四年级上册《数图形的学问》教案(新北师大版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级上册《数图形的学问》教案(新

北师大版)

教学目标:

、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。

2、在数图形的过程中,能够逐步形成有序思考的良好习惯,做到不重复,不遗漏,发展推理能力。

3、在发现规律的进程中,能够独立思考和自主探究,有条理地表达解决问题的过程和结果,增强学习的自信心,提高对数学问题探索的兴趣。

教学重点:

把生活中的现实问题抽象成数图形的数学问题,并能有规律地数,不重复不遗漏。

教学难点:引导学生在按一定规律数的基础上发现数图形的规律。

教学过程:

一、创设情境,提出问题

1、鼹鼠钻洞

师:大家听说过鼹鼠吗?(出示鼹鼠图)。

它最擅长的是挖土、钻洞。看,它现在又想开始活动了,它可以怎么钻?

师:(任选一个洞口进入,向前走,再任选一个洞口钻出来,它可能会怎样钻呢?)生说,师指着图演示。

2、筛选提出问题:有多少条不同的路线?

二、自主探究、解决问题

1、想一想,你能用什么表示路线,用什么表示洞口,画出小鼹鼠的行走路线图呢?()(同桌交流)

2、生独立画示意图(指名画在黑板上)

3、交流并优化出示意图

4、数线段

(1)要求:()请用画一画,写一写,记录你数的过程。

(2)学生动手数,数完后同桌交流说说是怎么数。

(3)、汇报交流

先指名学生上来说出数法,师逐步演示,再引导学生发现是按什么顺序数的,板书并写出算式。

、小结:谁来说说怎样才能准确数出线段的条数?

(板书:有序

不重复

不遗漏)

6、揭题:《数图形的学问》(板书)

三、巩固练习,掌握知识

师:通过刚才的学习,你们会按一定的顺序来数线段吗?那我们一起来试试吧!你们去过城关吗?今天老师早上就是

从城关出发,经过达埔、玉斗、坑口,来到了下洋。如果我们做公共汽车你是售票员,单程需要准备多少种不同的车票呢?

问题一:个汽车站,单程需要准备多少种不同的车票呢?

1、获取信息,理解题目。

个车站可用字母什么代表?单程是什么意思?

2、学生独立画出示意图,有顺序地数一数,想想你是按什么标准来数

的。

3、汇报交流(展示数法)

(板书:个站,车票总数为:4+3+2+1=10(种)

问题二:如果有6个汽车站,单程需要准备多少种不同的车票呢?7个呢?8个呢?

方法一:画6个点,重新数

方法二:直接在前面的基础上加上F点,即10+=1(种)(在图下面展示需再加的条)引导学生说出这个条数刚好与原来的点数相同。

4、让学生说说发现了什么?

、知道了规律,让学生尝试写出10、100个车站需要多少种不同的车票?

四、回顾总结,梳理知识。

1、学生说说这节的收获。

2、师:按一定的顺序数对于数线段来说很重要,其实它对于数角、三角形、长方形、正方形也同等重要,所以以后不管在数什么图形时都要按一定的顺序来数,才不会重复和遗漏,记住了吗?

板书设计:

数图形的学问

有序

不重不漏

点的位置:

3+2+1=6

线段的长短:3+2+1=6

个站,车票总数:

4+3+2+1=10

6个站,车票总数:

+4+3+2+1=1

7个站,车票总数:

6++4+3+2+1=21

8个站,车票总数:7+6++4+3+2+1=28

相关文档
最新文档