2016初2数学专题讲练14:期末复习(1)
第二学期八年级数学提高班复习讲义14期末测试NRDC巩固基础
八年级下:初二数学提高班讲义14:期末综合测试一、填空题(2分×14=28分)1、已知一次函数221)(--=x x f ,则=)2(f . 2、与直线x y 2=平行且截距是5-的直线的表达式为 .3、已知函数132+=x y ,如果函数值5>y ,那么相应的自变量x 的取值范围是 . 4、将函数52+=x y 的图像沿y 轴翻折,与翻折后的图像对应的函数解析式为 .5、用换元法解方程2511322=-+-x x x x 时,若设y x x =-12,则原方程可化为整式方程是 . 6、如果关于x 的方程x k x =-25有实数根2x =,那么k = .7、用20cm 长的绳子围成一个等腰三角形,设它的底边长y cm ,腰长为x cm ,则y 与x 之间的函数关系式为(写出自变量x 的取值范围).8、如果一个多边形的每一个内角都等于︒120,那么这个多边形的边数是 .9、四张完全相同的卡片上,分别画有线段、等边三角形、平行四边形、等腰梯形,现从中随机抽取一张,卡片上画的图形不是轴对称图形的概率是 .10、顺次联结平行四边形各边中点所得到的四边形是 .11、已知菱形两条对角线长分别为10cm 、24cm ,则该菱形的边长是 cm ;菱形的面积是 .12、在ABC ∆中,点D 是边AC 的中点,BA a =,BC b =,那么用a 、b 表示BD ,=______ .13、在梯形ABCD 中,AD ∥BC ,AB=8cm ,CD=7cm ,AD=5cm ,∠B=60°,则BC= ______ cm14、在直角坐标系中,点A 、B 、C 的坐标分别为)3,0(A 、)3,5(B 、)0,4(C ,在x 轴上有一点D ,使A 、B 、C 、D 四点组成的四边形是平行四边形,则点D 的个数为 .二、选择题((3分×4=12分)15、如果一次函数b kx y -=的图像经过第一、二、三象限,那么k 的取值范围是( )(A)0,0>>b k ; (B) 0,0<>b k ; (C) 0,0><b k ; (D) 0,0<<b k .16、下列方程中, 有实数根的是( )(A) 032=+-x ;(B )222-=-x x x ; (C )01322=++x x ; (D )0324=+x .17.下列命题中,假命题的是 ( )(A )对角线互相平分的四边形是平行四边形; (B )对角线互相垂直平分的四边形都是菱形;(C )对角线相等的平行四边形是矩形; (D )对角线互相垂直的平行四边形是正方形.18、已知点C 是线段AB 的黄金分割点,AC 为较长线段的长,则下列结论中,错误的是( )(A )215-=BC AC ;(B )215+=BC AC ; (C )253-=AB BC ; (D )215-=AB AC .三、简答题:(6分×5=30分)19.解方程:441212-=--x x . 20.解方程组:⎩⎨⎧=+-=+.144,6322y xy x y x21.(1)如图1,已知向量a 、b ,求作:a +b 、a b - ;(2)如图2,在四边形ABCD 中,填空: ++=___ ;- = .22、已知0432≠==z y x ,求代数式22x y z x y z+++-的值. a b 图1 A B C D 图2 OO FE C D B A23、如图,AB ∥CD ∥EF ,AF 与BE 交于O 点,若AF =26,BO =3,OC =2,CE =8,求DF 和OD 的长四、解答题(3分×7=21分)24、某中学在庆祝“六一”儿童节期间举办“2009,我读过的图书”展示活动.已知下列信息:(1)甲班提供图书320本,(2)乙班提供图书310本,(3)乙班有30名学生,(4)这两个班人均提供图书比甲班人均提供图书多1本.依据上述信息,你可以确定甲班的学生人数吗?若可以,请给出解答过程;若不可以,请简述理由.25、已知一条直线b kx y +=在y 轴上的截距为2,它与x 轴、y 轴的交点分别为A 、B ,且△ABO 的面积为4.(1)求点A 的坐标;OA B E DF C(2)若0 k ,在直角坐标平面内有一点D ,使四边形ABOD 是一个梯形,且AD ∥BO ,其面积又等于20,试求点D 的坐标.26、如图,梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,∠ACB=30°,EF 是梯形ABCD 的中位线; 求证:BD=EF五、综合题(9分)27、如图,正方形ABCD 的边长为4,点E 在边AB 上,(点E 与点A 、B 不重合)过点A 作AF ⊥DE ,垂足AB E D FC G为G ,AF 与边BC 交于点F ;(1)求证:AF=DE ;(2)联结DE 、EF ,设AE=x ,△DEF 的面积是y ,写出y 关于x 的函数解析式,并写出定义域;(3)如果△DEF 的面积为132,求FG 的长; (4)求当△DEF 的面积取到最大时,AE 的长为多少?。
2016初2数学专题讲练15:期末复习2
2016初2数学专题讲练15:期末复习(2)一.选择题 1. 若分式的值为零,则x 等于( ) A .0 B .1 C . D .-1 2. 下列计算正确的是( ) A .416±= B .2632=∙ C .12223=- D .4624=÷ 3. 设有反比例函数xk y 1+=,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时y y 12>,则k 的取值范围是 ( )A .0>k B.0<k C.1->k D.1-<k 4. 关于x 的分式方程的解是负数,则m 的取值范围是( )A.m >﹣1B . m >﹣1且m≠0C .m ≥﹣1D . m ≥﹣1且m≠05. 已知函数y=的图象如图,当x≥﹣1时,y 的取值范围是( ) A .y <﹣1 B . y≤﹣1C . y≤﹣1或y >0D . y <﹣1或y≥06. 如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画. (2﹣2)a 2 B . a 2 C . a 2D . (3﹣2)a 2 9. 若,则的值是 . 10.已知a,b,c 是△ABC 的三边长,且满足关系式0222=-+--b a b a c ,则△ABC 的形状为 .11. 从-1,1,2这三个数中,任取两个不同的数作为一次函数y =k x +b 的系数k 、b ,则一次函数y =k x +b 的图象不经过笫三象限的概率是 .132x x +-2350a b +-a bb a+12. 平行四边形ABCD 中,边AB 的长为6,一条对角线AC 的长为8,则另一条对角线BD 长的取值范围为 .13. P(a,b ),Q(b,c )是反比例函数xy 3=在第一象限内的点,则⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-c b 1b a 1=_______14. 在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,直角边AB =6,反比例函数y =(x >0)的图象经过AO 的中点C,且与AB 交于点D ,则点D 的坐标为_______. 15. 如图,将一个等腰直角三角形按图示方式依次翻折,若DE =,则①DC ′平分∠BDE ;②BC 长为;③△B C ′D 是等腰三角形;④△CED 的周长等于BC 的长.则上述命题中正确是___________(填序号);三.解答题16. 计算: a a -1 ÷a 2-a a 2-1 -1a -1. 17. 计算:(012|1+18. 解分式方程(1)x x -=+-2321421 (2)xx x x -=-+2212119. 如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF =DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.kxa a )22(+DDAA20. 如图,双曲线y=kx(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3).(1)确定k 的值;(2)若点D(3,m)在双曲线上,求直线AD 的解析式; (3)计算△OAB 的面积.21. 设21x x 、是方程04232=--x x 的两根,不解方程,求下列各式的值: (1) 2221x x + (2) 2111x x +.22. 关于x 的方程0)1(22=+++m x m mx 有两个实数根,若方程的两个实数根的平方和为6,求m .23. 某中学组织学生到离学校15千米的东山进行春季社会实践活动,先遣队与大队同时出发,先遣队的速度是大队速度的1.2倍,结果先遣队比大队早到30分钟,先遣队和大队速度各是多少?24. 将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D′ 处,折痕为EF . (1)求证:△ABE ≌△AD′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.A DF D ′25. 对于正数x ,规定f (x )=221xx +, (1)计算f (2)= ;f (21)= ;f (2)+ f (21)= ;f (3)+ f (31)= ;… (2)猜想+)(x f )1(xf = ,请予以证明.(3)现在你会计算1()2010f +1()2009f + f (12008)+ f (12007)+ f (12006)+ …f (13)+ f (12)+ f (1)+ f (2)+ f (3)+ … + f (2006)+ f (2007)+ f (2008)+(2009)f +(2010)f 的值了吗?写出你的计算过程.26. 如图所示,点A 、B 在反比例函数ky x=的图象上,且点A 、B 的横坐标分别为(),20a a a >.AC x ⊥轴,垂足为C ,且AOC ∆的面积为2.(1)求该反比例函数的解析式(2)点()1,a y -、()22,a y -在该反比例函数的图象上, 试比较1y 与2y 的大小. (3)求AOB ∆的面积.。
专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)
专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。
【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。
2016西城初二数学第二学期期末复习
