点到直线的距离-两条平行直线间的距离试题 (1)

合集下载

点到直线的距离和两条平行直线间的距离

点到直线的距离和两条平行直线间的距离
n
P2
y
m
P1
l
0
x
点到直线的距离
已知点P的坐标为(x0, y0),直线l 的方程 是 Ax+B y +C=0,怎样求点P到直线l 的距离?
则|PQ|为所求. 过点P做直线 l 垂线PQ, 解: 设直线l的法向量为 n , Q( x1 , y1 ) ,
M
. . C
x
所求直线l :x 3 y 5 0 或 x 1 . 综上所述:
例3 直线 l 过3 x 4 y 5 0 和 2 x 3 y 8 0 的交点,且与
解3:设直线 l 的方程为:
3 x 4 y 5 ( 2 x 3 y 8) 0
( A2 B2C2 0)
( A2 B2C2 0)
预备知识:方向向量和法向量 对于直线 l: Ax+B y +C=0 (A≠0,B≠0)
如果向量 m 与直线l平行, 则称向量 m 为直线l的方向向量. A B (1 , k ) B (1 , ) ( B , A),m ( B , A). 可表示为: B 如果向量 n 与直线l垂直, 则称向量 n 为直线l的法向量. 可表示为: n ( A , B).
A2 B 2 Ax0 By0 C . A B
由三角形面积公式可知:d· ∣RS∣=∣PR∣•∣PS∣ 所以, d
Ax0 By0 C A2 B 2
.
可证,当A=0或B=0时,以上 公式仍适用。于是得到距离 公式:
d
Ax0 By0 C A2 B 2
注意:先把直线方程化为一般式,再用公式 .
y
d
Ax0 By0 C2

第二章 点到直线的距离(第三课时) 两条平行直线间的距离

第二章 点到直线的距离(第三课时) 两条平行直线间的距离
即x+2y-3=0.
课堂小结
1.知识清单: (1)两条平行线间的距离. (2)两条平行线间的距离最值问题. 2.方法归纳:数形结合法、解方程(组)法. 3.常见误区:运用两平行线间的距离公式时,必须保证两直线方程中x, y的系数分别对应相同.
随堂演练
1.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为
A.1
√B. 2
C. 3
D.2
跟踪训练3 已知直线l1,l2是分别经过A(1,1),B(0,-1)两点的两条平 行直线,当l1,l2间的距离最大时,直线l1的方程是_x_+__2_y_-__3_=__0_.
解析 当两条平行直线与A,B两点的连线垂直时,两条平行直线间的距 离最大. 因为A(1,1),B(0,-1). 所以 kAB=-01--11=2, 所以两条平行直线的斜率为-12, 所以直线 l1 的方程为 y-1=-12(x-1),
(2)当d取最大值时,两条直线的方程.
解 由图可知,当d取最大值时,两直线与AB垂直. 而 kAB=26- -- -13=13, 所以所求直线的斜率为-3. 故所求的直线方程分别为 y-2=-3(x-6)和y+1=-3(x+3), 即3x+y-20=0和3x+y+10=0.
反思感悟 应用数形结合思想求最值 (1)解决此题的关键是理解式子表示的几何意义,将“数”转化为“形”, 从而利用图形的直观性加以解决. (2)数形结合、运动变化的思想方法在解题中经常用到.当图形中的元素运 动变化时我们能直观观察到一些量的变化情况,进而可求出这些量的变 化范围.
解得c=11或c=-9.
三、平行直线间的距离的最值问题
例3 两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着 A,B旋转,如果两条平行直线间的距离为d.求: (1)d的变化范围;

3.3.3点到直线的距离3.3.4两平行线间的距离简化向量处理

3.3.3点到直线的距离3.3.4两平行线间的距离简化向量处理

12 ( 3 )2
122 (5)2
x 1 或 x 171 37
所以P点坐标为:
d Ax0 By0 C A2 B2
练习2
(1)已知点A(-2,3)到直线y=ax+1的距离为 2,求a的值. (2)已知点A(-2,3)到直线y=-x+a的距离为 2,求a的值.
解 : (1) y ax 1,ax y 1 0,
2a 3 1 2a 2
d
2,
a2 1
a2 1
2a 2 2a2 2, 4a2 8a 4 2a2 2,
解 : 由点到直线的距离公式:
(2)dd
3|
A(x01) By002C A322 0B22
2|
5 3
可得:思(1考)d: |还2有(1其) 他2 解10法| 吗2? 5 41
点到直线的距离:
练习1 求点 P0 2到,下3列直线的距离:
(1) 3x+4y+3=0; (2) 3y=2 ; (3)-x+3y=7.
3.3.3《点到直线的距离》 3.3.4《平行线间的距离》
导入
铁路
仓库
导入
l
仓库
点到直线的距离 l
.P
点到直线的距离
y
l : Ax+By+C=0
. P(x0,y0)
o
x
引入新课
已知点 P0 x0 , y0 ,直线 l : Ax By C 0,
如何求点 P0到直线 l 的距离? 点 P0 到直线 l 的距离,是指从点 P0到直线 l 的
|n|
y
l : Ax By C 0
| A(x1 x0 ) B( y1 y0 ) | A2 B2

