎪⎪⎨⎪==+⎪⎩,∴y =,1x >∴223x x +=解得0x =(舍)或x = 公共点,3),极坐标3π). 2. (江苏省南京市、盐城市2020届高三年级第二次模拟考试)在平面直角坐标系xOy 中,曲线C 的参数方程为2212x t y t =⎧⎪⎨=⎪⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l极坐标方程为cos()4πρθ-=l 交曲线C 于A ,B 两点,求线段AB 的长. 【解析】由2)4cos(=-πθρ得2sin cos =+θρθρ,又θρθρsin ,cos ==y x ,可得l 的方程02=-+y x ,由曲线C 的参数方程为⎪⎩⎪⎨⎧==2212t y t x ,t 为参数 消t 得C 的方程y x 82=,联立⎩⎨⎧==+y x y x 822,消y 得01682=-+y x ,设),(),,(2211y x B y x A得16,82121-=-=+x x x x ,所以16221=-=x x AB .3. (江苏省苏北七市2020届高三第二次调研考试)在极坐标系中,已知曲线C 的方程为r ρ=(r >0),直线l的方程为cos()4πρθ+=l 与曲线C 相交于A ,B 两点,且AB=,求r 的值.【解析】以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系xOy , 于是曲线C :(0)r r ρ=>的直角坐标方程为222x y r +=,表示以原点为圆心,半径为r 的圆. 由直线l 的方程()cos 4ρθπ+=cos cos sin sin 44ρθρθππ-=, 所以直线l 的直角坐标方程方程为20x y --=. 记圆心到直线l 的距离为d,则d ==()2222ABr d =+,即2279r =+=,所以3r =.4.(江苏省海安中学高三数学模拟考试数学试卷)已知点P 在曲线C :⎩⎨⎧==θθsin 3cos 4y x (θ为参数)上,直线 l :⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 223223(t 为参数),求P 到直线l 距离的最小值.【解析】直线 l :⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 223223(t 为参数),的普通方程为:x ﹣y ﹣6=0. P 到直线l 距离为:√2=√2,其中tanα=34. 当cos (θ+α)=1时,表达式取得最小值:√22. 5.(江苏省南通市2020届四校联盟高三数学模拟测试卷) 在极坐标中,已知圆C 经过点)4P π,,圆心为直线sin 32πρθ⎛⎫-=- ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】∵圆C圆心为直线sin 32πρθ⎛⎫-=- ⎪⎝⎭与极轴的交点,∴在sin 32πρθ⎛⎫-= ⎪⎝⎭中令=0θ,得1ρ=. ∴圆C 的圆心坐标为(1,0).∵圆C 经过点)4P π,,∴圆C 的半径为PC =.∴圆C 经过极点.∴圆C 的极坐标方程为=2cos ρθ.6.(南通市通州区2020届高三年级第二学期复学后联考数学试卷)。

(完整)2020年高考理科数学《坐标系与参数方程》

(完整)2020年高考理科数学《坐标系与参数方程》

又 d(α)=

2
π 2 sin α+ 3 - 2 ,当且仅当
α=
2kπ+
π 6(k∈
Z)时,
d(α)取得最小值,
最小值为 2,此时点 P 的直角坐标为 ( 3 , 1 ) . 22
【思维点拨】 1.涉及参数方程和极坐标方程的综合题,
求解的一般方法是分别化为普通方程和直角坐标方程
后求解 .当然,还要结合题目本身特点,确定选择何种方程
22 5 当 sin( θ+α)=- 1 时, |PA|取得最大值,最大值为 5 ;
当 sin( θ+α)= 1 时, |PA|取得最小值,最小值为
25 5.
【易错点】 参数方程要变形使用 . 【思维点拨】 1.将参数方程化为普通方程的过程就是消去参数的过程,
常用的消参方法有代入消参、
参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件
(2)面积为
1 2.
【解析】 (1)因为 x= ρcos θ,y= ρsin θ,所以 C1 的极坐标方程为 ρcos θ=- 2, C2 的极坐标方程为 ρ2- 2ρcos θ- 4ρsin θ+ 4= 0.
π (2) 将 θ= 4代入
ρ2- 2ρcos θ- 4ρsin θ+4= 0,
得 ρ2- 3 2ρ+ 4= 0,解得 ρ1= 2 2,ρ2= 2.故 ρ1- ρ2= 2,即 |MN |= 2.
y= 2- 2t
(1) 写出曲线 C 的参数方程,直线 l 的普通方程;
(2) 过曲线 C 上任一点 P 作与 l 夹角为 30°的直线,交 l 于点 A,求 |PA|的最大值与最小值 .
【答案】(
1) 2x+ y- 6= 0;(2)最大值为

【高考冲刺】2020年高考数学(理数) 坐标系与参数方程 大题(含答案解析)

【高考冲刺】2020年高考数学(理数) 坐标系与参数方程 大题(含答案解析)

【高考复习】2020年高考数学(理数) 坐标系与参数方程 大题1.在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.2.平面直角坐标系xOy 中,倾斜角为α的直线l 过点M(-2,-4),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2cos θ. (1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程;(2)若直线l 与C 交于A ,B 两点,且|MA|·|MB|=40,求倾斜角α的值.3.在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A(2,1).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若|PQ|2=|AP|·|AQ|,求直线l 的斜率k.4.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =3sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=3 2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN|的最小值及此时点M 的直角坐标.5.在平面直角坐标系xOy 中,曲线C :⎩⎪⎨⎪⎧x =tcos α,y =sin α(α为参数,t>0).在以O 为极点,x轴的正半轴为极轴的极坐标系中,直线l :ρcos ⎝⎛⎭⎪⎫θ-π4= 2.(1)若l 与曲线C 没有公共点,求t 的取值范围;(2)若曲线C 上存在点到l 的距离的最大值为62+2,求t 的值.6.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =2+2sin α(α为参数),直线C 2的方程为y=33x ,以O 为极点,以x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP|·|OQ|的值.7.在平面直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=12.直线l 与曲线C 交于A ,B 两点. (1)求直线l 的直角坐标方程;(2)设点P(1,0),求|PA|·|PB|的值.8.在平面直角坐标系中,直线l 的参数方程是⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求|AB|.9.在极坐标系中,曲线C 1的极坐标方程是ρ=244cos θ+3sin θ,在以极点为原点O ,极轴为x 轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy 中,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数). (1)求曲线C 1的直角坐标方程与曲线C 2的普通方程;(2)将曲线C 2经过伸缩变换⎩⎨⎧x′=22x ,y′=2y后得到曲线C 3,若M ,N 分别是曲线C 1和曲线C 3上的动点,求|MN|的最小值.10.在平面直角坐标系xOy 中,曲线C 1过点P(a ,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R ),以O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数a 的值.答案解析1.解:(1)⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y=kx- 2.l 与⊙O 交于两点需满足21+k2<1,解得k<-1或k>1, 即α∈⎝ ⎛⎭⎪⎫π2,3π4或α∈⎝ ⎛⎭⎪⎫π4,π2.综上,α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α⎝⎛⎭⎪⎫t 为参数,π4<α<3π4. 设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B 2,且t A ,t B 满足t 2-22tsin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y)满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎪⎨⎪⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎪⎫α为参数,π4<α<3π4.2.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+tcos α,y =-4+tsin α(t 为参数),ρsin 2θ=2cos θ,即ρ2sin 2θ=2ρcos θ,将x=ρcos θ,y=ρsin θ代入得曲线C 的直角坐标方程为y 2=2x.(2)把直线l 的参数方程代入y 2=2x ,得t 2sin 2α-(2cos α+8sin α)t +20=0, 设A ,B 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=2cos α+8sin αsin 2α,t 1t 2=20sin 2α, 根据直线的参数方程中参数的几何意义,得|MA |·|MB|=|t 1t 2|=20sin 2α=40,得α=π4或α=3π4.又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=π4.3.解:(1)由题意知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+tcos α,y =1+tsin α(t 为参数),因为ρ=2sin θ,所以ρ2=2ρsin θ,把y=ρsin θ,x 2+y 2=ρ2代入得x 2+y 2=2y ,所以曲线C 的直角坐标方程为x 2+y 2=2y.(2)将直线l 的参数方程代入曲线C 的方程,得t 2+(4cos α)t +3=0,由Δ=(4cos α)2-4×3>0,得cos 2α>34,由根与系数的关系,得t 1+t 2=-4cos α,t 1t 2=3. 不妨令|AP|=|t 1|,|AQ|=|t 2|,所以|PQ|=|t 1-t 2|,因为|PQ|2=|AP|·|AQ|,所以(t 1-t 2)2=|t 1|·|t 2|,则(t 1+t 2)2=5t 1t 2,得(-4cos α)2=5×3,解得cos 2α=1516,满足cos 2α>34,所以sin 2α=116,tan 2α=115,所以k=tan α=±1515.4.解:(1)由曲线C 1的参数方程可得曲线C 1的普通方程为x 29+y23=1,由ρcos ⎝⎛⎭⎪⎫θ+π4=32,得ρcos θ-ρsin θ=6, ∴曲线C 2的直角坐标方程为x-y-6=0.(2)设点M 的坐标为(3cos β,3sin β), 点M 到直线x-y-6=0的距离d=|3cos β-3sin β-6|2=⎪⎪⎪⎪⎪⎪23sin ⎝ ⎛⎭⎪⎫β-π3+62=6+23sin ⎝ ⎛⎭⎪⎫β-π32,当sin ⎝ ⎛⎭⎪⎫β-π3=-1时,|MN|有最小值,最小值为32-6, 此时点M 的直角坐标为⎝ ⎛⎭⎪⎫332,-32.5.解:(1)因为直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=2, 即ρcos θ+ρsin θ=2,所以直线l 的直角坐标方程为x +y-2=0.因为⎩⎪⎨⎪⎧x =tcos α,y =sin α(α为参数,t>0),所以曲线C 的普通方程为x 2t2+y 2=1(t>0),由⎩⎪⎨⎪⎧x +y =2,x 2t2+y 2=1,消去x 得,(1+t 2)y 2-4y +4-t 2=0,所以Δ=16-4(1+t 2)(4-t 2)<0,又t>0, 解得0<t<3,故t 的取值范围为(0,3). (2)由(1)知直线l 的方程为x +y-2=0,故曲线C 上的点(tcos α,sin α)到l 的距离d=|tcos α+sin α-2|2,故d max =t 2+1+22=62+2,解得t=± 2.又t>0,∴t= 2.6.解:(1)曲线C 1的普通方程为(x-3)2+(y-2)2=4,即x 2+y 2-23x-4y +3=0,则曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0.∵直线C 2的方程为y=33x ,∴直线C 2的极坐标方程为θ=π6(ρ∈R).(2)设P(ρ1,θ1),Q(ρ2,θ2),将θ=π6(ρ∈R)代入ρ2-23ρcos θ-4ρsin θ+3=0得,ρ2-5ρ+3=0, ∴ρ1ρ2=3,∴|OP|·|OQ|=ρ1ρ2=3. 7.解:(1)由ρcos ⎝⎛⎭⎪⎫θ+π3=12得ρcos θcos π3-ρsin θsin π3=12, 即12ρcos θ-32ρsin θ=12, 又ρcos θ=x ,ρsin θ=y ,∴直线l 的直角坐标方程为x-3y-1=0.(2)由⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数)得曲线C 的普通方程为x 2+4y 2=4,∵P(1,0)在直线l 上,故可设直线l 的参数方程为⎩⎪⎨⎪⎧x =32t +1,y =12t (t 为参数),将其代入x 2+4y 2=4得7t 2+43t-12=0,∴t 1·t 2=-127,故|PA|·|PB|=|t 1|·|t 2|=|t 1·t 2|=127.8.解:(1)由⎩⎪⎨⎪⎧x =t ,y =2t 消去t 得,y=2x ,把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入y=2x ,得ρsin θ=2ρcos θ,所以直线l 的极坐标方程为sin θ=2cos θ.(2)因为ρ2=x 2+y 2,y=ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2+2y-3=0,即x 2+(y +1)2=4.圆C 的圆心C(0,-1)到直线l 的距离d=55,所以|AB|=24-d 2=2955.9.解:(1)∵C 1的极坐标方程是ρ=244cos θ+3sin θ,∴4ρcos θ+3ρsin θ=24, ∴4x +3y-24=0,故C 1的直角坐标方程为4x +3y-24=0.∵曲线C 2的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ,∴x 2+y 2=1,故C 2的普通方程为x 2+y 2=1.(2)将曲线C 2经过伸缩变换⎩⎨⎧ x′=22x ,y′=2y后得到曲线C 3,则曲线C 3的参数方程为⎩⎨⎧x′=22cos α,y′=2sin α(α为参数).设N(22cos α,2sin α),则点N 到曲线C 1的距离d=|4×22cos α+3×2sin α-24|5=|241sin (α+φ)-24|5=24-241sin (α+φ)5其中φ满足tan φ=423.当sin(α+φ)=1时,d 有最小值24-2415,所以|MN|的最小值为24-2415.10.解:(1)C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,消参得普通方程为x-y-a +1=0,C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0,两边同乘ρ得ρ2cos 2θ+4ρcos θ-ρ2=0,得y 2=4x .所以曲线C 2的直角坐标方程为y 2=4x . (2)曲线C 1的参数方程可转化为⎩⎪⎨⎪⎧x =a +22t ,y =1+22t (t 为参数,a ∈R ),代入曲线C 2:y 2=4x ,得12t 2-2t +1-4a=0,由Δ=(-2)2-4×12×(1-4a)>0,得a>0,设A ,B 对应的参数分别为t 1,t 2,由|PA|=2|PB|得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧ t 1=2t 2,t 1+t 2=22,t 1·t 2=2(1-4a ),解得a=136;当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=22,t 1·t 2=2(1-4a ),解得a=94,综上,a=136或94.。