专题一 找规律1.===请你找出其中规律,并将第n (n ≥1)个等式写出来 .2. 在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD 中,四个顶点坐标分别是(-8,0),(0,4),(8,0) (0,-4),则菱形ABCD 能覆盖的单位格点正方形的个数是____ 个;若菱形 AnBnCn D n 的四个顶点坐标分别为(-2n,0),(0, n ),(2n ,0),(0,-n )(n 为正整数), 则菱形AnBnCn D n 能覆盖的单位格点正方形的个数为___________.3.如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形;②四边形A 4B 4C 4D 4是菱形; ③四边形A 5B 5C 5D 5的周长是4a b +④四边形A n B n C n D n 的面积是12n ab+. A 、①② B 、②③ C 、②③④ D 、①②③④4.如图,边长为1的菱形ABCD 中,60DAB ∠=°.连结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律写出所作的第三个菱形的边长为______,第n 个菱形的边长为______.5.如图,在平面直角坐标系xOy 中,1(10)A ,2(3,0)A ,3(6,0)A ,4(10,0)A ,……,以12A A 为对角线作第一个正方形1121AC A B ,以23A A 为对角线C 1D 1D 2C 2D C AB作第二个正方形2232A C A B ,以34A A 为对角线作第三个正方形3343A C A B ,……,顶点1B ,2B ,3B ,……都在第一象限,按照这样的规律依次进行下去,点5B 的坐标为________;点n B 的坐标为_ __.A .(0,64)B .(0,128)C .(0,256)D .(0,512)7. 如图,点(0,0)O ,(0,1)B 是正方形1OBB C 的两个顶点,以它的对角线1OB 为一边作正方形121OB B C ,以正方形121OB B C 的对角线2OB 为一边作正方形232OB B C ,再以正方形232OB B C 的对角线3OB 为一边作正方形343OB B C ,…,依次进行下去,则点6B 的坐标是( ).A .(8,0)-B .(0,8)-C .(-D .(-专题二:操作问题1. 现有10个边长为1的小正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:在图甲中画出分割线,并在图乙的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.2.已知下图是矩形纸片剪去一个正方形后的示意图,尺寸如图,将它剪成三块、四块或五块后再拼成正方形. (1) 在所给图中画出分割线并标明尺寸. (2) 画出拼接后的正方形,并在图中标明尺寸.3.在ABC △中,AB 、BC 、AC面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为、(0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △(0a >),且ABC △的面积为22a ,试运用构图法...在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上____________.124. 在劳技课上,老师请同学们在一张长为9cm ,宽为8cm 的长方形纸板上,剪下一个腰长为5cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边长上).请你帮助同学们画出图形并计算出剪下的等腰三角形的面积.(求出所有可能的情况)5. 对任意三角形ABC ,∠B <∠C,设计一种方案,剪一刀将它分割后再拼成一个平行四边形.6. 直角三角形通过裁剪可以拼成一个与该三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1) 对任意三角形,设计一种方案,将它分割后再拼成一个与原三角形面积相等的矩形. (2)对任意四边形设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.BBA D7.在△ABC中,BC=a,BC边上的高h=a2,沿图中线段DE、CF将△ABC剪开,分成的三块图形恰能拼成正方形CFHG,如图1所示.请你解决如下问题:已知:如图2,在△A′B′C′中,B′C′=a,B′C′边上的高h=a21.请你设计两种不同的分割方法,将△A′B′C′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,请在图2、图3中,画出分割线及拼接后的图形.8. 如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,即可求出x的值.参考小萍的思路,探究并解答新问题:如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应).9.将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE 、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).(1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为=y kx b,则所有满足条件的k的值为.PE FDAPE FDA图1A′B′C′图2A′B′C′图3图1 图2 图3 图4 10.如图,矩形纸片ABCD中,8AB=,将纸片折叠,使顶点B落在边AD上的点为E,折痕的一端G点在边BC上(B G<GC),另一端F落在矩形的边上,10BG=.(1)请你在备用图中画出满足条件的图形;(2)求出折痕GF的长.11.阅读下列材料:小明遇到这样一个问题:如图1,点M是矩形ABCD内过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。
9.2015-2016第2学期初2年级数学期末考试题答案-密云
密云区2015-2016学年度第二学期期末初二数学试题参考答案一、选择题二、填空题11. 1 12. 6 13.m<1 14. (3,-1) 15.小明 16. ①矩形 ,三角形中位线定理,平行四边形的定义(或判定定理),矩形的定义(或判定定理).②AB=CD ,菱形 (其它情况视条件能否推出结论酌情给分). 17.解方程:(1)220x x -=解:(2)0x x -=……………………………………………………………………………………………3分120,2x x ==∴ 方程的解为120,2x x ==………………………………………………………………..5分(2)2210x x --= 解: 移项,得221x x -=配方,得 22111x x -+=+ ……………………………………………………………2分2(1)2x -= 开方,得 1x -=3分∴ 方程的解为11x =,21x=…………………………………………..5分18.解:(1)令x=0,解得y=3,令y=0,解得x=3.∴ A (3,0),B (0,3)…………………………………………………………………………2分 (2)x>3……………………………………………………………………………………………………5分 (画图1分,写出不等式的解集2分)19.证明: 四边形ABCD 是ABCD∴ AB=CD,AB//CD …………………………………………………………………………….2分 AB//CD ,∴B A E D C F ∠=∠ ……………………………………………………………….3分在ABE ∆和CDF ∆中,ABE CDF AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE CDF ∆≅∆……………………………………………………………………….4分 ∴BE=DF. ………………………………………………………………………5分20.解: (1)一次函数1y kx =+ 经过A (1,2)∴21k =+...................................................................................................2分 ∴1k = .............................................................................................3分 (2)P (3,0)或P(-1,0).. (5)分21.(1)..2分(2)1C (2,1),1CC = ……………………………………………………………..4分 (3)垂直 ……………………………………………………………………………………………………5分 22. 证明:(1) AC=BC ,∴ACB ∆ 是等腰三角形. D 是AB 中点,∴ DB=12AB ,CD DB ⊥. CE=12AB ,∴DB=CE.CE//AB ,∴四边形CDBE 是平行四边形………………………………………………………………2分 又CD DB ⊥,∴四边形CDBE 是矩形. …………………………………………………………….3分(2)在Rt CDB ∆中,90CDB ∠=︒,CB=AC=5,CD=3,∴ 4BD == ……………………………………………………4分DF ⊥BC 于F ,∴DF.BC=CD.BD , 解得:DF=125. …………………………………………………………5分 23.解:设我国在线教育市场产值的年增长率为x. …………………………………………..1分则,21000(1)1440x +=, …………………………………………….3分 解得x=-2.2(舍负)0.220%x ==.答:我国在线教育市场产值的年增长率为20%. ……………………………………..5分.24.(1)a =1,d =10. …………………………………………………………………………….2分 (2)……………………………………………3分(3)48 ……………………………………………………………………………………..4分 (4)不正确.抽样的10人观看直播课堂的总次数为01111232435231⨯+⨯+⨯+⨯+⨯+⨯=.由此可以预估A 校初二学生每次利用直播课堂学习的学生在线率为310.6250=.而5次统计区在线率不超过40%,故此预估A 校初二学生每次利用直播课堂学习的学生在线率高于全区在线率. ……………5分.25.(1) ①-1 ……………………………………………………………………………………………………………….2分②0 ………………………………………………………………………………………………………………..3分 (2)小明的解法错误.因为210x += 无实数根. ………………………………………………….5分26.证明:由已知,0m ≠.2(3)4(3)m m ∆=--⨯⨯-…………………………………………………………………..1分=269m m ++ …………………………………………………………………….2分 =2(3)m +0≥ …………………………………………………………………….3分 (2)若方程的两根异号且都为整数,求满足条件的m 的整数值.解:由(1)可得,x =1231,x x m=-=. ……………………………………………………………………..5分 方程的两根异号且都为整数,∴ 满足条件的m 的整数值为1,3. …………………………………………………7分27.(1)DE=AF ,DE ⊥AF. ………………………………………………………………………2分 (2)① 22222DG AD AE =+. ………………………………………………………….5分②AD=3或AD=4. …………………………………………………………7分. 28. (1)由已知,=图2GA连接AC 、OB ,设AC 与OB 交于点D. ∵四边形OABC 是菱形 ∴AC ⊥OB ,CD=DA.∴PC+PM ≤PM+PA ≤AM. 即PC+PM3== ………………………………………………….3分(2) ① 0≤b ≤3. ……………………………………5分②第一步:由OC=OA 点A 在x 轴上,可求点A 的坐标; 第二步:由CB//OA ,CB=OA ,可求点B 的坐标;第三步:利用待定系数法求出直线OB 、直线AC 的表达式; 第四步:求出直线AC 、直线OB 的交点D 的坐标;第五步:因为直线y kx b =+ 是由1y x =--平移得到,可得1k =-;由直线y x b =-+经过点D ,可求b 值.……………………………………………………………………..8分.。
专题14:《比和比例的应用(二)》小升初数学专题讲练(解析版)通用版
2019-2020学年通用版数学小升初总复习专题汇编讲练专题14 比和比例的应用(二)一、比例尺应用题图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
二、按比例分配应用题⑴在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。