课时跟踪检测(十五) 点到直线的距离公式 两条平行直线间的距离

课时跟踪检测(十五)  点到直线的距离公式  两条平行直线间的距离

课时跟踪检测(十五) 点到直线的距离公式 两条平行直线间的距离1.若点P (a,0)到直线3x +4y -6=0的距离大于3,则实数a 的取值范围为( ) A .(7,+∞) B .(-∞,-3) C .(-∞,-3)∪(7,+∞) D .(-3,7)∪(7,+∞)解析:选C 根据题意,得|3a -6|32+42>3,解得a >7或a <-3.2.[多选]已知点P 为x 轴上一点,点P 到直线3x -4y +6=0的距离为6,则点P 的坐标为( )A .(-8,0)B .(-12,0)C .(8,0)D .(0,0)解析:选BC 设P (x 0,0),因为d =|3x 0+6|32+(-4)2=6,所以|3x 0+6|=30,解得x 0=8或x 0=-12.3.已知点P (a ,b )是第二象限的点,那么它到直线x -y =0的距离是( ) A .22(a -b ) B .b -a C .22(b -a ) D .a 2+b 2解析:选C ∵P (a ,b )是第二象限点, ∴a <0,b >0,∴a -b <0.∴点P 到直线x -y =0的距离d =|a -b |2=22(b -a ).4.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1,l 2间的距离是( ) A .423B .823C .4 2D .2 2解析:选B ∵l 1∥l 2,∴⎩⎪⎨⎪⎧a (a -2)-3=0,2a -6(a -2)≠0,解得a =-1.∴l 1的方程为x -y +6=0,l 2的方程为-3x +3y -2=0,即x -y +23=0,∴l 1,l 2间的距离是⎪⎪⎪⎪6-2312+(-1)2=823.5.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值是( )A .3 2B .2 3C .3 3D .4 2解析:选A 由题意知,M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2. 6.分别过点A (-2,1)和点B (3,-5)的两条直线均垂直于x 轴,则这两条直线间的距离是________.解析:两直线方程分别是x =-2和x =3,故两条直线间的距离d =|-2-3|=5. 答案:57.已知在△ABC 中,A (3,2),B (-1,5),点C 在直线3x -y +3=0上.若△ABC 的面积为10,则点C 的坐标为________.解析:由|AB |=5,△ABC 的面积为10,得点C 到直线AB 的距离为4.设C (x,3x +3), 由两点式得直线AB 的方程为y -25-2=x -3-1-3,即3x +4y -17=0.利用点到直线的距离公式d =|3x +12x +12-17|32+42=4,解得x =-1或x =53.答案:()-1,0或⎝⎛⎭⎫53,88.P ,Q 分别为直线3x +4y -12=0与6x +8y +6=0上任意一点,则|PQ |的最小值为________.解析:直线6x +8y +6=0可变形为3x +4y +3=0,由此可知两条直线平行,它们的距离d =|-12-3|32+42=3,∴|PQ |min =3. 答案:39.如图,已知直线l 1:x +y -1=0,现将直线l 1向上平移到直线l 2的位置,若l 2,l 1和坐标轴围成的梯形面积为4,求l 2的方程.解:设l 2的方程为y =-x +b (b >1),则图中A (1,0),D (0,1),B (b,0),C (0,b ), ∴|AD |=2,|BC |=2b .梯形的高h 就是A 点到直线l 2的距离, 故h =|1+0-b |2=|b -1|2=b -12(b >1),由梯形面积公式得2+2b 2×b -12=4,∴b 2=9,b =±3.但b >1,∴b =3. 从而得到直线l 2的方程是x +y -3=0.10.直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,l 1到l 2的距离为5,求l 1,l 2的方程.解:①若l 1,l 2的斜率存在,设直线的斜率为k , 由斜截式得l 1的方程为y =kx +1, 即kx -y +1=0.由点斜式得l 2的方程为y =k (x -5), 即kx -y -5k =0. 则直线l 1到l 2的距离d =|1+5k |1+k 2=5,所以25k 2+10k +1=25k 2+25,解得k =125.所以l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0.②若l 1,l 2的斜率不存在,则l 1的方程为x =0,l 2的方程为x =5,它们之间的距离为5,同样满足条件.综上,满足条件的直线方程有两组:⎩⎪⎨⎪⎧ l 1:12x -5y +5=0,l 2:12x -5y -60=0或⎩⎪⎨⎪⎧l 1:x =0,l 2:x =5.1.若倾斜角为45°的直线m 被直线l 1:x +y -1=0与l 2:x +y -3=0所截得的线段为AB ,则AB 的长为( )A .1B . 2C . 3D .2解析:选B 由题意,可得直线m 与直线l 1,l 2垂直,则由两平行线间的距离公式,得|AB |=|-1+3|12+12= 2.2.[多选]定义点P (x 0,y 0)到直线l :Ax +By +C =0(A 2+B 2≠0)的有向距离为d =Ax 0+By 0+CA 2+B 2.已知点P 1,P 2到直线l 的有向距离分别是d 1,d 2,则下列命题中正确的是( )A .若d 1=d 2,则直线P 1P 2与直线l 平行B .若d 1=-d 2,则直线P 1P 2与直线l 垂直C .若d 1·d 2>0,则直线P 1P 2与直线l 平行或相交D .若d 1·d 2<0,则直线P 1P 2与直线l 相交解析:选CD 若d 1=d 2=0,则P 1∈l ,P 2∈l ,故A 不正确;若d 1=-d 2,则P 1与P 2在直线l 两旁. 故P 1P 2与l 相交,不一定垂直,故B 不正确;若d 1·d 2>0,则P 1与P 2在l 同旁,则P 1P 2∥l 或P 1P 2与l 相交,故C 正确;若d 1·d 2<0,则P 1与P 2在l 两旁,则P 1P 2与l 相交,故D 正确.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系是________.解析:在△ABC 中,由正弦定理a sin A =b sin B ,得b sin B ·sin A a =1.又x sin A +ay +c =0的斜率k 1=-sin A a ,bx -y sin B +sin C =0的斜率k 2=b sin B ,因此k 1·k 2=b sin B ·⎝⎛⎭⎫-sin A a =-1,所以两条直线垂直.答案:垂直4.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为5,求直线l 1的方程.解:因为l 1∥l 2,所以m 2=8m ≠n-1,所以⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0, 把l 2的方程写成4x +8y -2=0, 所以|n +2|16+64=5,解得n =-22或n =18. 所求直线l 1的方程为2x +4y -11=0或2x +4y +9=0. ②当m =-4时,直线l 1的方程为4x -8y -n =0, 把l 2的方程写成4x -8y -2=0, 所以|-n +2|16+64=5, 解得n =-18或n =22.所求直线l 1的方程为2x -4y +9=0或2x -4y -11=0.5.已知正方形ABCD 一边CD 所在直线的方程为x +3y -13=0,对角线AC ,BD 的交点为P (1,5),求正方形ABCD 其他三边所在直线的方程.解:设点P (1,5)到l CD 的距离为d ,则d =310. 因为l AB ∥l CD ,所以可设l AB :x +3y +m =0. 点P (1,5)到l AB 的距离也等于d ,则|m +16|10=310.又因为m ≠-13,所以m =-19, 即l AB :x +3y -19=0. 因为l AD ⊥l CD ,所以可设l AD :3x -y +n =0,则点P (1,5)到l AD 的距离等于点P (1,5)到l BC 的距离,且都等于d =310,|n -2|10=310,解得n =5或n =-1,则l AD :3x -y +5=0,l BC :3x -y -1=0.所以正方形ABCD 其他三边所在直线方程为x +3y -19=0,3x -y +5=0,3x -y -1=0. 6.已知三角形的三个顶点分别是A (4,1),B (7,5),C (-4,7),求角A 的平分线的方程.解:设P(x,y)为角A的平分线上任一点,则点P到直线AB与到直线AC的距离相等,因为直线AB,AC的方程分别是4x-3y-13=0和3x+4y-16=0,所以由点到直线的距离公式,有|4x-3y-13|42+(-3)2=|3x+4y-16|32+42,即|4x-3y-13|=|3x+4y-16|,即4x-3y-13=±(3x+4y-16),整理得x-7y+3=0或7x+y-29=0.易知x-7y+3=0是角A的外角平分线的方程,7x+y-29=0是角A的平分线的方程.。