2020年高考数学精选专题(含答案详解)16 坐标系与参数方程

2020年高考数学精选专题(含答案详解)16 坐标系与参数方程

2020年高考数学精选专题(含答案详解)一、填空题(共6题;共6分)1.若曲线 ρ=2√2 上有 m 个点到曲线 ρsin(θ−π4)=√2 的距离为 √2 ,则 m 的值为________. 2.在直角坐标系 xOy 中,圆 O 的方程为 x 2+y 2=1 ,将其横坐标伸长为原来的 √2 倍,纵坐标不变,得到曲线 C ,则曲线 C 的普通方程为________.3.若曲线 {x =2sinθy =sin 2θ (θ 为参数),与直线 y =a 有两个公共点则实数 a 的取值范围是________.4.在极坐标系 (ρ,θ) (0≤θ<2π) 中,曲线 ρ(sin θ+cos θ)+2=0 与 ρ(sin θ−cos θ)+2=0 的交点的极坐标为________;5.已知直线 l 的参数方程为 {x =4−3t y =√3t ( t 为参数),曲线 C 的参数方程为 {x =2+cosθy =sinθ ( θ 为参数) 则它们公共点的坐标为________.6.已知直线 l:{x =−35t +2y =45t ( t 为参数)与 x 轴交于点 M ,点 N 是圆 x 2+y 2−4y =0 上的任一点,则 |MN| 的最大值为________.二、解答题(共9题;共85分)7.在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =−1+tcosαy =2+tsinα( t 为参数),其中 α≠kπ+π2,(k ∈Z) ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ2−2ρcosθ−4ρsinθ+4=0 .(1)求曲线 C 2 的直角坐标方程;(2)已知曲线 C 1 与曲线 C 2 交于 A,B 两点,点 P(−1,2) ,求 |PA|+|PB| 的取值范围.8.在极坐标系中,直线 l 的极坐标方程为 θ=π3 (ρ∈R) .以极点为原点,极轴为 x 轴的正半轴建立平面直角坐标系,曲线 C 的参数方程为 {x =2sinαy =1−cos2α ,( α 为参数). (1)请写出直线 l 的参数方程;(2)求直线 l 与曲线 C 交点 P 的直角坐标.9.以直角坐标系xOy 的原点为极坐标系的极点,x 轴的正半轴为极轴.已知曲线 C 1 的极坐标方程为 ρ=4cosθ+8sinθ ,P 是 C 1 上一动点, OP⃗⃗⃗⃗⃗ =2OQ ⃗⃗⃗⃗⃗⃗ ,Q 的轨迹为 C 2 . (1)求曲线 C 2 的极坐标方程,并化为直角坐标方程,(2)若点 M(0,1) ,直线l 的参数方程为 {x =tcosαy =1+tsinα (t 为参数),直线l 与曲线 C 2 的交点为A ,B ,当 |MA|+|MB| 取最小值时,求直线l 的普通方程.10.在同一平面直角坐标系 xOy 中,经过伸缩变换 {x ′=2x,y ′=y 后,曲线 C 1:x 2+y 2=1 变为曲线 C 2 .(1)求 C 2 的参数方程;(2)设 A(2,1) ,点 P 是 C 2 上的动点,求 △OAP 面积的最大值,及此时 P 的坐标. 11.设 A 为椭圆 C 1 :x 24+y 224=1 上任意一点,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 ρ2−10ρcosθ+24=0 , B 为 C 2 上任意一点. (Ⅰ)写出 C 1 参数方程和 C 2 普通方程; (Ⅱ)求 |AB| 最大值和最小值.12.曲线C 的参数方程为 {x =mt +mty =t −1t ( t 为参数, m >0 ),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线 θ=α 与直线 ρsin θ=2 交于点P , 动点Q 在射线OP 上,且满足|OQ ||OP |=8. (1)求曲线C 的普通方程及动点Q 的轨迹E 的极坐标方程;(2)曲线E 与曲线C 的一条渐近线交于P 1 , P 2两点,且|P 1P 2|=2,求m 的值.13.在直角坐标系 xOy 中,曲线 C 的参数方程为 {x =√6sinαy =√6cosα ( α 为参数),以坐标原点 O 为极点,以 x 轴正半轴为极轴,建立极坐标系,直线 l 的极坐标方程为 ρcos(θ+π3)=2 . (1)求 C 的普通方程和 l 的直角坐标方程;(2)直线 l 与 x 轴的交点为 P ,经过点 P 的直线 m 与曲线 C 交于 A,B 两点,若 |PA|+|PB|=4√3 ,求直线 m 的倾斜角.14.在极坐标系中,已知圆的圆心 C(6,π3) ,半径 r =3 , Q 点在圆 C 上运动.以极点为直角坐标系原点,极轴为 x 轴正半轴建立直角坐标系. (1)求圆 C 的参数方程;(2)若 P 点在线段 OQ 上,且 |OP|:|PQ|=2:3 ,求动点 P 轨迹的极坐标方程.15.在新中国成立 70 周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情.在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线.如图,在直角坐标系中,以原点 O 为极点, x 轴正半轴为极轴建立极坐标系。

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》真题汇编附答案解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》真题汇编附答案解析

新《坐标系与参数方程》专题解析一、131.能化为普通方程210x y +-=的参数方程为( )A .2sin ,cos x t y t=⎧⎨=⎩(t 为参数)B .2tan ,1tan x y ϕϕ=⎧⎨=-⎩(ϕ为参数) C.x y t ⎧=⎪⎨=⎪⎩(t 为参数)D .2cos ,sin x y θθ=⎧⎨=⎩(θ为参数) 【答案】B 【解析】A:21,[1,1]y x x =-∈- ;B 21,y x x =-∈R ;C:21,[0,)y x x =-∈+∞ ;D:21,[1,1]y x x =-∈-,所以选B.点睛:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,经常用到公式:22221cos sin 1,1tan cos θθθθ+=+=.不要忘了参数的范围.2.将直线1x y -=变换为直线326x y -=的一个伸缩变换为( ) A .23x xy y''=⎧⎨=⎩B .32x xy y ''=⎧⎨=⎩C .1312x x y y ⎧=⎪⎪⎨=''⎪⎪⎩D .1213x x y y ⎧=⎪⎪⎨=''⎪⎪⎩【答案】A 【解析】 【分析】设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩,代入直线1x y -=的方程,变换后的方程与直线326x y -=的一致性,即可求解. 【详解】由题意,设伸缩变换的公式为(0,0)x ax a b y by =⎧>>⎨⎩'=',则11x x ay y b ⎧=⎪⎪⎨=''⎪⎪⎩代入直线1x y -=的方程,可得111x y a b''-=, 要使得直线111x y a b''-=和直线326x y -=的方程一致, 则112a =且113b =,解得2,3a b ==, 所以伸缩变换的公式为23x xy y ''=⎧⎨=⎩,故选A .【点睛】本题主要考查了图形的伸缩变换公式的求解及应用,其中解答中熟记伸缩变换公式的形式,代入准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.221x y +=经过伸缩变换23x xy y''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=,∴椭圆的焦距为=A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.4.已知直线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数)与圆228x y +=相交于B 、C 两点,则||BC 的值为( )A.BC.D.2【答案】B 【解析】 【分析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论. 【详解】曲线2sin 301sin 30x t y t ︒︒⎧=-⎨=-+⎩(t 为参数),化为普通方程1y x =-, 将1y x =-代入228x y +=,可得22270x x --=, ∴()271114302BC =+-⋅+⨯=,故选B . 【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.5.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