⑵按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答三、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
四、正、反比例应用题的解题策略①审题,找出题中相关联的两个量②分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。
③设未知数,列比例式④解比例式⑤检验,写答语一.比例尺应用题【例1】(2019春•武汉月考)在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5.6厘米.一辆汽车按3:2的比分两天行完全程,两天行的路程差是()千米.A.672B.336C.1008D.1680【解答】解:1 5.630000000÷5.630000000=⨯168000000=(厘米)168000000厘米1680=千米,325+=321680()55⨯-116805=⨯336=(千米);答:两天行的路程差是336千米.故选:B.【变式1-1】(2015•博白县模拟)在一幅比例尺是1:6000000的地图上,量得A城到B城的距离是4.5厘米.甲、乙两辆汽车同时从A、B两地相向出发,经过2小时相遇.已知甲车每小时行70千米,乙车每小时行()A.80千米B.75千米C.65千米D.70千米【解答】解:14.5270000006000000÷=(厘米)270=(千米);270270÷-13570=-65=(千米);答:乙车每小时行65千米.故选:C.【变式1-2】(2019•衡水模拟)在一幅地图上,用3厘米代表150千米,这幅图纸的比例尺是1:5000000;在这幅地图上量得甲、乙两地之间的距离是4.5厘米,则甲、乙两地实际相距千米.【解答】解:3厘米:150千米3=厘米:15000000厘米3:15000000=1:5000000=14.55000000÷4.55000000=⨯22500000=(厘米)22500000厘米225=千米答:这幅图纸的比例尺是1:5000000,甲、乙两地实际相距225千米.故答案为:1:5000000;225.【变式1-3】(2019春•黄冈期中)在一幅比例尺是15000000的地图上,量得A、B两个城市之间的公路长是4.8cm,在另一幅比例尺是14000000的地图上,这条公路长多少厘米?【解答】解:11 4.850000004000000÷⨯14.850000004000000 =⨯⨯1240000004000000=⨯6=(厘米) 答:这条公路长6厘米.【变式1-4】(2019•连江县)在比例尺是1:12000000的地图上,量得甲乙两地之间的铁路线长是3.6厘米,一列客车从甲城开往乙城,用了4.5小时,这列客车平均每小时行多少千米?【解答】解:13.64320000012000000÷=(厘米)432=(千米);432 4.596÷=(千米/小时);答:这列客车平均每小时行96千米.二.按比例分配应用题【例1】(2019•郑州模拟)一个三角形三个内角度数的比是6:2:1,这个三角形是() A .直角三角形B .锐角三角形C .钝角三角形D .无法确定 【解答】解:最大角:6180120621︒⨯=︒++ 所以这个三角形是钝角三角形.故选:C .【变式2-1】(2019•永州模拟)甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做( )A .480个B .400个C .80个D .40个【解答】解:65880()5656⨯-++, 65880()1111=⨯-,188011=⨯, 80=(个);答乙比甲少80个.故选:C .【变式2-2】(2019•保定模拟)六年级有42人,负责学校的两块卫生区.第一块卫生区30平方米,第二块卫生区40平方米.如果按照面积的大小分配值日生,两块卫生区各应派多少人?第一块 派18人 、第二块 (按第一块、第二块卫生区的顺序填写)【解答】解:304070+=(平方米),30421870⨯=(人), 40422470⨯=(人),答:第一块卫生区应分配值日生18人,第二块卫生区应分配值日生24人.故答案为:派18人、派24人.【变式2-3】(2019•保定模拟)一个三角形的三个内角度数比是1:2:3,这个三角形的最大内角是多少度?它是一个什么样的三角形?【解答】解:最大的角是:3180123︒⨯++11802=︒⨯90=︒,所以这个三角形的最大内角是90度,这个三角形是直角三角形.【变式2-4】(2018秋•汉阳区期末)用240米的铁丝做一个长方体框架,长、宽、高的比是3:2:1,这个长方体的长、宽、高各是多少?【解答】解:一条长、宽、高的和:240460÷=(米)总份数:3216++=(份) 长:360306⨯=(米) 宽:260206⨯=(米) 高:160106⨯=(米)答:这个长方体的长、宽、高分别是30米,20米,10米.三.正、反比例应用题【例3】(2018秋•石家庄期末)东明小学六(三)班的学生在同一时间同一地点对物体的高度和影子的长度进行了测量.请根据表格中的数据进行计算,大树的实际高度应该是( )米. 项目/物体物体高度 影子长度 大树?米 6米 竹竿1.2米 0.8米A .8B .10C .9 【解答】解:设大树的高度是x 米; 1.2:0.8:6x =0.86 1.2x =⨯9x =答:大树的高度是9米.故选:C .【变式3-1】(2013春•建昌县校级期中)张老师的自行车前齿轮有48个齿,后齿轮有17个齿,后车轮直径是59厘米;李老师的自行车前齿轮有26个齿,后齿轮有12个齿,后车轮直径是61厘米.两位老师同样蹬一圈,( )走得远.A .无法判定B .张老师C .李老师【解答】解:张老师的自行车蹬一圈车轮转的圈数:48481717÷=(圈),张老师行驶的路程:48 3.1459523.0917⨯⨯≈厘米,李老师的自行车蹬一圈车轮转的圈数:1326126÷=(圈),张老师行驶的路程:13 3.1461415.006⨯⨯≈(厘米),因为523.09415.00>所以:张老师的自行车蹬一圈去得远.故选:B .【变式3-2】(2018春•南开区期末)小明和小华合照了一张相片,相片上小明的身高为5.5cm ,小华的身高为5cm .现测得小华的实际身高是1.6m ,小明的实际身高是 1.76 米.【解答】解:设小明的实际身高是x 米,则:5:1.6 5.5:x =5 1.6 5.5x =⨯1.76x =答:小明的实际身高是 1.76米;故答案为:1.76.【变式3-3】(2019•海口)小丽想测量一棵大树的高度,她找了一根长1米的直尺垂直立起来,量得这把尺子的影子长度是1.6米,同时,测得这棵大树的影子长18.4米,请你帮小丽计算这棵大树的高度.【解答】解:设这棵大树的高度为x 米,1:1.6:18.4x =1.618.41x =⨯11.5x =答:这棵大树的高度是11.5米.【变式3-4】(2019•保定模拟)李叔叔买了一辆汽车,下表是在试车过程中记录下的数据. 汽车所行路程/千米 0 15 30 45耗油量/升 0 2 4 6将如图补充完整,并回答问题.(1)有哪两种变化的量?哪种量没有变?(2)汽车所行路程和耗油量有什么关系?为什么?(3)图中点的连线有什么特点?(4)汽车行40千米,要耗油多少升?(5)油箱内还剩3升油时,汽车大约还能行驶多少千米?【解答】解:(1)根据题干分析可得,上表两种变化的量是路程与耗油量;每升油所行路程没变,据此即可解答;(2)表格中:耗油量随着路程的变化而变化,因为1527.5÷=、3047.5÷=⋯即每升油所行路程不变,所以汽车所行路程和耗油量成正比例关系;(3)图中点的连线是一条直线;如图:(4)因为耗油量=路程÷每升油所行路程,407.5 5.3(÷≈ 升)答:要耗油5.3升.(5)因为路程=每升油所行路程⨯耗油量,7.5322.5⨯=(千米) 答:汽车大约还能行驶22.5千米. 四.解比例【例4】(2016秋•元江县期末)3:5x y =,若20y =,则(x = )A .10B .12C .15【解答】解:把20y =代入3:5x y =, 3:205x =560x =55605x ÷=÷ 12x =故选:B .【变式4-1】(2017•松滋市模拟)如果比例的两个外项互为倒数,那么比例的两个内项()A .成反比例B .成正比例C .不成比例 【解答】解:因为比例的两个外项互为倒数,那么比例的两个内项之积1=(为恒值),则比例的两个内项成反比例.故选:A .【变式4-2】(2019•广东模拟)如果2:1.54x =,那么x =3 ;如果315::456x =,那么x = . 【解答】解:(1)2:1.54x =2 1.54x =⨯2262x ÷=÷3x =(2)315::456x = 153564x =⨯ 1153155645x ÷=⨯÷258x =故答案为:3,258.【变式4-3】(2019•武威)求未知数. 7171218x -= 7.5(4.1 4.3)13.5x x -+=40.8::0.23x = 751252x = 【解答】解:(1)7171218x -=7717712121812x -+=+5536x =(2)7.5(4.1 4.3)13.5x x -+=3.24.113.5x -= 3.2 4.1 4.113.5 4.1x -+=+ 3.217.6x = 3.2 3.217.6 3.2x ÷=÷5.5x =(3)40.8::0.23x =40.80.23x =⨯44325x = 434334254x ⨯=⨯325x =(4)751252x = 125752x =⨯125150x =125125150125x ÷=÷1.2x =【变式4-4】(2019•郑州模拟)写出比例,并求出未知数.(1)10千克废纸可以换3本笔记本,六年级同学用X 千克废纸换了45本笔记本.(2)组装餐桌时,4条桌腿配1张桌面,56条桌腿配X 张桌面.【解答】解:(1)10:3:45x =31045x =⨯334503x ÷=÷150x =;答:六年级同学用150千克废纸换了45本笔记本.(2)4:156:x =4561x =⨯44564x ÷=÷14x =;答:56条桌腿配14张桌面.真题演练强化一.填空题1.(2019•娄底模拟)小明、小红、小华三家十月份共付电费120元,如果按每家的用电量分摊电费,小明家应付 40元 钱.小红家应付 钱.小华家应付 钱.【解答】解:80:60:1004:3:5=,43512++=,41204012⨯=(元) 31203012⨯=(元) 51205012⨯=(元) 答:小明家应付40元,小红家应付30元,小华家应付50元.故答案为:40元,30元,50元.2.(2019•高新区)在一个减法算式中,被减数、减数、差三个数的和是168,减数与差的比是3:4,减数是 36 .【解答】解:168284÷=, 347+=,384367⨯=;答:减数是36;故答案为:36.3.(2017•长沙)在一道减法算式中,被减数、减数、差的和是120,差与减数比是1:4,减数是 48 .【解答】解:被减数(差加减数):120260÷=,减数与差的总份数:145+=(份),减数:460485⨯=; 故答案为:48.4.(2013•宜丰县校级模拟)三个数的平均数是40,三个数比是1:2:3,这三个数中最大的一个是 60 .【解答】解:三个数的和:403120⨯=,三个数的总份数:1236++=(份),最大的数是:3120606⨯=;答:这三个数中最大的一个是60.故答案为:60.5.(2012秋•龙游县期末)新华小学有师生945人,学生与教师的比是20:1,该校有学生 900 人,有教师 人.【解答】解:总份数:20121+=(份), 学生的人数:2094590021⨯=(人), 教师的人数:19454521⨯=(人). 答:该校有学生900人,有教师45人.故答案为;900,45.二.判断6.如果14::63x =,那么8x =. ⨯ .(判断对错) 【解答】解:14::63x =, 1463x =⨯,11124333x ÷=÷, 72x =,728≠,故答案为:⨯.7.在比例尺是1:100的图纸上测得一块长方形的菜地长6cm ,宽5cm ,这块菜地的实际面积是230m . √ .