点到直线的距离、两条平行线间的距离题型全归纳

点到直线的距离、两条平行线间的距离题型全归纳

点到直线的距离、两条平行线间的距离题型全归纳【知识梳理】点到直线的距离与两条平行线间的距离题型一、点到直线的距离【例1】 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.【类题通法】应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.【对点训练】1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A .2 B .2- 2 C .2-1D .2+12.点P(2,4)到直线l:3x+4y-7=0的距离是________.题型二、两平行线间的距离【例2】求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程.【类题通法】求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l1:y=kx+b1,l2:y=kx+b2,且b1≠b2时,d=|b1-b2|k2+1;当直线l1:Ax+By+C1=0,l2:Ax+By+C2=0且C1≠C2时,d=|C1-C2|A2+B2.但必须注意两直线方程中x,y的系数对应相等.【对点训练】3.两直线3x+y-3=0和6x+my-1=0平行,则它们之间的距离为________.题型三、距离的综合应用【例3】求经过点P(1,2),且使A(2,3),B(0,-5)到它的距离相等的直线l的方程.【类题通法】解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l的特征,然后由已知条件写出l的方程.【对点训练】4.求经过两直线l1:x-3y-4=0与l2:4x+3y-6=0的交点,且和点A(-3,1)的距离为5的直线l的方程.5. 已知A(-2,0),B(2,-2),C(0,5),过点M(-4,2)且平行于AB的直线l将△ABC分成两部分,求此两部分面积的比.题型四距离最值问题例4.已知P,Q分别为直线3x+4y-12=0与6x+8y+6=0上任一点,则|PQ|的最小值为()A.B.C.3 D.6例5.已知x+y-3=0,则的最小值为.例6.已知直线l1过A(3,0),直线l2过B(0,4),且l1∥l2,用d表示l1与l2间的距离,则d的取值范围是.【练习反馈】1.原点到直线x+2y-5=0的距离为()A.1B. 3C.2 D. 52.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为()A.1 B. 2C. 3 D.23.直线4x-3y+5=0与直线8x-6y+5=0的距离为________.4.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是________.5.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.点到直线的距离、两条平行线间的距离题型全归纳参考答案【例1】[解] (1)185.(2) 8.(3) 1.【对点训练】 1.选C 2.答案:3【例2】设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+-2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 【对点训练】 3.104【例3】[解]当直线斜率不存在时,即x =1,显然符合题意.当直线斜率存在时,设所求直线的斜率为k ,则直线方程为y -2=k (x -1).由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0. 【对点训练】4.x =2或4x -3y -10=0. 5.两部分的面积之比为. 例4.答案:C 例5.答案:例6.答案:(0,5] 【练习反馈】1.选D 2.选B 3.12 4.答案:-3或1735.解:由直线方程的两点式得直线BC 的方程为 y2-0=x +31+3,即x -2y +3=0.由两点间距离公式得|BC |=-3-2+-2=25,点A 到BC 的距离为d ,即为BC 边上的高,d =|-1-2×3+3|12+-2=455,所以S =12|BC |·d =12×25×455=4, 即△ABC 的面积为4.。

人教A版高中数学必修二3.3.3 点到直线的距离3.3.4 两条平行直线间的距离

人教A版高中数学必修二3.3.3 点到直线的距离3.3.4 两条平行直线间的距离

人教A版高中数学必修二3.3.3点到直线的距离3.3.4两条平行直线间的距离选择题(2016·青岛高一检测)已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()A. 4B.C.D.【答案】D【解析】因为3x+2y-3=0和6x+my+1=0互相平行,所以3∶2=6∶m,所以m=4.直线6x+4y+1=0可以转化为3x+2y+=0,由两条平行直线间的距离公式可得:d===.点晴:本题考查的是两条平行直线间的距离。

用两条平行直线间的距离公式时,要注意两条直线要化成直线方程的一般式,并且两条直线方程中的系数要,这时才可以有两条平行直线间的距离为。

选择题点P(a,0)到直线3x+4y-6=0的距离大于3,则实数a的取值范围为()A. a>7B. a7或a7或-3>3,解得a>7或a=5,故0【答案】直线l2的方程是x+y-3=0.【解析】试题分析:由l1∥l2设出l2的方程y=-x+b(b>1),梯形的高h就是两平行直线l1与l2的距离,然后由梯形的面积求解试题解析:设l2的方程为y=-x+b(b>1),则图中A(1,0),D(0,1),B(b,0),C(0,b).所以AD=,BC= b.梯形的高h就是两平行直线l1与l2的距离,故h==(b>1),由梯形面积公式得×=4,所以b2=9,b=±3.但b>1,所以b=3.从而得到直线l2的方程是x+y-3=0.选择题点P为x轴上一点,点P到直线3x-4y+6=0的距离为6,则点P 的坐标为()A. (8,0)B. (-12,0)C. (8,0)或(-12,0)D. (0,0)【答案】C【解析】设P(x0,0),因为d==6,所以|3x0+6|=30,故x0=8或x0=-12.故选C选择题已知点(a,1)到直线x-y+1=0的距离为1,则a的值为()A. 1B. -1C.D. ±【答案】D【解析】.由题意,得=1,即|a|=,所以a=±.解答题在△ABC中,A(3,2),B(-1,5),点C在直线3x-y+3=0上,若△ABC的面积为10,求点C的坐标.【答案】点C的坐标为(-1,0)或.【解析】试题分析:根据三角形的面积公式,所以只需求AB两点间距离,然后设C点坐标,利用点到直线的距离公式,即可求出C 点坐标试题解析:由题知|AB|==5,因为S△ABC=|AB|·h=10,所以h=4.设点C的坐标为(x0,y0),而AB的方程为y-2=-(x-3),即3x+4y-17=0.所以解得或所以点C的坐标为(-1,0)或.选择题过点P(1,2)引直线,使A(2,3),B(4,-5)到它的距离相等,则这条直线的方程为()A. 4x+y-6=0B. x+4y-6=0C. 2x+3y-7=0或x+4y-6=0D. 3x+2y-7=0或4x+y-6=0【答案】D【解析】显然直线斜率存在,设直线方程为:y-2=k(x-1),即kx-y+2-k=0,A,B到直线距离相等,则=,解得k=-4或k=-,代入方程得4x+y-6=0或3x+2y-7=0.点晴:本题考查的是过一点到另外两点距离相等的直线方程。