2020届全国各地高考试题 极坐标与参数方程专题

2020届全国各地高考试题 极坐标与参数方程专题

极坐标和参数方程1.(2020•全国1卷)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.2.(2020•全国2卷)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.3.(2020•全国3卷)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.4.(2020•江苏卷)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.不等式选讲1.(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.3.(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }4.(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤.答 案 极坐标和参数方程1.(2020•全国1卷)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44.【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当4k =时,0,0x y ≥≥,曲线1C的参数方程化为22cos (sin tt t==为参数),两式相加消去参数t ,得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线2C 化为直角坐标方程,联立12,C C 方程,即可求解. 【详解】(1)当1k =时,曲线1C 的参数方程为cos (sin x tt y t=⎧⎨=⎩为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x tt y t ⎧=⎨=⎩为参数), 所以0,0x y ≥≥,曲线1C的参数方程化为22cos (sin tt t==为参数), 两式相加得曲线1C1=,1=1,01,01y x x y =-≤≤≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立12,C C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=136=(舍去),11,44x y ∴==,12,C C ∴公共点的直角坐标为11(,)44.【点睛】本题考查参数方程与普通方程互化,极坐标方程与直角坐标方程互化,合理消元是解题的关系,要注意曲线坐标的范围,考查计算求解能力,属于中档题.2.(2020•全国2卷)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y +=;222:4C x y -=;(2)17cos 5ρθ=. 【解析】(1)分别消去参数θ和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.3.(2020•全国3卷)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题. 4.(2020•江苏卷)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1)1242ρρ==,(2))4π【解析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y+-=,由2240y x x y y ⎧=⎪⎨⎪+-=⎩解得00x y==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时ρ=当54πθ=时0ρ=-<,舍;即所求交点坐标为当),4π 【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.不等式选讲1.(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】(1)根据分段讨论法,即可写出函数()f x的解析式,作出图象;(2)作出函数()1f x+的图象,根据图象即可解出.【详解】(1)因为()3,1151,1313,3x xf x x xx x⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x的图象向左平移1个单位,可得函数()1f x+的图象,如图所示:由()3511x x--=+-,解得76x=-.所以不等式()(1)f x f x>+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.2.(2020•全国2卷)已知函数2()|21|f x x a x a=-+-+.(1)当2a=时,求不等式()4f x的解集;(2)若()4f x,求a的取值范围.【答案】(1)32x x⎧≤⎨⎩或112x⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】(1)分别在3x≤、34x<<和4x≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a≥-,由此构造不等式求得结果.【详解】(1)当2a=时,()43f x x x=-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 3.(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }【答案】(1)证明见解析(2)证明见解析.【解析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++ 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. .当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题. 4.(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】根据绝对值定义化为三个方程组,解得结果 【详解】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤,所以解集为22,3⎡⎤-⎢⎥⎣⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.。

2020全国卷高考专题:极坐标和参数方程

2020全国卷高考专题:极坐标和参数方程

12 极坐标和参数方程1.(2020•全国1卷)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k k x t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44.【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当4k =时,0,0x y ≥≥,曲线1C的参数方程化为22cos (sin t t t ==为参数),两式相加消去参数t ,得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线2C 化为直角坐标方程,联立12,C C 方程,即可求解.【详解】(1)当1k =时,曲线1C 的参数方程为cos (sin x t t y t =⎧⎨=⎩为参数), 两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x t t y t⎧=⎨=⎩为参数), 所以0,0x y ≥≥,曲线1C的参数方程化为22cos (sin t t t==为参数), 两式相加得曲线1C1=,1=,平方得1,01,01y x x y =-≤≤≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,曲线2C 直角坐标方程为41630x y -+=,联立12,C C方程141630y x x y ⎧=-⎪⎨-+=⎪⎩,整理得12130x -=12=或136=(舍去), 11,44x y ∴==,12,C C ∴公共点的直角坐标为11(,)44. 【点睛】本题考查参数方程与普通方程互化,极坐标方程与直角坐标方程互化,合理消元是解题的关系,要注意曲线坐标的范围,考查计算求解能力,属于中档题.2.(2020•全国2卷)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数). (1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y +=;222:4C x y -=;(2)17cos 5ρθ=. 【解析】(1)分别消去参数θ和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=; 由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭;设所求圆圆心的直角坐标为(),0a ,其中0a >, 则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.3.(2020•全国3卷)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--, 则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.4.(2020•江苏卷)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【答案】(1)1242ρρ==,(2))4π【解析】(1)将A ,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果.【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos 2,43πρρ=∴=,因为点B为直线6πθ=上,故其直角坐标方程为y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=,由2240y x x y y ⎧=⎪⎨⎪+-=⎩解得00xy ==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,,故对应的极径为20ρ=或22ρ=. (2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时ρ= 当54πθ=时0ρ=-<,舍;即所求交点坐标为当),4π 【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.。

2020年高考理科数学《坐标系与参数方程》

2020年高考理科数学《坐标系与参数方程》

2020年高考理科数学《坐标系与参数方程》【题型归纳】题型一 曲线的极坐标方程例1 、在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 【答案】(1)C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0;(2)面积为12. 【解析】(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12. 【易错点】互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0),要注意ρ,θ的取值范围及其影响. 【思维点拨】1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0),要注意ρ,θ的取值范围及其影响,灵活运用代入法等技巧. 2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.题型二 参数方程及其应用例2、已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.【答案】(1)2x +y -6=0;(2)最大值为2255,最小值为255.【解析】(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0. (2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255; 当sin(θ+α)=1时,|P A |取得最小值,最小值为255. 【易错点】参数方程要变形使用.【思维点拨】1.将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参、三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.2. 在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.题型三 极坐标与参数方程的综合应用例3、在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin )4(πθ+=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.【答案】(1)x +y -4=0;(2)最小值为2,此时点P 的直角坐标为)21,23(【解析】(1)C 1的普通方程为x 23+y 2=1,曲线C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值.又d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2,当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值, 最小值为2,此时点P 的直角坐标为)21,23(.【思维点拨】1.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的. 【巩固训练】题型一 曲线的极坐标方程1.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.求直线C 1与曲线C 2交点的极坐标. 【答案】)4,22(π-. 【解析】联立方程⎩⎪⎨⎪⎧ρcos θ=-2,θ=π4,解之得θ=π4且ρ=-2 2. 所以直线C 1与曲线C 3交点的极坐标为)4,22(π-.2.在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ.(1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状;(2)若曲线C 1,C 2交于A ,B 两点,求两点间的距离.【答案】(1)x -3y -1=0,表示一条直线,(x -1)2+y 2=1圆.【解析】(1)由C 1:ρcos θ-3ρsin θ-1=0,∴x -3y -1=0,表示一条直线.由C 2:ρ=2cos θ,得ρ2=2ρcos θ.∴x 2+y 2=2x ,则(x -1)2+y 2=1,∴C 2是圆心为(1,0),半径r =1的圆.(2)由(1)知,点(1,0)在直线x -3y -1=0上,因此直线C 1过圆C 2的圆心.∴两交点A ,B 的连线段是圆C 2的直径,因此两交点A ,B 间的距离|AB |=2r =2.3.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.求圆C 2关于极点的对称圆的方程.【答案】ρ2+2ρcos θ+4ρsin θ+4=0.【解析】∵点(ρ,θ)与点(-ρ,θ)关于极点对称,设点(ρ,θ)为对称圆上任意一点,则(-ρ,θ)在圆C 2上, ∴(-ρ)2+2ρcos θ+4ρsin θ+4=0,故所求圆C 2关于极点的对称圆方程为ρ2+2ρcos θ+4ρsin θ+4=0.题型二 参数方程及其应用1.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4 C .ρ=cos θ+sin θ,0≤θ≤π2 D .ρ=cos θ+sin θ,0≤θ≤π4【答案】A 【解析】∵∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴cos ,sin ,x y ρθρθ=⎧⎨=⎩线段在第一象限内(含端点),∴0≤θ≤π2.故选A. 2.在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的普通方程以及曲线C 的极坐标方程;(2)若直线l 与曲线C 的两个交点分别为M ,N ,直线l 与x 轴的交点为P ,求|PM |·|PN |的值.【答案】(1)ρ=4sin θ;(2)1.【解析】(1)直线l 的参数方程为⎩⎨⎧x =1-22t ,y =22t(t 为参数),消去参数t ,得x +y -1=0. 曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数), 利用平方关系,得x 2+(y -2)2=4,则x 2+y 2-4y =0.令ρ2=x 2+y 2,y =ρsin θ,代入得C 的极坐标方程为ρ=4sin θ.(2)在直线x +y -1=0中,令y =0,得点P (1,0).把直线l 的参数方程代入圆C 的方程得t 2-32t +1=0,∴t 1+t 2=32,t 1t 2=1.由直线参数方程的几何意义,|PM |·|PN |=|t 1·t 2|=1.题型三 极坐标与参数方程的综合应用1.在直角坐标系中,圆的方程为.(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;(2)直线的参数方程是(为参数), 与交于两点,,求的斜率. 【答案】(1);(2). 【解析】(1)由可得的极坐标方程(2)在(I )中建立的极坐标系中,直线的极坐标方程为由所对应的极径分别为将的极坐标方程代入的极坐标方程得于是 xOy C 22(6)25x y ++=x C l cos sin x t y t αα=⎧⎨=⎩t l C ,AB ||AB =l 212cos 110ρρθ++=3±cos ,sin x y ρθρθ==C 212cos 110.ρρθ++=l ()R θαρ=∈,A B 12,,ρρl C 212cos 110.ρρα++=121212cos ,11,ρραρρ+=-=由得,所以的斜率为或 2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin )6(πθ+=4.(1)写出曲线C 的极坐标方程和直线l 的普通方程;(2)若射线θ=π3与曲线C 交于O ,A 两点,与直线l 交于B 点,射线θ=11π6与曲线C 交于O ,P 两点,求△P AB 的面积.【答案】(1)x +3y -8=0;(2)23.【解析】(1)由⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),消去θ. 普通方程为(x -2)2+y 2=4.从而曲线C 的极坐标方程为ρ2-4ρcos θ=0,即ρ=4cos θ,因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=4,即32ρsin θ+12ρcos θ=4, ∴直线l 的直角坐标方程为x +3y -8=0.(2)依题意,A ,B 两点的极坐标分别为)3,2(π,)3,4(π, 联立射线θ=11π6与曲线C 的极坐标方程,得P 点极坐标为)611,32(π, ∴|AB |=2,∴S △P AB =12×2×23sin )63(ππ+=2 3.12||||AB ρρ=-==||AB=23cos ,tan 8αα==l33-。