(判断对错) 【解答】解:16600()100cm ÷=6006cm m = 15500()100cm ÷=5005cm m =26530()m ⨯=答:这块菜地的实际面积是230m .故答案为:√.8.在比例13134::82x =中,16x =. √ .(判断对错) 【解答】解:13134::82x = 1313482x =⨯ 13131326888x ÷=÷ 16x =所以原题的说法正确.故答案为:√.9.甲、乙、丙三个数的比是10:9:8,已知这三个数的平均数是157,则乙数也是157. √ (判断对错) 【解答】解:109827++=,1953727⨯⨯3693727=⨯⨯ 367=157=. 答:乙数是157. 故答案为:√.10.一个三角形三个内角度数的比是3:2:1,这个三角形是锐角三角形. ⨯ .(判断对错)【解答】解:三个内角的度数分别为2k ,3k ,4k .则32180k k k ++=︒,解得30k =︒,所以260k =︒,390k =︒,所以这个三角形是直角三角形,本题说法错误.故答案为:⨯.三.计算题11.(2019春•黄冈期中)解比例.21328x = 111::2054x = :6.56:4x =.【解答】解:(1)21328x = 32218x =⨯32168x =323216832x ÷=÷214x =(2)111::2054x = 1115204x =⨯111155805x ÷=÷ 15801x =⨯116x =(3):6.56:4x = 4 6.56x =⨯439x =44394x ÷=÷9.75x =12.(2016春•英吉沙县期末)解比例511::0.877x =441.2::159x = 5510.4:3:711x =. 【解答】解:(1)511::0.877x =1150.877x =⨯11115110.87777x ÷=⨯÷411x =;(2)441.2::159x =441.2159x =⨯ 44441.21515915x ÷=⨯÷ 2x =;(3)5510.4:3:711x = 55310.4711x =⨯ 55553310.4377117x ÷=⨯÷1411x =. 四.应用题13.(2019秋•博兴县期中)学校把280棵树苗按3个班的人数分配给各班,一班有48人,二班有50人,三班有42人.3个班各应分得多少棵树苗?【解答】解:484250140++=(人)4828096140⨯=(棵) 50280100140⨯=(棵) 4228084140⨯=(棵)答:一班应分得96棵树苗,二班应分得100棵树苗,三班应分得84棵树苗.14.(2019•萧山区模拟)2019年2月1日开始,红红5天看了60页书,照这样计算,红红2月份一共可以看几页书?(用比例解决)【解答】解:设2月份一共可以看x 页,60285x = 52860x =⨯28605x ⨯=336x =.答:红红2月份一共可以看336页书.15.给一间客厅铺地砖,若每块地砖的面积是21.5dm ,铺满要用200块;如果改用每块面积是22dm 的地砖辅地,那么铺满要用多少块?【解答】解:设需要x 块砖,由题意得,2 1.5200x =⨯2300x =223002x ÷=÷150x =答:铺满要用150块.16..用弹簧秤称物体,称2千克的物体,弹簧长12.5厘米,称6千克的物体,弹簧长13.5厘米,当称5千克的物体时,弹簧全长多少厘米?(用比例解)【解答】解:设称5千克物体,弹簧秤拉长x 厘米,弹簧秤的原长:12.5(13.512.5)(62)2--÷-⨯12.5142=-÷⨯12.50.5=-12=(厘米), 5212.512x =-250.5x =⨯50.52x ⨯=1.25x =,12 1.2513.25+=(厘米),答:弹簧全长13.25厘米.17.如图是一个山坡的示意图(假定山坡的坡度处处相等),如果M 点距地平面的高度是20m ,那么N 点距地平面的高度应是多少米?【解答】解:设N 点距地平面的高度是x 米,208050x = 802050x =⨯205080x ⨯=12.5x =答:N 点距地平面的高度应是12.5米.18.甲工程队有30人,乙工程队有40人.现在要修560m 长的公路,如果按两个工程队的人数进行分配,那么两个工程队应各修多少米?【解答】解;304070+=(人),3056024070⨯=(米), 4056032070⨯=(米),答:甲队应修240米,乙队应修320米.19.(2016秋•济南期中)学校把制作72面彩旗的任务按照六年级一班3个小组的人数分配,一组8人,二组7人,三9人.三个小组各要制作多少面彩旗?【解答】解:87924++= 一组:8722424⨯=(面) 二组:7722124⨯=(面) 三组:9722724⨯=(面)答:一组要制作24面,二组要制作21面,三组要制作27面.20.(2014春•黄山期中)在比例尺的平面图上,量得北京到南京的直线距离是18厘米,一架飞机以每小时750千米的速度从北京到南京,大约需要多少时间?【解答】解:5018750⨯÷900750=÷1.2=(小时),答:大约需要1.2小时.21.长州电厂有一批煤,原计划每天烧5吨,可以烧60天,实际每天节约20%,这批煤实际可以烧多少天?(用比例解)【解答】解:设这批煤实际可以烧x 天,5(120%)560x ⨯-=⨯4300x =75x =;答:这批煤实际可以烧75天.五.解答题22.(2019•海珠区模拟)细心解比例5:3:168x = 420.7:5x= 12.5%:0.25150:x =25:540x . 【解答】解:(1)5:3:168x =53168x =⨯310x =33103x ÷=÷103x =;(2)420.7:5x =0.7425x =⨯0.7210x =0.70.72100.7x ÷=÷300x =;(3)12.5%:0.25150:x =12.5%0.25150x =⨯0.12537.5x =0.1250.12537.50.125x ÷=÷300x =;(4)25:540x 40255x =⨯40125x =404012540x ÷=÷3.125x =.23.(2018秋•深圳期末)食堂运来大米和白面共200袋,其中大米与白面的袋数比是3:2,大米和白面各多少袋?【解答】解:325+=32001205⨯=(袋)2200805⨯=(袋)答:大米120袋,白面80袋.24.(2018秋•邯郸期末)工程队修一条公路,原计划每天修路1.65千米,20天可以完成.实际少用了5天,实际平均每天修路多少千米?【解答】解:设实际平均每天修路x 千米;(205) 1.6520x -=⨯1533x =2.2x =答:实际平均每天修2.2千米.25.(2019•杭州模拟)小芳9分钟看打了450个字,照这样计算,她要打完1800个字需要多长时间?(用比例知识解答)【解答】解:设她要打完1800个字需要x 分钟.1800:450:9x =45018009x =⨯45016200x =36x =答:她要打完1800个字需要36分钟.26.(2018秋•定西期末)学校把180本书分给四、五、六年级,分给六年级120本后,剩下的按照2:3分给四、五年级.四、五年级各分得多少本?【解答】解:235+=,18012060-=(本),260245⨯=(本),360365⨯=(本),答:四年级分得24本、五年级分得36本.27.(2019•杭州模拟)一个晒盐场用100克的海水,可以晒出3克盐.如果一块盐田一次放入5000吨的海水,可以晒出多少吨盐?【解答】解:设可以晒出x 吨盐.100:35000:x =10035000x =⨯150x =;答:可以晒出150吨盐。
高中数学必修2教学同步讲练第一章《圆柱、圆锥、圆台、球、简单组合体的结构特征》练习题(含答案)
第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4;π同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2.所以选C.π答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l -12l =25,所以l =20 cm. 故截得此圆台的圆锥的母线长为20 cm.B 级 能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为__________cm 2.解析:如图所示,过球心O 作轴截面,设截面圆的圆心为O 1,其半径为r .由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.。
2014~2016考研数学二真题及参考答案
2014~2016考研数学二真题及参考答案2014考研数学二真题及参考答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2(2) 下列曲线中有渐近线的是( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1siny x x =+(D) 21siny x x=+ (3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥(B) 当()0f x '≥时,()()f x g x ≤(C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x →=ξ( ) (A)1(B)23(C)12(D)13(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20ux y∂≠∂∂及22220u ux y ∂∂+=∂∂,则( )(A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得(7) 行列式0000000a b a bc dc d= ( )(A) 2()ad bc - (B) 2()ad bc -- (C) 2222a d b c -(D) 2222b c a d -(8) 设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l ++αααα线性无关是向量组123,,ααα线性无关的( )(A) 必要非充分条件 (B) 充分非必要条件(C) 充分必要条件 (D) 既非充分也非必要条件 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. ((9)12125dx x x -∞=++⎰__________.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz=__________.(12) 曲线()r r =θ的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________.(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.(14) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数为1,则a 的取值范围为_______.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y xy x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x x z z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式. (19)(本题满分10分)设函数(),()f x g x 的区间[a,b]上连续,且()f x 单调增加,0()1g x ≤≤.证明:(I)0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II)()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰.(20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列121()(),()(()),f x f x f x f f x ==,1()(()),n n f x f f x -=,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞. (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积. (22)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵.(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似. 参考答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 当0x +→时,若ln (12)x +α,1(1cos )x -α均是比x 高阶的无穷小,则α的取值范围是( )(A) (2,)+∞(B) (1,2)(C) 1(,1)2(D) 1(0,)2【答案】B【解析】由定义 1000ln (12)(2)limlim lim 20x x x x x x x x-→→→+===αααα 所以10->α,故1>α.当0x +→时,211(1cos )~2xx -ααα是比x 的高阶无穷小,所以210->α,即2<α.故选B(2) 下列曲线中有渐近线的是( )(A) sin y x x =+ (B) 2sin y x x =+ (C) 1sin y x x =+(D) 21siny x x=+ 【答案】C【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=. 11lim[sin ]limsin 0x x x x x x →∞→∞+-==,所以1sin y x x =+存在斜渐近线y x =.故选C(3) 设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥(B) 当()0f x '≥时,()()f x g x ≤(C) 当()0f x ''≥时,()()f x g x ≥(D) 当()0f x ''≥时,()()f x g x ≤【答案】D【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选D.(4) 曲线22741x t y t t ⎧=+⎪⎨=++⎪⎩上对应于1t =的点处的曲率半径是 ( )(C)(D)【答案】C 【解析】1112'21122432212t t t t t dy t dxtd y dy tdx dx t=====+==-===-()()''33'22211,11y k R kq y ==∴==++ 故选C(5) 设函数()arctan f x x =,若()()f x xf '=ξ,则22limx x→=ξ( )(A)1(B)23(C)12(D)13【答案】D 【解析】因为'2()1()1f x f x ==+ξξ,所以2()()x f x f x -=ξ22222200011()arctan 11limlimlim lim()arctan 33x x x x x f x x xx x x f x x x x →→→→---+====ξ故选D.(6) 设函数(,)u x y 在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足20u x y ∂≠∂∂及22220u ux y∂∂+=∂∂,则( )(A)(,)u x y 的最大值和最小值都在D 的边界上取得 (B) (,)u x y 的最大值和最小值都在D 的内部上取得(C) (,)u x y 的最大值在D 的内部取得,最小值在D 的边界上取得 (D) (,)u x y 的最小值在D 的内部取得,最大值在D 的边界上取得 【答案】A【解析】记22222,,,0,,u u uA B C B A C x x y y∂∂∂===≠∂∂∂∂相反数 则2=AC-B 0∆<,所以(x,y)u 在D 内无极值,则极值在边界处取得.故选A(7)行列式0000000ab a bc d c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a dbc -(D)2222b c a d -【答案】B【解析】由行列式的展开定理展开第一列000000000000a b a b a b a b a cd c b c d dcdc d=--()()ad ad bc bc ad bc =--+- 2()ad bc =--.(8) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组123,,a a a 线性无关的( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】A 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,1001k l ⎛⎫⎪= ⎪ ⎪⎝⎭C . 若123,,ααα线性无关,则()()()2r A r BC r C ===,故1323,k l ++αααα线性无关.)⇒ 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数,k l ,向量1323,k l ++αααα线性无关是向量123,,ααα线性无关的必要非充分条件.故选A二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.(9) 12125dx x x -∞=++⎰__________.【答案】38π【解析】()111221111arctan 252214132428x dx dx x x x -∞-∞-∞+==++++⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦⎰⎰πππ(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.【答案】1【解析】()()[]'210,2f x x x =-∈,且为偶函数 则()()[]'212,0f x x x =--∈-,又()22f x x x c =--+且为奇函数,故=0c()[]222,0f x x x x ∴=--∈-,又()f x 的周期为4,()()711f f ∴=-=(11) 设(,)z z x y =是由方程2274yzex y z +++=确定的函数,则11(,)22dz=__________.【答案】1()2dx dy -+ 【解析】对2274yzex y z +++=方程两边同时对,x y 求偏导22210(22)20yzyz z z e y x x z z e z y y y y ∂∂⎧⋅⋅++=⎪∂∂⎪⎨∂∂⎪+++=∂∂⎪⎩当11,22x y ==时,0z = 故1111(,)(,)222211,22z z x y∂∂=-=-∂∂故11(,)22111()()222dzdx dy dx dy =-+-=-+(12) 曲线lim n n nS →∞的极坐标方程是r =θ,则L 在点(,)(,)22r =ππθ处的切线的直角坐标方程是__________. 【答案】22y x =-+ππ【解析】由直角坐标和极坐标的关系 cos cos sin sin x r y r ==⎧⎨==⎩θθθθθθ,于是(),,,22r ⎛⎫=⎪⎝⎭ππθ对应于(),0,,2x y ⎛⎫= ⎪⎝⎭π 切线斜率cos sin cos sin dydy d dx dx d +==-θθθθθθθθ0,22dy dx ⎛⎫⎪⎝⎭∴=-ππ所以切线方程为()202y x -=--ππ即2=2y x -+ππ(13) 一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度()221x x x =-++ρ,则该细棒的质心坐标x =__________.【答案】1120【解析】质心横坐标()()1010x x dx x x dx=⎰⎰ρρ ()()()()31122100042112310005=2133211=2143212x x dx x x dx x x x x x x dx x x x dx x ⎛⎫-++=-++= ⎪⎝⎭⎛⎫-++=-++= ⎪⎝⎭⎰⎰⎰⎰ρρ111112=5203x ∴=(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xt x t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)limlim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim[(e 1)]xx x x →+∞=--12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====.(16)(本题满分10分)已知函数()y y x =满足微分方程221x y y y ''+=-,且()20y =,求()y x 的极大值与极小值.【解析】 由221x y y y ''+=-,得22(1)1y y x '+=-………………………………………………………① 此时上面方程为变量可分离方程,解的通解为331133y y x x c +=-+ 由(2)0y =得23c =又由①可得 221()1x y x y -'=+当()0y x '=时,1x =±,且有:1,()011,()01,()0x y x x y x x y x '<-<'-<<>'>< 所以()y x 在1x =-处取得极小值,在1x =处取得极大值 (1)0,(1)1y y -==即:()y x 的极大值为1,极小值为0.(17)(本题满分10分)设平面区域(){}22,14,0,0,D x y xy x y =≤+≤≥≥计算(sin Dx dxdy x y+⎰⎰.【解析】D 关于y x =对称,满足轮换对称性,则:D D=12D D I dxdy∴==⎢⎥⎣⎦⎰⎰1sin(2Ddxdy =⎰⎰ 221211sin 21()cos 4d r rdrrd r =⋅=-⎰⎰⎰πθππππ22111cos |cos 4r r rdr ⎡⎤=-⋅-⎢⎥⎣⎦⎰ππ211121sin |4r ⎡⎤=-+-⎢⎥⎣⎦ππ 34=-(18)(本题满分10分)设函数()f u 具有二阶连续导数,(e cosy)xz f =满足22222(4e cos )e x x z z z y x y∂∂+=+∂∂,若'(0)0,(0)0f f ==,求()f u 的表达式. 【解析】由()cos ,x z f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x xz f e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, ()()()22(cos )sin sin (cos )cos x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂由 ()22222+4cos x xz z z e y e x y∂∂=+∂∂,代入得,()()22cos [4cos cos ]x x x x x f e y e f e y e y e ''⋅=+即()()cos 4cos cos x x x f e y f e y e y ''-=,令cos =,xe y t 得()()4f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+设特解*y at b =+,代入方程得1,04a b =-=,特解*14y t =- 则原方程通解为()22121=4t ty f t c e c e t -=+-由()()'00,00f f ==,得1211,1616c c ==-, 则()22111=16164u u y f u e e u -=--.