人教版初一数学下册用计算器求立方根,用有理数估计一个数立方根的大小评测练习
2020-2021人教版七年级数学下学期立方根同步练习含答案
课后作业
14.D15.B16.B17.0或-618.-4 - 19.4
20.(1)-10;
(2)4;
(3)-1;
(4)0.
21.(1) > ;
(2)- <-3.4.
22.(1)8x3=-125,x3=- ,x=- ;
(2)(x+3)3=-27,x+3=-3,x=-6.
4.立方根等于本身的数为__________.
5. 的平方根是__________.
6.若x-1是125的立方根,则x-7的立方根是__________.
7.求下列各数的立方根:
(1)0.216; (2)0; (3)-2 ; (4)-5.
8.求下列各式的值:
(1) ; (2) ; (3)- .
知识点2 用计算器求立方根
9.用计算器计算 的值约为( )
A.3.049 B.3.050 C.3.051D.3.052
10.估计96的立方根的大小在( )
A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间
11.计算: ≈__________(精确到百分位).
12.已知 =1.038, =2.237, =4.820,则 =__________, =__________.
21.比较下列各数的大小:
(1) 与 ; (2)- 与-3.4.
22.求下列各式中的x:
(1)8x3+125=0; (2)(x+3)3+27=0.
23.若 与(b-27)2互为相反数,求 - 的立方根.
24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”
【核心素养目标】数学人教版七年级下册6.2 立方根 教案含反思(表格式)
6.2立方根主要师生活动一、创设情境导入新知想一想二阶魔方由几个小立方体构成______三阶魔方由几个小立方体构成______四阶魔方由几个小立方体构成______师生活动:学生独立思考,直接作答填空.教师顺势提问:如果一个魔方由27 个小立方体构成,它应该是几阶魔方?二、探究新知知识点一:立方根的概念及性质问题要做一个体积为27 cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?师生活动:学生独立思考,利用方程思想进行计算.总结归纳一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.想一想:如果问题中正方体的体积为5 cm3,那么其边长又该是多少?师生活动:学生思考并猜想可以利用方程思想计算,得到( x )3=5 .教师顺势引发思考:能否找到一个正数( x )来表示其边长?类比于平方根,一个数a的立方根如何表示?立方根的表示一个数a的立方根可以表示为:师生活动:教师提问,例如思考中( x )3=5,x 的值是多少?预设:5的立方根是,所以x=.平方根与立方根的区别和联系师生活动:学生独立思考完成填空.设计意图:培养学生观察图表获取信息的能力,培养数感和自主探究的习惯.设计意图:培养数形结合思想,渗透立方根几何意义;发展迁移思想,为后面学习立方根符号做准备.设计意图:进一步认识立方根,发展符号意识设计意图:梳理所学,巩固学生对平方根立方根的认识和理解,培养自主学习的能力.例1求下列各数的立方根:(1) -27;(2) ;(3) ;(4) 0.216;(5) -5.师生活动:学生独立思考完成计算,选几名学生板书,其他同学判断正误.自主探究填空:你能归纳出立方根的另一性质吗?师生活动:学生独立思考,共同作答完成填空;教师选学生回答问题,其他同学判断是够正确.总结一般地,例2的算术平方根是 .例3计算:.师生活动:学生独立思考并计算,选两名学生板书计算过程,教师巡视,再根据板书和学生的易错点来纠正.易错提醒计算的算术平方根时,注意先计算= 4,再计算4 的算术平方根;在进行混合运算时,不要忘记负号.知识点二:用计算器求立方根设计意图:锻炼计算立方根的能力.设计意图:培养学生的观察和总结能力,提高解题技巧.设计意图:提高学生计算立方根的能力;在计算中纠正易错点,不混淆开立方与开平方的运算方法.364364364三、当堂练习 由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.例4 用计算器求下列各数的立方根:343, -1.331.师生活动:学生独立思考,教师引导完成操作.依次按键 、.例5 用计算器求 的近似值(精确到 0.001). 师生活动:学生独立完成操作.三、当堂练习 1.算一算 (1) = , = ; (2) 0.125的立方根是 = ; (3) = , = . 2. 比较 3,4, 的大小. 3. 立方根概念的起源与几何中的正方体有关,如果一个正方体的体积为 V ,那么这个正方体的边长为多少? 4.一个长方体的长为 9 cm ,宽为 3 cm ,高为 4 cm ,而另一个正方体的体积是它的二倍,求这个正方体的棱长.设计意图:学会如何使用计算器计算立方根,感受计算器的便捷;观察计算结果,认识到一个数的立方根可能是无限不循环小数.设计意图:学会使用计算器计算立方根并求立方根的近似值.设计意图:考查学生对计算立方根的掌握. 设计意图:考查学生对立方根概念的掌握,发展逆向思维.设计意图:考查学生对立方根几何意义的掌握. 设计意图:考查学生运用立方根几何意义的进行计算的能力. 板书设计6.2 立方根一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零.课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.333331.64(1)27=_______ ________125(2) 0.125(3)1________ 10________.-=-==算一算: -,;的立方根是________; -,333331.64(1)27=_______ ________125(2) 0.125(3)1________ 10________.-=-==算一算:-,;的立方根是________; -,35032通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与。
初中数学七年级下数学立方根同步专项练习题含答案
初中数学七年级下数学立方根同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 若√a3<−2,则a的值可以是()A.−9B.−4C.4D.92. 若√a3<−2,则a的值可以是()A.4B.−4C.9D.−93. −8的立方根是()A.−2B.2C.±2D.−44. −8的立方根是()A.−2B.2C.12D.−125. 如图,某同学利用计算器中的三个按键设置计算程序,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,程序将按照以下步骤进行,依次按照从第一步到第三步循环计算.若一开始输人的数据为10,那么第2021步之后,显示的结果是( )A.√1010B.100C.0.1D.0.016. 用计算器求√44.86的值为(结果精确到0.01位)( )A.6.69B.6.7C.6.70D.±6.707. 现将体积是125cm 3的正方体木块锯成8块同样大小的小正方体木块,准备从中选取n 个小正方体木块,排放在一块长方形的木板上,已知此长方形木板的长是宽的4倍,面积是36cm 2,若只排放一层,n 的最大值是 ( )A.2B.3C.4D.58. 若√0.3673=0.176,√3.673=1.542,则√3673=( )A.15.42B.7.16C.154.2D.71.69. 如果x 2=2,有x =±√2;当x 3=3时,有x =√33,想一想,从下列各式中,能得出x =±√220的是( )A.x 2=±20B.x 20=2C.x ±20=20D.x 3=±2010. 已知√5.283=1.738,√a 3=0.1738,则a 的值为( )A.0.528B.0.0528C.0.00528D.0.000528 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 一个数的立方根是−32,这个数是________.12. 一个数的立方根是,那么这个数的平方根是________.13. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.0036703=________.14. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).15. 利用计算器,在求√273时,正确的按键顺序应为________.16. 若√0.36703=0.7160,√3.6703=1.542,则√3673=________,√−0.00036703=________.17. −8的立方根是________.18. 已知x 满足(x +3)3+27=0,则x 等于________.19. 已知√8.9663=2.078,√y 3=0.2708,则y =________.20. 已知√103=a ,则√−100003=________.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 , )21. 计算:(1)|−5|+√16−32;(2)√4+√225−√−273.22. 计算:√303403(结果精确到1)23. 计算:(1)−22+√25+√643÷2;(2)√−273+|√3−6|−(−√3).24. 已知第一个正方体玩具的棱长是6cm ,第二个正方体玩具的体积要比第一个玩具的体积大127cm ,试求第二个正方体玩具的棱长.25. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.26. 求x 的值:64(x +1)3−27=0.27. 观察下列各式,然后探索下列问题:∵ √13=1,√−13=−1∴ √−13=√13∵ √83=2,√−83=−2∴ √−83=−√83∵ √273=3,√−273=−3∴ √−273=−√273…∵ √n 33=(________),√−n 33=(________)∴ (________)=(________)(1)在上面的“( )上填空,并猜测互为相反数的两个数的立方根有何关系;(2)计算√−13+√−83+√−273+...+√(−n)33(其中n =100)28. 解方程:(3x −1)3+64=0.29. 用计算器求下列各式的值(结果保留四个有效数字)(1)−√39.2473(2)√41.834(3)√12.4(4)√71800330. 已知球的半径为rcm ,球的体积为850cm 3,根据球的体积公式V 球=43πr 3,求r 的值(精确到0.01).31. 求x 的值:14x 3+3=5.32. 已知√x 3−73=x 2,求x 3−√7.33. 已知2x −1的平方根是±5,3x +y −1的平方根是±3,求x +y 的值.34. 解方程:(1)(2)35. 