点到直线的距离两条平行直线间的距离

点到直线的距离两条平行直线间的距离

2.对两平行直线间的距离公式的理解 (1)求两平行线间的距离可以转化为求点到直线的距离,也可 以利用公式. (2)利用公式求平行线间的距离时,两直线方程必须是一般式, 且 x,y 的系数对应相等. (3)当两直线都与 x 轴(或 y 轴)垂直时, 可利用数形结合来解决.
典例剖析 题型一 点到直线的距离 【例 1】 求点 P0(-1,2)到下列直线的距离: (1)2x+y-10=0;(2)x=2;(3)y-1=0. 思路点拨: 利用点到直线的距离公式, 对于特殊直线也可数形 结合.
题型二 两条平行线间的距离 【例 2】 求与直线 2x-y-1=0 平行,且与直线 2x-y-1 距 离为 2 的直线方程.
思路点拨:本题可从两方面考虑: ①可利用两点间的距离公式求解; ②可利用两直线的距离公式求解.
解: 法一: 由已知, 可设所求的直线方程为 2x-y+C=0(C≠-1), |C--1| |C+1| 则它到直线 2x-y-1=0 的距离 d= 2 =2, 2= 5 2 +-1 ∴|C+1|=2 5,C=± 2 5-1, ∴所求直线的方程为 2x-y+2 5-1=0 或 2x-y-2 5-1= 0.
【答案】B
3.在过点 A(2,1)的所有直线中,距离原点最远的直线方程为 ____________.
【答案】2x+y-5=0
4.若直线 l 与直线 l1:5x-12y+6=0 平行,且 l 与 l1 的距离 为 2,则 l 的方程为____________.
【答案】5x-12y+32=0 或 5x-12y-20=0
要点阐释 1.应用点到直线的距离公式应注意的问题 (1)直线方程应为一般式, 若给出其他形式, 应先化成一般式再 用公式.例如求 P(x0,y0)到直线 y=kx+b 的距离,应先把直线方 |kx0-y0+b| 程化为 kx-y+b=0,得 d= . 2 k +1 (2)点 P 在直线 l 上时,点到直线的距离为零,公式仍然适用, 故应用公式时不必判定点 P 与直线 l 的位置关系. (3)直线方程 Ax+By+C=0 中 A=0 或 B=0 时,公式也成立, 也可以用下列方法求点到直线的距离: ①P(x0,y0)到 x=a 的距离 d=|a-x0|; ②P(x0,y0)到 y=b 的距离 d=|b-y0|.

点到直线的距离与两条平行直线间的距离

点到直线的距离与两条平行直线间的距离

y
O
l1:2x-7y+8=0
l2: P(3,0)
2x-7y-6=0 x
两平行线间的 距离处处相等
在l2上任取一点,例如P(3,0)
P到l1的距离等于53
d
22 (7)2
53 53
直线到直线的距离转化为点到直线的距离
y P
l1
任意两条平行直线都 可以写成如下形式:
d
y0
P0 (x0,y0)
R
By0 A
C
,
y0
O
x0
x
1
2 | P0S || P0R |
1 d | SR | 2
点到直线距离公式
y S
Q l : Ax By C 0
d R
P0 (x0,y0)
O
x
d | Ax0 By0 C |
A2 B2
注意: 化为一般式.
例1 求点P(-1,2)到直线①2x+y-10=0; ②3x=2的距离。
解: ①根据点到直线的距离公式,得
2 1 1 2 10
d
2 5
22 12
y
②如图,直线3x=2平行于y轴,
P(-1,2) O
d 2 (1) 5
3
3
x l:3x=2
用公式验证,结果怎样??
练习
▪ P108 练习 1,2
P107 例6
解:设AB边上的高为h
S 1 | AB | h 2
y 3 A (1,3)
| AB | (3 1)2 (1 3)2 2 2
2
k AB
31 13
1
AB的方程为
1h
B (3,1)
y 3 1(x 1)

点到直线的距离公式及两条平行直线间的距离(人教A版2019选修一高二数学

点到直线的距离公式及两条平行直线间的距离(人教A版2019选修一高二数学

由光的性质可知,光线从O到P的路程即为AP的长度|AP|,由
A(4,3),P(-4,3)知,|AP|=4-(-4)=8,
∴光线从O经直线l反射后到达P点所走过的路程为8.
[方法技巧]
光线的入射、反射的问题以及在某定直线取点,使它与两定点
距离之和最小这类问题均属于点关于直线对称的问题.
(1)点 A(x0,y0)关于直线 l:Ax+By+C=0 的对称点 M(x,y),
yx--yx00·(-AB )=-1AB≠0
可由方程组 A·x+x0+B·y+y0+C=0
2
2
求得.
(2)常用对称的特例有: ①A(a,b)关于 x 轴的对称点为 A′(a,-b); ②B(a,b)关于 y 轴的对称点为 B′(-a,b); ③C(a,b)关于直线 y=x 的对称点为 C′(b,a); ④D(a,b)关于直线 y=-x 的对称点为 D′(-b,-a); ⑤P(a,b)关于直线 x=m 的对称点为 P′(2m-a,b); ⑥Q(a,b)关于直线 y=n 的对称点为 Q′(a,2n-b).
[方法技巧] 点到直线的距离的求解方法
(1)求点到直线的距离时,只需把直线方程化为一般式方程,直 接应用点到直线的距离公式求解即可.
(2)对于与坐标轴平行(或重合)的直线 x=a 或 y=b,求点到它 们的距离时,既可以用点到直线的距离公式,也可以直接写成 d= |x0-a|或 d=|y0-b|.
解析:设与直线x+3y-5=0垂直的直线的方程为3x-y+m= 0,
则由点到直线的距离公式知: d=|3×3-2+1--01+2 m|=|m-103|=35 10. 所以|m-3|=6,即m-3=±6. 得m=9或m=-3, 故所求直线l的方程为3x-y+9=0或3x-y-3=0. 答案:3x-y+9=0或3x-y-3=0