(19)(本题满分10分)设函数(),()f x g x 在区间[,]a b 上连续,且()f x 单调增加,0()1g x ≤≤,证明:(I )0(),[,]xag t dt x a x a b ≤≤-∈⎰,(II )()()d ()g()ba a g t dtb aaf x x f x x dx +⎰≤⎰⎰. 【解析】(I )由积分中值定理()()(),[,]xag t dt g x a a x =-∈⎰ξξ()01g x ≤≤,()()()0g x a x a ∴≤-≤-ξ()()0xa g t dt x a ∴≤≤-⎰(II )直接由()01g x ≤≤,得到()()01=x xaag t dt dt x a ≤≤-⎰⎰(II )令()()()()()ua u a g t dt aaF u f x g x dx f x dx +⎰=-⎰⎰()()()()()()()()()()'uaua F u f u g u f a g t dt g u g u f u f a g t dt =-+⋅⎡⎤=-+⎢⎥⎣⎦⎰⎰由(I )知()()0uag t dt u a ≤≤-⎰()uaa a g t dt u ∴≤+≤⎰又由于()f x 单增,所以()()()0u af u f ag t dt -+≥⎰()()'0F u F u ∴≥∴,单调不减,()()0F u F a ∴≥=取u b =,得()0F b ≥,即(II )成立. (20)(本题满分11分)设函数[](x),0,11xf x x=∈+,定义函数列 1211()(),()(()),,()(()),n n f x f x f x f f x f x f f x -===,记n S 是由曲线()n y f x =,直线1x =及x 轴所围成平面图形的面积,求极限lim n n nS →∞.【解析】123(),(),(),,(),112131n x x x x f x f x f x f x x x x nx====++++ 11100011()11n n x x n n S f x dx dx dx nx nx+-∴===++⎰⎰⎰ 1110200111111ln(1)1dx dx nx n n nx n n =-=-++⎰⎰ 211ln(1)n n n=-+ ln(1)ln(1)1lim 1lim 1lim 1lim 1n n n x x n x nS n x x→∞→∞→∞→∞++∴=-=-=-+101=-= (21)(本题满分11分) 已知函数(,)f x y 满足2(1)fy y∂=+∂,且2(,)(1)(2)ln ,f y y y y y =+--求曲线(,)0f x y =所围成的图形绕直线1y =-旋转所成的旋转体的体积.【解析】因为2(1)fy y∂=+∂,所以2(,)2(),f x y y y x =++ϕ其中()x ϕ为待定函数.又因为()2(,)(1)2ln ,f y y y y y =+--则()()12ln y y y =--ϕ,从而()()22(,)212ln (1)2ln f x y y y x x y x x =++--=+--.令(,)0,f x y =可得()2(1)2ln y x x +=-,当1y =-时,1x =或2x =,从而所求的体积为()()2221122112ln ln 22V y dx x xdxx xd x =+=-⎛⎫=- ⎪⎝⎭⎰⎰⎰πππ22211221ln (2)222552ln 2(2)2ln 22ln 2.444x x x x dxx x ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦⎛⎫=--=-⋅=- ⎪⎝⎭⎰πππππππ(22)(本题满分11分)设矩阵123401111203A --⎛⎫⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭, (I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTT e e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ2Ax e =的通解为()()222226,3,4,06,32,43,T Tx k k k k k =+--=--+-+ξ3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(23)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪ ⎪⎝⎭相似. 【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()12001B n ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=,则A 的特征值为n ,0(1n -重).A 属于n λ=的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0λ=有1n -个线性无关的特征向量;故A 相似于对角阵0=0n ⎛⎫ ⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0λ=有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B .2015考研数学二真题及答案一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 下列反常积分收敛的是 ( )(A)2+∞⎰(B)2ln x dx x +∞⎰(C)21ln dx x x +∞⎰ (D)2x x dx e +∞⎰【答案】(D) 【解析】(1)x x xdx x e e-=-+⎰,则2222(1)3lim (1)3x x x x x dx x e e x e e e +∞+∞----→+∞=-+=-+=⎰. (2) 函数()2sin lim(1)x tt t f x x→=+在(,)-∞+∞内 ( )(A) 连续(B) 有可去间断点 (C) 有跳跃间断点 (D) 有无穷间断点 【答案】(B)【解析】220sin lim 0sin ()lim(1)t x t x x t x tt t f x e e x→→=+==,0x ≠,故()f x 有可去间断点0x =.(3)设函数()1cos ,00,0x x x f x x αβ⎧>⎪=⎨⎪≤⎩(0,0)αβ>>,若()'f x 在0x =处连续则:( )(A)0αβ-> (B)01αβ<-≤ (C)2αβ-> (D)02αβ<-≤ 【答案】(A)【解析】0x <时,()0f x '=()00f -'=()1001cos010lim lim cosx x x x f x x x αβαβ++-+→→-'== 0x >时,()()()11111cos 1sin f x x x x x x ααβββαβ-+'=+-- 1111cossin x x x xααβββαβ---=+ ()f x '在0x =处连续则:()()10100lim cos 0x f f x x αβ+--+→''===得10α->()()++1100110lim =lim cos sin =0x x f f x x x x x ααβββαβ---→→⎛⎫''=+ ⎪⎝⎭得:10αβ-->,答案选择A(4)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C)【解析】根据图像观察存在两点,二阶导数变号.则拐点个数为2个。
10.2015-2016第2学期初2年级数学期末考试题答案-西城
北京市西城区2015— 2016学年度第二学期期末试卷八年级数学参考答案及评分标准2016.7 一、选择题(本题共30分,每小题3分)三、解答题(本题共16分,每小题8分)19.(11);=(31)-3分=24分(23=33分=4分20.(1)解:2650x x-+=移项,得265x x-=-.配方,得26959x x-+=-+,1分所以,2(3)4x-=.2分由此可得32x-=±,所以,15x=,21x=.4分(2)解:2a =,3b =,1c =-.1分 224342(1)17b ac ∆=-=-⨯⨯-=>0.2分方程有两个不相等的实数根x==,1x =,2x =.4分四、解答题(本题共34分,第21~22题,每小题7分,第23题6分,第24~25题7分) 21.证明:(1)∵四边形ABCD 是平行四边形,∴AD=BC ,∠A =∠C . 1分∵ND=BF ,∴AD -ND=BC -BF . 即AN=CF .2分在△AEN 和△CMF 中,,,,AN CM A C AN CF =⎧⎪∠=∠⎨⎪=⎩∴△AEN ≌△CMF . 3分(2) 由(1)△AEN ≌△CMF ∴EN=FM .4分同理可证:△EBF ≌△MDN . ∴EF =MN .5分∵EN=FM ,EF =MN .∴四边形EFMN 是平行四边形. 6分∵EM ⊥FN ,∴四边形EFMN 是菱形.7分B22.解:(1)25;1分2分(3)4分(4)答案不唯一,如:从众数看,女生队表现更突出.5分(5)4560%(536)25(20%16%)4⨯-++-+=.女生优秀人数再增加4人,才能完成康老师提出的全班优秀率达到60%的目标.7分23.解:连接AC,1分在Rt△ABC中,∠B=90º,AB=BC=2,∴∠BAC=∠ACB=45°,2分∴222AC AB BC=+.∴AC=3分∵AD=1,CD=3,∴222AC AD CD+=.4分在△ACD中,222AC AD CD+=,∴△ACD是直角三角形,即∠DAC=90º.5分∵∠BAD=∠BAC +∠DAC,∴∠BAD=135º.6分C成绩(分)初二1班体育模拟测试成绩分析表24.(1)依题意,补全图形,如图所示;1分(2)证明:∵点E,F分别OA,OB的中点,∴EF∥AB,12EF AB=.同理,NM∥DC,12NM DC=.2分∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD.∴EF∥NM,EF=NM.∴四边形EFMN是平行四边形.3分∵点E,F,M,N分别OA,OB,OC,OD的中点,∴12OE OA=,12OM OC=.在矩形ABCD中,OA=OC =12AC,OB=OD=12BD,∴EM=OE+OM=12AC.同理可证FN=12BD.∴EM= FN.∴四边形EFMN是矩形.4分(3)解:∵DM⊥AC于点M,由(2)12 OM OC=∴OD =CD.在矩形ABCD中,OA=OC =12AC,OB=OD=12BD,AC=BD.∴OA=OB=OC=OD.∴△COD是等边三角形.5分∴∠ODC=60°.∵NM ∥DC ,∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM = 90°-∠FNM =30°. ∵ON =3,∴FN =2ON =6,FM =MN =3. 6分∵点F ,M 分别OB ,OC 的中点,∴2BC FM ==∴矩形ABCD的面积为BC CD ⋅=7分∴34m =.解得 12m =.∴反比例函数的解析式为12y x =(2)∵四边形OABC 是矩形,点B (4∴A (0,3),C (4,0).一次函数与y 轴交于点D , ∴点D (0,-1),AD =4. 设点E 的坐标为D (Ex ,Ey )∵△ADE 的面积等于6,∴162E AD x ⋅=.∴3E x =±. ∵点E 在反比例函数12y x =的图象上,∴E (3,4)或E (-3,-4).当点E (3,4)在一次函数1y ax =-的图象上时, ∴431a =-.解得53a =.∴一次函数的解析式为:513y x =-.当点(-3,-4)在一次函数1y ax =-的图象上时, 此时一次函数的解析式为:1y x =-.综上,一次函数的解析式为:513y x =-或1y x =-.5分(3)由(2)可知,直线OE 的解析式为43y x =.设点P (P x ,43Px ),取OP 的中点M ,则12OM OP=. ∴M (12P x ,23Px ). ∴Q (12124P x +,23P x ).∴H (214,0).