求下式中x的值:8(x−1)3=27 .36. (1)计算:; 36.(2)已知=4,求x的值.37. 有一正方体盒子的容积是27cm3,问做这样一个正方体盒子(无盖)需要多少平方厘米的纸板?38. 利用计算器计算:√32−355113+2π−√2(精确到0.01)39. 一个正数的平方根分别是2a+5和2a−1,b−30的立方根是−3,求:(1)求a,b的值,(2)求a+b的算术平方根.40. 已知x的立方根是3,求2x−5的平方根.参考答案与试题解析初中数学七年级下数学立方根同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选A.2.【答案】D【考点】立方根【解析】根据立方根的概念解答即可.【解答】3<−2,解:因为√a所以a<−8,所以a的值可以是−9.故选D.3.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据立方根的定义:若x3=a,那么x叫做a的立方根,即可得出答案【解答】解:.(−23=−8−8的立方根是−2.故答案为:A.4.【答案】A【考点】立方根的性质立方根的实际应用立方根的应用【解析】根据题意先求出−8的立方根,即可得出结果【解答】解:.√83=−2∴ 8的立方根是−2.故答案为:A .5.【答案】B【考点】计算器—数的开方【解析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.【解答】解:根据题意,得102=100,1100=0.01,√0.01=0.1; 0.12=0.01,10.01=100,√100=10;⋯,∵ 2021=6×336+5,∴ 按了第2021下后荧幕显示的数是100.故选B .6.【答案】C【考点】计算器—数的开方【解析】根据计算器的使用方法进行计算即可得解.【解答】解:√44.86≈6.69776≈6.70.故选C .7.【答案】C【考点】立方根的应用【解析】1【解答】解:√12583=52,∴ 立方体棱长为52cm ,设长方形宽为x ,可得 4x 2=36,∴ x 2=9.∵ x >0,∴ x =3,12÷52=245,横排可放4个,竖排只能放1个,4×1=4个,∴ 所以最多可放4个.故选C .8.【答案】B【考点】立方根的实际应用立方根的应用【解析】根据立方根,即可解答.【解答】解:∵ √0.3673=0.176,√3.673=1.542,∴ √3673=7.16,故选B .9.【答案】B【考点】立方根的实际应用【解析】结合题意,可知x =±√220,即x 的指数是20,x 20的结果是2,即可解决问题.【解答】解:根据题意,可知x 20=2,能得出x =±√220.故选B .10.【答案】C【考点】立方根的实际应用【解析】根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案.【解答】解:∵ √5.283=1.738,√a 3=0.1738,∴ a =0.00528;故选C .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】−278【考点】立方根解析:因为−278立方根是−32,所以这个数是−278. 【解答】解:因为−278立方根是−32, 所以这个数是−278.故答案为:−278.12.【答案】±1【考点】立方根的性质【解析】根据立方跟乘方运算,可得被开方数,根据开方运算,可得平方根.【解答】13=1,±√1=±1故答案为:±13.【答案】7.160,−0.1542【考点】立方根的实际应用立方根的应用立方根的性质【解析】利用立方根性质判断即可得到结果.【解答】解:∴ √0.36703=0.7160 √3.6703=1.542√3673=7.160 √−0.0036703=−0.154 故答案为:7.160;−0.154214.【答案】0.464【考点】计算器—数的开方【解析】用计算器计算出√13的值后,再来计算所求代数式的值即可.【解答】解:原式=3.6056−3.142≈0.464.故答案是:0.464.15.【答案】2,÷,7,2nd 键,√x 3,=计算器—数的开方【解析】是2÷7,切换三次根号时需要用到切换键2nd.一般使用科学型的计算器,注意27【解答】3,=.解:按键顺序依次为2,÷,7,2nd键,√x(由于计算器的类型很多,可根据计算器的说明书使用)16.【答案】7.160,−0.07160【考点】立方根的实际应用立方根的应用【解析】被开方数367由0.367小数点向右移动3位得到,故开立方的结果向右移动1位即可得到结果;被开方数−0.0003670由0.3670小数点向左移动3位得到,故立方的结果向左移动1为即可得到结果.【解答】3=0.7160,解:∵√0.3670被开方数367由0.367小数点向右移动3位得到3=7.160,∴√367被开方数−0.0003670由−0.3670小数点向左移动3位得到3=−0.07160.∴√−0.0003670故答案为:7.160;−0.07160.17.【答案】−2【考点】立方根的应用立方根的性质【解析】3=−2.√−8【解答】3=−2.解:√−8故答案为:−2.18.【答案】−6【考点】立方根的实际应用【解析】先移项,再用立方根得定义即可得出结论.【解答】解:(x +3)3+27=0,移项得,(x +3)3=−27,开立方得,x +3=−3,移项得,x =−6,故答案为:−6.19.【答案】0.008966【考点】立方根的实际应用【解析】根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.【解答】解:∵ √8.9663=2.078,√y 3=0.2708,∴ y =0.008966,故答案为:0.008966.20.【答案】−10a【考点】立方根的实际应用立方根的应用立方根的性质【解析】根据立方根的性质进行开立方计算得到答案即可.【解答】解:√100003=−103√103=−10a三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:(1)原式=5+4−9=0.(2)原式=2+15+3=20.【考点】绝对值有理数的乘方算术平方根立方根【解析】无无【解答】解:(1)原式=5+4−9(2)原式=2+15+3=20.22.【答案】3≈31.解:√30340【考点】计算器—数的开方【解析】3的值是多少;然后应用四舍首先根据用计算器求一个数的立方根的方法,求出√30340五入法,将结果精确到1即可.【解答】3≈31.解:√3034023.【答案】解:(1)原式=−4+5+4÷2=−4+5+2=3;(2)原式=−3+6−√3+√3=3.【考点】立方根的应用实数的运算算术平方根绝对值【解析】【解答】解:(1)原式=−4+5+4÷2=−4+5+2=3.(2)原式=−3+6−√3+√3=3.24.【答案】第二个正方形玩具的棱长为7cm【考点】立方根的实际应用【解析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm33=7cm.第二个正方体的棱长为:√343【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】已知第一个等式变形得到立方根等于本身确定出x 的值,再利用相反数之和为0列出等式,将x 的值代入即可求出y 的值.【解答】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.26.【答案】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764,∴ x +1=34, 解得x =−14.【考点】立方根的应用【解析】(2)根据立方根的含义和求法,求出x 的值是多少即可.【解答】解:∵ 64(x +1)3−27=0,∴ (x +1)3=2764, ∴ x +1=34,解得x =−14.27.【答案】n ;−n ;√n 33;−√n 33(1)互为相反数的两个数的立方根互为相反数;(2)原式=−1−2−3−...−n =−n(n+1)2.【考点】立方根的实际应用【解析】观察各式,填写即可;(1)猜测得到互为相反数的两个数的立方根互为相反数;(2)利用得出的结论化简,计算即可得到结果.【解答】解:∵ √n 33=n ,√−n 33=−n ,∴ √n 33=−√n 33;(2)原式=−1−2−3−...−n =−n(n+1)2.28.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.29.【答案】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.【考点】计算器—数的开方【解析】有效数字就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,根据定义即可确定.【解答】解:(1)−39.247开立方得−3.3983556,保留四个有效数字是−3.398.(2)√41.834=2.5431,保留四个有效数字是2.543.(3)√12.4=3.5216,保留四个有效数字是3.522.(4)√718003=41.56312,保留四个有效数字是41.56.30.【答案】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .【考点】立方根的实际应用【解析】根据球的体积表示出r 3,然后利用立方根的定义解答.【解答】解:∵ r 3=34π×850≈203,∴ r =√2033≈5.88cm .31.【答案】∵ 14x 3+3=5,∴ 14x 3=2,则x 3=8,∴ x =2.【考点】立方根的性质【解析】先移项、合并,再两边都乘以4,最后依据立方根的定义求解可得.【解答】∵ 14x 3+3=5, ∴ 14x 3=2,则x 3=8,∴ x =2.32.【答案】解:∵ √x 3−73=x 2,∴ x 3−7=(x 2)3, ∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.【考点】立方根的实际应用【解析】根据立方根的定义得出方程,求出x 的值,代入求出即可.【解答】解:∵ √x 3−73=x 2, ∴ x 3−7=(x 2)3,∴ x 3=8,x =2,∴ x 3−√7=23−√7=8−√7.33.【答案】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.【考点】立方根的应用列代数式求值平方根【解析】根据平方根的定义列方程求出x ,y 的值,然后代入代数式进行计算即可得解.【解答】解:由题意可得,{2x −1=25,3x +y −1=9,解得{x =13,y =−29.则x +y =13−29=−16.34.【答案】(1)x 1=5x 2=−3;(2)x =0【考点】立方根的性质【解析】(1)把16移到方程右边,再两边开平方,最后解一元一次方程即可得答;(2)把含x 的项放在方程的左边,常数项放右边,两边开立方,再解一元一次方程即可.