2020高考精品系列之数学(理)专题18坐标系与参数方程(解析版)

2020高考精品系列之数学(理)专题18坐标系与参数方程(解析版)

专题18 坐标系与参数方程考纲解读三年高考分析1.坐标系(1)理解坐标系的作用.(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.方程的互化和几何意义的应用是考查的重点,解题时常用到参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,利用几何意义将原问题转化三角函数的问题,考查学生的数学逻辑推理能力、数学运算能力,题型以选择填空题和解答题为主,中等难度.1、会求伸缩变换,求点的极坐标和应用直线、圆的极坐标方程是重点,主要与参数方程相结合进行考查,以解答题的形式考查,难度中档.2、了解参数的意义,重点考查直线参数方程中参数的几何意义及圆、椭圆的参数方程与普通方程的互化,往往与极坐标结合考查.在高考选做题中以解答题形式考查,难度为中档.1.【2019年北京理科03】已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是()A.B.C.D.【解答】解:由(t为参数),消去t,可得4x﹣3y+2=0.则点(1,0)到直线l的距离是d.故选:D.2.【2019年天津理科12】设a∈R,直线ax﹣y+2=0和圆(θ为参数)相切,则a的值为.【解答】解:∵a∈R,直线ax﹣y+2=0和圆(θ为参数)相切,∴圆心(2,1)到直线ax﹣y+2=0的距离:d2=r,解得a.故答案为:.3.【2018年北京理科10】在极坐标系中,直线ρcosθ+ρsinθ=a(a>0)与圆ρ=2cosθ相切,则a =.【解答】解:圆ρ=2cosθ,转化成:ρ2=2ρcosθ,进一步转化成直角坐标方程为:(x﹣1)2+y2=1,把直线ρ(cosθ+sinθ)=a的方程转化成直角坐标方程为:x+y﹣a=0.由于直线和圆相切,所以:利用圆心到直线的距离等于半径.则:1,解得:a=1±.a>0则负值舍去.故:a=1.故答案为:1.4.【2018年天津理科12】已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d,弦长|AB|=222,∴△ABC的面积为S•|AB|•d.故答案为:.5.【2017年北京理科11】在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为.【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,再化为标准方程:(x﹣1)2+(y﹣2)2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min=|CP|﹣r C=2﹣1=1,故答案为:1.6.【2017年天津理科11】在极坐标系中,直线4ρcos(θ)+1=0与圆ρ=2sinθ的公共点的个数为.【解答】解:直线4ρcos(θ)+1=0展开为:4ρ1=0,化为:2x+2y+1=0.圆ρ=2sinθ即ρ2=2ρsinθ,化为直角坐标方程:x2+y2=2y,配方为:x2+(y﹣1)2=1.∴圆心C(0,1)到直线的距离d1=R.∴直线4ρcos(θ)+1=0与圆ρ=2sinθ的公共点的个数为2.故答案为:2.7.【2019年新课标3理科22】如图,在极坐标系Ox中,A(2,0),B(,),C(,),D (2,π),弧,,所在圆的圆心分别是(1,0),(1,),(1,π),曲线M 1是弧,曲线M 2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M 1,M2,M3构成,若点P在M上,且|OP|,求P的极坐标.【解答】解:(1)由题设得,弧,,所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=﹣2cosθ,则M1的极坐标方程为ρ=2cosθ,(0≤θ),M2的极坐标方程为ρ=2sinθ,(θ),M3的极坐标方程为ρ=﹣2cosθ,(θ≤π),(2)设P(ρ,θ),由题设及(1)值,若0≤θ,由2cosθ得cosθ,得θ,若θ,由2sinθ得sinθ,得θ或,若θ≤π,由﹣2cosθ得cosθ,得θ,综上P的极坐标为(,)或(,)或(,)或(,).8.【2019年全国新课标2理科22】在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.【解答】解:(1)当θ0时,,在直线l上任取一点(ρ,θ),则有,故l的极坐标方程为有;(2)设P(ρ,θ),则在Rt△OAP中,有ρ=4cosθ,∵P在线段OM上,∴θ∈[,],故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[,].9.【2019年新课标1理科22】在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解答】解:(1)由(t为参数),得,两式平方相加,得(x≠﹣1),∴C的直角坐标方程为(x≠﹣1),由2ρcosθρsinθ+11=0,得.即直线l的直角坐标方程为得;(2)设与直线平行的直线方程为,联立,得16x2+4mx+m2﹣12=0.由△=16m2﹣64(m2﹣12)=0,得m=±4.∴当m=4时,直线与曲线C的切点到直线的距离最小,为.10.【2019年江苏22】在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin(θ)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB;(2)由直线1的方程ρsin(θ)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.11.【2018年江苏23】在极坐标系中,直线l的方程为ρsin(θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(θ)=2,∴2,∴直线l的普通方程为:x y=4.圆心C到直线l的距离为d,∴直线l被曲线C截得的弦长为2.12.【2018年新课标1理科22】在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k或0,当k=0时,不符合条件,故舍去,同理解得:k或0经检验,直线与曲线C2没有公共点.故C1的方程为:.13.【2018年新课标2理科22】在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.【解答】解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:x sinα﹣y cosα+2cosα﹣sinα=0.(2)把直线的参数方程(t为参数),代入椭圆的方程得到: 1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,(由于t1和t2为A、B对应的参数)由于(1,2)为中点坐标,所以利用中点坐标公式,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.14.【2018年新课标3理科22】在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α时,过点(0,)且倾斜角为α的直线l的方程为x=0,成立;当α时,过点(0,)且倾斜角为α的直线l的方程为y=tanα•x,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)l的参数方程为,(t为参数,),设A,B,P对应的参数分别为t A,t B,t P,则,且t A,t B满足,∴,∵P(x,y)满足,∴AB中点P的轨迹的参数方程为:,(α为参数,).15.【2017年江苏23】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d,∴当s时,d取得最小值.16.【2017年新课标1理科22】在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d,φ满足tanφ,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+φ)﹣a﹣4|≤|﹣5﹣a﹣4|=|5+a+4|=17解得a=8和﹣26,a=8符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+φ)﹣a﹣4|≤|5﹣a﹣4|=|5﹣a﹣4|=17,解得a=﹣16和18,a=﹣16符合题意.17.【2017年新课标2理科22】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0,∵|OM||OP|=16,∴16,即(x2+y2)(1)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C 2上,|OA|=2,∴曲线C 2的圆心(2,0)到弦OA的距离d,∴△AOB的最大面积S|OA|•(2)=2.18.【2017年新课标3理科22】在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l 2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ)0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l 2的参数方程为,(m 为参数),同理可得,直线l 2的普通方程为:x =﹣2+ky ②;联立①②,消去k 得:x 2﹣y 2=4,即C 的普通方程为x 2﹣y 2=4(y ≠0); (2)∵l 3的极坐标方程为ρ(cos θ+sin θ)0,∴其普通方程为:x +y 0, 联立得:,∴ρ2=x 2+y 25.∴l 3与C 的交点M 的极径为ρ.1.【安徽省安庆市市示范中学2019届髙三联考】在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y αα=+⎧⎨=+⎩,(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知点A 的极坐标为3,2π⎛⎫⎪⎝⎭. (1)求曲线C 的极坐标方程;(2)过A 作曲线C 的切线,切点为M ,过O 作曲线的C 切线,切点为N ,求||||ON AM .【答案】(1)24cos 6sin 120ρρθρθ--+=(2)2 【解析】 (1)由23x cos y sin αα=+⎧⎨=+⎩,得()()22231x y -+-=,即2246120x y x y +--+=,故曲线C 的极坐标方程为24cos 6sin 120ρρθρθ--+=. (2)由(1)知,曲线C 表示圆心为()2,3C ,半径为1的圆.因为A (0,3),所以2AC =, 所以2213AM =-=.因为13OC = 所以13123ON =-=故2ON AM=.2.【安徽省1号卷A10联盟2019届高考最后一卷】在平面直角坐标系xOy 中,直线l 的参数方程为122222x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),圆C 的参数方程为22cos 2x y sin ϕϕ=+⎧⎨=⎩(ϕ为参数,[)0,2ϕ∈π),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系. (1)写出直线l 与圆C 的极坐标方程; (2)已知点1,02M ⎛⎫⎪⎝⎭,直线l 与圆C 交于,A B 两点,求MA MB -的值 【答案】(1) 1cos sin 2ρθρθ-=;4cos ρθ=.(2) 322. 【解析】(1)由题意得,直线l 的普通方程为102x y --=, ∴直线l 的极坐标方程为1cos sin 2ρθρθ-=.圆C 的直角坐标方程为()2224x y -+=,即2240x y x +-=.∴圆C 的极坐标方程为4cos ρθ=.(2)显然直线l 过点1,02M ⎛⎫⎪⎝⎭, 将122222x y ⎧=+⎪⎪⎨⎪=⎪⎩代入圆C 的直角坐标方程得2327024t --=.设12,t t 是上述方程的两根,则12322t t +=,12704t t =-<,121232MA MB t t t t ∴-=-=+=3.