点P ,Q 均在反比例函数(0)ky x x =>上, ∴43P P x x ⋅=(12124P x +)23Px . ∴72P x =.∴P(72,143),∴493k.7分北京市西城区2015— 2016学年度第二学期期末试卷八年级数学附加题参考答案及评分标准2016.7一、填空题(本题6分)1;3分2.答案不唯一,如:当三角形的面积S 一定时,三角形的一边长a 是这边上的高h 的反比例函数,1分 2Sa h =(S 是常数,S ≠0).3分二、解答题(本题共14分,每小题7分)3.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- 1分269m m =-+2(3)m =-.2分∵3m >,∴2(3)0m ->,即0∆>. ∴方程总有两个不相等的实数根. 3分(2)①解:由求根公式,得3(1)(3)2m m x m -±-=.∴1x =或23m x m -=.∵3m >,∴23321m m m -=->.∵12x x <,∴11x =,22332m x m m -==-.5分②3m <<.7分4.解:(1)①补全图形,如图所示.1分②AP=BN,AP⊥BN.2分证明:延长NB交OP于点K,交AP于点∵四边形ABCD是正方形,∴AO=BO,AO⊥BO.∴∠1+∠2=90°.∵四边形OPMN是正方形,∴OP=ON,∠PON=90°.∴∠2+∠3=90°.∴∠1=∠3.∴△APO≌△BNO.∴AP=BN.4分∴∠4=∠5.在△OKN中,∠5+∠6=90°.∴∠4+∠7=90°.∴AP⊥BN.5分(2)求解思路如下:a.类比(1)②可证△APO≌△BNO,AP=BN,∠POT=∠MNS.b.作OT⊥AB于点T,作MS⊥BC于点S,如图所示.由AB=2,可得AT=BT=OT=1.c.由∠APO=30º,可得PT BN=AP1,可得∠POT=∠MNS=60º.d.由∠POT=∠MNS=60º,OP=MN,可证△OTP≌△NSM.∴PT=MS.∴CN=BN-BC1.∴SC=SN-CN=2.在Rt△MSC中,222CM MS SC=+,∴MC长可求.7分PNP。
专题14 运用比例解决问题(课件)-2024年小升初数学复习讲练测(通用版)
多少米?
【解析】同一时间,同一地点,物体的高度和影长
竹竿的影长 大树的影长
的比值是不变的。根据
=
,
竹竿的高度 大树的高度
列比例方程求解即可。
【例8】某一时刻量得一根3米长的竹竿的影长为2.1米。同一时
间,量得旁边一棵大树的影长为4.9米,则大树的高是多少米?
现在离规定完工时间只有5天了,照这样的速度,该工程
队可以按时完成任务吗?
【解析】根据工作效率=工作总量÷工作时间,工作效
率一定,所以工作总量和工作时间成正比例。设该工程
队实际修完的公路长度是x米,列方程求解,再将结果与
1800米进行比较即可。
【例1】某工程队要修一条1800米的公路,3天修了450米,现在离规定
4x=120×20
4x=2400
x=2400÷4
x=600
答:20个橙子可以榨出600克橙汁。
1、两种相关联的量,一种量变化,另一种量也随着变化,
如果这两种量中相对应的两个数的乘积一定,这两种量就
叫做成反比例的量,它们的关系叫做反比例关系。
2、如果用字母x和y表示两种相关联的量,用k表示它们的
积(一定),反比例关系可以表示为xy=k。
的速度再行驶3小时到达B地,A、B两地相距多少千米?
【解析】设A、B两地相距x千米。根据速度一定,路程与时间
成正比例,可列出比例方程,再求解。
解:设A、B两地相距x千米。
x∶(2+3)=120∶2
x∶5=120∶2
2x=120×5
x=300
答:A、B两地相距300千米。
【例6】甲地到乙地的铁路里程约300千米,甲地到丙
初二下学期数学期末复习串讲及练习题(人教版)
初二下学期数学期末复习串讲考试范围第十六章 分式(分式方程部分) 第十七章 反比例函数 第十八章 勾股定理 第十九章 四边形 第二十章 数据的分析一、本单元 知识结构图:二、例题与习题: 1.解方程: (1)233x x =- (2)1222x x x +=--(3)263111x x -=-- (4)012142=---x x7.20XX 年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修。
维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。
已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度。
8.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?10.某人往返于A、B两地,去时先步行2千米,再乘汽车行10千米,回来时骑自行车,来回所用时间恰好相等.已知汽车每小时比这人步行多走16千米,步行又比骑车每小时少走8千米. 若来回完全乘汽车能节约多少时间?11.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.第十七章 反比例函数一、本章知识结构图:二、例题与习题:1.下面的函数是反比例函数的是 ( ) A . 13+=x y B .x x y 22+= C . 2x y =D .xy 2= 5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = . 6.点(231)P m -,在反比例函数1y x=的图象上,则m = . 7.点(3,-4)在反比例函数ky x=的图象上, 则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数xk y 2=(0≠k ),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(k ,k )在它的图象上C. 它的图象是中心对称图形D. 每个象限内,y 随x 的增大而增大14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <216.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( ) A.-1B.3C.0D.-318.设反比例函数)0(≠-=k xky 中,在每一象限内,y 随x 的增大而增大,则一次函数k kx y -=的图象不经过( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c >B .b c <C .b c =D .无法判断( 第 15 题 )221.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接). 22.在反比例函数12my x-=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( )A 、0m <B 、0m >C 、12m <D 、12m > 24. 已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-31.已知反比例函数2y x=,下列结论中,不正确的是( )A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( ) A .2B .-2C .4D .-436.如图,若点A 在反比例函数(0)ky k x=≠的图象上, AM x ⊥轴于点M ,AMO △的面积为3,则k = .37.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( )A .B .C .D .42.已知反比例函数102)2(--=mx m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.第34题图 -1 2 -12 xy ABO 第33题图第36题45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点. (1)求出两函数解析式; (2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为ta y =(a 为常数),如图所示.据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?AO Cx y B51.如图,一次函数y=kx+b 的图象经过第一、二、三象限,且与反比例函数图象相交于A ,B 两点,与y 轴交于点C ,与x 轴交于点D ,5OB .且点B 横坐标是点B 纵坐标的2倍.(1)求反比例函数的解析式;(2)设点A 横坐标为m ,ABO △面积为S ,求S 与m 的函数关系式,并求出自变量的取值范围.第十八章 勾股定理一、本章知识结构图:二、例题与习题:1. 在△ABC 中,∠A=90°,则下列式子中不成立的是( ). A.222AC AB BC += B. 222BC AC AB +=C. 222AC BC AB -= D.222AB BC AC -=.3.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( ) (A )如果∠C -∠B=∠A ,则△ABC 是直角三角形(B )如果c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90° (C )如果(c +a )(c -a )=b 2,则△ABC 是直角三角形(D )如果∠A :∠B :∠C=5:2:3,则△ABC 是直角三角形4. 适合下列条件的三角形ABC 中,直角三角形的个数为( ).①;51,41,31===c b a ②a=b,∠A=45°;③∠A=32°,∠B=58°; ④a=7,b=24,c=25; ⑤a=2.5,b=2,c=3.A.2个B.3个C.4个D.5个6.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .7.图7-1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图7-2所示的“数学风车”,则这个风车的外围周长是 .12.直角三角形的两条直角边的长分别为5,12,则其斜边上的高为( ).A.cm 1380B.13cmC.6cmD.cm 1360 8.如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a b c ,,;A B N E F ,,,,五点在同一直线上,则c = (用含有a b ,的代数式表示).实际问题(判定直角三角形)实际问题(直角三角形边长计算)勾股定理勾股定理的逆定理AB C 图7-1 图7-2 第6题图 aD C BA Mc N EFb G H(第8题)13.边长为a 的正三角形的面积等于____________.14.已知等边三角形ABC 的边长为33 ,则ABC △的周长是_________,面积是___________. 16.如图,矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.18.如图,一束光线从y 轴上点A (0,1)发出,经过x 轴上点C 反射后,经过点B (6,2),则光线从A 点到B 点经过的路线的长度为 .21.如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________。
【数学课件】2016年初二数学上第十四章 整式的乘法与因式分解复习=
专题二 整式的运算
【例3】计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3. 【解析】在计算整式的加、减、乘、除、乘方的运算中,一要 注意运算顺序;二要熟练正确地运用运算法则. 【答案】原式=(x3y2-x2y-x2y+x3y2) ÷3x2y =(2x3y2-2x2y) ÷3x2y
(4)不是,因为令x=2,y=1,左边=10,右边=32,不是恒等变形.