【解答】(1)∴ (x −1)2−16=0(x −1)2=16x −1=±4解得,x 1=5x 2=−3(2)∵ 1−(2x −3)3=28(2x −3)3=−272x −3=−3解得,x =035.【答案】解:(x −1)3=278,x −1=32, x =52.【考点】立方根的实际应用【解析】(1)把(x −1)3看作一个整体并求出其值,再根据立方根的定义解答;【解答】解:(x −1)3=278,x −1=32,x =52.36.【答案】(1)−13; (2)x 1=3,x 2=−1【考点】立方根的性质【解析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.【解答】(1)√(−2)2−√83+√−1273=2−13=31 (2)(x −1)2=4x −1=±2x −1=2,x −1=−2解得:x 1=3,x 2=−137.【答案】解:设正方体的棱长为a ,根据题意得:a 3=27,则a =3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm 2.【考点】立方根的实际应用【解析】设正方体的棱长为a ,可求得正方体的棱长,然后再求得5个面的面积即可.【解答】解:设正方体的棱长为a,根据题意得:a3=27,则a=3,这个正方体盒子(无盖)需要的纸板的面积=5×32=45cm2.38.【答案】2.59.【考点】计算器—数的开方【解析】首先熟练应用计算器计算结果,然后对计算器给出的结果,根据有效数字的概念即可求出结果.【解答】解:原式≈0.866−2.669+6.283−1.414≈2.59,故39.【答案】由题意可知:(2a+5)+(3a−1)=0,b−30=(−6)3=−27,解得a=−1,b=8;∵a+b=−1+3=7,∴a+b的算术平方根是.【考点】算术平方根立方根的性质平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.【考点】立方根的性质平方根【解析】首先根据x的立方根是3,求出x的值是多少;然后根据平方根的含义和求法,求出2x−5的平方根是多少即可.【解答】∵x的立方根是3,∴x=33=27,∴2x−5=2×27−5=49,∴2x−5的平方根是±7.。
新人教版初中七年级数学下册《6.2 用计算器求立方根、用有理数估计一个数立方根的大小》优质课教学设计_4
有两个立方根;(2)漏写根指数(3)符号问题。
2、“立方根”与“平方根”在内容安排上有很多类似的地方,所以在
教 学
教学设计中应突出利用类比的方法,让学生通过类比旧知识联系起来,又
反 有利于复习巩固平方根,利于立方根的理解和掌握。在探究立方根性质的
思
过程中,本节课采用独立思考,小组讨论,合作交流等形式,让学生在“自
了解学生的学习情况。 -0.064(5)0
示。
2、求下列各式的 4、互相评价指正。
过
值:(1)3 64
(2)3 0.001
六、当堂检测
(3) 3 64 ( 4 ) 4
125
55
1.出示与本节课相关的练习 练习:
1、学生独立完成检测
题实行课堂检测。
1.判断下列说法是
练习。
2.在学生完成练习的同时实 否准确,并说明理
教学设计
具体内容 材 分 析
学 情 分 析
教 学 目 标
教学重点
教学难点 教学方法 教具准备
教
立方根的概念和特征
课型
新授
本章内容能够看成是以后学习代数内容的起始章,是学习二次根式、
一元二次方程以及解三角形的基础,所以在中学数学教学中占有很重要的
地位。通过本章的学习,学生对数的理解就由有理数扩大到实数,而无理
3(.2想)一(想 )3 125,
过
立的方数3 1根有25是哪它些__?本__身_
平方根是它本身
的数呢?
程
算术平方根是它
本身的数呢?
七、梳理归纳及课堂小结
1.引导学生回顾本节课的主 1.立方根定义,性
要内容,并对相关内容实行 质,及表示方法. 1.在老师指导评价后及
人教版七年级数学下册_6.2立方根
感悟新知
知1-讲
特别警示:3 a 中的根指数 3 不能省略 . 若省略了3, a表示非负数a 的算术平方根而非a 的立方根. 2. 开立方:求一个数的立方根的运算,叫做开立方. 特别解读:立方根与开立方的关系:立方根是一个数, 是开立方的结果;而开立方是求一个数的立方根的运算.
感悟新知
知1-讲
特别提醒 立方根与平方根的区别 1. 被开方数:前者可为任何数,后者为非负数; 2. 根指数:前者不能省略,后者可省略不写; 3. 个数:立方根只有一个,平方根有两个(特殊情况:0
知1-练
感悟新知
知1-练
例2 已知x-2 的平方根是±2,2x+y+7 的立方根是3,求 x2+y2 的算术平方根. 解题秘方:根据立方根的定义用立方法求解.
感悟新知
知1-练
解:∵ x-2 的平方根是±2,∴ x-2=4. ∴ x=6. ∵ 2x+y+7 的立方根是3,∴ 2x+y+7=27. 把x=6 代入解得y=8,∴ x2+y2=62+82=100. ∴ x2+y2 的算术平方根为10.
知3-练
例 5 用计算器求下列各数的立方根: (1)64;(2)100 (精确到0.01); (3)-13.27 (精确到0.001). 解题秘方:根据用计算器求立方根的步骤进行按键 操作.
感悟新知
解:(1)依次按键 所以 3 64 =4.
64 ,显示:4.
(2)依次按键
100 ,
显示:4.641 588 834.所以 3 100 ≈ 4.64.
第6章 实数
6.2 立方根
学习目标
1 课时讲解 2 课时流程
立方根 立方根的性质 用计算器求一个数的立方根
新人教版初中七年级数学下册《6.2 用计算器求立方根、用有理数估计一个数立方根的大小》优质课教学设计_6
立方根说课材料一、教材分析1.本章能够看成其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,所以在中学数学中占有重要的地位。
通过本章的学习,学生对数的范围的理解就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。
在此之前,学生已学习了数的平方根,这为过渡到本节的学习起着铺垫作用。
2、教学目标①了解立方根和开立方的概念;②掌握立方根的性质;③会用根号表示一个数的立方根;④会求一个数的立方根。
3、教材的重点与难点本课的教学重点:立方根的概念及性质;本课的教学难点:求一个数的立方根。
二、教法分析启发、疏导、点拔、评价定义推导上采用引导探索法;定义应用上采用递进练习法。
用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出立方根的定义,将定义的应用融入到探究活动中。
三、教学程序以打开数学之门挖宝藏的形式寻找立方根知识的难点,激发学生的学习兴趣让学生寻找规律,自主归纳学习以下知识点:(1)、一个数的相反数的立方根等于这个数的立方根的相反数。
四、课堂小结先让学生小结,再教师归纳补充1、立方和开立方互为逆运算,利用立方运算求一个数的立方根。
2、立方根的相关性质。
3、立方根与平方根的区别与联系人人讲好一节教学研讨课教学设计教学目标1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点) 教学过程一、情境导入填空并回答问题:(1)( )3=0.001;(2)( )3=-2764; (3)( )3=0;(4)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质【类型一】 立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】 立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2,求其算术平方根即可.解:∵x -2的平方根是±2,∴x -2=4,∴x =6.∵2x +y +7的立方根是3,∴2x +y +7=27.把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,使用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根.变式训练:见《学练优》本课时练习“课后巩固提升”第9题【类型三】 立方根的实际应用已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r .解析:将公式变形为r 3=3V 4π,从而求r . 解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取3.14,∴r ≈33×113.044×3.14=327=3(cm).答:这个小皮球的半径r 约为3cm.方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.变式训练:见《学练优》本课时练习“课后巩固提升”第10题探究点二:开立方运算求下列各式的值:(1)-3343; (2)31027-5; (3)-3-8÷214+(-1)100. 方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们实行化简,再实行开方运算.变式训练:见《学练优》本课时练习“课堂达标训练”第10题三、板书设计1.每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a 的立方根的运算叫做开立方,其中a 叫做被开方数.开立方与立方互为逆运算. 教学反思本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识;要突出体现“创设情境——提出问题——建立模型——解决问题”的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.。
人教版数学七年级下册6.2.2《用计算器求立方根、用有理数估计一个数立方根的大小》教案设计
6.2 立方根第二课时教学设计一、教材分析:这节课的内容是人教版数学七年级下册第六章实数中6.2立方根的第2课时。
由于本章的前两节“平方根”“立方根”在内容上基本是平行的,知识的展开顺序基本相同,因此可以充分利用类比的方法:在第一课时类比得出立方根的概念、开立方运算、立方与开立方运算的互逆关系等的基础上。
类比平方根估算方法研究立方根的估算方法,类比平方根计算器的使用研究立方根计算器的使用,类比平方根的小数点的移动研究立方根的小数点的移动等。
通过类比旧知识学习新知识,使学生的学习形成正迁移。
二、学情分析:本节课需要面向七年级学生进行教学,由于七年级学生年龄低、好表现、具有形象思维等特征,所以这节课我主要采用情境教学法、动手操作法、探究交流法。
通过创设生动有趣的情境,本着结论让学生得,疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲的原则,在方法的设计上,把重点放在了逐步展示知识的形成过程上,激发学生对数学学习的兴趣。
三、学习目标:1.知识与技能:熟练掌握求一个数立方根的方法。
会用计算器求一个数的立方根。
2.过程与方法:经历探究被开方数与立方根的关系,能够运用规律解决实际问题。