【山东省潍坊市2019届高三上学期期末】已知在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x y αα=⎧⎨=+⎩(α为参数),以x 轴的非负半轴为极轴,原点O 为极点建立极坐标系,两种坐标系中取相同的长度单位,若直线3πθ=和56πθ=()R ρ∈分别与曲线C 相交于A 、B 两点(A ,B 两点异于坐标原点).(1)求曲线C 的普通方程与A 、B 两点的极坐标; (2)求直线AB 的极坐标方程及ABO ∆的面积. 【答案】(1)(3,)3A π,5(1,)6B π.(23【解析】(1)曲线C 的参数方程为1x cos y sin αα=⎧⎨=+⎩(α为参数),所以消去参数α得曲线C 的普通方程为2220x y y +-=,因为cos x ρθ=,sin y ρθ=,代入曲线C 可得C 的极坐标方程:2sin ρθ=. 将直线3πθ=,56πθ=代入圆的极坐标方程可知:13ρ=21ρ=, 故A 、B 两点的极坐标为3,3A π⎫⎪⎭,51,6B π⎛⎫ ⎪⎝⎭.(2)由cos x ρθ=,sin y ρθ=得:332A ⎫⎪⎪⎝⎭,312B ⎛⎫⎪ ⎪⎝⎭,根据两点式可知直线AB 的方程为:,所以的极坐标方程为:31y x =+.所以AB 的极坐标方程为3sin 6πρθ⎛⎫-= ⎪⎝⎭可知直线AB 恰好经过圆的圆心,故ABO ∆为直角三角形,且3OA =1OB =,故1332ABO S ∆==4.【福建省2019届高三模拟考试】在直角坐标系xOy 中,曲线1C 的参数方程是32cos 12sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()2sin()3m m R ρπθ=∈-.(1)求曲线1C ,2C 的直角坐标方程;(2)设A ,B 分别在曲线1C ,2C 上运动,若AB 的最小值是1,求m 的值.【答案】(1)曲线1C 的直角坐标方程为22(3)(1)4x y +-=,2C 的直角坐标方程为30x y m -+=;(2)4m =或8m =-. 【解析】(1)由3212x cos y sin θθ⎧=⎪⎨=+⎪⎩消去参数,得(()22314x y +-=,所以曲线1C 的直角坐标方程为(()22314x y +-=.由2sin 3mρπθ=⎛⎫- ⎪⎝⎭,整理得sin 3cos m ρθρθ=, 而cos x ρθ=,sin y ρθ=,所以3y x m =,即2C 30x y m -+=. (2)由(1)知曲线1C 是圆心为()3,1,半径2r =的圆,则圆心()3,130x y m -+=()()2233131m⨯-++-所以()()min 223312131mAB ⨯-+=-=+-,解得4m =或8m =-.5.【山东省聊城市2019届高三二模】在直角坐标系xOy 中,曲线12cos :12sin x C y αα=+⎧⎨=-+⎩(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 42πρθ⎛⎫+= ⎪⎝⎭. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)若曲线C 与直线l 交于,A B 两点,点()1,0P ,求PA PBPB PA+的值. 【答案】(1)22(1)(1)4x y -++=,10x y --=;(2)83【解析】(1)曲线C 的普通方程为()()22114x y -++=, 直线l 的直角坐标方程为10x y --=.(2)点()1,0P 在直线l 上,直线l 的参数方程为21222x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将直线l 的参数方程代入曲线C 的普通方程化简,得2230t t +-=. 设点A ,B 所对应的参数分别为1t ,2t ,则122t t +=-123t t =-.所以2212122112PAPBt t t t PB PA t t t t ++=+= ()21212122t t t t t t +-=(()2223833---==-. 6.【河北省沧州市2019届高三普通高等学校招生全国统一模拟】在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为()1cos28cos ρθθ-=,直线cos 1ρθ=与曲线C 相交于,M N 两点,直线l 过定点()2,0P 且倾斜角为α,l 交曲线C 于,A B 两点.(1)把曲线C 化成直角坐标方程,并求MN 的值;(2)若PA ,MN ,PB 成等比数列,求直线l 的倾斜角α. 【答案】(1) 答案见解析 (2) 4a π=或34π 【解析】(1)由ρ(1-cos2θ)=8cosθ得ρ2-ρ2cos 2θ+ρ2sin 2θ=8ρcosθ, ∴x 2+y 2-x 2+y 2=8x ,即y 2=4x . 由ρcosθ=1得x =1,由124x y x =⎧=⎨⎩的M (1,2),N (1,-2),∴|MN |=4. (2)直线l 的参数方程为:{2x tcos y tsin αα=+=(t 为参数),联立直线l 的参数方程与曲线C :y 2=4x , 得t 2sin 2α-4t cosα-8=0,设A ,B 两点对应的参数为t 1,t 2, 则t 1+t 2=24cos sin αα,t 1t 2=-28sin α, 因为|P A |,|MN |,|PB |成等比数列, ∴|P A ||PB |=|MN |2=16, ∴|t 1||t 2|=16,∴|t 1t 2|=16, ∴28sin α=16,∴sin 2α=12, ∵0≤α<π, ∴sinα=22, ∴α=4π或α=34π. 7.【山东省实验中学2019届高三4月上旬质量检测】在直角坐标系xOy 中,曲线C 的方程为22143x y +=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 24πρθ⎛⎫-=- ⎪⎝⎭(1)求曲线C 的参数方程和直线l 的直角坐标方程;(2)若直线l 与x 轴和y 轴分别交于A ,B 两点,P 为曲线C 上的动点,求△PAB 面积的最大值.【答案】(1)2cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数),20x y --=(272【解析】(1)由22143x y +=,得C 的参数方程为2cos 3x y αα=⎧⎪⎨=⎪⎩(α为参数) 由()2sin sin cos 242πρθρθθ⎛⎫-=-=- ⎪⎝⎭,得直线l 的直角坐标方程为20x y --= (2)在20x y --=中分别令0y =和0x =可得:()2,0A ,()0,2B -22AB ⇒=设曲线C 上点()2cos 3sin P αα,则P 到l 距离:327sin cos 22cos 3sin 23sin 2cos 277222d αααααα⎛⎫-+ ⎪---+⎝⎭===()7sin 22αϕ-+=,其中:3cos 7ϕ=,sin 7ϕ=当()sin 1αϕ-=,max 722d +=所以PAB ∆面积的最大值为172227222+⨯= 8.【广东省东莞市2019届高三上学期期末调研】在直角坐标系xOy 中,曲线1C 的普通方程为22(1)1x y -+=,曲线2C 的参数方程为2cos ,4sin ,x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()4R πθρ=∈.(1)求曲线1C 的极坐标方程和曲线2C 的普通方程;(2)直线l 与曲线1C 在第一象限内的交点为P ,过点P 的直线l '交曲线2C 于,A B 两点,且AB 的中点为P ,求直线l '的斜率.【答案】(1) 1C 的极坐标方程2cos ρθ=,曲线2C 的普通方程221416x y+= (2)-4【解析】(1)曲线1C 的圆心极坐标为()1,0,半径为1,所以,其极坐标方程为2cos ρθ=.由题意得:,2,4xcos y sin θθ⎧=⎪⎪⎨⎪=⎪⎩,22124x y ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,曲线2C 的普通方程221416x y +=.(2)当4πθ=时,2cos 2ρθ==,11x cos y sin ρθρθ==⎧⎨==⎩,所以,()1,1P于是直线l '的参数方程为11x tcos y tsin αα=+⎧⎨=+⎩(α为倾斜角,t 为参数),代入2C 的普通方程,整理得关于t 的方程()()223cos 12sin 8cos 110t t ααα+++-=.①因为曲线1C 截直线l '所得线段的中点()1,1在1C 内,设,A B 对应的参数为1t ,2t ,则120t t +=. 由韦达定理得:1222sin 8cos 03cos 1t t ααα++=-=+,2sin 8cos 0αα+=,tan 4α=-.所以,直线l '的斜率为-4.9.【山东省德州市2019届高三下学期第一次练习】在直角坐标系xOy 中,直线1l 的参数方程为x 2t (t 3y kt 4=+⎧⎪⎨=⎪⎩为参数),直线2l 的参数方程为x 2m (m m y k =-+⎧⎪⎨=-⎪⎩为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .()1写出C 的普通方程;()2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设31:π2ρsin θ42⎛⎫+=⎪⎝⎭,3l 与C 的交点为A 、B ,M 为线段AB 的中点,求M 的极径.【答案】(1)22143x y +=;(2)57【解析】()1直线1l 的普通方程为()324y k x =-,直线2l 的普通方程为2x y k +=-,消去k 得22143x y+=,即C 的普通方程为22143x y +=.()2设()11,A x y ,()22,B x y ,3l 化成普通方程为1x y +=.联立221143x y x y +=⎧⎪⎨+=⎪⎩得27880x x --=,1287x x ∴+=,()1212627y y x x +=-+=, 43,77M ⎛⎫∴ ⎪⎝⎭,2222435()()()777ρ=+=,M ∴的极径为57.10.【河北省沧州市2019年普通高等学校招生全国统一模拟】在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为()1cos28cos ρθθ-=,直线cos 1ρθ=与曲线C 相交于,M N 两点,直线l 过定点()2,0P 且倾斜角为α,l 交曲线C 于,A B 两点.(1)把曲线C 化成直角坐标方程,并求MN 的值;(2)若PA ,MN ,PB 成等比数列,求直线l 的倾斜角α. 【答案】(1) 答案见解析 (2) 4a π=或34π【解析】(1)由ρ(1-cos2θ)=8cosθ得ρ2-ρ2cos 2θ+ρ2sin 2θ=8ρcosθ, ∴x 2+y 2-x 2+y 2=8x ,即y 2=4x . 由ρcosθ=1得x =1,由124x y x =⎧=⎨⎩的M (1,2),N (1,-2),∴|MN |=4. (2)直线l 的参数方程为:{2x tcos y tsin αα=+=(t 为参数),联立直线l 的参数方程与曲线C :y 2=4x ,得t 2sin 2α-4t cosα-8=0,设A ,B 两点对应的参数为t 1,t 2, 则t 1+t 2=24cos sin αα,t 1t 2=-28sin α, 因为|P A |,|MN |,|PB |成等比数列, ∴|P A ||PB |=|MN |2=16, ∴|t 1||t 2|=16,∴|t 1t 2|=16, ∴28sin α=16,∴sin 2α=12, ∵0≤α<π, ∴2∴α=4π或α=34π. 11.【广东省珠海市2019届高三上学期期末学业质量监测】在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 的极坐标方程为(0,)R θααπρ=<<∈,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,A ,B 均异于原点O ,且42AB =,求α的值. 【答案】(1)()()222224,24x y x y -+=+-=;(2)3π4. 【解析】(1)由222x cos y sin ϕϕ=+⎧⎨=⎩消去参数ϕ,得1C 的普通方程为()2224x y -+=.由4sin ρθ=,得24sin ρρθ=,又sin y ρθ=,222x y ρ+=,所以2C 的直角坐标方程为()2224x y +-=.