点到直线的距离与平行线间的距离习题课件

点到直线的距离与平行线间的距离习题课件

提示:点击 进入习题
1
234ຫໍສະໝຸດ 567知识点 点到直线的距离 1
1.填一填。
(1)图中从点A引出的四条线段分别是( AB )、 ( AC )、( AD )、( AE ), 其中最短的一条是( AC )。
(2)从直线外一点到这条直线所画的( 垂直 )线段最短 ,它的长度叫做这点到直线的( 距离 )。
第3课时 点到直线的距离和平行线间的距离 处处相等
教材习题
1.测定跳远成绩时,应该怎么测量?
(选题源于教材P62第6题)
将跳到的位置处看成一个点,把卷尺的一端固定在这 一点,然后拉直卷尺,使卷尺和起跳线垂直,这一点 到起跳线的垂直线段的长就是要测定的距离。
2.怎么样挂画又正又好? (选题源于教材P62第7题)用两根长度相同的线来挂。
平行
易错辨析
4.下面画出的图有误,请改正并填空。 下图中点A到直线a的距离是线段AB的长度。
改正: 改正后的图略
易错警示:线段AB与直线a相交没成(直角)。
提升点 点到直线的距离的实际应用 1
5.幸福村为了方便往城里运木材,要修一条使伐木 场与公路相连接的水泥路,怎样修最节省材料?
请画出来。
提升点 2 平行线间的距离处处相等的实际应用
6.怎样将下面的吊灯挂正?
使挂吊灯的两条线 长度相等。
7.同学们玩套圈游戏,你想站在直线a的哪个点上(请 画图表示)?为什么? 图略
因为点到直线的垂 直线段最短。
(3)请用彩笔将图中点A到直线BE的最短线段描出来。

知识点 2 2.填一填。
平行线间的距离处处相等
(1)两条平行线间可以画( 无数)条垂直线段。
(2)如图所示,AB∥DC,那么AD=BC,

高中数学 第三章 直线与方程 3.3.3 点到直线的距离、两条平行直线间的距离练习(含解析)新人教A

高中数学 第三章 直线与方程 3.3.3 点到直线的距离、两条平行直线间的距离练习(含解析)新人教A

第27课时 点到直线的距离、两条平行直线间的距离对应学生用书P73知识点一点到直线的距离 1.若点(1,a)到直线x -y +1=0的距离是32,则实数a 为( )A .-1B .5C .-1或5D .-3或3 答案 C解析 由点到直线的距离公式得|1-a +1|2=322,∴a=-1或5.2.已知两点A(1,1)和B(-1,4)到直线x +my +3=0的距离相等,则m 为( ) A .0或-23 B .23或-65C .-23或23D .0或23答案 B解析 由题意知直线x +my +3=0与AB 平行或过AB 的中点,则有-1m =4-1-1-1或1-12+m×1+42+3=0,∴m=23或m =-65.知识点二两平行线间的距离A .1110B .85C .157D .45答案 A解析 由两直线平行,得m =6,所以mx -8y +5=0可化成3x -4y +52=0,因此两条平行线间的距离d =⎪⎪⎪⎪⎪⎪-3-5232+42=1110,故选A .4.已知直线l 与两直线l 1:2x -y +3=0和l 2:2x -y -1=0平行且距离相等,则l 的方程为________.答案 2x -y +1=0解析 设所求的直线方程为2x -y +c =0(c≠3,c≠-1),分别在l 1:2x -y +3=0和l 2:2x -y -1=0上取点A(0,3)和B(0,-1),则此两点到2x -y +c =0的距离相等,即|-3+c|22+-12=|1+c|22+-12,解得c =1,故直线l 的方程为2x -y +1=0.知识点三距离公式的应用5.已知点P(m ,n)是直线2x +y +5=0上任意一点,则m 2+n 2的最小值为________. 答案5解析 因为m 2+n 2是点P(m ,n)与原点O 间的距离,所以根据直线的性质,原点O 到直线2x +y +5=0的距离就是m 2+n 2的最小值.根据点到直线的距离公式可得d =522+12=5.故答案为5.6.已知直线l 1:x +y -1=0,现将直线l 1向上平移到l 2的位置,若l 1,l 2和两坐标轴围成的梯形的面积为4,求直线l 2的方程(如图).解 ∵l 1∥l 2,可设l 2的方程为x +y -m =0. l 2与x 轴,y 轴分别交于B ,C , l 1与x 轴,y 轴分别交于A ,D ,得A(1,0),D(0,1),B(m ,0),C(0,m). ∵l 2在l 1的上方,∴m>1.∵S 梯形ABCD =S △OBC -S △AOD ,∴4=12m 2-12,解得m =3或m =-3(舍去). 故所求直线的方程为x +y -3=0.对应学生用书P73一、选择题1.已知两点A(3,2)和B(-1,4)到直线mx +y +3=0的距离相等,则m 的值为( ) A .0或-12 B .12或-6C .-12或12D .0或12答案 B 解析 依题意得|3m +5|m 2+1=|-m +7|m 2+1,即|3m +5|=|m -7|,∴(3m+5)2=(m -7)2,展开合并同类项得8m 2+44m -24=0,即2m 2+11m -6=0,解得m =12或m =-6.2.点P(x ,y)在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C . 2 D .16 答案 A解析 由题知所求即为原点到直线x +y -4=0的距离的平方,即0+0-4212+12=162=8.故选A .3.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -11=0和l 2:x +y -1=0上移动,则AB 中点M 所在直线的方程为( )A .x -y -6=0B .x +y +6=0C .x -y +6=0D .x +y -6=0 答案 D解析 由题意,得点M 所在的直线与直线l 1,l 2平行,所以设为x +y +n =0,此直线到直线l 1和l 2的距离相等,所以|n +11|2=|n +1|2,解得n =-6,所以所求直线的方程为x +y-6=0.故选D .4.直线2x +3y -4=0关于点(2,1)对称的直线方程是( ) A .3x -2y -4=0 B .2x +3y +6=0 C .3x -2y -10=0 D .2x +3y -10=0 答案 D解析 设所求直线的方程为2x +3y +C =0,由题意可知|4+3-4|22+32=|4+3+C|22+32. ∴C=-4(舍)或C =-10,故所求直线的方程为2x +3y -10=0.5.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2C . 2D .4 答案 A解析 由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=32.二、填空题6.如果已知两点O(0,0),A(4,-1)到直线mx +m 2y +6=0的距离相等,那么m 可取不同实数值的个数为________.答案 3解析解方程6m2+m4=|4m-m2+6|m2+m4(m≠0),得m=6或m=-2或m=4.7.直线l在x轴上的截距为1,又点A(-2,-1),B(4,5)到l的距离相等,则l的方程为________.答案x-y-1=0或x=1解析显然l⊥x轴时符合要求,此时l的方程为x=1.设l的斜率为k,则l的方程为y=k(x-1),即kx-y-k=0.∵点A,B到l的距离相等,∴|-2k+1-k|k2+1=|4k-5-k|k2+1,∴|1-3k|=|3k-5|,∴k=1,∴l的方程为x-y-1=0.8.已知平面上一点M(5,0),若直线上存在点P使|PM|=4,则称该直线为“切割型直线”.下列直线是“切割型直线”的有________.①y=x+1 ②y=2 ③y=43x ④y=2x+1答案②③解析可通过求各直线上的点到点M的最小距离,即点M到直线的距离d来分析.①d=5+12=32>4,故直线上不存在点到点M的距离等于4,不是“切割型直线”;②d=2<4,所以在直线上可以找到两个不同的点,使之到点M的距离等于4,是“切割型直线”;③d=20 32+42=4,直线上存在一点,使之到点M的距离等于4,是“切割型直线”;④d=115=1155>4,故直线上不存在点到点M的距离等于4,不是“切割型直线”.故填②③.三、解答题9.已知直线l1:ax+by+1=0(a,b不同时为0),l2:(a-2)x+y+a=0.(1)若b=0且l1⊥l2,某某数a的值;(2)当b=3且l1∥l2时,求直线l1与l2间的距离.解(1)当b=0时,l1:ax+1=0,由l1⊥l2知a-2=0,解得a=2.(2)当b=3时,l1:ax+3y+1=0,当l 1∥l 2时,联立⎩⎪⎨⎪⎧a -3a -2=0,3a -1≠0,解得a =3,此时,l 1的方程为3x +3y +1=0,l 2的方程为x +y +3=0,即3x +3y +9=0,则 它们之间的距离为d =|9-1|32+32=423. 10.过点M(2,4)作两条互相垂直的直线,分别交x ,y 轴的正半轴于点A ,B ,若四边形OAMB 的面积被直线AB 平分,求直线AB 的方程.解 设直线AB 的方程为x a +yb =1(a >0,b >0),∴A(a,0),B(0,b). ∵MA⊥MB,∴(a-2)×(-2)+(-4)×(b-4)=0, 即a =10-2b .∵a>0,b >0,∴0<b <5,0<a <10. ∵直线AB 的一般式方程为bx +ay -ab =0, ∴点M 到直线AB 的距离d =|2b +4a -ab|a 2+b2. ∴△MAB 的面积S 1=12d|AB|=12|2b +4a -ab|=|b 2-8b +20|=b 2-8b +20,△OAB 的面积S 2=12ab =5b -b 2.∵直线AB 平分四边形OAMB 的面积, ∴S 1=S 2,可得2b 2-13b +20=0,解得⎩⎪⎨⎪⎧b =4,a =2或⎩⎪⎨⎪⎧b =52,a =5.∴所求直线AB 的方程为x +2y -5=0或2x +y -4=0.。