3.情感、态度与价值观:学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性。
并通过小组互助学习培养学生的合作意识和解决问题的能力。
教学重点:探究被开方数与立方根的关系的过程。
教学难点:运用探索的规律解决实际问题。
四、教学方法:归纳和类比的方法。
五、教学过程:活动一、自主学习,探究规律预习课本第50~51页,自学完成下列问题。
问题1:如果一个正方体的体积是2㎝³,则这个正方体的棱长是多少呢?解:设这个正方体的棱长为xcm,则有 x3 =2解得:。
归纳:1.实际上,很多有理数的立方根是无限不循环小数,如,等都是无限不循环小数。
我们可以用有理数近似的表示它们。
2.要求一个数的立方根(或近似值),我们可以利用计算器中的键来计算。
七年级下数学立方根练习题含答案
七年级下数学立方根练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列命题中,是真命题的是( )A.√9的算术平方根是3B.5是25的一个平方根C.(−4)2的平方根是−4D.64的立方根是±42. −27的立方根是( )A.3B.−3C.9D.−93. 计算√273的结果是( )A.±3√3B.3√3C.±3D. 34. 立方根等于它本身的有( )A.0,1B.−1,0,1C.0D.15. 如图是马小虎同学的答卷,他的得分应是( )A.80B.60C.40D.206. 若√x 3+√y 3=0,则x 与y 的关系是( )A.x =y =0B.x =yC.x 与y 互为相反数D.x 与y 互为倒数7. 已知√8.9663=2.078,√y 3=0.2708,则y =( )A.0.8966B.89.66C.0.008966D.0.000089668. (620−√2002)3的结果(保留三位有效数字)是( )A.1.90×108B.1.9×108C.1.91×108D.以上答案都不对9. 下列说法中,正确的是( )A.−2是−4的平方根B.1的立方根是1和−1C.−2是(−2)2的算术平方根D.2是(−2)2的算术平方根10. 下列各数互为相反数的是( )A.−2与B.−2与C.|−2|与2D.与11. −64的立方根是________.12. 用计算器计算(结果精确到0.01).(1)√4.225≈________;(2)√68923≈________.13. 用计算器计算:√13−3.142≈________(结果保留三个有效数字).14. 当k <0时,随着k 的增大,它的立方根随着________.15. 求一个正数的立方根,有些数可以直接求得,如√83=2,有些数则不能直接求得,如√93,但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得,请同学观察下表:≈6,运用你发现的规律求√216000003=________.16. 已知√20203≈12.64,√202.03≈5.867 ,√20.203≈2.723;则 √2020003≈________.17. 若√x 3=−35,则x =________;若√|x|3=6,则x =________.18.的倒数是________;=________.19. 计算√−273的结果为________.20. 若√52b+1和√a −13都是5的立方根,则a =________,b =________.21. 解方程:(3x −1)3+64=0.22. 求下列式子中x 的值.(1)12(x −2)2=825;(2)64(x +1)3+125=0.23. 已知√x −23+2=x ,且√3y −13与√1−2x 3互为相反数,求x ,y 的值.24. 用计算器求下列各式的值(精确到0.001).(1)√7653;(2)√0.4262553;(3)−√7233.25. 解方程:(1)3(x −1)3=24;(2)x x+2−1=1x−2.26. 某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?27. 计算:(2+√3)(2−√3)+(2+√3)2.28. 一个底面的长为25cm ,宽为16cm 的长方体玻璃容器中装满了水,现小明从这个长方体玻璃容器中打水,然后装进另一个正方体储水容器,当正方体容器装满水时,长方体容器的水面下降了20cm .(1)求正方体储水容器装满水时水的体积.(2)求正方体储水容器的棱长(容器的厚度忽略不计)29. 用计算器比较大小,A =√25.4,B =√38.83.30. 求出下列式子中的x :(2x −1)3+8=031. 计算:(−1)2018+|2−√5|−√83.32. 求x 的值:14x 3+3=5.33. 求式子x 3=32768中x 的值.34. 计算:(1)√32+42;(2)√81+√−273+√(−23)2;(3)|√2−√3|+2√2−√3;(4)−√(−2)2+√214+√(−1)813.35. 用计算器计算(精确到0.01)(1)3√2−2√3(2)√3×√2+√5−π2.36. 计算下列各式.(1)|√2−√3|+√83+2(√3−1).(2)若x ,y 为实数,且y =√1−4x +√4x −1+12,求x ⋅y 的算术平方根.37. (1)填表:(2)由上表发现什么规律?请用语言叙述这个规律. 37.(3)根据你发现的规律填空: ①已知√33=1.442,则√30003=________,√0.0033=________;②已知√0.0004563=0.07697,则√4563=________.38. 计算:(1)√1−925;(2)4√3−2(1−√3)+√(−2)2;(3)√83+√0+√4;(4)√2+3√2−5√2.39. 计算:√−83+√(−1)2+√25.40. 已知第一个立方体纸盒的棱长是6厘米,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127立方厘米,求第二个纸盒的棱长.参考答案与试题解析七年级下数学立方根练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】命题与定理平方根算术平方根立方根【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答4.【答案】B【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答5.A【考点】平方根相反数绝对值近似数和有效数字立方根【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答8.【答案】A【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】立方根的性质【解答】此题暂无解答10.【答案】A【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−4【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答12.【答案】2.06;19.03.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答13.【答案】0.464【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答14.【答案】增大【考点】立方根的实际应用【解答】此题暂无解答15.【答案】278.5【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答16.【答案】58.67【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答17.【答案】−27,±216125【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答18.【答案】∼4,3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答19.【答案】−3【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答20.【答案】6,1【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:原方程可化为:(3x −1)3=−64,开立方,得3x −1=−4,解得x =−1.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)(x −2)2=1625,x −2=±45,x 1=145,x 2=−65. (2)(x +1)3=−12564,x +1=−54, x =−94.【考点】立方根平方根【解析】23.【答案】解:∵ √x −23+2=x ,即√x −23=x −2,∴ x −2=0或1或−1,解得:x =2或3或1,∵ √3y −13与√1−2x 3互为相反数,即√3y −13+√1−2x 3=0, ∴ x =2时,y =43;当x =3时,y =2;当x =1时,y =23.【考点】立方根的实际应用立方根的性质【解析】此题暂无解析【解答】此题暂无解答24.【答案】解:(1)√7653≈9.1457≈9.146;(2)√0.4262553≈0.7525≈0.753;(3)−√7233≈−0.6726≈−0.673.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答25.【答案】方程整理得:(x −1)3=8,开立方得:x −1=2,解得:x =3;去分母得:x 2−2x −x 2+4=x +2,解得:x =23,经检验x =23是分式方程的解.【考点】解分式方程立方根的性质【解析】26.【答案】πr3=13.5,解得r≈1.5.解:根据球的体积公式,得43故这个球罐的半径r为1.5米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:原式=8+4√3.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答28.【答案】长方体中打出的水的体积为25×16×20=8000(cm3),故正方体储水容器装满水时水的体积为8000cm3.3=20,∵√8000∴正方体储水容器的棱长为20cm.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答29.【答案】3≈3.39,解:∵√25.4≈5.04,√38.8而5.04>3.39,3,∴√25.4>√38.8∴A>B.【考点】计算器—数的开方【解析】此题暂无解析【答案】解:(2x−1)3=−8 2x−1=−2x=−1 2【考点】立方根的应用【解析】此题暂无解析【解答】此题暂无解答31.【答案】√5−3【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答32.【答案】∵14x3+3=5,∴14x3=2,则x3=8,∴x=2.