这种方法叫赋值法.是一种比较好的方法,希望掌握!
【点拨】(1)多项式的因式分解的定义包含两个方面的条件,
第一,等式的左边是一个多项式;其二,等式的右边要化成几
个整式的乘积的形式,这里指等式的整个右边化成积的形式; (2)判断过程要从左到右保持恒等变形. 【归纳拓展】因式分解是把一个多项式化成几个整式的积的形 式,它与整式乘法互为逆运算,分解因式的方法主要是提公因
专题五 实际问题转化为数学模型
【例6】如图所示,在边长为a的正方形中剪去边长为b的小正方 形,把剩下的部分拼成梯形,分别计算这两个图形的阴影部分
学练优八年级数学上(RJ) 教学课件
第十四章
整式的乘法与因式分解
复习课
知识网络
专题复习
课堂小结
课堂训练
知识网络 知识网络
乘法公式 (平方差、完全平方公式) 形特 式殊 整式的乘法 运互 算逆 整式的除法 相反变形
相反变形
幂 的 运 算 性 质
因式分解 (提公因式、公式法)
专题复习 专题复习
专题一 幂的运算性质
2 2 xy 3 3
=
.
.
当x=1,y=3时,原式=
2 2 2 2 4 xy 1 3 3 3 3 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k (k>0)经过 A、E 两点,若平行四 x
15. 在长方形纸片 ABCD 中,AD=4cm,AB=10cm,按如图方式折叠,使点 B 与点 D 重合,折痕 为 EF,则 DE= cm. 16. 在函数 y
4 (x>0)的图象上有点 P1、P2、P3…、Pn、Pn+1,点 P1 的横坐标为 1,且后面每个 x
的纵坐标为-3,则点 A 的坐标为_______. 12.将 2016 个边长都为 1cm 的正方形按如图所示摆放,点 A1、A2、…、A2016 分别是正方形的中心, 则 2016 个这样的正方形重叠部分的面积和为________。 13. 如图,在平行四边形 AOBC 中,对角线交于点 E,双曲线 y= 边形 AOBC 的面积为 18,则 k=_______. 14. 设 a= 7 1 ,则 3a 12a 6a 12 _________.
=1 的解是正数,则 a 的取值范围是( B. a>﹣1 且 a≠0 的值为 0,则 b 的值是( C. a<﹣1 )
1 A.1 B.﹣1 C .± D.2 8. 根据如图所示的三个图所表示的规律,依次下去第 n 个图中平行四边形的个数是( ) A. 3n B. 3n(n+1) C. 6n D. 6n(n+1)
D
第 18 题
x
x
17. 在平面直角坐标系中, O 为坐标原点,四边形 OABC 是矩形, 点 A、 C 的坐标分别为 A(10,0) 、 C(0,4) ,点 D 是 OA 的中点,点 P 在 BC 边上运动,△ODP 是腰长为 5 的等腰三角形时,点 P 的 坐标为 . k 1 18. 如图,A、B 是反比例函数 y= 上两点,AC⊥y 轴于 C,BD⊥x 轴于 D,AC=BD= OC,S 四边形 x 5
ABDC=9,则
k=
.
第 2 页(共 4 页)
三.解答题
1 3 x 1 2 19.化简: . x2 x 4
20.解方程:
2 x 1. x x3
21.已知四边形 ABCD,对角线 AC、BD 交于点 O.现给出四个条件:①AC⊥BD;②AC 平分对角线 BD; ③AD∥BC; ④∠OAD=∠ODA, 请你以其中的三个条件作为命题的题设, 以“四边形 ABCD 为菱形”作为命题的结论. (1)写出一个真命题,并证明; (2)写出一个假命题,并举出一个反例说明.
ቤተ መጻሕፍቲ ባይዱ第 3 页(共 4 页)
24.如图所示, 正方形 ABCD 的边长为 1, 点 M、 N 分别在 BC、 CD 上, 使得△CMN 的周长为 2. 求: (1)∠MAN 的大小; (2)△MAN 面积的最小值.
25. (1)探究规律: 已知:如图(1) ,点 P 为□ABCD 内一点,△PAB、△PCD 的面积分别记为 S1、S2,□ABCD 的面 积记为 S,试探究 S1+S2 与 S 之间的关系.
第 1 页(共 4 页)
二.填空题 9.函数 y
3 x 的自变量 x 的取值范围是 x2
.
1 10.事件 A 发生的概率为 ,大量重复做这种试验,事件 A 平均每 100 次发生的次数是 20
.
A2 A1
A3 A4
(第 18 题)
11.正比例函数 y=kx 与反比例函数 y=
k 的图象相交于 A、B 两点,已知点 A 的横坐标为 1,点 B x
A S1 P S2 C (图(1)) D
B
(2)解决问题: 如图(2)矩形 ABCD 中,AB= 4,BC=7,点 E、F、G、H 分别在 AB、BC、CD、DA 上,且 AE=CG=3,AH=CF=2.点 P 为矩形内一点,四边形 AEPH、四边形 CGPF 的面积分别记为 S1、 S2,求 S1+S2.
2016 初 2 数学专题讲练 14:期末复习(1)
一.选择题 1.下列四个函数中,在同一象限内,当 x 增大时,y 值减小的函数是( A.y=5x B. y )
3 x
C.y=3x+2
D. y
1 x
a 2 b2 a b a b 2.计算 2 的结果是 ( 2 a b 2ab a b
22.已知反比例函数 y1=
k 的图象与一次函数 y2=3x+m 的图象相交于点(1,5). x
(1)求这两个函数的关系式. (2)根据图形,直接写出使得.y1> y2 的 x 的取值范围。
23. 在△ABC 中,AB=AC=5cm,D、E 分别是 AB,AC 的中点,将△EBC 沿 BC 折叠得到△FBC, 连接 C、D. (1)求证:四边形 DBFC 是平行四边形; (2)若 BC=5cm,求 D、F 两点之间的距离.
点的横坐标与它前面相邻点的横坐标的差都是 1,过点 P1、P2、P3…、Pn、Pn+1 分别作 x 轴、y 轴的 垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为 S1、S2、S3…、Sn, 则 Sn= . (用含 n 的代数式表示) y
y
C P B
C
A B
O
O D A 19 题 图
A.
)
1 1 B. C.a-b D.a+b a b ab 3.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是 25 千米,但交通比较拥堵;路 线二的全程是 30 千米,平均车速比走路线一的平均车速能提高 80%,因此能比走路线一提前 10 分钟到达,若设走路线一的平均车速为 x 千米/时,则根据题意,得( )
这十个点中随机取两个点 P(x1,y1)、Q(x2,y2),则 P、Q 两点在同一个反比例函数图象上的概 率是( ) A.
1 9
B.
4 45
C.
7 45
) C.
D.
2 5
5.设 m>n>0,m2+n2=4mn,则 A.2 6.关于 x 的方程 A. a>﹣1 7.若分式 B.
=(
D.3 ) D. a<﹣1 且 a≠﹣2
A.
25 30 10 x 1 80% x 60 30 25 10 1 80% x x 60
B.
25 30 10 x 1 80% x 30 25 10 1 80% x x
C.
D.
4. 已知函数 y=x-5,令 x=
1 3 5 7 9 、1、 、2、 、3、 、4、 、5,可得函数图象上的十个点.在 2 2 2 2 2