点到直线的距离 两条平行直线间的距离

点到直线的距离  两条平行直线间的距离

点到直线的距离
1:实例中的第(1)中点与直线什 么关系,你能求出点到直线的距离吗?

第(1)小题中点在直线外,过 A 作 x,y 轴平
行线交 l1 于 B、C 两点,点 A 到直线 l1 的距离 |AD|=
AB AC 2 5 BC 5

平面上任意一点 P0(x0,y0)到直线
l:Ax+By+C=0 的距离为 d=
10 ].…………………………(8 分)
法二 如图所示,
显然有 0<d≤|AB|,……………………(3 分)
而|AB|=
(6 3) (2 1)
2
2
=3
10 ,
故所求的 d 的变化范围为 (0,3
10 ].………………(8 分)
(2)由图可知,当 d 取最大值时,两直线垂直于 AB. 而 kAB
2 2
=3,
解之得 C=45 或 C=-33, 故所求直线方程为 5x-12y+45=0 或 5x-12y-33=0.
法二 设所求直线方程为 5x-12y+c=0,
1 在直线 5x-12y+6=0 上取一点 P 0, , 2
则 P 到直线 5x-12y+c=0 的距离为
1 12 c 2 5 (12)
2:直线 l1:x-2y-1=0 与直线 l2:2x-4y+3=0 之间的距离等于 .
解析:l2 方程可化为 x-2y+ 3 =0,显然 l1∥l2, 2
1
因此两直线 l1,l2 间的距离为
3 2
=
2 2 1 2
5. 2
答案:
5 2
求点到直线的距离

点到直线的距离、两条平行直线间的距离 知识点总结及典例

点到直线的距离、两条平行直线间的距离 知识点总结及典例

3.5点到直线的距离、两条平行直线间的距离基础知识梳理1.点),(000y x P 到直线0:=++C By Ax l 的距离:2200||B A C By Ax d +++=;2.两条平行之间距离:(1)在一条直线上取一点,求该点到另一条直线的距离;(2)两平行直线01=++C By Ax 与02=++C By Ax 的距离为:2221||B A C C d +-=.习题巩固一、选择题1.点A (-1,2)到直线3y =-2的距离是( )A .4B .1C .83D .132.直线x +6=0与x -7=0之间的距离为( )A .1B .13C .6D .73.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 为( )A . 2B .2-2C .2-1D .2+1二、填空题4.点P (1,2)到直线y =x -3的距离是________;到直线y =-1的距离是________;到直线x =3的距离是________.5.两平行线3x -2y -15=0与3x -2y +11=0的距离为_______.6.已知直线l 1:x +y -1=0,l 2:x +y +a =0,且两直线间的距离为2,则a =________.三、解答题7.求过点P (0,2)且与点A (1,1),B (-3,1)等距离的直线l 的方程.8.求过点A (-1,2)且到原点的距离等于22的直线方程.9. 直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求直线l 1与l 2的方程.10.求与直线3x-4y-2=0平行且距离为2的直线方程.11.已知直线l过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截的线段中点M在直线x+y-3=0上,求直线l的方程.12.(1)已知直线l:x+2y-3=0,求与l平行且距离为1的直线方程.(2)求垂直于直线x-3y+1=0且到原点的距离等于5的直线方程.13.已知直线l与两直线l1:2x-y+3=0和l2:2x-y-1=0的距离相等,求直线l的方程.14.点P在直线x+y-4=0上,O为原点,求|OP|的最小值.。

点到直线的距离、两条平行直线间的距离

点到直线的距离、两条平行直线间的距离
2 2

0 A B
2 2
0,
【知识点拨】 1.对点到直线的距离的三点说明 (1)点到直线的距离的本质:其本质是点与直线上任意一点连 线长度的最小值,可用最小值的方法求出. (2)从几何特征上分析:点到直线的距离是点与过该点且垂直 于已知直线的直线与已知直线的交点间的距离 .
(3)点到直线的距离的几种特殊情况 ①点P(x0,y0)到x轴的距离d=|y0|; ②点P(x0,y0)到y轴的距离d=|x0|; ③点P(x0,y0)到与x轴平行的直线y=a(a≠0)的距离d=|y0-a|; ④点P(x0,y0)到与y轴平行的直线x=a(a≠0)的距离d=|x0-a|.
解得k=-7或k=-1.
故直线方程为x+y-1=0或7x+y+5=0.
【拓展提升】应用点到直线的距离公式应注意的三个问题 (1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P在直线l上时,点到直线的距离为0,公式仍然适用. (3)直线方程Ax+By+C=0中,A=0或B=0公式也成立,但由于直线 是特殊直线(与坐标轴垂直),故也可用数形结合求解.
2. 求点B(-5,7)到直线12x+5y+3=0的距离.
3、求点P0(-1,2)到直线2x+y-10=0的距离.
两条平行直线间的距离: 两条平行直线间的距离是指夹在两条平行直 y l1 线间的公垂线段的长. P l2 Q x o 两条平行线l1:Ax+By+C1=0与
l2: Ax+By+C2=0的距离是
2.对两条平行直线间的距离的理解 (1)这个距离与所选点的位置无关,但一般要选取特殊的点(如 与坐标轴的交点). (2)两条平行直线间的距离是分别在两条直线上的两点间的距 离的最小值.