(2)由(1)知曲线1C 的普通方程为()2224x y -+=, 所以其极坐标方程为4cos ρθ=.设点A ,B 的极坐标分别为(),A ρα,(),B ρα, 则4cos A ρα=,4sin B ρα=, 所以4cos sin 42sin 424A B AB πρρααα⎛⎫=-=-=-= ⎪⎝⎭所以sin 14πα⎛⎫-=± ⎪⎝⎭,即()42k k Z ππαπ-=+∈, 解得()34k k Z παπ=+∈, 又0απ<<,所以34πα=. 12.【江苏省南通市2019届高三适应性考试】已知曲线C 的极坐标方程为2sin ρθ=.以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程为1232x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)求直线l 被曲线C 所截得的弦长.【答案】(1)曲线C 的直角坐标方程为2220x y y +-=.直线l 的普通方程为32y x =+.(23【解析】(1)因为曲线C 的极坐标方程可化为22sin ρρθ=.且222x y ρ+=,sin y ρθ=,所以曲线C 的直角坐标方程为2220x y y +-=.直线l :12322x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为32y x =+.(2)圆心(0,1)到直线l :32y x =+的距离为21213d ==+,又因为半径为1,所以弦长为212132⎛⎫-= ⎪⎝⎭13.【安徽省毛坦厂中学2019届高三校区4月联考】已知直线l 的参数方程为122x ty t⎧=⎪⎨=⎪⎩(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为322sin 4πρθ⎛⎫=- ⎪⎝⎭.(1)求直线l 的普通方程及曲线C 的直角坐标方程; (2)设直线l 与曲线C 交于A ,B 两点,求AB 的值.【答案】(1)220x y +-=,22220x y x y +--=;(265【解析】(1)直线l 的参数方程为122x ty t⎧=⎪⎨=⎪⎩(t 为参数),消去t ,得()21x y -=,即直线l 的普通方程为220x y +-=. 又曲线3:22sin 4C πρθ⎛⎫=-⎪⎝⎭,即2cos 2sin ρθθ=+, 22cos 2sin ρρθρθ∴=+,∴曲线C 的直角坐标方程为22220x y x y +--=.(2)由(1)得,直线l 的标准参数方程为155x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入曲线C 的直角坐标方程得,2105t -=,125t t ∴+=1210t t =-<, ()21212126545AB t t t t t t ∴=-=+-=. 14.【河北省中原名校联盟2019届高三3.20联考】已知曲线C 的参数方程为32,12,x cos y sin αα=+⎧⎨=-⎩(α为参数),以直角坐标原点为极点,x 轴非负半轴为极轴并取相同的单位长度建立极坐标系.()1求曲线C 的极坐标方程,并说明其表示什么轨迹.()2若直线l 的极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 的最大距离.【答案】(1)26cos 2sin 60ρρθρθ--+=,表示以()3,1为圆心,2为半径的圆 ;(2)525+. 【解析】()1由3212x cos y sin αα=+⎧⎨=-⎩得32,12,x cos y sin αα-=⎧⎨-=-⎩两式两边平方并相加,得()()22314x y -+-=. 所以曲线C 表示以()3,1为圆心,2为半径的圆.将,,y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=.所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+=.()2由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=.所以直线l 的直角坐标方程为210x y -+=. 因为圆心()3,1C 到直线:210l x y -+=的距离()23111655d ⨯+-⨯+==. 所以曲线C 上的点到直线l 的最大距离为652d r +=. 15.【山东省菏泽市2019届高三下学期第一次】已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.【答案】(1)26cos 2sin 60ρρθρθ--+=(26525【解析】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆.将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+= 所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+= 因为圆心()3,1C 到直线:l 210x y -+=的距离()23111655d ⨯+-⨯+==, 所以曲线C 上的点到直线l 的最大距离为652d r +=. 16.【河南省南阳市第一中学2019-2020学年高三上学期第二次开学考试】在直角坐标系xOy 中,直线l 的参数方程为32x t y t =--⎧⎨=+⎩,(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程42)4πρθ=+.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,(2,3)P -为直线l 上一点,求11||||PA PB +. 【答案】(1)直线l 的普通方程为10x y ++=,曲线C 的直角坐标方程为22(2)(2)8f x y -++=(2)307【解析】(1)直线l 的普通方程为10x y ++=,曲线C 的直角坐标方程为22(2)(2)8x y -++=.(2)将直线l 的参数方程化为2223x y ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数),代入曲线C 的方程22(2)(2)8x y -++=,得2270t t -=,所以122t t +=127t t =-,所以()21212121212|4|1130||7t t t t t t PA PB t t +--+===17.【福建省2019届高三毕业班数学学科备考关键问题指导系列适应性练习(一)】在直角坐标系xOy 中,曲线1C 的参数方程为3sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=. (1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值以及此时P 的直角坐标.【答案】(1)1C :2213xy +=,2C :40x y +-=;(2)min 2PQ =31(,)22P . 【解析】(1)1C 的普通方程为2213xy +=,2C 的直角坐标方程为40x y +-=.(2)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,3π()2sin()2|32d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d α2,此时P 的直角坐标为31(,)22.18.【山东省淄博市2019届高三3月模拟】在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为5,求直线l 的普通方程.【答案】(Ⅰ) ()()22219x y -++=;(Ⅱ)34y x =和x=0. 【解析】(Ⅰ)将x cos y sin ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得:曲线C 的直角坐标方程为:22442x y x y +-=- 即()()22219x y -++=(Ⅱ)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=整理得24cos 2sin 40t t t αα-+-= 设点A ,B 对应的参数为1t ,2t , 解得124cos 2sin t t αα+=-,124t t ⋅=- 则()()2212121244cos 2sin 1625AB t t t t t t αα=-=+-=-+=23cos 4sin cos 0ααα-=,因为0απ≤<得3tan 24παα==或,直线l 的普通方程为34y x =和x=0 19.【河北省衡水市2019届高三下学期第三次质量检测】已知曲线1C 的参数方程为23x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin()14πρθ-=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程; (2)射线OM :()2πθααπ=<<与曲线1C 交于点M ,射线ON :4πθα=-与曲线2C 交于点N ,求2211OMON+的取值范围.【答案】(1)1C 的极坐标方程为222cos 26ρθρ+=,2C 的直角方程为20x y -+=;(2)13()32,.【解析】(1)由曲线1C 的参数方程23x cos y sin ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数)得:2222cos sin 123ϕϕ+=+=,即曲线1C 的普通方程为22123x y+=又cos ,sin x y ρθρθ==,曲线1C 的极坐标方程为22223cos 2sin 6ρθρθ+=,即222cos 26ρθρ+= 曲线2C 的极坐标方程可化为sin cos 2ρθρθ-=故曲线2C 的直角方程为20x y -+=(2)由已知,设点M 和点N 的极坐标分别为()1,ρα,2,4πρα⎛⎫-⎪⎝⎭,其中2παπ<<则22126cos 2OMρα==+,2222211cos sin 2ON ρπαα===⎛⎫- ⎪⎝⎭于是2222211cos 27cos 2cos 66OM ONααα+++=+= 由2παπ<<,得1cos 0α-<<故2211OMON+的取值范围是1332,⎛⎫⎪⎝⎭20.【山东省威海市2019届高三二模】在直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x r y r αα=+⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin 36πρθ⎛⎫+= ⎪⎝⎭,且曲线1C 与2C 恰有一个公共点. (Ⅰ)求曲线1C 的极坐标方程;(Ⅱ)已知曲线1C 上两点A ,B 满足4AOB π∠=,求AOB ∆面积的最大值.【答案】(Ⅰ) 4cos ρθ=.(Ⅱ) 222+. 【解析】(Ⅰ)曲线2C 的极坐标方程为31sin()sin cos 362πρθρθρθ+=+=, 将sin ,cos y x ρθρθ==代入上式可得2C 直角坐标方程为31322y x +=, 即360x y +-=,所以曲线2C 为直线.又曲线1C 是圆心为(2,0),半径为||r 的圆, 因为圆1C 与直线1C 恰有一个公共点, 所以|26|||22r -==, 所以圆1C 的普通方程为2240x y x +-=,把222,cos x y x ρρθ+==代入上式可得1C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=.(Ⅱ)由题意可设()2121(,),0,0,4(),B A πθρρρθρ+>>,1212||sin 42cos cos 2444MON S OA OB ππρρθθ∆⎛⎫===+ ⎪⎝⎭uu r uu u r ‖ ()21cos 2sin 24cos sin cos 422θθθθθ+⎛⎫=-=-⎪⎝⎭222cos 24πθ⎛⎫=++ ⎪⎝⎭,所以当cos 214πθ⎛⎫+= ⎪⎝⎭时,AOB ∆的面积最大,且最大值为222+.1.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:为参数,,曲线C 的极坐标方程为:.写出曲线C 的直角坐标方程;设直线l 与曲线C 相交于P ,Q 两点,若,求直线l 的斜率.【答案】(1);(2)。