【考点】立方根的性质【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:x3=32768,开立方得:x=32.【考点】立方根的实际应用【解析】此题暂无解析【答案】解:(1)原式=√9+16=5.(2)原式=9−3+23=623.(3)原式=√3−√2+2√2−√3=√2.(4)原式=−2+32−1=−3+32=−32.【考点】立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】解:(1)原式≈3×1.414−2×1.732≈0.78;(2)原式≈1.732×1.414+2.236−3.142÷2≈3.11.【考点】计算器—数的开方【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:(1)|√2−√3|+√83+2(√3−1)=√3−√2+2+2√3−2=3√3−√2;(2)由题意得,1−4x≥0,4x−1≥0,解得,x=14,则y=12,故xy=18,则x⋅y的算术平方根是√24.立方根的应用实数的运算算术平方根绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】0.01,0.1,1,10,100(2)被开方数的小数点每向右(或向左)移动3位,立方根的小数点就相应的向右(或向左)移动1位.14.42,0.1442,7.697【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:(1)原式=√1625=45.(2)原式=4√3−2+2√3+2=6√3.(3)原式=2+0+2=4.(4)原式=−√2.【考点】立方根的应用实数的运算算术平方根合并同类项【解析】此题暂无解析【解答】此题暂无解答39.【答案】解:原式=−2+1+5=4.【考点】立方根的应用算术平方根【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵第一个立方体的体积是63=216,∴第二个立方体的体积是216+127=343,∴第二个立方体的棱长是343的立方根,即棱长为7厘米.【考点】立方根的实际应用【解析】此题暂无解析【解答】此题暂无解答。
6.2 立方根 人教版七年级数学下册同步练习(含解析)
第六章实数6.2立方根基础过关全练知识点1立方根的概念1.【新独家原创】立方根等于6的数是()A. 6B.±6C.216D.±2162.(2022河南安阳期末)下列结论正确的是()A.-1没有平方根8B.立方根等于本身的数只有0C.4的立方根是±23=4D.√−643=-2;②√(−3)2=-3;③√4=±2;④3.李华在作业本上做了4道题目:①√−83=-1,则他做对的有()√−1A.1道B.2道C.3道D.4道4.【新独家原创】如图是由125个除颜色外完全相同的小立方体组成的正方体,体积为1 000立方厘米,则一个小立方体的棱长为厘米.5.√16的算术平方根与-27的立方根之和为.6.已知x的两个不同的平方根分别是a+3和2a-15,且y=a2+1,则x+y-2的立方根的值是.7.求下列各式的值: (1)√273;(2)√210273;(3)√−11 0003.8.求下列各式中x 的值. (1)(x -2)3=8; (2)64x 3+27=0.知识点2 立方根的性质 9.下列式子不正确的是( )A.√−a 3=−√a 3B.√a 33=a C.(√a 3)3=a D.(-√a 3)3=a10.下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是011.【新独家原创】若x 2=2 021,则x =±√2 021,若x 3=2 021,则x =√2 0213,若要使x =±√2 0212 022,则x 需满足 ( )A.x 2 021=±2 022B.x 2 022=2 021C.x ±2 022=2 021D.x 2 021=2 022 12.已知√x −13=x -1,则x 2+x 的值为 ( )A.0或1B.0或2C.0或6D.0或2或613.√(−2)33= ;√−0.0273= . 知识点3 用计算器求立方根 14.用计算器计算√28.363的值约为( )A.3.049B.3.050C.3.051D.3.052 15.用计算器求下列各数的立方根(精确到0.01): (1)1.5;(2)625;(3)-476.能力提升全练16.(2022甘肃定西岷县月考,5,★☆☆)下列说法正确的是 ( )A.负数没有立方根B.8的立方根是±2C.√−83=−√83D.立方根等于本身的数只有±117.(2022云南昆明西山期末,9,★★☆)若a +1的算术平方根是2,27的立方根是1-2b ,则b a =( )A.-1B.1C.-3D.318.【学科素养·应用意识】(2022湖南长沙华鑫教育集团期中,8,★★☆)随着张吉怀高铁在2021年建成通车,昔日饱受交通制约的湘西州,也迎来了便捷的现代化快速交通.在湘西州花垣县,还有一个现代化的交通大工程——湘西边城机场正在建设.建设机场多余的土方呈圆锥形,土方的底面直径为100米,高度为50米.现在用卡车将土方运送到15千米外的垃圾池进行填平,已知垃圾池是规则的正方体,并且土方刚好填满垃圾池,则垃圾池的底面边长大约是(π≈3)( )A.50米B.60米C.70米D.40米19.【教材变式·P50探究变式】(2022广西贵港覃塘期末,4,★★☆)若√x 3+√y 3=0,则x 与y 的关系一定是( )A.x -y =0B.xy =0C.x +y =0D.xy =-1 20.(2022江苏常州中考,9,★☆☆)化简:√83= .21.(2021内蒙古包头中考,15,★★☆)一个正数a 的两个平方根是2b -1和b +4,则a +b 的立方根为 .22.【教材变式·P52T6变式】(2021福建厦门六中期中,14,★★☆)一个立方体的棱长是4 cm ,若把它的体积扩大为原来的8倍,则扩大后的立方体的棱长是 cm .23.(2022湖北十堰丹江口模拟,14,★★☆)定义一种新的运算:a ⊗b ={3a −5b(a >b),√ab 3(a ≤b).计算:5⊗(1⊗8)= .素养探究全练24.【运算能力】先填写下表,观察后回答下列问题:(1)被开方数a 的小数点位置移动和它的立方根的小数点位置移动有无规律?若有规律,请写出移动规律.(2)已知√a 3=-50,√0.1253=0.5,你能求出a 的值吗?25.【创新意识】依照平方根(二次方根)和立方根(三次方根)的定义可给出四次方根、五次方根的定义:①如果x 4=a (a ≥0),那么x 叫做a 的四次方根;②如果x5=a,那么x叫做a的五次方根.请依据以上两个定义,解决下列问题:(1)求81的四次方根.(2)求-32的五次方根.(3)求下列各式中x的值:(i)x4=16.(ii)100 000x5=243.答案全解全析基础过关全练1.C 因为63=216,所以216的立方根等于6,故选C .2.A -18<0,所以-18没有平方根,A 选项正确;立方根等于本身的数有-1,0,1,B 选项错误;4的立方根是√43,C 选项错误;√−643=-4,D 选项错误.故选A.3.B √−83=-2,√(−3)2=3,√4=2,√−13=-1,李华做对了①④,故选B . 4.答案2解析 ∵103=1 000,∴√1 0003=10,即正方体的棱长为10厘米,则10÷5=2(厘米),一个小立方体的棱长为2厘米. 5.答案-1解析 √16的算术平方根是2,-27的立方根是-3,2+(-3)=-1,故答案为-1. 6.答案4解析 ∵x 的两个不同的平方根分别是a +3和2a -15,∴a +3+2a -15=0,解得a =4,∴x =(4+3)2=49,y =a 2+1=17,则x +y -2=49+17-2=64,∴√x +y −23=4,即x +y -2的立方根的值是4.7.解析 (1)√273=3.(2)√210273=43.(3)√−11 0003=−110.8.解析 (1)由(x -2)3=8得x -2=√83=2,∴x =4. (2)由64x 3+27=0得x 3=-2764,∴x =-34.9.D 由立方根的性质知(-√a 3)3=-a ,故选项D 中的式子不正确.10.D 立方根等于本身的数有1、-1和0,故A 错;0的立方根是0,故B 错;负数有立方根,故C 错.故选D .11.B ∵x =±√2 0212 022,∴x 2 022=2 021.故选B. 12.D ∵√x −13=x -1,∴x -1=-1或0或1, ∴x =0或1或2,∴x 2+x =0或2或6.故选D . 13.答案-2;-0.3解析 根据√a 33=a 求解. 14.B15.解析 (1)√1.53≈1.14.(2)√6253≈8.55. (3)√−4763≈-1.99.能力提升全练16.C 负数有立方根,A 选项错误;8的立方根是2,B 选项错误;√−83=−√83,C 选项正确;立方根等于本身的数有±1和0,D 选项错误.故选C. 17.A ∵a +1的算术平方根是2,27的立方根是1-2b ,∴a +1=4,1-2b =3,∴a =3,b =-1,∴b a =(-1)3=-1.故选A.18.A ∵圆锥形土方的底面直径为100米,高度为50米,∴圆锥的体积为13π×502×50≈125 000(立方米),∵垃圾池是规则的正方体,并且土方刚好填满垃圾池,∴垃圾池的底面边长大约是√125 0003=50(米).故选A.19.C ∵√x 3+√y 3=0,∴√x 3=−√y 3,∴x =-y ,∴x +y =0,故选C. 20.答案2解析 ∵23=8,∴√83=2.故填2. 21.答案2解析 ∵一个正数a 的两个平方根是2b -1和b +4,∴2b -1+b +4=0,∴b =-1,∴b +4=-1+4=3,∴a =9,∴a +b =9+(-1)=8,∴a +b 的立方根为2. 22.答案8解析 ∵原立方体的棱长是4 cm ,∴它的体积为64 cm 3,∴它的体积扩大为原来的8倍为512 cm 3,∴扩大后的立方体的棱长是8 cm . 23.答案5解析 ∵a ⊗b ={3a −5b(a >b),√ab 3(a ≤b),∴5⊗(1⊗8)=5⊗√1×83=5⊗2=3×5-5×2=15-10=5. 素养探究全练24.解析 表格从左到右分别填入0.1,10.(1)有规律,规律:被开方数的小数点每向左(或向右)移动3位,它的立方根的小数点相应地向左(或向右)移动1位. (2)因为√0.1253=0.5,所以√−0.1253=-0.5, 由-0.5到-50,小数点向右移动了2位,则-0.125的小数点应向右移动6位,所以a =-125 000. 25.解析 (1)∵(±3)4=81,∴81的四次方根是±3. (2)∵(-2)5=-32,∴-32的五次方根是-2. (3)(i )∵(±2)4=16,∴x =±2.(ii )原式可变形为x 5=0.002 43,∵0.35=0.002 43,∴x =0.3.。
人教版七年级下册数学作业课件 第六章 立方根 (2)
A.-287
B.±23
2 C.3
D.-23
8.计算:
3 (1)
-27+
(-3)2-3 -1;
解:原式=-3+3+1=1.