点到直线的距离专项练习解析版

点到直线的距离专项练习解析版

点到直线的距离1、两点间距离平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:22121212||()()PP x x y y -+-。

2、点到直线的距离点00(,)P x y 到直线:0l Ax By C ++=的距离公式为:0022d A B=+3、两条平行线间的距离利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式:1222d A B =+题型一 两点间距离例1.在平面直角坐标xOy 中,已知(4,3)A ,(5,2)B ,(1,0)C ,平面内的点P 满足PA PB PC ==,则点P 的坐标为 .【解答】解:设点(,)P x y ,由PA PB PC ==, 得22222222(4)(3)(5)(2)(4)(3)(1)x y x y x y x y ⎧-+-=-+-⎨-+-=-+⎩, 化简得24x y x y -=⎧⎨+=⎩,解得31x y =⎧⎨=⎩,所以点P 的坐标为(3,1). 故答案为:(3,1).练习1.已知ABC ∆的三个顶点的坐标分别为(3,4)A ,(5,2)B ,(1,4)C --,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形【解答】解:ABC ∆的三个顶点的坐标分别为(3,4)A ,(5,2)B ,(1,4)C --,22||(53)(24)22AB ∴-+-, 22||(51)(24)62BC +++, 22||(31)(44)45AC +++=,222AC BC AB ∴=+, ABC ∴∆是直角三角形.故选:B .题型二 点到直线距离例1.若直线l 过点3),倾斜角为120︒,则点(1,3)-到直线l 的距离为( ) A 3B 3C 33D 53【解答】解:直线l 过点3),倾斜角为120︒,故直线的斜率为tan1203︒=- 故直线l 的方程为33(2)y x =-3330x y +-. 则点(1,3)-到直线l |3333|3331--+, 故选:C .练习1.点(0,1)-到直线(1)y k x =+距离的最大值为( ) A .1B 2C 3D .2【解答】解:因为点(0,1)-到直线(1)y k x =+距离22222121111k k k d k k k ++===++++要求距离的最大值,故需0k >; 可得2122kdk+=1k =时等号成立; 故选:B .例2.已知点(2,1)-到直线(2)50ax a y +-+=2,则a 的值为( )A .3B .1C .13-D .1或13-【解答】222(2)a a =+-,即23210a a --=, 解得1a =或13a =-,故选:D .练习1.已知点(1,3)M 到直线:10l mx y +-=的距离等于1,则实数m 等于( ) A .34B .43 C .43-D .34-【解答】解:根据题意,点(1,3)M 到直线:10l mx y +-=的距离等于1, 则有211d m =+,解可得34m =-;故选:D例3.已知在ABC ∆的顶点(3,3)A 、(2,2)B -、(7,1)C -. (1)求ABC ∆的面积;(2)A ∠的平分线AD 所在直线的方程. 【解答】解:(1)1(2)1723BC k --==---,∴直线BC 的方程为12(3)3y x -=--,化为370x y +-=, ∴点A 到直线BC 的距离1010d =. 又22||(27)(21)310BC ++-- 111015310222S BC d ==⨯=; (2)解:设A ∠平分线AD 上的任意一点(,)P x y , 又ABC ∆顶点(3,3)A 、(2,2)B -、(7,1)C -,∴直线AB 方程为:5120x y --=,直线AC 的方程为:5120x y -+=,∴点P 到直线AC 距离等于点P 到直线AB 2626,解得60x y +-=(舍去)或0x y -=.∴角平分线AD 所在直线方程为:0x y -=.练习1.在平面直角坐标系xOy 中,已知ABC ∆的三个顶点的坐标分别为(3,2)A -,(4,3)B ,(1,2)C --.(1)在ABC ∆中,求BC 边上的高线所在的直线方程; (2)求ABC ∆的面积.【解答】解:(1)直线BC 的斜率32141BC k +==+. BC ∴边上的高线斜率1k =-,BC ∴边上的高线方程为:2(3)y x -=-+, BC ∴边上的高线所在的直线方程为10x y ++=.(2)(4,3)B ,(1,2)C --,22||(23)(14)52BC ∴--+--=由(4,3)B ,(1,2)C --得直线BC 的方程为:10x y --=.A ∴到直线BC 的距离322d =,ABC ∴∆的面积15232152S =⨯.题型三 平行直线间的距离例1.已知直线1:10l x y -+=与2:30l x ay ++=平行,则a = ,1l 与2l 之间的距离为 【解答】解:直线1:10l x y -+=与2:30l x ay ++=平行, 则1(1)10a --=,解得1a =-, 直线2:30l x y -+=; 则1l 与2l 之间的距离为2221(1)d ==+-故答案为:1-2练习1已知直线:(3)10l a x y ++-=,直线:5(1)320m x a y a +-+-=,若直线//l m ,则直线l 与直线m 之间的距离是( ) A .65B 26C .325D 326【解答】解:由:(3)10l a x y ++-=,直线:5(1)320m x a y a +-+-=,且//l m , 得3115132a a a+-=≠--,解得:4a =-. ∴直线:(3)10l a x y ++-=化为:10x y -+=.又直线:5(1)320m x a y a +-+-=,即 2.20x y -+=.∴直线l 与直线m 之间的距离是322d ==. 故选:C .练习2.与直线230x y +-=5的直线方程是( ) A .220x y ++=B .280x y +-=C .220x y ++=或280x y +-=D .220x y +-=或280x y ++=【解答】解:与直线230x y +-=平行的直线设为20x y t ++=,(3)t ≠-, 541=+解得2t =或8-,则所求直线的方程为220x y ++=或280x y +-=.例2.已知两条平行直线3460x y +-=和340x y a ++=之间的距离等于2,则实数a 的值为() A .1-B .4C .4或16-D .16-【解答】22234=+,解得4a =,或16-.故选:C .练习1.若两条平行直线210Ax y --=与640x y C -+=13C 的值为( )A .11或15-B .92或172- C .12或14- D .112或152-【解答】解:两条平行直线210Ax y ---与640x y C -+=, 可得3A =,即两直线6420x y --=,640x y C -+=, 13221364=+, 解得11C =或15-, 故选:A .。