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》全集汇编附答案解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》全集汇编附答案解析

【最新】高考数学《坐标系与参数方程》专题解析一、131.如图,边长为4的正方形ABCD 中,半径为1的动圆Q 的圆心Q 在边CD 和DA 上移动(包含端点A 、C 、D ),P 是圆Q 上及其内部的动点,设BP mBC nBA =+u u u v u u u v u u u v(,m n ∈R ),则m n +的取值范围是( )A .[21,221]-+B .[422,422]-+C .22[1,2]22-+ D .22[1,2]44-+ 【答案】D 【解析】 【分析】建立如图所示平面直角坐标系,可得,BA BC u u u r u u u r 的坐标,进而可得BP u u u r的坐标.分类讨论,当动圆Q 的圆心在CD 上运动或在AD 上运动时,利用圆的参数方程相关知识,设出点P 坐标,再利用三角函数求m n +的最值. 【详解】解:建立如图所示平面直角坐标系,可得,(0,4),(4,0)BA BC ==u u u r u u u r ,可得(4,0)(0,4)(4,4)BP m n m n =+=u u u r,当点Q 在CD 上运动时,设(4,),[0,4]Q t t ∈,则点P 在圆Q :22(4)()1x y t -+-=上及内部,故可设(4cos ,sin ),(,01)P r t r R r θθθ++∈≤≤,则(4cos ,sin )BP r t r θθ=++u u u r,44cos 4sin m r n t r θθ=+⎧∴⎨=+⎩,444(sin cos )4sin 4m n t r t πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,t r R θ≤≤≤≤∈Q ,当50,1,4t r πθ===时,m n +取最小值为44-,即14-;当4,1,4t r πθ===时,m n +24+m n ∴+的取值范围是1244⎡-+⎢⎣⎦; 当点Q 在AD 上运动时,设(,4),[0,4]Q s s ∈,则点P 在圆Q :22()(4)1x s y -+-=上及其内部,故可设(cos ,4sin ),(,01)P s r r R r θθθ++∈≤≤,则(cos ,4sin )BP s r r θθ=++u u u r,4cos 44sin m s r n r θθ=+⎧∴⎨=+⎩,444(sin cos )4sin 4m n s r s πθθθ⎛⎫∴+=+++=+++ ⎪⎝⎭,04,01,s r R θ≤≤≤≤∈Q ,当50,1,4s r πθ===时,m n +取最小值为44-,即14-;当4,1,4s r πθ===时,m n +取最大值为84+,即24+,m n ∴+的取值范围是1244⎡-+⎢⎣⎦; 故选:D . 【点睛】本题考查了向量的坐标运算、点与圆的位置关系,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.2.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .5【答案】B 【解析】 【分析】将223cos 2sin 6cos ρθρθθ+=化成直角坐标方程,则2ρ的最大值为22x y + 的最大值。

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》难题汇编含答案解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》难题汇编含答案解析

数学《坐标系与参数方程》高考知识点一、131.若点P 的直角坐标为(1,,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫⎪⎝⎭ 【答案】A 【解析】 【分析】设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标. 【详解】设点P 的极坐标为()(),02ρθθπ≤<,则2ρ==,tan 1θ==. 由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3π⎛⎫⎪⎝⎭,故选:A. 【点睛】本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题.2.已知直线1:1x t l y at =+⎧⎨=+⎩(t 为参数)与曲线221613sin ρθ=+的相交弦中点坐标为(1,1),则a 等于( )A .14-B .14C .12-D .12【答案】A 【解析】 【分析】根据参数方程与普通方程的互化,得直线l 的普通方程为1=-+y ax a ,由极坐标与直角坐标的互化,得曲线C 普通方程为221164x y +=,再利用“平方差”法,即可求解.【详解】 由直线1:1x tl y at =+⎧⎨=+⎩(t 为参数),可得直线l 的普通方程为1=-+y ax a ,由曲线221613sin ρθ=+,可得曲线C 普通方程为221164x y +=,设直线l 与椭圆C 的交点为()11,A x y ,()22,B x y ,则22111164x y +=,2221164x y +=,两式相减,可得1212121214y y y y x x x x -+⋅=--+. 所以1212114y y x x -⋅=--,即直线l 的斜率为14-,所以a =14-,故选A . 【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.3.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.3-CD.3±【答案】D 【解析】 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》经典测试题含答案解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》经典测试题含答案解析

数学《坐标系与参数方程》试卷含答案一、131.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( )A .1B .1-C 1D .1-【答案】C 【解析】 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则231114x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤ ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值2.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2=,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.3.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.4.221x y +=经过伸缩变换23x xy y''=⎧⎨=⎩后所得图形的焦距( )A .25B .213C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=, ∴椭圆的焦距为29425-=,故选A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.5.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》全集汇编含答案解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》全集汇编含答案解析

数学高考《坐标系与参数方程》复习资料一、131.参数方程21,11x ty t t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)所表示的曲线是( )A .B .C .D .【答案】D 【解析】 【分析】消参化简整理得221x y +=,即得方程对应的曲线. 【详解】将1t x =代入y =,化简整理得221x y +=,同时x 不为零,且x ,y 的符号一致, 故选:D. 【点睛】本题主要考查参数方程与普通方程的互化,考查圆的方程,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.设曲线C 的参数方程为5cos ()15sin x y θθθ⎧=⎪⎨=-+⎪⎩为参数,直线l 10y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:(()22125x y ++=,圆心)1-10y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.3.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .5【答案】B 【解析】【分析】将223cos 2sin 6cos ρθρθθ+=化成直角坐标方程,则2ρ的最大值为22x y + 的最大值。

【详解】223cos 2sin 6cos ρθρθθ+=两边同时乘ρ,化为22326x y x +=,得22332y x x =-,则()2222211919369(3)22222x y x x x x x +=-+=--++=--+.由223302y x x =-…,可得02x 剟,所以当2x =时,222x y ρ=+取得最大值4. 故选B 【点睛】本题考查极坐标方程与直角坐标方程的互化以及利用二次函数求最值,属于一般题。