3 (2)
0.125+
0.0121-3 -0.216.
解:原式=0.5+0.11+0.6=1.21.
知识点三 用计算器求立方根与估算 9.估计 68 的立方根在( C ) A.2 与 3 之间 B.3 与 4 之间 C.4 与 5 之间 D.5 与 6 之间
在立方根的有关运算中,若 a+b=0(或 a=-b),则
3 a+3 b=0(或3 a=-3 b),反过来也成立.利用这 个结论可快速解题,如 T7,T18.)
3n
0.2
2 20
200
解:被开方数的小数点每向右(左)移动 3 位,其立
方根的小数点向相同的方向移动 1 位.
(2)请你用计算器求出3 16精确到 0.001 的近似值, 并利用这个近似值根据上述规律,求出3 0.016和 3 16000000的近似值. 解:∵3 16≈2.520, ∴3 0.016≈0.2520,3 16000000≈252.0.
10.利用计算器求得3 0.342≈0.6993,3 3.42≈1.507, 3 34.2≈3.246,则3 0.000342≈ 0.06993,3 -34200000 ≈ -324.6 ,3 0.00342≈ 0.1507 .
11.(1)观察下表,你能得到什么规律?
n 0.008 8 8000 8000000
D.0 或-10
解析:由已知得 m=±5,n=-5.则当 m=5 时,m
-n=5-(-5)=10;当 m=-5 时,m-n=-5-
人教版数学七年级下册第六章《实数》《用计算器求立方根、用有理数估计一个数立方根的大小》说课稿
立方根(2)----用计算器求立方根、用有理数估计一个数立方根的大小说课稿各位评委:大家上午好!今天我说课的题目是《§6.2立方根(2)》。
我将从“教材分析、学情分析、教法分析、学法指导、教学过程的设计与实施”五方面进行本节课的说课。
一、教材分析:1、说教材的地位和作用这一节课是人教版(2012年版)义务教育教科书数学七年级下册第六章《实数》§6.2立方根,本节共两课时,这节课的内容为第二课时。
本章内容是在前面学习有理数的基础上,把有理数的范围进行扩大,也可以看成是其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此本章内容起着承上启下的作用,在中学数学中占有重要的地位。
通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。
在此之前,学生已学习了数的平方根内容和研究方法,这为过渡到本节的学习起着铺垫作用。
通过本节课的学习,学生可以更深入的了解无理数,为后面学习实数奠定基础。
2、说教学目标知识与技能:(1)会正确使用计算器求一个数的立方根。
(2)能用有理数估计一个立方根的大致范围,使学生形成估算的意识,培养估算能力。
过程与方法:经历运用计算器探求数学规律的过程,发展合情推理能力。
情感态度与价值观:培养学生严谨的数学学习态度,科学的探索精神。
4、说教学重点和难点(1)重点:计算器的使用方法和用有理数估计一个立方根的大致范围。
(2)难点:探索立方根的变化规律及应用。
二、学情分析七年级具有学生年龄低、好奇心强、发言积极、爱好表现,有话就说,小组合作初步形成,兼有一定的形象思维和初步的逻辑思维能力,知识经验不够丰富的特点,因此探索的结论还需要同学公认和老师把关。
三、教法分析针对以上学生基础知识薄弱,主动参与学习的积极性高,学习探究能力较差的这种情况及本节课的特点,我采用“类比探究----验证结论-----归纳概括----巩固应用”为主线的教学程序。
七年级数学下册《用计算器求立方根用有理数估计一个数立方根的大小》教案、教学设计
1.教师应及时批改作业,对学生的完成情况进行评价。
2.对于作业中出现的普遍问题,教师应在课堂上进行集中讲解和指导。
3.对学生的个性化问题,教师应给予个别辅导,帮助学生克服困难,提高学习效果。
7.拓展课外资源,丰富学习体验:鼓励学生在课外查找立方根的相关资料,如数学故事、趣味题目等,使学生在轻松愉快的氛围中学习数学。
四、教学内容与过程
(一)导入新课
1.引入:通过展示一个立方体模型,引导学生思考如何求解立方体的体积。由此引出我们已经学过平方根,那么对于立方体的体积,我们应该如何求解呢?
2.提问:同学们,你们知道立方根是什么吗?它与平方根有什么关系?
b.设计一个关于立方根的数学游戏或趣味题目,与同学分享,并解释游戏规则或题目的解法。
c.总结估算立方根大小的方法和技巧,并以文字和示例的形式进行说明。
3.思考题:
a.除了计算器,还有哪些方法可以求解立方根?它们各自的优势和局限性是什么?
b.在估算立方根时,如何选择合适的有理数作为参考?为什么这样的选择能够提高估算的准确性?