必修二第三章点到直线距离练习题

必修二第三章点到直线距离练习题

必修二第三章点到直线距离练习题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--点到直线的距离及两条平行直线间的距离基础梳理1.点P0(x0,y0)到直线l:Ax+By+C=0的距离为.练习1:点P0(0,5)到直线2x-y=0的距离为.2.平行直线Ax+By+n=0,Ax+By+m=0的距离为.练习2:直线y=a与直线y=b的距离d=.►思考应用1.点P(x,y)到直线y=b的距离为,点P(x,y)到直线x =a的距离d=.2.已知直线l1:3x+y-3=0,l2:6x+2y+1=0,l1与l2是否平行若平行,求l1与l2间的距离.自测自评1.原点到直线x+2y-5=0的距离为(D)A.1C.22.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是()A.1 B.-3C .1或53D .-3或1733.点P(-2,0)到直线y =3的距离为 .4.两条平行直线3x +4y -2=0,3x +4y -12=0之间的距离为 . 基础达标1.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A .413 132.两平行线y =kx +b 1与y =kx +b 2之间的距离是( )A .b 1-b 2C .|b 1-b 2|D .b 2-b 13.过点(1,2)且与原点距离最大的直线方程是( )A .x +2y -5=0B .2x +y -4=0C .x +3y -7=0D .3x +y -5=04.点P (m -n ,-m )到直线x m +y n=1的距离等于( )5.与直线2x +y +1=0的距离等于55的直线方程为( ) A .2x +y =0B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=06.垂直于直线x -3y +1=0且到原点的距离等于5的直线方程是________.7.求点P (3,-2)到下列直线的距离:(1)y =34x +14;(2)y =6;(3)x =4. 巩固提升8.点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( )A .8B .22D .169.直线l 在x 轴上的截距为1,又有两点A (-2,-1),B (4,5)到l 的距离相等,则l 的方程为________.10.求与直线2x -y -1=0平行,且和2x -y -1=0的距离为2的直线方程.1.点到直线的距离公式是本节的重要公式,其用途十分广泛,在使用此公式时,若给出的直线方程不是一般式,则应先把方程化为一般式,再利用公式求距离.2.点到直线的距离的特殊形式:P(x0,y0)到直线y=b的距离为|y0-b|,到直线x=a的距离为|x0-a|;若P(x0,y0)在直线上,公式也适用,此时d=0.3.在求两平行线间距离时要注意首先将两直线方程中x,y的系数化为相同的.。

两点之间的距离,点到直线的距离试题(含答案)1

两点之间的距离,点到直线的距离试题(含答案)1

两点间的距离;点到直线的距离一、选择题:1、点P (0,5)到直线y=2x 的距离是 ( )A 、52 B C 、32D 、2 2、点P (2,m )到直线l :5x-12y+6=0的距离为4,则m= ( )A 、1B 、-3C 、1或53D 、-3或173 3、动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为 ( )AB 、CD 、24、两平行直线5x+12y+3=0与10x+24y+5=0的距离是 ( )A 、213 B 、113 C 、126D 、526 5、过点(1,3)且与原点的距离为1的直线共有 ( )A 、3条B 、2条C 、1条D 、0条6、到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是()A、3x-4y+4=0B、3x-4y+4=0或3x-4y-12=0C、3x-4y+16= 0D、3x-4y+16=0或3x-4y-14=0二、填空题:7、若A(7,8),B(10,4),C(2,-4),则△ABC的面积是………………………;8、直线3x-y+4=0与6x-2y-1=0是一个圆的两条平行切线,那么该圆的面积是…………………..;9、若点P(3,t)到直线x+y-4=0的距离等于1,则t=……………………….。

三、解答题:10、在直线x+3y=0上求一点P,使它到原点的距离与到直线x+3y-2=0的距离相等。

11、已知直线l经过P(-1,1),它被两平行线l1:x+2y-1=0及l2:x+2y-3=0所截得的线段M1M2的中点M在直线l3:x-y-1=0上,试求直线l的方程。

12、求经过直线7x+7y-24=0和x-y=0的交点,且与原点距离为125的直线方程。

必修II 系列训练9一、选择题: BDBCBD二、填空题:7、28 8、16081π 9、333-或 三、解答题:10、),()或,(51535153--P P 11、2x + 7y – 5 = 012、4x +3y -12 = 0或3x + 4y – 12 = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点到直线的距离
一、选择题:
1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )
A .4
B
C
D 2.求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程.
A. 420x y --=
B. 2x =
C. 420x y --=,或1x =
D. 420x y --=,或2x =
3.直线l 与直线x -3y +10=0,2x +y -8=0分别交于点M,N,若MN的中点是(0,1),则直线l 的方程是 ( )
A.x +4y -4=0 B.4x +y -4=0 C.x -4y +4=0 D.x -4y -4=0
4.若点P(x 0,y 0)在直线Ax +By +C =0上,则直线方程可表示为( )
A .A(x -x 0)+B(y -y 0)=0
B .A(x -x 0)-B(y -y 0)=0
C .B(x -x 0)+A(y -y 0)=0
D .B(x -x 0)-A(y -y 0)=0
5.已知点P (a ,b )与Q (b -1,a +1)(a ≠b -1)关于直线l 对称,则直线l 的方程是( )
A .x +y =0
B .x -y =0
C .x +y -1=0
D .x -y +1=0
6.顺次连结A (-4,3)、B (2,5)、C (6,3)、D (-3,0)所组成的图形是( )
A.平行四边形
B.直角梯形
C.等腰梯形
D.以上都不对
二、填空题:
7.过两条直线2x+3y+1=0和x-3y+4=0的交点,并垂直于直线3x+4y-7=0的直线方程是 .
8.已知直线l 与直线x +y -1=0关于x 轴对称,那么直线l 的方程是_______.
三、解答题:
9.若三条直线1:244,:0l x y l mx y +=+=,l 3:2x-3my=4不能构成三角形,求m 的取值集合.
10. 已知点P(2,-1),求:
(1)过P点与原点距离为2的直线l的方程;
(2)过P点与原点距离最大的直线l的方程,最大距离是多少?
(3)是否存在过P点与原点距离为6的直线?若存在,求出方程,若不存在,请说明理由.
11.某房地产公司要在荒地ABCDE上划出一块长方形地面(不改变方位)建造一幢八层楼的公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到1m2).。

相关文档
最新文档