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》单元汇编含答案解析

高考数学压轴专题2020-2021备战高考《坐标系与参数方程》单元汇编含答案解析

【高中数学】数学高考《坐标系与参数方程》试题含答案一、131.若点P的直角坐标为(1,,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫⎪⎝⎭ 【答案】A 【解析】 【分析】设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标. 【详解】设点P 的极坐标为()(),02ρθθπ≤<,则2ρ==,tan 1θ==. 由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3π⎛⎫⎪⎝⎭,故选:A. 【点睛】本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题.2.在满足极坐标和直角坐标互的化条件下,极坐标方程222123cos 4sin ρθθ=+经过直角坐标系下的伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( ).A .直线B .椭圆C .双曲线D .圆【答案】D 【解析】 【分析】先把极坐标方程化为直角坐标方程,再经过直角坐标系下的伸缩变换,把直角坐标方程中的x ,y 分别换成得2x'',由此能求出结果. 【详解】 ∵极坐标方程222123+4cos sin ρθθ=∴22223cos 4sin 12ρθρθ+=∴直角坐标方程为223412x y +=,即22143x y +=∴经过直角坐标系下的伸缩变换12x x y y⎧=⎪⎪⎨=''⎪⎪⎩后得到的曲线方程为22(2))143x ''+=,即22()()1x y ''+=. ∴得到的曲线是圆 故选D. 【点睛】本题考查曲线形状的判断,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程和直角坐标系下的伸缩变换公式的合理运用.3.已知直线1:1x t l y at =+⎧⎨=+⎩(t 为参数)与曲线221613sin ρθ=+的相交弦中点坐标为(1,1),则a 等于( )A .14-B .14C .12-D .12【答案】A 【解析】 【分析】根据参数方程与普通方程的互化,得直线l 的普通方程为1=-+y ax a ,由极坐标与直角坐标的互化,得曲线C 普通方程为221164x y +=,再利用“平方差”法,即可求解.【详解】由直线1:1x tl y at=+⎧⎨=+⎩(t 为参数),可得直线l 的普通方程为1=-+y ax a ,由曲线221613sin ρθ=+,可得曲线C 普通方程为221164x y +=,设直线l 与椭圆C 的交点为()11,A x y ,()22,B x y ,则22111164x y +=,2221164x y +=,两式相减,可得1212121214y y y y x x x x -+⋅=--+. 所以1212114y y x x -⋅=--,即直线l 的斜率为14-,所以a =14-,故选A .【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.4.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1 BC .2D.【答案】B 【解析】 【分析】由题意可知曲线1C 与2C 交于原点和另外一点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出AB ρ=,即可得出AB 的值. 【详解】易知,曲线1C 与2C 均过原点,设点A 为原点,点B 的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C 与2C的坐标方程2sin ρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,AB ρ== 故选:B. 【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.5.在直角坐标系xOy 中,曲线C 的方程为22162x y +=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为cos()6πρθ+=M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .13【答案】C 【解析】分析:先由曲线C 的直角坐标方程得到其极坐标方程为()221+2sin 6ρθ=,设A 、B 两点坐标为()1,ρθ,()2,ρθ,将射线M 的极坐标方程为θα=分别代入曲线C 和直线l 的极坐标方程,得到关于α的三角函数,利用三角函数性质可得结果.详解:∵曲线C 的方程为22162x y +=,即2236x y +=,∴曲线C 的极坐标方程为()221+2sin 6ρθ=设A 、B 两点坐标为()1,ρθ,()2,ρθ,联立()221+2sin 6ρθθα⎧=⎪⎨=⎪⎩,得221112sin 6θρ+=,同理得222cos 163πθρ⎛⎫+ ⎪⎝⎭=, 根据极坐标的几何意义可得22222212cos 111112sin 663OA OBπθθρρ⎛⎫+ ⎪+⎝⎭+=+=+1+1cos 21cos 23sin 23666ππθθθ⎛⎫⎛⎫-+++-+ ⎪ ⎪⎝⎭⎝⎭=,即可得其最大值为23,故选C. 点睛:本题考查两线段的倒数的平方和的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,充分理解极坐标中ρ的几何意义以及联立两曲线的极坐标方程得到交点的极坐标是解题的关键,是中档题.6.已知曲线C 的极坐标方程为:2cos 4sin ρθθ=-,P 为曲线C 上的动点,O 为极点,则PO 的最大值为( ) A .2 B .4CD.【答案】D 【解析】 【分析】把极坐标方程变成直角坐标方程,通过最大距离d r =+求得答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考复习】2020年高考数学(理数) 坐标系与参数方程 大题1.在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.2.平面直角坐标系xOy 中,倾斜角为α的直线l 过点M(-2,-4),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2cos θ. (1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程;(2)若直线l 与C 交于A ,B 两点,且|MA|·|MB|=40,求倾斜角α的值.3.在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A(2,1).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若|PQ|2=|AP|·|AQ|,求直线l 的斜率k.4.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =3sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=3 2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN|的最小值及此时点M 的直角坐标.5.在平面直角坐标系xOy 中,曲线C :⎩⎪⎨⎪⎧x =tcos α,y =sin α(α为参数,t>0).在以O 为极点,x轴的正半轴为极轴的极坐标系中,直线l :ρcos ⎝⎛⎭⎪⎫θ-π4= 2.(1)若l 与曲线C 没有公共点,求t 的取值范围;(2)若曲线C 上存在点到l 的距离的最大值为62+2,求t 的值.6.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3+2cos α,y =2+2sin α(α为参数),直线C 2的方程为y=33x ,以O 为极点,以x 轴的非负半轴为极轴建立极坐标系. (1)求曲线C 1和直线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于P ,Q 两点,求|OP|·|OQ|的值.7.在平面直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π3=12.直线l 与曲线C 交于A ,B 两点. (1)求直线l 的直角坐标方程;(2)设点P(1,0),求|PA|·|PB|的值.8.在平面直角坐标系中,直线l 的参数方程是⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2+2ρsin θ-3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求|AB|.9.在极坐标系中,曲线C 1的极坐标方程是ρ=244cos θ+3sin θ,在以极点为原点O ,极轴为x 轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy 中,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数). (1)求曲线C 1的直角坐标方程与曲线C 2的普通方程;(2)将曲线C 2经过伸缩变换⎩⎨⎧x′=22x ,y′=2y后得到曲线C 3,若M ,N 分别是曲线C 1和曲线C 3上的动点,求|MN|的最小值.10.在平面直角坐标系xOy 中,曲线C 1过点P(a ,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R ),以O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数a 的值.答案解析1.解:(1)⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y=kx- 2.l 与⊙O 交于两点需满足21+k2<1,解得k<-1或k>1, 即α∈⎝ ⎛⎭⎪⎫π2,3π4或α∈⎝ ⎛⎭⎪⎫π4,π2.综上,α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α⎝⎛⎭⎪⎫t 为参数,π4<α<3π4. 设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B 2,且t A ,t B 满足t 2-22tsin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y)满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎪⎨⎪⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎪⎫α为参数,π4<α<3π4.2.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+tcos α,y =-4+tsin α(t 为参数),ρsin 2θ=2cos θ,即ρ2sin 2θ=2ρcos θ,将x=ρcos θ,y=ρsin θ代入得曲线C 的直角坐标方程为y 2=2x.(2)把直线l 的参数方程代入y 2=2x ,得t 2sin 2α-(2cos α+8sin α)t +20=0, 设A ,B 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=2cos α+8sin αsin 2α,t 1t 2=20sin 2α, 根据直线的参数方程中参数的几何意义,得|MA |·|MB|=|t 1t 2|=20sin 2α=40,得α=π4或α=3π4.又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=π4.3.解:(1)由题意知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+tcos α,y =1+tsin α(t 为参数),因为ρ=2sin θ,所以ρ2=2ρsin θ,把y=ρsin θ,x 2+y 2=ρ2代入得x 2+y 2=2y ,所以曲线C 的直角坐标方程为x 2+y 2=2y.(2)将直线l 的参数方程代入曲线C 的方程,得t 2+(4cos α)t +3=0,由Δ=(4cos α)2-4×3>0,得cos 2α>34,由根与系数的关系,得t 1+t 2=-4cos α,t 1t 2=3. 不妨令|AP|=|t 1|,|AQ|=|t 2|,所以|PQ|=|t 1-t 2|,因为|PQ|2=|AP|·|AQ|,所以(t 1-t 2)2=|t 1|·|t 2|,则(t 1+t 2)2=5t 1t 2,得(-4cos α)2=5×3,解得cos 2α=1516,满足cos 2α>34,所以sin 2α=116,tan 2α=115,所以k=tan α=±1515.4.解:(1)由曲线C 1的参数方程可得曲线C 1的普通方程为x 29+y23=1,由ρcos ⎝⎛⎭⎪⎫θ+π4=32,得ρcos θ-ρsin θ=6, ∴曲线C 2的直角坐标方程为x-y-6=0.(2)设点M 的坐标为(3cos β,3sin β), 点M 到直线x-y-6=0的距离d=|3cos β-3sin β-6|2=⎪⎪⎪⎪⎪⎪23sin ⎝ ⎛⎭⎪⎫β-π3+62=6+23sin ⎝ ⎛⎭⎪⎫β-π32,当sin ⎝ ⎛⎭⎪⎫β-π3=-1时,|MN|有最小值,最小值为32-6, 此时点M 的直角坐标为⎝ ⎛⎭⎪⎫332,-32.5.解:(1)因为直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=2, 即ρcos θ+ρsin θ=2,所以直线l 的直角坐标方程为x +y-2=0.因为⎩⎪⎨⎪⎧x =tcos α,y =sin α(α为参数,t>0),所以曲线C 的普通方程为x 2t2+y 2=1(t>0),由⎩⎪⎨⎪⎧x +y =2,x 2t2+y 2=1,消去x 得,(1+t 2)y 2-4y +4-t 2=0,所以Δ=16-4(1+t 2)(4-t 2)<0,又t>0, 解得0<t<3,故t 的取值范围为(0,3). (2)由(1)知直线l 的方程为x +y-2=0,故曲线C 上的点(tcos α,sin α)到l 的距离d=|tcos α+sin α-2|2,故d max =t 2+1+22=62+2,解得t=± 2.又t>0,∴t= 2.6.解:(1)曲线C 1的普通方程为(x-3)2+(y-2)2=4,即x 2+y 2-23x-4y +3=0,则曲线C 1的极坐标方程为ρ2-23ρcos θ-4ρsin θ+3=0.∵直线C 2的方程为y=33x ,∴直线C 2的极坐标方程为θ=π6(ρ∈R).(2)设P(ρ1,θ1),Q(ρ2,θ2),将θ=π6(ρ∈R)代入ρ2-23ρcos θ-4ρsin θ+3=0得,ρ2-5ρ+3=0, ∴ρ1ρ2=3,∴|OP|·|OQ|=ρ1ρ2=3. 7.解:(1)由ρcos ⎝⎛⎭⎪⎫θ+π3=12得ρcos θcos π3-ρsin θsin π3=12, 即12ρcos θ-32ρsin θ=12, 又ρcos θ=x ,ρsin θ=y ,∴直线l 的直角坐标方程为x-3y-1=0.(2)由⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数)得曲线C 的普通方程为x 2+4y 2=4,∵P(1,0)在直线l 上,故可设直线l 的参数方程为⎩⎪⎨⎪⎧x =32t +1,y =12t (t 为参数),将其代入x 2+4y 2=4得7t 2+43t-12=0,∴t 1·t 2=-127,故|PA|·|PB|=|t 1|·|t 2|=|t 1·t 2|=127.8.解:(1)由⎩⎪⎨⎪⎧x =t ,y =2t 消去t 得,y=2x ,把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入y=2x ,得ρsin θ=2ρcos θ,所以直线l 的极坐标方程为sin θ=2cos θ.(2)因为ρ2=x 2+y 2,y=ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2+2y-3=0,即x 2+(y +1)2=4.圆C 的圆心C(0,-1)到直线l 的距离d=55,所以|AB|=24-d 2=2955.9.解:(1)∵C 1的极坐标方程是ρ=244cos θ+3sin θ,∴4ρcos θ+3ρsin θ=24, ∴4x +3y-24=0,故C 1的直角坐标方程为4x +3y-24=0.∵曲线C 2的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ,∴x 2+y 2=1,故C 2的普通方程为x 2+y 2=1.(2)将曲线C 2经过伸缩变换⎩⎨⎧ x′=22x ,y′=2y后得到曲线C 3,则曲线C 3的参数方程为⎩⎨⎧x′=22cos α,y′=2sin α(α为参数).设N(22cos α,2sin α),则点N 到曲线C 1的距离d=|4×22cos α+3×2sin α-24|5=|241sin (α+φ)-24|5=24-241sin (α+φ)5其中φ满足tan φ=423.当sin(α+φ)=1时,d 有最小值24-2415,所以|MN|的最小值为24-2415.10.解:(1)C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,消参得普通方程为x-y-a +1=0,C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0,两边同乘ρ得ρ2cos 2θ+4ρcos θ-ρ2=0,得y 2=4x .所以曲线C 2的直角坐标方程为y 2=4x . (2)曲线C 1的参数方程可转化为⎩⎪⎨⎪⎧x =a +22t ,y =1+22t (t 为参数,a ∈R ),代入曲线C 2:y 2=4x ,得12t 2-2t +1-4a=0,由Δ=(-2)2-4×12×(1-4a)>0,得a>0,设A ,B 对应的参数分别为t 1,t 2,由|PA|=2|PB|得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧ t 1=2t 2,t 1+t 2=22,t 1·t 2=2(1-4a ),解得a=136;当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=22,t 1·t 2=2(1-4a ),解得a=94,综上,a=136或94.。

相关文档
最新文档