3.通过例题讲解,让学生学会有理数估计一个数立方根的大小。
三、课堂实践
1.学生分小组合作,用计算器求给定数的立方根,并估算其大小。
2.学生展示成果,教师点评并给予鼓励。
四、巩固拓展
1.课后作业:布置一些立方根的计算和估算题目,巩固所学知识。
2.拓展题目:引导学生思考立方根在实际生活中的应用,提高学生解决问题的能力。
五、课堂小结
1.让学生回顾本节课所学内容,总结立方根的定义和计算方法。
2.强调估算立方根的重要性,培养学生良好的数感。
六、课后反思
1.教师针对本节课的教学效果进行反思,调整教学方法,提高教学质量。
6.6 立方根 人教版七年级数学下册基础知识讲与练(含答案)
专题6.6 立方根(巩固篇)(专项练习)一、单选题1.下列说法正确的是()A.的立方根是B.11的算术平方根是C.D.2.若,则下列式子正确的是( )A.B.C.(-x)3=-2D.x=(-2)33.若a2=16,,则a+b的值是()A.12B.12或-4C.12或4D.-12或-44.下列计算正确的是( )A.=-9B.=±5C.=-1D.(-)2=45.体积为5的正方体棱长为()A.B.C.D.6.若互为相反数,则的值为()A.B.C.D.7.如果≈1.333,≈2.872,那么约等于( )A.287.2B.28.72C.13.33D.133.38.利用计算器计算时,依次按键下:,则计算器显示的结果与下列各数中最接近的一个是( )A.2.5B.2.6C.2.8D.2.99.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是()A.6cm B.12cm C.18cm D.24cm10.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题11.的立方根是___________.12.的平方根是,的立方根是,则的值为______.13.面积为27的正方形的边长为_______________;体积为27的正方形的棱长为_______________________.14.若a,b为实数,且b=+-11,则a+b的立方根为_______.15.若有意义,的最大值为____________.16.已知,,,则的值为______.17.已知,则____________.18.观察下列各式:用字母n表示出一般规律是__________.(n为不小于2的整数)三、解答题19.求下列各式中的x(1) (2)20.计算:(1)(2)21.已知的平方根是±3,的立方根是-2.求:的立方根.22.数轴上a、b、c三数在数轴上对应点如图所示,化简:23.一个底面半径为4cm 的圆柱形玻璃杯装满水,杯的高度为cm ,现将这杯水倒入一个正方体容器中,正好占正方体容器容积的,求这个正方体容器的棱长.(玻璃杯及正方体容器的厚度忽略不计,圆柱体积=底面积×高)24.本学期第四章《实数》中,我们学习了平方根和立方根,下表是平方根和立方根的部分内容:平方根立方根定义一般地,如果一个数的平方等于,即,那么这个数就叫做的平方根(也叫做二次方根).一般地,如果一个数的立方等于,即,那么这个数就叫做的立方根(也叫做三次方根).运算求一个数的平方根的运算叫做开平方.开平方和平方互为逆运算.求一个数的立方根的运算叫做开立方.开立方和立方互为逆运算性质一个正数有两个平方根,它们互为相反数:的平方根是;负数没有平方根.正数的立方根是正数;的立方根是;负数的立方根是负数.表示方法正数的平方根可以表示为“”一个数的立方根可以表示为“”今天我们类比平方根和立方根的学习方法学习四次方根.【类比探索】(1)探索定义:填写下表类比平方根和立方根,给四次方根下定义:.(2)探究性质:①的四次方根是 ;②的四次方根是 ;③的四次方根是 ;④的四次方根是 ;⑤的四次方根是 ;⑥ (填“有"或"“没有”)四次方根.类比平方根和立方根的性质,归纳四次方根的性质:;(3)在探索过程中,你用到了哪些数学思想?请写出两个: .【拓展应用】(1) ;(2) ;(3)比较大小: .参考答案1.B【分析】直接利用立方根、算术平方根的定义分别判断得出答案.解:A.的立方根是,故此选项不合题意;B.11的算术平方根是,故此选项符合题意;C.,故此选项不合题意;D.,故此选项不合题意;故选:B.【点拨】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.2.B【分析】利用立方根的定义分析得出答案.解:∵x=,∴x3=-2,故选B.【点拨】本题考查立方根的定义,正确把握定义是解题关键.3.C【分析】根据a2=16,,可得:a=±4,b=8,据此,求出a+b的值是多少即可.解:∵a2=16,∴∴a=±4,b=8,∴a+b=4+8=12或a+b=-4+8=4.故选C.【点拨】此题主要考查了平方根、立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.4.C【分析】分别根据算术平方根的定义和立方根的定义逐项判断即得答案.解:A、=9,故本选项计算错误,不符合题意;B、=5,故本选项计算错误,不符合题意;C、=-1,故本选项计算正确,符合题意;D、(-)2=2,故本选项计算错误,不符合题意.故选:C.【点拨】本题考查了算术平方根和立方根的定义,属于基本题目,熟练掌握基本知识是解题的关键.5.B【分析】根据正方体体积公式进行计算即可.解:设正方体的棱长为a,则有:解得,所以,正方体的棱长为,故选:B【点拨】本题主要考查了立方根的应用,正确掌握立方体的体积公式是解答本题的关键.6.C【分析】根据立方根的定义、整式的混合运算法则解题即可.解:∵互为相反数,∴∴∴∴∴故选:C.【点拨】本题考查立方根、求代数式的值,熟练掌握立方根、整式的混合运算法则是解决问题的关键.7.C【分析】把变形为,进一步即可求出答案.解:.故答案为:C.【点拨】本题考查了立方根的定义,正确变形、熟练掌握立方根的概念是关键.8.B【分析】利用计算器得到的近似值即可作出判断.解:∵,∴与最接近的是2.6,故选B.【点拨】本题主要考查了计算器,属于基础知识,解题的关键是掌握计算器上常用按键的功能和使用顺序.9.D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.解:∵每个小立方体的体积为216cm3,∴小立方体的棱长,由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点拨】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.10.C【分析】根据平方根与立方根的定义即可求出答案.解:(1)-3是的平方根,(1)正确;(2)7是(-7)2的算术平方根,(2)正确;(3)27的立方根是3,(3)错误;(4)1的平方根是±1,(4)正确;(5)0的算术平方根是0,(5)错误;故选:C.【点拨】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根,本题属于基础题型.11.2【分析】的值为8,根据立方根的定义即可求解.解:,8的立方根是2,故答案为:2.【点拨】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.12.或【分析】利用平方根及立方根的定义求出与的值,即可确定出的值.解:,∴的平方根,∵的立方根是,∴,∴当时,;当时,;或.故答案为:或.【点拨】此题考查了平方根和立方根,熟练掌握平方根和立方根的定义是解本题的关键.13. 3【分析】根据正方形的面积公式和正方体的体积公式进行计算即可.解:设正方形的边长为a,根据题意得∴(负值舍去)设正方体的棱长为b,根据题意得∴故答案为:,3【点拨】本题主要考查了平方根和立方根的应用,正确掌握正方形面积公式和正方体体积公式是解答本题的关键.14.-2【分析】先根据被开方数的非负性求出a、b的值,然后代入求解即可.解:∵b=+-11∴,∴,即,∴,∴,∴a+b的立方根为2.故答案为2.【点拨】本题主要考查被开方数的非负性、立方根等知识点,根据算术平方根的性质确定a、b的值是解答本题的关键.15.【分析】根据算术平方根定义可知有意义得出,从而得到,进而得到的最大值为,代入得到最大值为.解:有意义,,解得,的最大值为,的最大值为,故答案为:.【点拨】本题考查算术平方根的定义,立方根等知识,熟练掌握算术平方根有意义的条件是解决问题的关键.16.2【分析】根据立方根和平方根的性质,可得,即可求解.解:∵,,,∴,∴,故答案为:2【点拨】本题主要考查了立方根和平方根的性质,熟练掌握立方根和平方根的性质是解题的关键.17.16【分析】把移项到等号右边,等式两边同时开3次方,得到,求出的值,代入计算得数即可.解:移项得即开三次方得解得.把代入,.故答案为:16.【点拨】本题考查了立方根的实际应用,已知字母的值求代数式的值,运用开立方根的方法求出的值是解题关键.18.(n为不小于2的整数)【分析】分析被开方数的变换规律即可求得解:1、观察4个等式左边根号内分数的特点:①整数部分与分数部分的分子相等,即2=2,3=3,4=4,5=5,②整数部分与分数部分的分母有下列关系:,2、观察四个等式右边的立方根前的倍数正好是等式左边被开方数的整数部分,立方根里的分数正好是左边被开方数的分数部分,所以其中的规律可以表示为(n为不小于2的整数)故答案为:(n为不小于2的整数).【点拨】本题考查了立方根的规律探究,分析被开方数的变换规律是解题关键.19.(1)或(2)【分析】(1)方程变形后,利用平方根定义开方即可求出x的值;(2)方程变形后,利用立方根定义开立方即可求出x的值.(1)解:方程变形得:(x−1)2=9,开方得:x−1=3或x−1=−3,解得:x=4或x=−2;(2)解:方程变形得:,开立方得:1-2x=−3,解得:x=2.【点拨】此题考查了平方根和立方根的定义,熟练掌握各自的定义是解本题的关键.20.(1);(2)【分析】(1)按照有理数混合运算的顺序和法则进行计算即可;(2)先算乘方、立方根、算术平方根、绝对值,再进行计算即可;解:(1)(2)【点拨】本题考查了有理数和实数计算,解题关键是熟练掌握相关知识,按照法则正确计算和准确计算立方根、算术平方根、绝对值.21.2【分析】先利用平方根和立方根的性质可得到关于a、b的方程组,从而可求得a、b的值,然后代入求解即可.解:根据题意得:,解得:,∴==8,∵8的立方根是2,∴的立方根是2.【点拨】本题主要考查的是立方根、平方根的性质,熟练掌握平方根、立方根的性质是解题的关键.22.【分析】根据数轴上点的位置,得到,再由二次根式的非负性和绝对值的非负性进行化简计算即可.解:由数轴上点位置得:∴,,,∴原式===【点拨】本题考查二次根式的非负性、绝对值的非负性,以及列用数轴判断点的大小,根据相关知识点解题是关键.23.16cm【分析】直接利用圆柱体体积求法以及正方体体积求法进而得出等式求出答案.解:设正方体容器的棱长为xcm,根据题意可得:π×42×=x3,解得:x=16,答:这个正方体容器的棱长为16 cm.【点拨】此题主要考查了立方根,正确把握圆柱体以及正方体的体积公式应用是解题关键.24.【类比探索】(1)依次为:±1,±2,±3;一般地,如果一个数的四次方等于,即,那么这个数就叫做的四次方根;(2)①;②;③;④;⑤;⑥没有;一个正数有两个四次方根,它们互为相反数;的四次方根是;负数没有四次方根;(3)类比、分类讨论、从特殊到一般等.【拓展应用】(1);(2);(3).【分析】(1)先计算填表,在类比平方根,立方根的定义,即可给四次方根下定义;(2)根据四次方根的定义求解,类比平方根,立方根的的性质即可得到四次方根的性质特征;(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想,利用四次方根的定义求解,再计算并比较两个数的四次方,进而得出答案.解:(1)类比平方根,立方根的定义,当时,当时,当时,所以填表如下:结合上述表格,类比平方根和立方根的定义,则四次方根的定义为:一般地,如果一个数的四次方根等于,那么这个数叫做的四次方根,这就是说,如果,那么叫做的四次方根.(2)根据四次方根的定义计算:①的四次方根是;②的四次方根是;③的四次方根是;④的四次方根是;⑤的四次方根是;⑥没有四次方根;类比平方根,立方根的性质可得四次方根的性质为:一个正数由两个四次方根,他们互为相反数;的四次方根是;负数没有四次方根.(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想,【拓展应用】根据四次方根的定义计算得:(1);(2)(3),,,解题关键是在求四次方根时,注意正数的四次方根有2个,它们互为相反数.。
七年级数学人教版下册计算器求立方根、用有理数估计一个数立方根的大小教案
333
64
27
12564--,
,
三、评价反思,整理归纳 1、:求值: (1)-327102- (2)327
174+
2、求x:
(1)2x 3
-6=
4
3 (2)(x+3)3
+27=0
四、强化训练,拓展提升
3、一个长4cm ,宽5cm ,高6cm 的长方体容器的容积是一个正方体
容器的 3 倍,求这个正方体容器的棱长。
(取准确值)
练习:教材:P51、1、2、3、4、导航
五、总结反馈,布置作业 1)立方根定义 (2)规律
(3)数学思想:类比、转化 (4)小数点移动规律 作业:书P51 1—10 导航P26 随堂练习
选作:导航P26 课后演练 做题 解题
板书
提问 提问
注重书写格式
利用新知识解决实际问题
板书设计
6.2立方根
1、定义
2、 开立方、
3、例题:
课后
反思
围绕目标达成、教与学的方式、学校理念体现、课程资源的开发与利用等进行反思。
6.2.2用计算器求一个数的立方根课课练习及答案
-5 平方
③ 根
是
±2.其
中
正
确
语
句
的
序号是
.
3.若 3125=a, 64=b,则a+b=
.
4.如 果 a2= (-3)2,b3= (-3)3,那 么 a+b=
.
重 难 疑 点 ,一 网 打 尽 .
5.用 计 算 器 计 算 328.36的 值 约 为 ( ).
A .3.049
B.3.050
C.3.051
B.0.0184
C.1.84
D.0.00184
12.利用计算 器 ,比 较 下 列 各 组 数 的 大 小 ,用“>”“<”或“=”填 空
( ) 14
3 56;
(2)3100
. 21;
1 (3)- 0.2
3 -0.07;
(4)- 26
3 -128.
13.将下表补充 完 整 :(用 计 算 器 求 值 ,结 果 保 留 4 个 有 效 数 字 )
(2)由上表 你发 现 了 什 么 规 律 ? 请 用 语 言 叙 述这个 规 律 :
. (3)根据你 发现 的 规 律 填 空 :
① 已知33=1.442,则 33000=
,30.003=
;
② 已 知 30.000456=0.07697,则3 456=
.
七 年 级 数 学 (下 )
9.一 个 人 每 天 平 均 要 饮 用 大 约 0.0015m3 的 各 种 液 体 ,按 寿 命 70岁 计 算 ,此 人 一 生 所 饮 用 的 液 体 总 量 大 约 为 40m3 .如 果 用 一 圆 柱 形 的 容 器 (底 面 直 径 等 于 高 )来 装 这 些 液 体 , 这个容器 大约有 多 高 ? (π取 3.14,结 果 精 确到 0.1m)
新人教版初中七年级数学下册《6.2 立方根 用计算器求立方根、用有理数估计一个数立方根的大小》教学设计_2
6.1 平方根(第2课时)一、内容和内容解析1.内容理解无限不循环小数的特点,会估算一些数的算术平方根,会用算术平方根的知识解决实际问题.2.内容解析本节课是在上学期学习了乘方运算的基础上安排的,是学习实数的准备知识.因为实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展.运算方面,在乘方基础上引入了开放运算,使代数运算得以完整.所以,本节课为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累.基于以上分析,确定本节课的教学重点是:理解无限不循环小数的特点,会估算一些数的算术平方根.二、目标和目标解析1.目标(1)通过折纸理解第一个无理数2,通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值.(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.(3)通过实际问题,让学生感受算术平方根在实际生活中的应用.(4)通过探究2的大小,培养学生的估算意识,了解从两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提升学习热情.2. 目标解析达成目标(1)的标志是:学生能借助于从两边无限夹逼的方法去探究探究2的大小,.并能估算一个形如(0)a a 的无理数的近似值.达成目标(2)的标志是:借助计算器,掌握被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.达成目标(3)的标志是:通过对实际问题的探究,让学生感受算术平方根在实际生活中的应用.达成目标(4)的标志是:通过探究2的大小,培养估算意识,初步感受无理数的存有,了解从两个方向无限逼近的数学思想,体会无限不循环小数算术平方根的学习,建立初步的数感和符号感,培养抽象思维水平,体会数学发现的方法和乐趣.三、教学问题诊断分析七年级学生数学思维比较活跃,具有一定的合作交流与探究意识.通过七年级的学习,他们已具备有理数的加、减、乘、除和乘方运算以及用字母表示数等知识,这为学习本节内容起着铺垫作用。
初一数学用计算器进行数的开方试题
初一数学用计算器进行数的开方试题1.用计算器计算:(结果保留4个有效数字),=,=.【答案】177.2,0.7861,0.08159【解析】此题主要考查了利用计算器求算术平方根、平方根、立方根首先熟悉开方的按键顺序,然后即可利用计算器求算术平方根、平方根、立方根,并保留四个有效数字.,,解答本题的关键是注意有效数字的定义:在一个近似数中,从左边第一个不是0的数字起,到精确到末位数止,所有的数字,都叫这个近似数字的有效数字.2.的值为()A.3.049B.3.050C.3.051D.3.054【答案】B【解析】此题主要考查了利用计算器求立方根首先熟悉开方的按键顺序,然后即可利用计算器求立方根.解答本题的关键是掌握好开方的按键顺序。
3.利用计算器计算(结果精确到0.01)(1);(2);(3);(4)-【答案】(1)1.41(2)0.73(3)-12.5(4)-10.25【解析】此题主要考查了利用计算器求算术平方根、立方根首先熟悉开方的按键顺序,然后即可利用计算器求算术平方根、立方根,并精确到0.01.(1);(2);(3);(4)-解答本题的关键是熟练使用计算器。
4.利用计算器求下列各式的值(结果保留4个有效数字)(1);(2);(3);(4)【答案】(1)1.773(2)-0.3162(3)4.344(4)-0.6361【解析】本题主要考查了有效数字的计算方法先利用计算器分别计算出各个数的近似值,再根据有效数字就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,即可确定结果.(1);(2);(3);(4)解决本题的关键是正确计算各个数的近似值.5.利用计算比较与的大小;【答案】<【解析】本题主要考查了利用计算器比较数的大小关系利用计算器分别计算出各个数的近似值,通过比较近似值即可确定.利用计算器可以得到:≈1.442,≈2.232,则。
解决本题的关键是正确计算各个数的近似值.6.用计算器求2.733时,按键顺序是.【解析】本题考查计算器的基本运用考查计算器的基本运用,熟悉计算器即可.按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=.解答本题的关键是熟练掌握使用计算器的能力。
初中数学 习题2:用计算器求平方根与立方根
用计算器求平方根与立方根
1.用计算器求6.563,其按键顺序为________.显示结果保留4个有效数字为________.
2.用计算器求3
11
3
的按键顺序为________. 3.按键所显示的结果为
________.
4.求3216983-⨯的按键顺序为________.
5.任意找出一个正数,利用计算器对它进行开平方运算,对所得结果再进行开平方运算,如此进行下去,随着开方次数的增多,你发现的规律是________. 6.求165.3的按键顺序为
[ ]
A .
B .
C .
D .
7.按键
显示的结果为
[ ]
A .±11
B .-11
C .11
D .以上都不对
8.求
3
5
22
的按键顺序为 [ ]
A .
B .
C .
D .
9.利用计算器求值.
(1) 36.31;(2) 3
9615.0-;(3) 3
7
2000
-
. 10.利用计算器比较下列各组数的大小: (1) ,; (2) 15-,345-;
(3) 3
9
136
-,-; (4)
215+-,2
1
-.
答案
1.
2. 3.-
4.
5.随着开方次数的增多,其值越来越趋近于1 6.B 7.C 8.B 9.(1);(2)-;(3)-
10.(1)396>;(2)34515--<;(3)π91363
--
>;(4)2
1215--->。